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Discovery and clustering of users by their topic of interest on the Social Web can help enhance various
applications, such as user recommendation and expert finding. Traditional approaches, such as latent
semantic analysis-based topic modeling or k-means document clustering, run into issues when content
is sparse, the number of existing topics is unknown and/or we seek topics that are hierarchical in
nature. In this paper, we propose a method for ontology-assisted topic clustering, in which we map
Social Web user content to ontological classes to overcome sparsity. Using a novel ranking technique
for calculating the topical similarity between individuals at different topic scopes, we construct graphs
on which we apply a quasi-clique algorithm in order to find topic clusters at that scope, without having
to pre-define a target number of topics. Our approach allows (1) the topic scope to be controlled in
order to discover general or specific topics; (2) the automatic labeling of clusters with tags that are
human and machine-understandable; and (3) graphs to be clustered recursively in order to generate
a hierarchy of topics. The approach is evaluated against ground truths of Twitter users and the 20-
newsgroups dataset, commonly used in document clustering research. We compare our approach to
standard and Twitter-specific latent Dirichlet allocation (LDA), hierarchical LDA, and standard and
hierarchical k-means clustering. Results show that our method outperforms regular LDA by up to
24.7%, Twitter-LDA by up to 11.9%, and k-means by up to 26.7% on Social Web content. It performs
equivalently, depending on several factors, to these approaches on a dataset of traditional documents.
Additionally, our method can discover the appropriate number and composition of topics at a given
topic scope, whereas k-means clustering cannot account for differences in scope.
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1. Introduction

With the emergence and rapid popularization of various social media, communication is done less
frequently in person, and increasingly more often via online social services such as Facebook and
Twitter. Recent analyses show that US Web users spend on average 23 hours per week on email, text
and social services; 87% of users log in to Facebook at least once per week, and 32% log in to Twitter
at least once per week [14]. Inevitably, communities form on these media, bringing together friends
and like-minded individuals. Restricting our scope to the Social Web, we can distinguish between
connections between individuals based on (1) interpersonal ties, and (2) mutual interests. There are
many applications that can benefit from the discovery of these types of connections, and from the
clustering of individuals into social or interest-based groups. For example, discovering the structure
of connections between people can provide social scientific insights into human behavior or assist
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Fig. 1. A simple comparison of tf-idf word co-occurrence and ontological expansion. tf-idf is unable to capture
the similarity between the documents on the left. We can expand both documents to the “Apple products” class
when doing ontological expansion, on the right.

user recommendation based on similarity of interests, and expert finding, where we are looking for
individuals with specific skills, mentioning unique types of terminology in his content.

The tie-based clustering of individuals (henceforth users) by their connections is a classic, inter-
disciplinary task within the social, natural and computer sciences, commonly known as community
detection. There has been a significant amount of research into this notion [35][27]. A population
is represented as a graph, where each vertex is a user and each edge ties two users together. Edges
can be weighted in order to express strong or weak ties. Such a graph can then be clustered into one
or more subgraphs (the communities). There exist many algorithms for clustering in graphs, such as
modularity optimization [34] or clique percolation [12], which generally boil down to the principle of
the strength of weak ties [13], where the goal is to identify weak, inter-community connections and
remove or ignore them; what remains are the communities of interest. A distinguishing property of
such community detection algorithms is that the number of communities, or clusters, do not need to
be known beforehand. A downside to tie-based community detection is that content is not considered;
we argue that on the modern Social Web, interpersonal ties matter less when we are purely interested
in users with similar topics of interest.

When we are more concerned with content, we can turn to the related but distinct tasks of topic
modeling and document clustering [48]. Here, we try to assign similar documents to the same semantic
topic. Links between documents are not assumed to be present, and we must therefore analyze the
content of the documents in order to determine conceptual similarity. This is most commonly achieved
by leveraging word co-occurrence – if words that are relatively unique to the entire collection appear
often together in the same subset of documents, we may assume that this subset shares some common
topic. Since this topic is not expressed in the documents themselves, it is called latent; the most
common class of topic modeling algorithms use a technique known as latent semantic analysis (LSA)
to find these “hidden” topics [10]. Document clustering works in a similar way, where a k-means-
based classifier is often used to divide documents into a pre-defined number of topics. We can map
the tasks of topic modeling and document clustering onto the Social Web by considering each user’s
content as a document; the latent topics belonging to groups of users can then be regarded as user
“interests”. However, a problem with methods that rely on word co-occurrence is that in cases where
not much text is available, or text is not necessarily grammatically accurate, these methods tend to
perform poorly [19][50]. See figure 1 (left) for a simple example of this. Another limitation of most
existing document clustering approaches is that the number of topics needs to be known beforehand,
which is rarely the case when dealing with an ad hoc collection of users on the Social Web (such as a
stream of users resulting from a keyword search on Twitter, for example).
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Fig. 2. Using scoped topical similarity clustering, we can manipulate the topic scope in order to cluster users at
an arbitrary height of the topic hierarchy. In this example, we can cluster by two broad topics (high scope) or five
specific topics (low scope).

In this paper, we take a hybrid approach: we use an ontology-assisted topic modeling technique
to determine the topical similarity among a population of Social Web users, then use a quasi-clique
community detection algorithm to cluster users by shared topics of interest – we assume the number
of topics is not known, and infer this from the data.

Initially, we capture topic information by applying ontological expansion: we match named en-
tities discovered in users’ text content to an external knowledge base, DBpedia [3], and obtain full
class hierarchies for three types of classes (DBpedia [1], YAGO [45], Schema.org [40]). See figure 1
(right). Based on these class hierarchies, we propose a weighting scheme that allows us to determine
trait vectors (ontological classes weighted with a prominence score) that characterize individual users
within a population, and capture users’ dominant topics of interest. The scope of topics can be dynam-
ically controlled with a topic scope mechanism – it depends on our application whether we want to
detect users interested in “sports”, or go a step down and distinguish the “American football” interest
from the “soccer” interest, for example. This is an important distinction from other topic modeling
approaches, which usually require the number of topics to be known in advance, and may not capture
hierarchical topics.

In the second part, we construct an undirected scoped topical similarity (STS) graph of Social Web
users, weighted based on the cosine similarity between users’ trait vectors. This graph is clustered into
topics of interest shared by groups of users using a variation of the clique-based Highly Connected
Subgraph (HCS) algorithm [17], which finds communities by recursively splitting a graph along its
minimum cut. We modify this algorithm by (1) considering edge weights when determining minimum
cuts; (2) loosening constraints on what constitutes “highly-connectedness”; and (3) assigning lowly-
connected users that would otherwise be dropped to clusters that match their traits best. Depending
on how we set our topic scope, we obtain a high or low slice of the topic hierarchy. See figure 2 for
an illustration of this. The flexibility of the approach enables two interesting side-effects: using the
same algorithms, (1) we can compute cluster-based trait vectors that allow us to label clusters with
appropriate tags that are both human-readable and machine-understandable, since they link directly
into the Linked Data cloud [4]; and (2) we can cluster a graph divisively into increasingly more specific
topics by recursively applying the described method on resulting topic clusters.

We evaluate the approach in three ways. We first investigate the quality of our ST S weighting
scheme, in terms of nDCG [22] rankings for two different seed users with known interests, and
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compare the results to baselines such as tf-idf term weighting to show the advantages over word
co-occurrence-based methods. We then evaluate scoped topic clustering based on (1) a manually con-
structed ground truth of 175 Twitter users, distributed over 4 topics and 11 sub-topics; and (2) a dataset
commonly used in document clustering research (the 20-newsgroups dataset [38]). The topic cluster-
ing results are compared mainly to latent Dirichlet allocation (LDA) [7], the current gold standard
for topic modeling; a state-of-the-art Twitter-centric version of LDA, called Twitter-LDA [50]; and
k-means clustering [16], a classic document clustering algorithm. Lastly, we evaluate full hierarchical
clustering, comparing to hLDA [6] and hierarchical k-means.

After a short re-iteration of the main contributions of this work, the remainder of the paper is
organized as follows. In section 2, we outline past research into community detection and document
clustering on the Social Web, their problems, and how our proposal differs from these works. Sections
3 (topic discovery and representation) and 4 (hierarchical clustering) will provide a detailed explana-
tion of the two parts of our approach. In section 5, we outline our experimental setup and evaluate our
work compared to baselines and the state-of-the-art. Finally, in section 6, we conclude the paper with
a discussion of the results and directions for future work.

1.1. Contributions

We can define one main contribution and two sub-contributions for this work.

1. We introduce an ontology-assisted approach for the hierarchical clustering of Social Web users
by topic of interest when the number of topics is not known in advance – we allow the discovery
of topic clusters at a chosen topic scope that is independent of the underlying data. Using these
techniques, we additionally describe:

(a) a method for automatic labeling of clusters with human and machine-readable topic tags;
(b) a method for divisive clustering of a user graph into a topic hierarchy.

2. Related work

Topic modeling, (ontology-based) document clustering and classification, and community detec-
tion are all classic, multi-disciplinary problems that have been the subject of significant research,
leading to the development of many different methods and algorithms [5][27]. In this section we
discuss some of the more significant works in each of these areas.

Topic modeling approaches In 2003, Blei et. al. [7] revolutionized the topic modeling field with the
introduction of a pLSA-based generative probabilistic topic modeling technique called latent Dirich-
let allocation (LDA). Since then, a great number of variations of and additions to LDA have been
developed that address specific use cases. We briefly discuss two Twitter-centric approaches and a
hierarchical approach.

Hoang et. al. [19] conducted an empirical study on different ways of performing topic modeling
on Twitter tweets using the original LDA model and the author-topic model [41]. They find that
topics learned from documents formed by aggregating tweets posted by the same users may help
to significantly improve some user profiling tasks. The work by Zhao et. al. [50] proposes the
TwitterLDA topic model for microblogging data. TwitterLDA is another variant of LDA, hLDA, which
assumes there is only one common topic for all words in each tweet, and that each word in a tweet
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is generated from either a background topic or the user’s perceived topic. The authors demonstrate a
significant improvement over standard LDA on Twitter data. In [6], Blei et. al. introduce a hierarchical
version of LDA, using a nested Chinese restaurant process to generate infinitely deep trees in order
to cluster documents at multiple levels of topic abstraction. We include these latter two works in our
evaluation of a Twitter-based dataset. The main issue with all approaches that incorporate a variation
of LDA is the inherent reliance on word co-occurrence between users or documents, and the need
to pre-define the number of topics (number of hierarchical levels for hLDA) that exist in the data.
This is especially problematic on the Social Web, where text content is sparse and noisy, leading to
insufficient term overlap to make accurate predictions about their latent semantics, and where topics
cannot be concretely pre-defined. We address the first concern by mapping text content to a subset of
the roughly 300,000 hierarchical classes of an external ontology; all subsequent processing is done on
these classes. This dimensionality reduction helps minimize sparsity and noise, while leaving enough
classes to be able to model unique user interests. Secondly, we do not need to pre-define any number
of topics: given a topic scope, we infer this from the data using clustering techniques.

