
Journal of Web Engineering, Vol. 15, No.5&6 (2016) 501-520

© Rinton Press

EXPLORING WEB SERVICES FROM A NETWORK PERSPECTIVE USING

MULTI-LEVEL VIEWS

MINGDONG TANG, FENFANG XIE, BUQING CAO, SAIXIA LYU, JIANXUN LIU

Hunan University of Science and Technology, China

{tangmingdong, xiefragrance, buqingcao, saixialv, ljx529}@gmail.com

Received February 28, 2015

Revised April 14, 2016

With the spread of service-oriented computing, more and more Web services and service-based

applications emerged, and they naturally gave rise to the service ecosystem. The exploration of Web

services and the service ecosystem has recently attracted considerable attention from researchers. Since

service-based applications such as Mashups are usually developed via composing Web services, the

collaboration relation of Web services in Mashups can be used to build Web service networks. To help

understanding the characteristics of Web service networks, we propose a three-level view model. With the

proposed model, Web service networks can be explored from different-level views such as service-level,

tag-level and domain-level, with each level capturing different knowledge of the Web service networks. In

the following paper, we firstly describe in detail the three-level view model for Web service networks.

Then, based on the model, we present an experimental analysis on real Web service data and report the

results. Finally, a visual analysis tool for exploring Web service networks using different-level views is

presented.

Key words: Service network, Service composition, Web services, ProgrammableWeb, Mashup

Communicated by: M. Gaedke & Q. Li

1 Introduction

In the Web 2.0 age, numerous open services have been published through Application Programming

Interfaces (API) on the Web by various software venders and IT enterprises. Meanwhile, more and

more developers are throwing themselves into composing different services to develop innovative

applications for value-added service provision. Mashup is among the most prevalent approaches to

composing Web services to create new applications [1]. The term “Mashup” is borrowed from pop

music, where it denotes remixing songs (or parts of songs) to create new derivative works. Similarly,

Web-based Mashups are created by integrating existing services on the Web using their APIs, typically

in a way that hides the details of the source applications to provide a seamless experience for the user.

With the increase of the amount of Web services and Mashups, the Web service market grows rapidly

in recent years. For example, in ProgrammableWeb.com (a popular Web service and mashup

repository), there are more than 10,000 Web APIs and 7,000 Mashups according to the latest statistics.

Web APIs (sometimes abbreviated as APIs) are typically referred to a class of light-weighted Web

services such as RESTful services, which are gaining increasing popularity in the Web2.0 age. In this

502 Exploring Web Services from a Network Perspective Using Multi-Level Views

paper, we do not distinguish between Web APIs and Web services and thus will use the two concepts

interchangeably.

The growth of Web services and Mashups gave rise to the so-called Web service ecosystem [2-3],

which represents a system with large amount of interconnected units and complex interactions. The

collaboration relation of services in Mashups has recently attracted much attention from researchers in

the Service Computing field [4-5]. The benefits of investigating the collaboration relation between

services are multi-fold. First, investigating the collaboration relation among Web services can tell us

Web services’ ability to be composed for Mashup creation. Second, being aware of collaboration

relation among Web services can provide the guide for efficient Web service discovery and

composition. Third, with the collaboration relation among Web services, a set of Web services can

naturally be represented under the form of networks, and such kind of structures constitutes a

convenient way to represent a set of Web services for visualization and analysis purposes [6].

Web service networks provide an effective way to structure and organize Web services. Though a

few works has investigated the model of Web service networks and analysed their structures, there still

lacks a clear way to understand the Web service networks. The understanding of the Web service

ecosystem is also limited. With the rapid growth of Web services, these issues pose even more

challenges. In order to better understand the structure of the Web service ecosystem, this paper

presents a multi-level view model for exploring Web service networks. The model uses three-level

views for depicting a Web service network, i.e., service-level view, tag-level view and domain-level

view. Our idea is inspired by the operations of an electronic map, which usually contains multi-layers

of information that provide rich functionality for users. When the map zooms in or zooms out, different

layers of information will be exhibited, and thus the user can see the map from different detail levels.

By this means, the user can efficiently locate places or routines that he/she is interested. In summary,

we made the following contributions in this paper:

 We propose a three-level view model for exploring Web service networks, which is built based

on the collaboration relation between services. Several effective methods for constructing the

three-level views were developed as well.