Document clustering and classification approaches Approaches that leverage some form of doc-
ument classification involve the a priori definition of a set of possible topics or categories, with the
subsequent application of NLP and machine learning techniques to allocate each document or user to
one of these categories. For example, Zhao et. al. [51] propose a topic-oriented community detection
approach which combines both social objects clustering and link analysis, in order to identify more
meaningful topical communities. They classify documents according to a number of pre-defined top-
ics, taking into account interpersonal connections as well as content similarity. Tsur et. al. [47] present
an algorithm for classifying Twitter tweets into pre-defined topics based on hashtags. While we agree
with these works that topic-oriented communities are more meaningful than tie-oriented ones, these
types of techniques are classification methods that pre-define a set of around eight to ten flat topics
to assign users or documents to, which limits usefulness in scenarios where we are interested in spe-
cialized topics or hierarchical topics. Our approach is not one of classification, but of clustering: we
construct topics dynamically in terms of classes that characterize groups of topically similar users.

An advanced streaming, machine learning-based method for matching individual tweets to a pre-
defined ontology of 300 classes with high precision was introduced by Twitter’s user modeling team
[49], and is currently in active use as a part of Twitter Analyticsa. Although this work focuses on
individual tweet topic modeling, it offers some insights into extending this to user interest modeling
based on tf-idf-style weighting of the discovered tweet topics and additional user behavior (retweet,
reply, favorite, etc): this is similar to how we model user interests, however we aim to discover much
more fine-grained interests by leveraging and defining them in terms of hundreds of thousands of
classes instead. This allows us explicit control over the scope of interests and to cluster a larger
collection of users by their shared interests.

(Ontology-assisted) Social Web approaches The emergence of the Social Web has given rise to a
substantial body of research exploring differences between Social Web content and standard content,
and developing specialized methods and variations on common techniques to deal with these differ-
ences. In [39], for example, the authors rebuild the NLP pipeline from start to end with microblogs in
mind, reporting double the F-measure compared to the state-of-the-art. In [28], a graph-based method

ahttps://analytics.twitter.com
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is introduced that conducts named entity normalization and recognition simultaneously, looking for
pairs of words that share the same lemma and judging whether these words mention the same entity
in a stochastic way. A general exploration into the difficulties of standard NLP on the Social Web is
given in [11]. We will limit ourselves to discussing works that specifically combine the Social Web
and semantic expansion to external ontologies (most commonly Wikipedia) into their approach.

In [32], Michelson et. al. present results on discovering Twitter users’ topics of interest by exam-
ining entities mentioned in their tweets, and deriving a topic profile based on Wikipedia categories.
Their findings corroborate our own results that using an external concept hierarchy can be a good
indicator for categorizing general user interests, but we argue that Wikipedia categories are too disor-
ganized to be useful, and choose to rely mostly on the more robust YAGO [45] taxonomy instead. In
[2], Abel et. al. incorporate semantic expansion to an external ontology into their Twitter user mod-
eling process for improved personalized news recommendations, showing significant improvements
over simpler approaches such as relying on hashtags. Similarities between the above two works and
ours end at the way user topic profiles are represented, however; they do not incorporate clustering of
users using these profiles. We are not aware of research on the clustering of Social Web users specif-
ically using ontological classes. However, significant research has been conducted into the clustering
of regular documents with the assistance of ontologies. The most prominent work is by Hotho et. al.
[20], who propose using WordNet [33] concepts to assist in document clustering, and show improved
results. They disambiguate terms to concepts in a simple way and apply a k-means type clustering
based on concept frequencies into a pre-defined number of topics. Unlike our approach, they do not
exploit a tf-idf-style weighting of concepts and rely only on concept frequency to determine similarity,
require topics to be pre-defined, and do not support hierarchical topics. We also argue that WordNet
does not provide sufficient granularity for concepts: only relatively high-level topics can be obtained,
whereas we allow even highly specific topics to be defined by considering not only classes, but at the
lowest level also the Wikipedia pages themselves.

We have previously introduced a method in which we enhanced a Twitter recommendation system
based on user follow relations with a post-processing step that leveraged an external ontology [43]. We
reported positive results, but the approach is not applicable for comparing different users to find if they
are similar. Our new work described in this paper essentially extends this previous post-processing
step into a general approach for clustering a population of users by interest.

Community detection-based approaches To our knowledge, there has been little to no substantial
research into hybrid topic modeling and graph-based community detection approaches for clustering.
A notable exception is Lancichinetti et. al. [25], who develop a community detection-based method
for document clustering applied on a graph expressing tf-idf-based similarities between documents,
and show large improvements over the LDA gold standard in terms of accuracy and reproducibility.
Our work can be regarded as a further exploration of this approach, substituting an ontology-based
method for the topic modeling part – which we argue should work better with sparse content – and
additionally allowing hierarchical clustering as well as automatic topic labeling.

3. Topic discovery and representation

In this section, we will detail our approach for the discovery of ontology-based, hierarchical clusters
of user interests. Although our approach is general enough to be applied to any type of documents, it
is designed to be especially useful in a noisy Social Web environment. We will focus on Twitter as a
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Fig. 3. The general flow of our approach. Sections 3 and 4 explain each step in detail.

use case for the majority of this paper. Realistically, user interests are dynamic and evolve over time,
so an accurate topic model would need to incorporate the time dimension in some form. Dynamic
topic detection is outside the scope of this paper: we choose to make the simplification of considering
the latest 500 or so posts on a user’s timeline to be representative of their current interests. Note that
users do not necessarily have only one topic of interest: we consider “user interest” to be a distribution
over topics, where a user can be interested in an undetermined number of topics in various degrees.
Furthermore, we also posit that each topic is hierarchical in nature: that is, a user generally interested
in “sports”, might be specifically interested in “hockey” and “golf” to different degrees. We aim to
develop a model that can accurately capture this type of information.

To differentiate Social Web-oriented clustering from traditional document clustering, we consider
a collection of users U , as opposed to documents D. These notions are conceptually similar: each ui

in U contains some number of posts {p1, p2, ..., pn} ∈ Pi, similar to how a document di ∈ D would
consist of lines or paragraphs, which are both in turn collections of words {w1,w2, ...,wm} ∈Wi. In
order to keep our approach application-agnostic, we consider only raw text content – usually the users’
text (micro-)posts, Pi.

Overall, we can divide the approach into two parts, comprising a combined five steps, as shown in
figure 3. Sections 3.1 through 3.4 and section 4 will explain each step in detail.

3.1. Detecting named entities

The first step is to ontologically expand each user’s posts by applying named entity recognition (NER)
to link entities to ontology classes. We do this to mitigate the sparsity of raw text data in a Social
Web context. In order to keep the scope of our research within bounds, we have decided not to devise
our own approach for NER. Instead, we opt to use DBpedia Spotlight [31][8], a proven off-the-shelf
entity recognizer that detects named entities in text and generates links to DBpedia [3]. See figure 4
for a visual explanation of how we use DBpedia Spotlight in our system.

We aim to derive per-user topic profiles, meaning we map whole users to some distribution of
topics. To this end, we take a significant portion of a user’s text content – for our Twitter use case, we
take the most recent 500 tweets – and apply DBpedia Spotlight on this content. We make the observa-
tion that the more input data that we have, the better entity recognition imperfection will be mitigated.
Recognition is only roughly 85% accurate on well-formed text [8], and this number is likely signifi-
cantly lower in a Social Web context ([11] shows an F1 score of 28.3% on non-preprocessed “whole
tweet” entity linking, but it is unclear how performance changes with microblog-specific preprocess-
ing and term-level entity linking, which is what we are interested in). However, by the law of large
numbers, entities should converge to the most dominantly present topics in spite of this ratio of error.
Still, recognizing these difficulties of entity recognition on the Social Web, we pre-process the input
in two ways to improve entity recognition performance for this use case.
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Fig. 4. Tweets are collected from the timelines of a collection of users U . DBpedia Spotlight is then applied on the
text in these tweets to find named entities, which are linked to DBpedia entities and (a simplified representation
of) their class hierarchy.

First, we pre-filter the raw text associated to tweets: we remove user mentions, urls, and the
hashbangs from hashtags, as well as certain terms that are noise more often than not (e.g. “Twitter”,
and netslang such as “lol”). Since Spotlight already applies tokenization and other common NLP
techniques to its input, any further text pre-processing is left to the entity recognizer. Second, since
a lack of context in single tweets is a leading cause for poor NER performance [11], we concatenate
several tweets together before attempting to apply NER (see section 3.1.1).

More formally, for each user ui ∈ U , we apply Spotlight on all posts {p1, p2, ..., pn} ∈ Pi to
obtain a set E of unique DBpedia entities {e1,e2, ...,em} ∈ Ei. For each entity, we keep track of
its number of occurrence within Pi. In the simple example that is illustrated in figure 4, we have
E1 = {(iPad Mini,1)}, E2 = {(iPhone,1)} and E3 = {(HTC One,1)}.

It is important to note that this step is a dimensionality reduction from words W to entities E:
while each post p ∈ P may contain up to 140 characters (in the case of Twitter), with an empirically
observed average of around 15 words for English tweets [36], typically only zero to two entities will
be discovered in each p. This reduces the sparsity of the problem by roughly an order of magnitude.

3.1.1. Concatenation window size

Spotlight leverages word co-occurrence between source text and text from candidate Wikipedia entries
for disambiguation, so supplying extra context information can significantly improve the accuracy of
the entity recognition. For microblogs such as Twitter, multiple consecutive tweets are often about the
same topic (consider conversations between users, or a message that does not fit in 140 characters),
resulting in better accuracy for the recognizer if we have more of the same type of content to consider.
We need to determine a concatenation window size for the number of individual posts p ∈ Pi to con-
catenate before sending them to the recognizer. We set up a simple experiment in order to determine
what window size values give best results; see section 5.3 for details.
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3.1.2. Spotlight parameter tuning

DBpedia Spotlight has a number of parameters that can be adjusted for different results. Most impor-
tantly, we can set support and confidence values. Setting these parameters is essentially deciding on
a trade-off between precision and recall. With the support parameter we can set a minimum number
of in-links that we require a Wikipedia page to have, and with the confidence parameter we can filter
out matches that have insufficient similarity between source and target texts. For our approach, we
are interested in even the very specialized subjects that may have only a single in-link on Wikipedia,
but also want to exclude orphaned pages that may have been abandoned. By this reasoning, we fix the
support parameter to a value of 1. It is not clear however which confidence parameter will yield the
best results, so we perform experiments to find a good value empirically. See section 5.3 for details.

3.2. Ontological expansion

DBpedia incorporates various ontologies and taxonomies, automatically or manually extracted from
the underlying Wikipedia data and external sources. For our purposes, there are three ontologies that
are useful in particular:

• DBpedia ontology classes [1]: these have been derived mainly from the info boxes on Wikipedia.
They form a hierarchy of 685 classes.
• Schema.org classes [40]: these are originally semantic classes to mark up HTML pages in

ways recognized by major search providers. They have been included for DBpedia resources
through a mapping from the DBpedia ontology [18], with only minimal differences.
• YAGO classes [45]: this ontology is a cleaned version of the Wikipedia category hierarchy,

with top-level classes represented by terms from WordNet [33]. It contains roughly 300,000
classes, and is the taxonomy we rely on the most, as it contains both broad and very specific
types of classesb.

All three of these ontologies form tree-like hierarchies, but none are strict trees – that is, they are
directed acyclic graphs, which means some classes may have multiple parents. They are all hierarchi-
cal in the sense that concepts get broader the closer one gets to the root, and narrower the closer one
gets to the leaves.

Recall that we gathered a collection of entities Ei for each user ui in the entity recognition step.
Now, for each entity e j ∈ Ei we collect hierarchical class information. This means that we obtain
the DBpedia, Schema.org and YAGO classes directly assigned to this entity, as well as the ancestor
class(es) of these classes, all the way up to the root of the hierarchy. We keep count of the number
of occurrence of each unique class as we did for entities. We end up with a bag of unique classes
{c1,c2, ...,cn} ∈Ci per user ui, where each c is a tuple consisting of the class along with its number of
occurrence. For our example in figure 2, we get:

C1 = {(Apple PDAs,1),(PDAs,1),(Electronic Device,1)}
C2 = {(Apple Mobile phones,1),(Cellular phones,1),(Electronic Device,1)}
C3 = {(HTC Mobile phones,1),(Cellular phones,1),(Electronic Device,1)}

b A simplified excerpt of this ontology can be seen on the right-hand side of figure 4, showing the beginning of the YAGO
hierarchy for some example entities.
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3.2.1. Including entities as classes

Wikipedia, and by extension DBpedia, are crowd-sourced data sources, and are therefore noisy: not
all entities have classes associated to them, assigned classes may be incorrect, or the classes may not
be sufficiently descriptive. To mitigate this, aside from including the three different class hierarchies
for extra redundancy, we include the entities themselves as classes as well. This means that we count
not only class occurrences, but also entity occurrences. From here on, we will consider cfi,c to be the
class frequency map consisting of the union between the entities Ei and classes Ci:

cfi,c = Ei∪Ci = the number of times entity e or class c occurs for user ui. (1)

Given the ontologies’ hierarchical properties, highly specialized classes will tend to get lower cf
values, and more general classes will get higher cf values. So while the entities and the classes of the
three different ontologies have been combined, flattened and assumed independent from each other,
their hierarchical properties remain intact.

3.3. cf-iuf weighting and trait vectors

We introduce a weighting strategy for classes that is based on tf-idf, a common strategy used in
document processing [44]. On top of the class frequency map cfi,c described in the previous section,
we now additionally calculate a user frequency map uf that records for every unique c how many users
in U have at least one instance c:

ufc = the number of users that have at least one instance of c. (2)

We can see that the higher the ufc for some c, the more common a class is among the collection of
users. Hence, as with traditional inverse document frequency, we take the inverse of this measure, so
that more common classes get a lower weight:

iufc = log
|U |
ufc

(3)

Combining equations 1 and 3 leads us to our cf-iuf weighting strategy for each ui:

cf-iufi,c = cfi,c× iufc, where c ∈Ci. (4)

We can calculate a cf-iuf weight for each unique class that occurs for each user. We use this
weighting strategy as components for a trait vector ti, projecting traits that characterize a user’s inter-
ests into a class-based vector space model:

ti = [w1,w2, ...,w|Ci|]
T , where wk = cf-iufi,ck and ck ∈Ci. (5)

In other words, each user has as many traits as he has unique classes, and these traits are weighted
according to their overall uniqueness compared to other users. The traits with the highest weights
characterize this user best within the full collection of users.

3.4. Scoped topical similarity

At this point, we can formally define a Social Web user as follows.
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Definition 1 A Social Web user ui in a collection of users U is a 3-tuple

ui = (P,cf, t), ui ∈U, (6)

where P is a collection of (micro-)posts; cf is a class frequency map, and t is a trait vector expressing
the topical affinity of the user to each class.

We leverage these properties to group similar users by their common topics of interest. It is hard
to define “topics of interest” concretely, for a number of reasons. First of all, the topic scope can be
almost arbitrarily narrow or broad (consider e.g. Premier league players → Football → Sports →
Activity): there is no “true” scope for the topics, as this depends completely on what we are interested
in finding. A second reason is that there is ambiguity as to the delineation of topics, and how many
and what kind of concepts can even be considered “topics”. This is often called the “user’s dilemma”
[21]: each observer has different ideas about what constitutes a “topic” and how to draw the right
delineation between different topics. We deal with these problems by (1) making the scope of topics
sought controllable: different use cases require different topic allocations, so we allow the retrieval of
topics at arbitrary levels of the latent topic hierarchy; and (2) inferring mutual topics of interest and
their boundaries from the underlying data based on users’ scoped topical similarity.

3.4.1. Controlling topic scope

As explained above, the scope of the topics we seek is application-specific, and there is no “right” or
“wrong” scope or number of topics. Exploiting the hierarchical properties of the ontological classes
that form the basis of our user trait vectors, we introduce a topic scope parameter, γ, into the equation
for the cf-iuf weighting strategy. This allows us to forego the definition of a target number of topics
for the clustering that is common to most existing topic modeling and document clustering techniques.

cf-iufi,c = cf1+γ

i,c × iuf1−γ
c , −1≤ γ≤ 1, γ ∈ R (7)

γ can take on any real value between -1 and 1. If we set γ closer to -1, we put more weight on iufc

and less on cfi,c, leading to a bias towards rare classes (a lower slice of the topic hierarchy), and vice
versa. This behavior was depicted in figure 2.

The exact generality of classes that we obtain at a given, absolute value of γ depends on a number
of other dependent variables of our approach, which we will introduce in the coming sections. There-
fore, there is a need to calibrate γ to yield a certain topic scope at a certain value, and optimize the
remaining variables around this calibration. We describe this calibration and optimization process in
section 5.3.3.

3.4.2. Inferring mutual interests: scoped topical similarity

Given each user’s trait vector t, we can find which users are similar to each other at scope level γ

by calculating the pair-wise cosine similarity between all users in U . We call this the scoped topical
similarity (STS) function.

ST Sγ(ui,u j) =
ti · t j

|ti||t j|
(8)
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Since the cf-iuf weights for traits were normalized, it follows that 0 ≤ ST Sγ(ui,u j) ≤ 1. At any
point, we can alter the topic scope γ and re-calculate the trait vectors t and the ST Sγ between all users
for different topic distributions. However, this is not enough the determine topic boundaries within a
collection of users; the next section will detail how we cluster users into distinct topics.

4. Hierarchical topic clustering

In this section, we describe how we use graph-based techniques to perform the clustering of users into
topics. The key characteristic of this type of approach is that we do not need to pre-define the number
of clusters. First, we explain how we represent users and their similarity as a weighted graph (section
4.1), followed by a detailed description of the methods we developed for scoped clustering (4.2), topic
labeling (4.3) and recursive clustering to construct topic hierarchies (4.4).

4.1. Scoped topical similarity graph

From our collection of users ui = (P,cf, t), ui ∈U , we can construct a scoped topical similarity graph
Gγ = (V,E). Gγ is an undirected weighted graph where each vertex is a user and each edge connects
two users, with their ST Sγ as edge weight. Initially, we calculate edge weights between every pair of
users to obtain a fully connected graph.

Such a graph is not an ideal form if we want to find topic clusters; it is hard to find clusters within
a fully connected graph, and the number of edges |E| will be exponential in |V |, leading to intractable
computational complexity when dealing with large graphs. We solve this by first pruning the edges
E, imposing a minimum ST Sγ threshold τ. In other words, if two users are less than τ similar, we
consider them too different to have any kind of interest in common. It is not immediately clear which
value of τ would yield the best results. We include τ as one of three dependent variables that we
optimize through hyperparameter optimization; see section 5.3.3 for details.

When visualized, the topological graph structure gives an intuitive idea of where clusters are lo-
cated, but is not sufficient to say anything explicit about the clusters and their content. We can apply a
clustering algorithm to isolate highly-connected clusters into distinct topics. As mentioned, we can ex-
pect to find a high or low number of clusters if the graph Gγ has a low or high value for γ, respectively.
How many topics we end up with depends entirely on the underlying data.

4.2. Finding highly-connected subgraphs

Given the pruned ST Sγ graph Gγ, we apply a custom version of the Highly Connected Subgraph
(HCS) clique-based, strict partitioning clustering algorithm [17]. Originally, this algorithm works by
dividing a graph into subgraphs that fulfill some minimum edge degree condition. First, a minimum
cut is determined, along which the graph is cut. The resulting subgraphs are examined to see if they
are highly connected; each vertex in the subgraph must have an edge degree that is at least greater
than half the number of vertices in the subgraph. If a subgraph is not highly connected, the algorithm
is repeated on this subgraph, assuming there are at least 2 vertices left. HCS allows outliers: singleton
and twin vertices are not considered clusters, and therefore discarded. The final result is a clustered
graph containing however many highly connected subgraphs were found.