 We also propose a novel method for ranking tags of Web services based on their importance

to a service, which can be used to refine categorization of Web services.

 We conduct an empirical study using a real Web service dataset, and analyze the constructed

Web service network using different views. Not only the structural properties of the three

views of the Web service network but also some interesting connection patterns are revealed

through analysis.

 We develop a software tool to implement our proposed model, which can visualize a Web

service network in a way like operating electronic maps.

The rest of this paper is organized as follows. Section 2 surveys related work. Section 3 describes

an emerging Web service ecosystem, by which we can build Web service networks. Section 4 presents

the three-level view model for Web service networks, including the service-level view, the tag-level

view and the domain-level view. Section 5 employs the proposed model to analyse the structures of a

Web service network generated using real Web service data. Section 6 presents a visual analysis tool

for Web service networks. Finally, Section 7 concludes this paper.

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 503

2 Related Work

As the number of Web services available increases, how to manage Web services for efficient

discovery and composition has become a vital issue [7]. To address this issue, a few works propose to

structure and organize Web services as a network, so that the relationships between Web services can

be employed for efficient Web service discovery and composition. In the following, we survey related

work in this area.

To structure Web services, two kinds of criteria were usually employed by previous works, i.e.,

similarity criteria and dependency criteria. By measuring similarity between Web services according to

some similarity criteria, the Web services can be grouped into categories usually called communities,

and thus automated Web services classification becomes feasible. One significant benefit of grouping

similar Web services is that, it can help improving the performance of Web services substitution when

a Web service fails in a composition process. The most popular approach to measuring similarity

between Web services is via analyzing the description text of Web services such WSDL files.

Depending on whether the Web services are described in syntax or semantics, many syntactic or

semantic approaches have been proposed for accurately measuring similarity between Web services [8-

11]. The dependency between Web services indicates how a Web service depends on another in

fulfilling some functionality, in other words, the ability of the two services to be composed. In this

regard, the dependency relation between Web services is similar to the collaboration relation.

There also have been a number of studies investigating the dependency relation among Web

services. Aydogan et al. [12] defined the dependency relation between services’ input and output, and

proposed a service dependency graph model, based on which an efficient Web service composition

algorithm was developed. Liu et al. [13] proposed a method to mine the dependency relation between

two Web service operations, which computes the similarity between a source operation’s output

parameters and a target operation’s input parameters and presumes that a high similarity indicates a

dependency relation between the two Web service operations. In [14] the authors defined three

composition network models according to the node types that can be parameters, operations or Web

services. They used syntactic description information of Web services to build networks and used

complex network theory to provide an analysis of the topological structure of Web services networks

formed by a real-world data set. Cherifi et al. [15] used both syntactic and semantic Web services to

build networks, and compared the topological properties of the two kinds of Web service networks.

Feng et al. [16] also proposed a semantic approach to build Web service networks and discussed its use

in Web service discovery. However, most of the above works considered only standard Web services

which are typically well described in WSDL or other structured languages, and the dependency

relation does not mean the real collaboration relation between Web services.

In Web 2.0 age, more and more light-weight Web services (such as RESTful services and Web

APIs) emerged and have constituted the majority of Web services on the Internet. Different of standard,

heavy-weight Web services, these Web services are usually described with pure natural or semi-

structured languages such as HTML. This indicates that the aforementioned works may be impractical

to them. Moreover, there is an increasing interest for Web 2.0 users to annotate Web services with tags

and Mashup them to develop new Internet-scale applications. These user-generated data, however,

were seldom exploited by aforementioned works. Only a few works have addressed this issue and

began to employ the user-generated data to infer relation between Web services and build Web service

504 Exploring Web Services from a Network Perspective Using Multi-Level Views

networks. Chen et al. [17] took the user-generated tags on Web services into consideration, and

combined them with WSDL for accurate similarity measurement between Web services. [4, 18, 5]

employed the Mashup data in ProgrammableWeb.com to infer the collaboration relation between Web

services, and investigated both the static structure and dynamic evolution of Web service network. Our

previous works [19, 20] have investigated both the similarity relation and collaboration relation

between Web services by employing user-generated data.

Most of the previous studies on Web service networks focused only on the service level. However,

with the exponential growth of Web services, analyzing and visualizing the Web service networks

becomes a challenging issue, which the previous work may not address well. This work can deal with

the above issue by using a three-level view model for Web service networks. The model not only can

provide a better method for structuring and visualizing Web services but also can help users

understanding the Web service ecosystem and discovering appropriate Web services in a more

efficient way.