For our purposes, we modify this algorithm in three ways. Firstly, the original algorithm was
developed for unweighted graphs. Since we deal with a weighted graph, we apply a minimum cutc

c Strictly speaking, we seek the maximum cut, since a higher weight means a higher similarity between users, but for simplicity’s
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algorithm that takes weights into account. Secondly, the original full-clique constraint for determining
highly-connectedness of a cluster is too strict for our purposes; we relax these constraints to obtain
a quasi-clique algorithm. Lastly, we do not want to drop outliers from the result, thus also apply a
singleton adoption heuristic as described in [17]. We explain these three modifications in brief.

Weighted minimum cut Since we have a weighted graph, Gγ, we use a modified version of Kruskal’s
minimum spanning tree algorithm [24]. First, we sort all edges E ∈ Gγ by ST Sγ in descending order.
Then we start constructing the minimum spanning tree as per Kruskal’s algorithm using the sorted
edge list, but stop at the second-to-last step, at which point we have two trees that contain all of the
vertices. The last step would connect the two trees to form the minimum spanning tree; since we
constructed the trees in descending order of edge weight, it follows that the cut between the two trees
represents the minimum cut. A proof of this can be found in [9].

Highly-connectedness constraint We rewrite the clique constraint as follows, parameterizing the
numerator for the proportion of vertices that must be higher than the minimum vertex degree of a
subgraph as α:

min{degrees(v j) | 1≤ j ≤ |Vsub|, v j ∈Vsub} >
|Vsub|

α
(9)

In the original algorithm, α = 2; we experiment with different values for α. A larger α means a
less strict lower bound requirement for a highly connected graph, hence we find larger subgraphs. We
regard such highly connected subgraphs as topic clusters.

Singleton adoption Dropping lowly connected or isolated nodes is not desirable for our purposes;
we want to allocate users to at least one topic cluster, even if their affinity to the topics this cluster
represents is low. We apply a singleton adoption heuristic where for all remaining, unassigned users
after one iteration of the algorithm, we recalculate the ST Sγ between each unassigned user trait vector
ti and each cluster-based trait vector tk. The latter has been calculated from the union of all traits of all
users assigned to that cluster, compared to those of other clusters. The user is assigned to the cluster
with highest similarity. The next section explains this in more detail.

4.3. Topic clusters and labeling

An advantage of using ontology classes to model topics is that it allows us to reason about the semantic
content of topic clusters. One important result is that we can obtain intuitive labels for the clusters
by regarding them as single entities, and re-calculating ST Sγ; this time, we calculate the similarity
between clusters rather than users, and take class names of the top scoring cluster traits as labels. We
formally define topic clusters as follows.

Definition 2 A topic cluster Tk in a clustered graph G′γ with K clusters is a 3-tuple

Tk = (Uk,cfk, tk), Tk ⊆ G′γ, 1≤ k ≤ K, Uk ⊆U, (10)

sake we maintain the common terminology.
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Fig. 5. An example of cluster labeling and ST Sh. For each cluster k, the top-5 cluster-based traits from tk are
listed. A “Sports” cluster is isolated and further sub-divided into the individual sports that made up the cluster.

where Uk is the subset of users assigned to the k-th topic cluster; cfk is the combined class frequency
map for the cluster taken from Uk; and tk is a trait vector that expresses cluster-based topical affinity.

In other words, we merge the class frequency maps for every user ui ∈Uk in a cluster Tk to form
a cluster-based class frequency map cfk. From all cfk, we calculate a cluster frequency map clf which
records for each class in how many clusters this class occurs at least once (analogous to the user
frequency map uf). We can then take the same steps as before to calculate cluster-based, cf-iclf-
weighted trait vectors tk. Sorting these trait vectors by their topical affinity component in descending
order provides us with the most characteristic traits for each cluster at the top of the list; we use the
names of the top traits as topic cluster labels. See the left side of figure 5, for example, which shows
the result of clustering a testset of 175 Twitter users into K = 5 dominant topics (γ = 0.8). For each
cluster k, the top-5 cluster-based traits from tk are listed.

4.4. Hierarchical ST S

While we consider altering the topic scope γ and re-calculating trait vectors a form of hierarchical
clustering (since we can obtain topics at an arbitrary height in the latent topic hierarchy – something
we cannot with traditional approaches), our approach also allows divisive clustering to generate a full
topic hierarchy in a top-down fashion. After one clustering iteration, we can apply the clustering
once again on each resulting cluster separately. That is, we ignore all users that do not belong to
the selected cluster, and re-evaluate the trait vectors of the remaining users. Since dominant traits of
each user are now calculated only with regard to the other users originally in the same cluster, we can
further divide users into more specific topics of interest within this more general topic of interest. We
call this type of recursive topic clustering hierarchical STS, or ST Sh, and it allows us to extract a full
topic hierarchy, rather than just a slice, from a collection of users. An example of one iteration of
recursive clustering is shown in figure 5, where we have a cluster of users that is about “Sports”, as is
evident from the topic labels. We can sub-divide this topic cluster into sub-clusters lower in the topic
hierarchy. We find the cluster consists of “Golf”, “Cricket”, “American football” and “Football”. A
simple pseudo-code representation of the recursion we perform is shown in algorithm 1.
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Algorithm 1. ST Sh: Recursive topic clustering to obtain a full topic hierarchy.

1: procedure CLUSTERGRAPH(G(V,E)):
2: V ← calculateTraitVectors(V , γ)
3: for e in E do
4: e.weight← STS(V[e.i], V[e.j])
5: subGraphs[]← HCS(G)
6: for subGraph in subGraphs do
7: clusterGraph(subGraph)

5. Evaluation

In this section we describe the evaluation of our approach. First, we describe our target users and
ground truths that we have prepared, in section 5.1. This is followed by an explanation of the eval-
uation metrics used and baselines we compare our approach to, in 5.2. In 5.3, we describe how we
derive parameter settings and calibrate the topic scope by tuning the hyperparameter configuration of
our approach. Sections 5.4 and 5.5 contain the experimental results of the ST Sγ calculation, scoped
clustering and hierarchical clustering. We end this section with a discussion of the results in 5.6.

5.1. Ground truths

There are two main aspects of our approach that we must evaluate: (1) the quality of the topical
similarity calculation within a noisy Social Web context; and (2) the quality of the topic clustering,
i.e. whether discovered topics are appropriate (content, number and size) for the selected scope or
full hierarchy, and whether the topic labels are correct. We perform two different experiments, and
therefore have two separate types of test sets: for (1), relevance maps, expressing relevance of a
number of semi-random users to a known target user; and for (2), ground truths of users divided
into topics and subtopics that we identified beforehand for Twitter, as well as an existing dataset of
categorized newsgroup posts. For Twitter, we want human users that tweet actively and have enough
content that we can process, so we only choose those users that tweet in English, have at least 500
tweets, and, excluding seed users, have between 100 to 10,000 followers and friends.

5.1.1. User relevance maps

We prepare two sets of 100 Twitter users each. Each set has one seed user with a clearly identifiable
interest that was manually determined by the authors by checking their Twitter profiles. The remaining
99 users are collected semi-randomly from their immediate follower neighborhood. We gather direct
followers, followers of those followers, and so on, in a breadth-first fashion until we have enough users
that satisfy our constraints. We pick one seed user that tweets consistently about iOS development
(@iOS blog), and one seed user that tweets consistently about cars (@CCCManhattan). For the
remaining 99 users of both sets, we manually determine relevance of the user’s timeline to the seed
user, assigning a score of 0, 1 or 2, as follows:

0: This user is irrelevant; the user does not have tweets related to the topic
1: This user is somewhere in between; in this category we include users that post some tweets

related to the topic, but also a considerable number of unrelated tweets
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Table 1. The 20 newsgroups dataset (20 topics over 6 subject matters).

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt
sci.electronics
sci.med
sci.space

misc.forsale
talk.politics.misc
talk.politics.guns
talk.politics.mideast

talk.religion.misc
alt.atheism
soc.religion.christian

2: This user is very relevant; most of the user’s tweets are directly related to the topic

5.1.2. Topic clustering ground truths

We prepare a Social Web-based ground truth consisting of 175 Twitter users, containing 4 main topics
that are further subdivided into 11 subtopics. Each user belongs to one main topic and one subtopic.
We expect our method to be able to discover both clusterings, depending on the setting of the topic
scope parameter γ. The topics are distributed as follows:

• Computer science (50 users): iOS development (20 users), Web development (15 users), Data
Science (15 users)
• Sports (40 users): Soccer (10 users), Football (American) (10 users), Golf (10 users), Cricket

(10 users)
• Cars (40 users)
• Politics (45 users): US politics (15 users), UK politics (15 users), Australian politics (15 users)

Note that for topic cars, we could not distinguish any clear further subtopics, therefore we expect
the same result for main and subtopic. For each user, the authors made sure that the users were
primarily interested in the subtopics defined above by manually checking their recent tweets. To
make this process less laborious, some users were collected from follower neighborhoods of well-
known seed users for each subtopic (e.g. @BarackObama for US politics, @BBCTopGear for cars,
etc.). Others were found through the keyword search function on Twitter. The result is a well-defined
ground truth that forms a good basis for comparison. The clusters have different sizes, which was a
deliberate choice; it allows us to evaluate performance when dealing with asymmetric cluster sizes.

We prepare a second ground truth based on the 20 newsgroups dataset by Ken Lang [26], which is
a commonly used dataset in the field of document clustering [38]. This dataset consists of over 20,000
posts across 20 newsgroups. These 20 newsgroups can be roughly divided into 6 main subject matters
(see table 1). Due to performance limitations, we take a subset of 1800 randomly selected posts, evenly
divided over the 20 newsgroups (90 posts per group). This dataset differs from Twitter data in that
the text is generally well-structured and grammatically correct. However, posts can be short: in the
extreme case, a post may consist of only a single line. Our approach requires an appropriate amount
of context information (a portion of a user’s timeline) for ontological expansion, which may not be
available here, so we expect this to impact performance of our method. For a more even comparison
given this limitation to our approach, we also prepare a second subset of all posts larger than 10.0
kilobytes in size (there are 239 such posts).
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5.2. Experimental methodology

In this section, we describe our experimental methodology for this evaluation. In 5.2.1, we explain
the metrics we use, and in 5.2.2 the baselines we compare to.

5.2.1. Evaluation metrics

To evaluate topical similarity given the relevance maps defined in section 5.1.1, we calculate the
Discounted Cumulative Gain (DCG) according to the formula

DCGk = rel1 +
k

∑
i=2

reli
log2(i)

, (11)

where k corresponds the top-k ranked users based on unscoped topical similarity ST S0, and reli is the
relevance score assigned to the user at rank i. Since we want to evaluate for different top-k, we will
obtain different DCGk scores for different k, therefore we need to use the normalized version of the
DCG, nDCG:

nDCGk =
DCGk

IDCGk
. (12)

Here IDCG refers to the Ideal DCG, i.e. the maximum possible DCG until position k:

IDCGk = 2+
k

∑
i=2

2
log2(i)

. (13)

For topic clustering, since our method is already based on similarity, any cluster similarity-based
internal evaluation would give biased results. Therefore, we apply an external clustering evaluation
by representing our ground truths and cluster graphs as truth tables containing true positives (T P),
false positives (FP), true negatives (T N), and false negatives (FN). Let Tk(ui) be the k-th topic cluster
containing some user ui. Then we can define the contingency table as in table 2. Using this table,
we can calculate the precision, recall and F1-score, as well as the Matthew’s Correlation Coefficient
(MCC) [29] for a topic clustering result over a collection of users U as follows.

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

, F1-score =
2 ·Precision ·Recall
Precision+Recall

(14)

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(15)

Note that precision, recall and F1 do not take into account true negatives. This makes it susceptible
to bias, since the T N:FN ratio gets increasingly skewed towards more T Ns the more clusters we have.
The MCC accounts for this bias by giving FPs and FNs equal weight to T Ps and T Ns, taking on
a value between -1 and 1, where a value of 0 means the result is no better than random; towards -1
increasingly worse than random; and towards 1 increasingly better than random (with 1 being a perfect
score).

Additionally, we evaluate according to an entropy-based measure: normalized mutual information
(NMI). This is a measure of the difference between the number and sizes of the ground truth clusters
with the resulting clusters, without regard for their content:
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Table 2. Determining true/false positives/negatives between the clustering result and the ground truth.

Ground truth
Tk(ui) = Tk(u j) Tk(ui) 6= Tk(u j)

Clustering Tk(ui) = Tk(u j) T P FP
result G′γ Tk(ui) 6= Tk(u j) FN T N

NMI(X ;Y ) =
∑

y∈Y
∑

x∈X
p(x,y) log

(
p(x,y)

p1(x)p2(y)

)
√(
− ∑

x∈X
p(x) log p(x)

)(
− ∑

y∈Y
p(y) log p(y)

) (16)

Here, the X and Y variables are substituted with representations of the ground truth and clustering
result, respectively. For details, refer to [46].

In order to evaluate full hierarchical clustering, we require some way to evaluate each level of the
hierarchy as a whole rather than separately in order to get an accurate assessment of algorithm quality.
We borrow the hierarchical F-score as introduced in [23], and further recommended as a generally
usable measure to evaluate hierarchical classification algorithms in the survey presented in [42].

hP =
∑i | P̂i∩ T̂i |

∑i | P̂i |
, hR =

∑i | P̂i∩ T̂i |
∑i | T̂i |

, hF =
2 ·hP ·hR
hP+hR

(17)

Here P̂i is the set consisting of the most specific topic(s) predicted for user i and all their ancestor
topics and T̂i is the set consisting of the true most specific topic(s) of user i and their ancestor topics.
Although designed for the evaluation of document classification (matching to an existing class hierar-
chy) rather than clustering (creating an entirely new class hierarchy), the measure is flexible enough
to be adapted for clustering by regarding each topic in our two-level ground truths as the target classes
we expect to see when clustering data hierarchically. This means that T̂i will always have size 2. If
a result cluster consists of more than one of the ground truth topics, we consider this a new class not
in T̂i; we continue clustering hierarchically until cluster topics closely represent the topics defined in
the lower layer of the ground truth in the result. To judge this, we look at the top terms identified per
topic for hLDA, and the top labels generated for ST Sh.

5.2.2. Baseline approaches

We compare our ST Sγ similarity calculation to two baselines: (1) traditional tf-idf-based cosine
similarity, and (2) a similarity calculation based on the simple taxonomical similarity of classes be-
tween users [43]. For (1), we take all words in all tweets per user (after basic filtering), calculate
the document vectors with tf-idf component weights, and calculate the cosine similarity-based rank-
ing compared to the seed users. For (2), taxonomical similarity stax, we apply the following formula
between the seed user useed and each subject user ui:

stax =

∑
c j∈cfseed∩cfi

min{cfseed(c j), cfi(c j)}

∑
c j∈cfseed

cfseed(c j)
. (18)

That is, we sum the class frequencies for all classes that useed and ui have in common, and then
divide that by the sum of all class frequencies of all classes in useed .
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We evaluate four versions of our ST Sγ-based topic clustering, each using different types of ontol-
ogy information: Wikipedia resources only (ST Sγ,res), DBpedia/Schema.org classes only (ST Sγ,DBpedia),
YAGO types only (ST Sγ,YAGO) and all types combined (ST Sγ). We compare all versions to four base-
lines:

1. Random clustering: we take the average of 100 random clusterings of the data.

2. Latent Dirichlet allocation (LDA): we apply LDA on text content (after basic filtering). For
Twitter, each user profile is considered one document. Since LDA requires us set a number of
topics, we calculate the results for 2 to 24 topics. We cluster users into the topic to which LDA
assigns them the highest probability. We use the state-of-the-art LDA implementation that is
part of the MALLET package [30], with 800 iterations but otherwise default settings. We use
800 iterations since this finishes in roughly the same calculation time for 175 Twitter users as
our implementation of ST Sγ-clustering on our environment (around 67 seconds).

3. Twitter-LDA [50]: we apply the Twitter-optimized version of LDA as implemented and de-
scribed in [37] for an evaluation compared to the state-of-the-art in Twitter topic modeling. We
apply the same hyperparameter settings as regular LDA, and maintain 800 iterations.

4. k-means clustering: we cluster the ST Sγ graph Gγ using standard k-means [16]. As with LDA,
we calculate the results for the number of topics K ranging from 2 to 24 topics. For each K,
we iterate 10 times and take the result for which the within-cluster sum of squares (WCSS) is
maximum (since we maximize on cosine similarity):

argmax
T

K

∑
k=1

∑
t∈Tk

‖t−µk‖2 (19)

Here, T is the set of K topic clusters, and µk is the centroid vector of all trait vectors ti of users
ui ∈Uk that belong to topic cluster Tk ∈ T.

Lastly, we evaluate hierarchical clustering, where we apply our recursive topic clustering strategy
(algorithm 1 described in section 4.4) to generate a full topic hierarchy. We compare ST Sh against
two baselines:

1. Hierarchical latent Dirichlet allocation (hLDA): similar to the per-layer evaluation, we use
the state-of-the-art hLDA implementation that is part of the MALLET package [30] to infer a
topic hierarchy, with 800 iterations (we are not aware of any Twitter-specific hierarchical LDA
algorithm). hLDA requires a hierarchy depth to be pre-determined; we set this to 3 (the first
level of hLDA consists of the full data, so 3 levels matches our ground truth).

2. Hierarchical k-means: we cluster the data hierarchically using the k-means algorithm in a re-
cursive fashion, with the expected number of topics at each level as value for K (for the Twitter
dataset, K = 4 for the first level, and K = 3 or K = 4 depending on the number of subtopics
expected). Since k-means works stochastically, we iterate 10 times and average the result.
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5.3. Parameter selection

There are a large number of parameters to set for our approach, and it is unclear which settings will
yield the best results. We want to derive optimal parameter settings that will provide good results on
unseen data with high likelihood. To keep dimensionality of this optimization problem in check, we
decide to tune the parameters for named entity recognition and for clustering separately.

5.3.1. Named entity recognition parameter tuning

For NER, key parameters we need to decide on are (1) the confidence value of the entity recognizer
(DBpedia Spotlight); and (2) the size of the windows of concatenated tweets. We determine a good
confidence value using a simple grid search optimization. We calculate the top-k nDCG rankings on
both relevance map-based datasets in terms of their seed users, for k ∈ {3,5,10,25,50} and for a range
of values between 0 and 1 for the confidence parameter. For this initial experiment, we concatenate
10 tweets at a time before applying NER. The results are shown in figure 6.

Fig. 6. nDCG scores for different NER confidence settings for the iOS development and cars datasets.

We see that the results are relatively close to each other. For top-50, which should be least affected
by random noise, all settings perform roughly equal with the exception of the highest setting of 1.
Given these results, we decide to keep the confidence value at 0 – aside from giving the best results
on average (by a small margin), in situations where we have little content available the higher settings
may no longer yield enough classes to determine topic clusters accurately.

Additionally, we must decide on window sizes for concatenating tweets (recall that the entity
recognizer works by leveraging the surrounding context of source terms). We again experiment on
both datasets, this time varying tweet window sizes between 3, 5, 10, 25 or 50 tweets. Results are
shown in figure 7. Again, we see only minor differences in the results. We set the tweet window to 10
tweets, which performed best at larger sample sizes.
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Fig. 7. nDCG scores for different tweet window sizes for the iOS development and cars datasets.

5.3.2. Class frequency distribution and trait cut-off threshold θ

The combined distribution of class frequencies over our ground truth of 175 users with 500 tweets each
is plotted in figure 8. As is evident, class occurrences are skewed at the tail-end of the distribution,
with almost 10% of all unique classes occurring 10 or less times. Classes with small occurrence
numbers lead to negligible contributions to the cosine similarity, therefore consider it safe to prune the
trait vectors up to a certain trait cut-off threshold θ to reduce the sparsity and dimensionality of data.
Which value of θ would be best is not immediately clear. Along with the previously introduced τ and
α, this variable is the last of three dependent variables that we set by hyperparameter optimization.