3 The Emerging Web Service Ecosystem

To investigate the emerging Web service ecosystem and explore the Web service networks, we turn to

the largest online repository of Web services and Mashups, ProgrammableWeb.com. This Web service

repository provides the most comprehensive listing of Mashups and Web APIs available, including

information on which Mashups use which APIs. It also has a number of tags for annotating APIs and

Mashups.

Mileage

Calculator
100 Most Powerful

Celebrities

Mapping
video

calendar events viewer display places address geocodinglocation deadpool media

money celebrityutility travel

Mashup

Web API

Tag

Composes

Labels

Google

Calendar
Google Maps

YouTubeYahoo

Geocoding

Figure 1 A slice of the Web service ecosystem

Figure 1 presents a slice of the Web service ecosystem represented by ProgrammableWeb.com.

Let rectangles denote Mashups, ellipses denote APIs, and filled dots denote tags annotating APIs and

Mashups. As can be seen from figure 1, there are two Mashups----100 Most Powerful Celebrities and

Mileage Calculator, four APIs---- Yahoo Geocoding, YouTube, Google Calendar and Google Maps,

and sixteen tags including utility, travel, money etc. Let a solid arrow connecting a Mashup with an

API denote that the API is a component of the Mashup, and a dash arrow connecting a tag with a

Mashup or an API denote that the Mashup or API is commented by the tag. Clearly, a Mashup is likely

to use multiple APIs and two Mashups are likely to share the same APIs. We define that if two APIs

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 505

have been composed to create at least one Mashup, there exists a collaboration relationship between

them. Based on the collaboration relationships between Web services, a Web service network can be

constructed.

TABLE I OVERVIEW OF THE WEB SERVICE DATA COLLECTED FROM PROGRAMMABLEWEB.COM

Number of Mashups 6,970
Number of API categories 67

Number of APIs 9,135
Number of tags labelling APIs 1,727

Number of APIs per category 136.343

Number of APIs per Mashup 2.017
Number of tags per API 3.275

Number of APIs used by Mashups 1,193

TABLE II CATEGORIES OF WEB SERVICES

Category #APIs Category #APIs
1-Tools
2-Internet
3-Social
4-Financial
5-Enterprise
6-Reference
7-Mapping
8-Shopping
9-Science
10-Government
11-Telephony
12-Messaging
13-Payment
14-Search
15-Photos
16-Other
17-Video
18-Advertising
19-Travel
20-Education
21-Music
22-Email
23-Security
24-Utility
25-Transportation
26-Games
27-Project Management
28-Medical
29-Sports
30-Storage
31-Events
32-Office
33-Database
34-Shipping

624
549
467
402
378
326
323
313
300
286
274
269
262
237
215
208
201
195
189
188
182
176
173
151
144
141
125
114
102

96
88
86
82
81

35-Backend
36-News
37-Weather
38-Real Estate
39-Entertainment
40-Blogging
41-Recommendations
42-Retail
43-Food
44-File Sharing
45-Media Management
46-Job Search
47-Chat
48-Bookmarks
49-Feeds
50-PIM
51-Widgets
52-Calendar
53-Answers
54-Fax
55-Dictionary
56-Tagging
57-Wiki
58-Media Search
59-Politics
60-Blog Search
61-Goal Setting
62-Dating
63-Catalog
64-Auctions
65-Other Search
66-Specific website
traffic ranking service
67-Portal

79
79
74
73
71
66
65
63
62
60
55
52
51
41
40
33
32
30
30
21
21
17
13
12
12
11
5
3
2
2
1

1
1

To explore the characteristics of real Web service ecosystem and Web services, we collected all

Mashups and APIs as well as their description information from ProgrammableWeb.com in June, 2013.