5.3.3. Hyperparameter optimization and scope calibration

We apply a hyperparameter optimization approach to calibrate θ, τ and α around a neutral topic scope
γ = 0. This is necessary since all four variables are dependent on one another. Since our dataset is not
that large, and we have only three dimensions, it is feasible to apply a grid search on the parameters
– that is, check each combination exhaustively within a reasonable discrete range of possibilities. We
can make surface plots to visually determine appropriate values. We test the following parameter
ranges:

• Trait cut-off threshold: θ = {0.0,0.001, ...,0.01}
• Similarity threshold: τ = {0.0,0.01, ...,0.1}
• Highly-connectedness parameter: α = {2,3,4,5}

Next, we need a data set and some fitness function to optimize on. We choose to use our cluster
ground truth of 175 users, testing the MCC score of the resulting cluster graphs compared to the 11
subtopics we defined in the ground truth. This means that our method gets calibrated to the extent that
γ = 0 will detect topic clusters roughly corresponding to the scope expressed by these 11 subtopics.
This choice is made for both intuitive and practical reasons. Intuitively, the subtopics represent a mid-
level position in the hierarchy: given a topic such as Football, it is easy to come up with topics that are
more general (“Sports”→ “Activity”) and more specific (“Premier League clubs”→ “Arsenal F.C.”).
Practically, we need a concrete ground truth to perform the calibration, and our 11-topic testset is the
most comprehensive we have available.

To avoid overfitting, we must incorporate some form of regularization, such as cross-validation.
However, since our approach does not involve a training phase, we cannot split the data into a training
set and test set as with traditional cross-validation. Therefore, we regularize using random-fold cross-
validation in the following way:
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Fig. 8. The combined class frequency distribution for 175 Twitter users with 500 tweets each. The x-axis denotes
buckets of size 10, and the y-axis the number of classes with a number of occurrence that falls within one of the
buckets. There were 1,535,108 classes found in total.

1. For each parameter combination, do the following 50 times:

(a) Take 7 out of 11 sub-topics from the ground truth uniformly at random

(b) For each sub-topic, take between 50-100% of the users assigned to that topic uniformly at
random

(c) Apply the approach from start to end to these users and calculate the MCC of the resulting
cluster graph G′0 in comparison to the reduced, 7-topic ground truth

2. Take the average of the 50 iterations as the final MCC value

It is now important to pick a combination of values that has a high probability of yielding a good
result when dealing with new, unseen data. In other words, we must take care to choose values so that
the area around combinations of θ, τ and α is of consistently good quality. We find that the values that
best fit this condition are θ = 0.003, τ = 0.07, and α = 4. For illustration, in figure 9 we have plotted
the resulting surface for all combinations of θ and τ given α = 4, showing a consistently high MCC
score around our selected parameters. These will be the values we will use in the coming experiments
where we compare our approach to baselines and established approaches.

5.3.4. Standard deviation and standard error of folds

Regularizing the parameter selection only works if the cross-validation is adequate given the size of
the testset. Since our testset of 175 users is rather small, it is not immediately clear if our random-fold
cross-validation is reliable. By calculating the average standard deviation and margin of error of the
sampling, we can obtain a statistical measure of the reliability of the hyperparameter optimization.

We calculated the standard deviation σ of 50 iterations for all parameter combinations as described
above. There are 11×11×4 = 484 such parameter combinations. The resulting distribution function
of standard deviations is plotted in figure 10.

The standard error from these standard deviations can be calculated using 95% confidence interval
for the average standard deviation, taking the square root of the mean of variances σ2:
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Fig. 9. Example MCC surface plot for varying values of θ and τ and α = 4. Each MCC data point is the average
over 20 iterations with semi-random cluster selections.

Fig. 10. Distribution of standard deviations for each fold of the cross-validation. To save space, a long tail of
outliers on the right side of the graph have been aggregated as > 0.14.

σ =
√

σ2 =
√

0.0067≈ 0.08 (20)

It follows that the 95% confidence interval is [−0.08 ·1.96,+0.08 ·1.96]. This result means that we
can say with 95% confidence that the resulting mean MCC score for a given parameter combination
lies within approximately -0.157 and 0.157 of the true mean MCC score. Since MCC ranges from
-1 to 1, this is a standard error of around 7.8%. We judge this to be a reasonable enough value to
conclude that the hyperparameter optimization is adequate.

5.4. Experimental results: topical similarity

We now evaluate the topical similarity portion of our approach in terms of two nDCG rankings to seed
users with known interests (iOS development and cars), as explained in section 5.1. These evaluations
will be similar to the entity recognition confidence and tweet window experiments, although this time
we compare the quality of our ST Sγ-based rankings to the two baseline approaches: (1) traditional
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tf-idf-based cosine similarity, and (2) taxonomical similarity of classes between users [43].

We compare the top-k nDCG rankings, for k ∈ {3,5,10,15,20,25}. Since the baseline methods do
not incorporate topic scope, we keep γ fixed to 0 for a fair comparison. The results are plotted in figure
11. A consistent improvement of roughly 15% on average over the second-best baseline approaches
(taxonomical for iOS development, tf-idf for cars) can be observed. We leave further interpretation
and discussion of these results for the discussion section (5.6).

Fig. 11. nDCG scores for different similarity calculation approaches for the iOS development and cars datasets.

5.5. Experimental results: scoped topic clustering and hierarchical clustering

In this section we detail the results for scoped and hierarchical topic clustering. First, we show the
scoped clustering results we obtained for the Twitter dataset, followed by the results for the news-
groups datasets. We conclude with an evaluation of hierarchical clustering.

5.5.1. Twitter dataset

We apply ST Sγ-clustering for the Twitter ground truth, distinguishing between 4 topics and 11 sub-
topics that we aim to cluster the same set of 175 users in. The goal is to be able to cluster into the right
4 main topics or the right 11 sub-topics depending on our desired topic scope setting. The P/R/F1,
NMI and MCC scores are calculated for a range of topic scope parameter γ values between -1 and 1,
in increments of 0.1. The results are compared to random clustering, LDA and Twitter-LDA-based
clustering, and k-means clustering.

For ST Sγ, for both the 4-topic and 11-topic testsets, a progression of the F-score, NMI and MCC
metrics (lines) and the number of topics they yielded (columns) for different topic scopes (x-axis) is
plotted in figure 12. The same metrics for LDA, Twitter-LDA and k-means, trying topic selections
from 2 to 24, are plotted in figures 13, 14 and 15, respectively. Table 3 shows a summary of the best
values with corresponding settings that were obtained for each method. This summary includes the
best results for all 4 versions of our method: resources-only (ST Sγ,res), DBpedia/Schema.org classes
only (ST Sγ,DBpedia), YAGO types only (ST Sγ,YAGO) and all types combined (ST Sγ. Tables 4 and 5 list
topic labels discovered for the best results: terms with highest probability per topic for Twitter-LDA,
and top class labels calculated as described in section 4.3 for ST Sγ-clustering. k-means clustering does
not provide topic labels.
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Fig. 12. Results for ST Sγ-clustering on the Twitter ground truth.

Fig. 13. Results for LDA-based clustering on the Twitter ground truth.

Fig. 14. Results for Twitter-LDA-based clustering on the Twitter ground truth.

Fig. 15. Results for k-means clustering on the Twitter ground truth.
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Table 3. Summary of optimal results for the random clustering baseline, LDA, Twitter-LDA, k-means and our
ST Sγ-clustering method with different ontology class selections.

175 Twitter users, 4-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.248 0.250 0.249 0.885 -0.001 4
LDA 0.870 0.722 0.789 0.806 0.733 5
Twitter-LDA 0.877 0.767 0.819 0.772 0.767 5
k-means 0.663 0.887 0.759 0.729 0.677 3
ST S0.7 0.945 0.840 0.889 0.711 0.858 6
ST S0.3,res 0.972 0.633 0.767 0.787 0.736 9
ST S0.8,DBpedia 0.926 0.824 0.872 0.781 0.836 7
ST S0.6,YAGO 0.959 0.807 0.876 0.611 0.846 7

175 Twitter users, 11-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.110 0.092 0.100 0.769 0.001 11
LDA 0.799 0.552 0.653 0.777 0.632 15
Twitter-LDA 0.736 0.822 0.777 0.732 0.749 9
k-means 0.819 0.810 0.814 0.864 0.791 14
ST S0 0.700 0.947 0.805 0.686 0.788 9
ST S0.35,res 0.791 0.794 0.793 0.768 0.767 6
ST S−0.1,DBpedia 0.484 0.938 0.639 0.677 0.621 8
ST S0.35,YAGO 0.655 0.927 0.768 0.735 0.748 9

Looking at the results in figure 12, we observe an expected progression in terms of the number of
topics detected: the higher the topic scope, the less topic clusters we find. For the 4-topic testset, the
best result in terms of the F-score and MCC is a scope of γ = 0.7 (6 topics found), and for the 11-topic
set a scope of γ = 0 (9 topics found). For LDA, Twitter-LDA and k-means in figures 13, 14 and 15,
the progression looks similar (although reversed). For LDA we get the best results for 5 topics and 15
topics respectively; for Twitter-LDA, for 5 and 9 topics; and for k-means, for 3 and 14 topics.

Regarding the different versions of ST Sγ used, we see a somewhat expected result: using only DB-
pedia classes (of which there are few and they are generic) we do well at discovering the generic topics
but does poor at specific topics; using only resources we see the opposite result. Using only YAGO
classes and using all classes combined do well at both parts, with ST Sγ outperforming ST Sγ,YAGO by
a small margin.

Overall, our best-performing method, ST Sγ, outperforms standard LDA by 17% for 4 topics and
by 26% for 11 topics, and Twitter-LDA by 11.9% for 4 topics and by 5.2% for 11 topics. ST Sγ

outperforms k-means by 26.7% for the 4-topic testset, but performs roughly equal for the 11-topic
testset. This conspicuous result can be explained by the fact that k-means does not take any topic
hierarchy into account; we discuss this further in the discussion section (5.6). Lastly, the random
baseline performs as expected, with the MCC score hovering around 0.

We now look at the discovered topics and their labels for the best results, taking the top terms for
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Table 4. Top topic labels discovered for the best results for the 4-topic testset (top terms per topic for Twitter-LDA
with 5 topics, top traits per cluster for ST Sγ).

4-topic set Twitter-LDA terms ST S0.7 classes

Computer Science 1: swift, ios, app
2: data, bigdata, big

1: Big data, EmergingTechnologies, Web analytics
2: Model, ProgrammingLanguagesCreatedIn1995, IOS

Sports golf, game, win
1: Cricketer, NationalCricketTeams, SoccerPlayer
2: GolfPlayer, PGATourGolfers, Golfer

Cars car, f1, ferrari CarManufacturer, SportsCarManufacturers, Coupes

Politics auspol, people, obama Statesman, NationalLeaders, PoliticiansFromSydney

Table 5. Top topic labels discovered for the best results for the 11-topic testset (top terms per topic for Twitter-
LDA with 9 topics, top traits per cluster for ST Sγ).

11-topic set Twitter-LDA terms ST S0 classes

iOS development swift, ios, app -

Web development - Model, RichInternetApplicationFrameworks, IOS

Data Science data, bigdata, big Big data, EmergingTechnologies, Data

Soccer - FootballClubsInEngland, FIFAWorldCupPlayers

Football good, game, day
AmericanFootballLeagueTeams,
GridironFootballPlayer, AmericanFootballPlayer

Golf golf, cup, rydercup GolfPlayer, PGATourGolfers, AmericanMaleGolfers

Cricket ausvind, cricket, india -

Cars car, f1, ferrari CarManufacturer, Coupes, SportsCarManufacturers

US politics obama, president, people DemocraticPartyUSSenators, AmericanLegalScholars,
HarvardLawSchoolAlumni

UK politics labour, people, nhs NationalistPartiesInTheUK, UK Independence Party,
ConservativePartiesInTheUK

Australian politics auspol, abbott, australia PoliticiansFromSydney, AustralianPoliticians,
AustralianRhodesScholars
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Table 6. Summary of optimal results for the 1800 newsgroup article dataset.

1800 Newsgroup posts, 6-subject testset
Precision Recall F-score NMI MCC Topics

Random 0.190 0.167 0.177 0.684 0.000 6
LDA 0.289 0.786 0.423 0.506 0.262 2
Twitter-LDA 0.488 0.345 0.404 0.664 0.300 9
k-means 0.373 0.352 0.362 0.648 0.219 13
ST S-1 0.334 0.760 0.464 0.526 0.321 12

1800 Newsgroup posts, 20-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.050 0.051 0.050 0.873 0.001 20
LDA 0.282 0.370 0.320 0.820 0.283 20
Twitter-LDA 0.239 0.254 0.246 0.833 0.206 25
k-means 0.167 0.259 0.203 0.801 0.156 27
ST S-0.6 0.099 0.862 0.177 0.504 0.198 18

Twitter-LDA and using our topic labeling technique described in section 4.3 to find the top classes for
ST Sγ. From table 4, we see that for the 4-topic set, the best Twitter-LDA result (5 topics) has wrongly
split Computer Science into two sub-topics. For ST S0.7, Computer Science and Sports are erroneously
split up into sub-topics. Upon inspection of the ontologies for the Sports-related topics and entities,
we find that many entities simply do not link to a “Sports” class: in fact, there is no such class in
the YAGO hierarchy. For Soccer, for example, common entities found in tweets are team names.
Entities such as “Arsenal F.C.” expand to “PremierLeagueClub”→ “Club”→ “Association”→ ... ,
never reaching a class that could identify it with Sports. This is why we only see “CricketTeams”,
“SoccerPlayer”, “Golfer”, etc. in our result.

Looking at table 5 for the 11-topic testset, we see that for the best Twitter-LDA result (9 topics),
the Web development and Soccer topics have not been properly identified. For ST S0, we fail to identify
Cricket, and iOS development gets erroneously (although the two topics are highly related) combined
with the Web development cluster, as is evident from the “iOS” label. Of note is that ST Sγ, unlike
LDA, correctly distinguishes between Soccer and Football.

Not listed are the top terms found for topics using standard LDA. These were generally similar to
the terms Twitter-LDA found, but contained a number of extra “noise” topics, containing words such
as “great”, “today”, “make”. This noise was successfully filtered out by Twitter-LDA, explaining its
better performance over standard LDA.

5.5.2. Newsgroups dataset

Next, we apply the same methods with the same settings to two configurations of the newsgroups
dataset. We consider clustering in either the 6 subject matters or in the full 20 newsgroups (see table
1). First, we try the set of 1800 newsgroup posts consisting of 90 posts evenly and randomly taken
from each newsgroup. The best ST Sγ, LDA, Twitter-LDA and k-means results, including a comparison
to the random baseline, are summarized in table 6. For space reasons, we omit the progression plots
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Table 7. Summary of optimal results for the larger than 10.0 kb newsgroup article dataset.

Newsgroup posts larger than 10 kilobytes, 6-subject testset
Precision Recall F-score NMI MCC Topics

Random 0.213 0.164 0.186 0.756 0.000 6
LDA 0.683 0.319 0.434 0.718 0.387 12
Twitter-LDA 0.528 0.731 0.613 0.669 0.497 4
k-means 0.756 0.377 0.503 0.647 0.457 15
ST S0.3 0.669 0.467 0.550 0.744 0.465 12

Newsgroup posts larger than 10 kilobytes, 20-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.092 0.048 0.063 0.778 0.000 20
LDA 0.683 0.497 0.576 0.761 0.548 17
Twitter-LDA 0.562 0.564 0.563 0.765 0.518 14
k-means 0.537 0.619 0.575 0.751 0.530 15
ST S0 0.512 0.688 0.587 0.773 0.546 15

for this dataset. We also omitted the clearly inferior versions of ST Sγ for this evaluation, comparing
only the variant using all types of ontology classes.

As expected, we see that results in terms of absolute F-score and MCC are significantly poorer
compared to the Twitter dataset when we aim to detect all 20 topics, some of which we lack enough
information about due to the brevity of posts. For the 6-subject test set, however, ST Sγ still manages
to outperform (Twitter-)LDA, but oddly enough it does so for lower topic scopes. ST S-1 found 12 top-
ics, while LDA and Twitter-LDA gave wildly different results at 2 and 9 topics respectively. k-means
peaked at 13 topics, but with a significantly lower score. A likely reason for the poor performance of
LDA is that the cluster sizes for the 6-subject testset are very uneven, ranging from 90 to 450 docu-
ments (see table 1): this is a known weakness of LDA, which is biased towards even-sized clusters.
This is especially visible in the NMI scores for the 20-topic testset: both LDA variants score highly
here due to all 20 clusters having roughly the right sizes (interestingly, the random clustering has a
significantly higher NMI than even LDA: this makes sense, since we distribute nodes uniformly at
random over 20 topics, and take an average of 100 iterations, leading to a very even distribution).

For 20-topics, standard LDA performs best, with a very significant improvement over the Twitter-
specific version. ST Sγ performs very poorly here. We interpret these results in more detail later.

Next, we try the set of 239 newsgroup posts larger than 10.0 kilobytes in size. The best results
are summarized in table 7. This time, results in terms of the absolute F-score and MCC are higher,
as expected; both for (Twitter-)LDA, but especially for ST Sγ and k-means. Most methods performs
roughly equal now for the both testsets, with the exception of standard LDA on the 6-subject testset.
We note that we find the best result for the 20-topic testset with the topic scope parameter γ set to 0.0,
yielding 15 topics; this is the same setting for which we had the best result for the Twitter 11-topic
testset, which yielded 9 topics. γ = 0.0 yielded 15 topics for the 1800 newsgroup post set as well. This
suggests that, using ST Sγ-clustering, we do not have to know how many topics there are, nor does the
size or content of the dataset matter; we can specify a desired topic scope, and automatically discover
roughly the number of topics that exist at that scope.
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Table 8. Summary of optimal results for hierarchical topic clustering.

175 Twitter users, 4 main and 11 sub-topics
hP hR hF Levels Topics per level

hLDA 0.633 0.543 0.585 3 L1: 1, L2: 6, L3: 16
Hier. k-means 0.696 0.763 0.728 2 L1: 4, L2: 11
ST S0.7,recursive 0.877 0.837 0.857 3 L1: 6, L2: 8, L3: 2

5.5.3. Hierarchical topic clustering

Lastly, we will evaluate hierarchical clustering. We use the Twitter ground truth to try and cluster
175 Twitter users into a full hierarchy that contains both the 4 main topics and the 11 subtopics. For
ST Sγ, we use our recursive topic clustering algorithm (see algorithm 1), starting at the clustering that
gave the best results for the 4-topic testset (ST S0.7). We compare against hierarchical LDA (hLDA)
and hierarchical k-means, which we apply in the manner described in section 5.2.2. We also initialize
hierarchical k-means to the best 4-topic clustering. hLDA requires no initialization; instead we fix the
depth to 3 levels. We evaluate the results using hierarchical precision, recall and F-score as explained
in section 5.2.1. The results are summarized in table 8. Table 9 gives an overview of the actual
topic hierarchies created for hLDA and ST Sh (k-means does not support topic labeling), detailing the
location of each cluster within each hierarchy using a number-based notation.

We see that ST Sh gives the most accurate results, followed by hierarchical k-means. We found that
even with 800 iterations, hLDA was unable to converge to the appropriate number of topics, leading
to a poor hF score. hLDA could not detect a single topic of the 4 topics in the top layer accurately:
either the clusters in level 2 consisted of more than 1 of the topics (e.g. cluster 1 of level 2 in table
9 comprised both cars and computer science), or of the topics we expected in the lower half of the
hierarchy.

5.5.4. Statistical significance of results

In [15], it is shown that given a sample of the full collection of users/documents (i.e. our ground
truths), and p the true proportion of samples produced that is correct (which is unknown), n the size
of the sample used to approximate p (the size of the ground truths: in our case 175 for Twitter users,
and 1800 and 239 for each newsgroups set respectively) and P̂ the approximation of p based on the
ground truth, then this approximation lies in the interval

P̂ ∈ [p−δ, p+δ] where δ =
1√
n

(21)

with 95% confidence. δ is thus the 95% confidence margin of error for the result. For example, if
one result falls within this range of another result, then these two results do not differ sufficiently from
each other in order to state with certainty that one is better than the other. We can apply this calculation
on the resulting MCC scores for each approach to verify their statistical significance: we want to make
sure that a good result according to the ground truth is sufficiently generalizable to a good result on
larger, unseen data, and that an improvement of our method over the baselines is actually significant
enough to draw conclusions about it.

For the Twitter users, we have n = 175, so the margin of error δ becomes 1√
175

= 0.076. Refer-
ring back the summary of results in table 3, we can conclude that for the 4-topic testset, our ST Sγ-
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Table 9. Clusters discovered at each level L for hierarchical clustering (top terms per topic for hLDA, top traits
per cluster for ST Sh). The numbers represent the level and position each cluster was located in the hierarchy.