The numbers of Mashups and APIs are 6,970 and 9,135 respectively. The description information of

each Mashup includes the name, URL, tags, APIs they invoked etc. The description information of

each API includes the name, URL, category, tags, comments etc. Table I overviews the Web service

data crawled from ProgrammableWeb.com. As it shows, only 1,193 APIs among 9135 APIs have been

used by Mashups. The low use rate of APIs in this ecosystem indicates that the Web service ecosystem,

though has been growing rapidly, is still in early development. At ProgrammableWeb.com, the 9135

APIs have been classified into 67 categories with each category representing a set of APIs in a specific

domain. Table II lists all API categories by ranking them in descending order according to the number

of APIs they have. We can see that, the category of Tools has the most APIs, followed by the API

categories of Internet and Social.

app:ds:descending
app:ds:order

506 Exploring Web Services from a Network Perspective Using Multi-Level Views

To study the use rate of Web APIs, for each API we counted the number of Mashups that have

used it. Table III presents the top-10 most frequently used APIs. We can see that Google Maps is the

most popular Web API since it has been used by more than 2400 Mashups. By summing up the use

times of all APIs, we obtain the total use times of all APIs, i.e., 20,250. The percentage of the use

times of the top-10 APIs over all is 6190/20250=30.568%, which is quite high since there are totally

9135 Web services and the top-10 APIs are only a small fraction of them. This result indicates that the

distribution of use rate of APIs is quite heterogeneous. This may be caused by that users usually

believe that they can learn from the historical usage of the services and tend to build new Mashups by

reusing popular ones. Consequently, the popular APIs get even more popular.

TABLE III THE TOP-10 MOST USED APIS

No. API #Mashups No. API #Mashup

1 Google Maps 2,417 6 Facebook 385

2 Twitter 757 7 Twilio 349
3 YouTube 651 8 Last.fm 225

4 Flickr 605 9 eBay 216

5 Amazon Product

Advertising

406 10 Google Search 179

TABLE IV TOP-10 MOST POPULAR TAGS

No. Tag #APIs No. Tag #APIs

1 Deadpool 1,088 6 Mobile 558

2 Social 993 7 Reference 506

3 Tools 829 8 Search 489
4 Internet 793 9 Shopping 465

5 Enterprise 579 10 Mapping 461

Figure 2 shows the cumulative distribution of the use times of APIs (plotted on log-log axes). The

X axis (x) denotes the use times, and the Y axis denotes the number of APIs which have been used by at

least x Mashups. Evidently, the distribution exactly follows a power-law distribution.

0 10 100 1,000 10,000
10

0

10
1

10
2

10
3

10
4

Frequency of Uses

N
u

m
b

e
r

o
f
W

A
P

Is

(0,9135)

(2417,1)

Figure 2 The cumulative distribution of use times of APIs

To facilitate understanding and promote discovery of APIs, a few tags are usually employed for

annotating the functionality or other aspects of an API. The use times of a tag can reflect its popularity

degree too. Thus, we also counted the usage times of each tag on the collected Web service data. Table

IV shows the top-10 most popular tags. As it shows, the tag with maximum use times is Deadpool,

followed by Social, Tools, ect.

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 507

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Frequency of Uses

N
u

m
b

e
r

o
f
T

a
g

s

(1,1727)

(1088,1)

Figure 3 The cumulative distribution of use times of tags

Figure 3 shows the cumulative distribution of use times of tags (again, plotted on log-log axes).

From the figure we can observe that the distribution also follows a power-law distribution to some

extent.

The above discussion presents the general characteristics and statistics of the Web service

ecosystem represented by programmableWeb.com. In this following, we focus on the Web service

networks formed by the collaboration relation between Web services. Generally speaking, the more

Mashups two Web services concur in, the stronger is the collaboration relation between the two Web

services. Because of the large and ever-increasing number of Web services, how to visualize the Web

service network in a better way is a challenging issue.

4 The Three-level View Model of Web Service Networks

In this section, we propose a three-level view model for analysing Web service networks which are

formed by the collaboration relation between Web services. The bottom-level view of a Web service

network is itself, which is named as the service-level view. This view is formed by the concrete

services and their collaboration relationships. The middle-level view of a Web service network is

named as the tag-level view, which is formed by tags that annotate the functionality or other aspects of

Web services. The top-level view of a Web service network is named as by the domain-level graph,

which is formed by service domains or categories. Both the domain-level view and the tag-level view

can be seen as an abstraction of the service-level view. The tag-level view is actually a refinement of

the domain-level view. With this model, the Web service ecosystem and the Web service network can

be understood more clearly from different levels. Specifically, our proposed three-level view model

will answer the following questions:

 What Web services can be composed for creating Mashup applications?

 What kinds or what domains of Web services are usually employed for creating Mashup

applications?