L hLDA topics ST Sh topic clusters

1 1: good, time, great

1: Big data, EmergingTechnologies, Web analytics
2: Model, ProgrammingLanguagesCreatedIn1995, IOS
3: Cricketer, NationalCricketTeams, SoccerPlayer
4: GolfPlayer, PGATourGolfers, Golfer
5: CarManufacturer, SportsCarManufacturers, Coupes
6: Statesman, NationalLeaders, PoliticiansFromSydney

2

1.1: car, cars, bmw
1.2: byu, game, coach
1.3: australia, today, minister
1.4: ballondor, live, fifa
1.5: data, learning, science
1.6: wt, pakvnz, pakistan

2.1: DistributedFileSystems, Apache Hadoop, Run batted in
2.2: WebApplicationFrameworks, RichInternetApplicationFrameworks, Swift
3.1: NationalFootballLeagueTeams, GridironFootballPlayer,
AmericanFootballPlayer
3.2: FootballClubsInEngland, PremierLeagueClubs, FootballClubsInLondon
3.3: CricketersAtThe2011CricketWorldCup, NationalCricketTeams,
IndiaTestCricketers
6.1: RepublicanPartyStateGovernorsOfTheUnitedStates,
UnitedStatesAirForceOfficers, Patient Protection and Affordable Care Act
6.2: PoliticiansFromSydney, AustralianPoliticians,
AustralianLeadersOfTheOpposition
6.3: NationalistPartiesInTheUnitedKingdom, UK Independence Party,
ConservativePartiesInTheUnitedKingdom

3

1.1.1: swift, ios, app
1.1.2: vettel, webber, video
1.1.3: gsl, youtube, http
1.2.1: cowboys, bro, mfjs
1.3.1: auspol, abbott, manus
1.3.2: spotmyride, spotted, ferrari
1.4.1: golf, rydercup, year
1.4.2: league, goal, goals
1.5.1: obama, people, president
1.5.2: indyref, labour, scotland
1.5.3: car, ford, cars
1.5.4: data, bigdata, big
1.5.5: porsche, atlanta, photo
1.5.6: initializr, yelp, css
1.5.7: http, eurotour, sqcom
1.6.1: ausvind, india, cricket

2.2.1: CascadingStyleSheets, Sheet, WebDev
2.2.2: OS X, Swift, Macintosh
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clustering gives a significant improvement over the baselines – the smallest difference, between ST Sγ

and Twitter-LDA, is 0.858−0.767 = 0.091 > 0.076. For the 11-topic testset, our method again pro-
vides a significant improvement over LDA, but the difference between ST Sγ and Twitter-LDA lies
within the margin of error (0.039 < 0.067): we cannot state that one method is better than the other
with 95% confidence. Similarly, results for ST Sγ and k-means can be considered equivalent, which is
in line with our earlier observations, and subject of discussion in the next section.

For the main newsgroup dataset, δ = 1√
1800

= 0.024. Due to the size of this testset, we obtain
a much smaller margin of error compared to the set of Twitter users. Referring back to table 6,
we see that all pair-wise results are statistically significant. Finally, for the set of newsgroup posts
larger than 10kb, we obtain δ = 1√

239
= 0.065. From table 7, we learn that for the 6-subject testset,

the improvement of ST Sγ over LDA is significant again, but we cannot make conclusions about the
difference with Twitter-LDA and k-means clustering. For the 20-topic testset, we see that all results
(excluding random) are essentially equivalent.

5.6. Results discussion

For Social Web content, our ontology-assisted topical similarity calculation and graph-based ST Sγ-
clustering results show a significant improvement over traditional tf-idf weighting, LSA-based topic
modeling such as LDA and Twitter-LDA and common document clustering approaches such as k-
means clustering. An important reason for the poor performance of tf-idf and LDA is the absence of
overlapping terms due to the high dimensionality (and therefore high sparsity given the limited and
noisy content on the Social Web) of the term vector space compared to our trait vector space. For
k-means, despite using the same similarity calculation to construct graph Gγ as our ST Sγ-clustering,
γ was fixed to 0, which we found discovered appropriate topics at roughly the scope expressed by
the 11-topic testset. However, even though we could force k-means to cluster the graph into 4 topics,
it performed poorly in terms of F-score and MCC for the 4-topic testset. This is because k-means
clustering does not take the existence of a latent topic hierarchy into account: the topology of the
graph G0 is shaped with a bias towards how many topics exist within the data at that particular topic
scope. These results make clear the advantages of a hybrid approach – hierarchical topic modeling
combined with graph-based community detection – compared to traditional methods.

For regular documents, we see that our ontology-assisted topic modeling approach yields results
that are on par with LDA only when there is enough content available per document. It appears
that ontologically expanding text content only works well when there is enough context information
available – when the dataset contains many documents that sometimes consist of only one sentence,
such as with the 20-newsgroups dataset, ST Sγ-clustering gives poor results. This is a significant
weakness of our approach. This is in line with results reported in [11]. Topic modeling approaches
that iterate over the whole dataset when deriving a model, such as LDA, work better in these cases.

When there is enough content per document – as was the case for the dataset of newsgroup posts
over 10.0 kb in size – ontology-assisted topical similarity as employed in ST Sγ-clustering and k-means
performs roughly equivalent to document-level word co-occurrence as employed in LDA. This is not
a surprising result, since the newsgroup posts use more formal language and contain less noise than
their Twitter counterparts, leading to more word overlap between documents.

Another reason for discrepancies is due to the (un-)evenness of clusters. Our clustering algorithm
can deal with uneven clusters well, since clusters are determined solely based on the degree of sim-
ilarity and number of similar users in the dataset. LDA is biased towards evenly sized topics, and it
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Fig. 16. qualitative comparison between the LDA and k-means baselines and ST Sγ-clustering.

LDA Twitter-LDA k-means ST Sγ-clustering

Perf. on Social Web content - + +- ++

Perf. on formal documents ++ + +- +

Pre-defined topics Yes Yes Yes No

Hierarchical topics Yes Yes No Yes

Topic labels Top terms Top terms None Top classes
(machine-readable)

Time complexity O(nkvi) O(nkvi) O(nkci j) O(n2c+n3 logn)

is very difficult for the method to detect topics of vastly different sizes, unless some form of iterated
hyperparameter optimization is employed. In comparison to our approach, LDA gave the overall best
result when dividing the 1800 newsgroup posts into 20 topics; this is the only dataset where all desired
clusters are of even size (90 documents per cluster).

A important observation is that classes from our trait vectors originally form a concrete hierarchy;
this is not the case for terms, where this hierarchy needs to be guessed from the terms available in
the corpus. This hierarchical information is retained within the trait vectors we calculate, making it
easier for the original class ontology to be reconstructed in terms of traits. A nice side effect of this
is that for traits, we may simply use the most characteristic ontology classes for a cluster as labels;
and these labels are machine-readable and directly linked to DBpedia and the rest of the Linked Data
cloud. Using LDA, the best we can do is to pick the top terms per topic that actually occurred within
the text content, which are often less descriptive and harder for machines to reason about.

In conclusion, we summarize the results of the evaluation by means of a qualitative comparison
between our approach and the baselines, in table 16. This overview includes computational time
complexity per method, which we will touch upon briefly. Due to ST Sγ’s reliance on a full connectivity
graph based algorithm, its big-O complexity is in the n3 logn order of magnitude, which is the highest
of all the algorithms. This means that in its current form, the method does not scale well to large
datasets. This is a significant limitation of the approach. A substitution of the current HCS-based
algorithm with e.g. a density-based one such as ES clustering would improve scalability, but this is
outside the scope of this paper.

6. Conclusion

In this paper, we have presented our work on ontology-assisted hierarchical clustering of Social Web
users by their shared topics of interest. We have shown that we can bypass common limitations of the
term vector space model by leveraging an external ontology to express user topic profiles in terms of
trait vectors, and subsequently calculating scoped topical similarity, or ST Sγ, between users; a measure
that expresses the distinguishing characteristics of groups of users compared to the full collection of
users at a certain level of topic generality.

We applied community detection techniques on a graph constructed from the ST Sγ between users
and showed that, by incorporating the concept of topic scope into our calculations, we can get results
based on the desired scope rather than the desired number of topics – with the same topic scope values,



394 Ontology-Assisted Discovery of Hierarchical Topic Clusters on the Social Web

we managed to discover roughly the appropriate numbers of topics even for different data sources of
different sizes. Furthermore, the approach could be used to generate human- and machine-readable
labels for clusters, and to divisively cluster a group of users or documents in order to generate a full
topic hierarchyd.

The experimental results presented showed an improvement of up to 14.7% over standard latent
Dirichlet allocation, 11.9% over Twitter-LDA and up to 26.7% over k-means clustering on Social Web
data. We also showed that we can correctly detect topics at different scopes by changing the topic
scope parameter, whereas changing the number of topics for k-means clustering failed to detect the
correct topics. Results on traditional documents were mixed, with results equivalent to or worse than
the LDA state-of-the-art. For full hierarchical clustering, ST Sh outperformed hLDA and a hierarchical
version of k-means. Notably, we observe similar improvements over LDA using community detection-
based clustering as was shown in Lancichinetti et. al. [25]. This is an encouraging result, suggesting
that perhaps graph-based community detection methods for document clustering are a better fit for the
task than probabilistic LSA-based methods, at least when the topics are not known in advance.

Future work Throughout this work we have assumed that users can be cleanly divided into disjoint
topic clusters, but in the real world this is obviously not the case: users can be part of multiple
shared-interest communities or not have any specific interest at all. We need to further develop and
evaluate methods for overlapping community detection. One possible way is to replace the current
HCS community detection algorithm with a clique percolation method [12] to discover overlapping
cliques in a graph.

A significant untapped area of potential lies in multi-lingual topic clustering. Since the semantic
classes we collect from DBpedia are language-agnostic, and DBpedia resources exist in multiple lan-
guages, it becomes trivial to link together equivalent entities from different languages and collect the
same classes for both languages. This would allow us to detect similar content in different languages
without requiring any knowledge about these languages.

The current graph connectivity-based clustering algorithm used does not scale to large datasets.
Future work would experiment with more modern density-based clustering algorithms as well.

Lastly, we relied largely on YAGO, DBpedia and Schema.org classes to model user topics of inter-
est. In reality, these class hierarchies are still quite limited in what they can express, as many entities
simply do not have classes in DBpedia, or they are not sufficiently connected to the parent classes we
are looking for (such as most sports-related entities not actually being connected to a “Sports” class).
Other than these types of super- and subsumption relations, there are a great many other relations
available in DBpedia (e.g. “team of” linking players to teams, “field of” linking academic disciplines
to famous researchers, etc.). How to make good use of these relations is another promising area to
explore.
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