 Are there any interesting composition patterns for Web services?

Before introducing the proposed three-level view model, for the convenience of description, we

define the following notation that will be used throughout this paper.

 A={A1,A2,…,Am} represents a set of Web services;

508 Exploring Web Services from a Network Perspective Using Multi-Level Views

 M={M1,M2,…,Mn} represents a set of Mashups;

 T={T1,T2,…,Tl} represents a set of tags;

 D={D1,D2,…,Dk} represents a set of Web service domains or categories, which satisfy A=D1

∪D2∪…∪Dk;

 ES=(D,A,M,T,E) represents a Web service ecosystem, where E is the set of relationships

among Web services, Mashups, tags, and service domains;

 M(Ai) represents a subset of Mashups that invoke Web service Ai;

 T(Ai) represents a subset of tags that annotate Web service Ai;

 D(Ai) represents a Web service domain that contains Web service Ai.

Next, we will describe the definitions of the above three-level views for exploring Web service

networks and their construction methods.

4.1. The Service-Level View

The service-level view of a Web service network can be denoted by graph GA=(A,EA,WA), where the

vertex set A represents the set of Web services, the edge set EA represents the set of collaboration

relationships between Web services, and WA is the set of weights on the edges indicating the strength

of composition relationships. This graph is intended to answers the follow questions: What Web

services can be composed for creating Mashups? And how to measure strength of the collaboration

relationships between Web services?

M1M1

M2M2

A1A1

A2A2

A3A3

A4A4

Figure 4 A toy example of the Mashup-service network

To measure the strength of the composition relationship between Web services, the following are

some heuristics that can be exploited:

 Generally, the more Mashups that two services concur in, the stronger is the collaboration

relationship between them, i.e., the greater is the ability of the two services to be composed.

 Given two Web services (e.g., A1 and A2) that concur in two Mashups M1 and M2, if M2

contains more Web services than M1 (as shown in Figure 4), then the contribution of M2 to

the collaboration relation between the two Web services should be less than that of M1.

 The strength of the collaboration relationship between two Web services can also be reflected

by the ratio of the number of Mashups that invoked both of them over the number of Mashups

that invoked either of them. A high ratio indicates that the ability of the two services to be

composed is high, and vice versa.

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 509

Having the above heuristics in mind, we developed the following formula to calculate the strength

of the collaboration relationship between two Web services Ai and Aj:

(() ())

2

()
(,)

(() ())

i jm M A M A

A i j

i j

k m
W A A

M A M A

 (1)

where M(Ai) represents the set of Mashups which have invoked Web service Ai, M(Aj) represents the

set of Mashups which have invoked Web service Aj, M(Ai)∩M(Aj) represents the subset of Mashups

which have invoked both Ai and Aj, M(Ai)∪M(Aj) represents the subset of Mashups which have

invoked either Ai or Aj, and k(m) represents the number of Web services used by a Mashup m. The

parameter 0≤α≤1 is used to adjust the influence of the number of Mashups invoking either Ai or Aj

on their collaboration relationship’s strength; the larger the value of α, the greater the influence, and

vice versa.

0.1250.375

0.125
0.125

A1

A2

A3

A4

M1M1

M2M2

A1A1

A2A2

A3A3

A4A4

0.125

0.125

Figure 5 Illustration of the service view construction

Figure 5 is an example illustrating the construction of a service-level graph by measuring the

collaboration relationships between given Web services. Suppose that Mashup M1 is composed of two

Web services A1 and A2, and Mashup M2 is composed of four Web services A1, A2, A3 and A4. Let α=1,

then, with Formula (1), the strength of the collaboration relationships, i.e., the weights on the links

between the above Web services can be calculated as:

1 2

1 3

2 3

3 4

1 1/ 4 3
(,) 0.375

4 8

1/ 2 1
(,) 0.125

4 8

1/ 2 1
(,) 0.125

4 8

1/ 2 1
(,) 0.125

4 8

A

A

A

A

W A A

W A A

W A A

W A A

The right diagram in Figure 5 shows the derived service-level graph.

The service-level graph can be transformed into an n×n matrix, denote by AA, where n is the

number of services. That is, AA=[aaij], 0≤i,j≤1, where aaij=WA(Ai,Aj). If Ai and Aj concur in at least

one Mashup, we have aaij>0, otherwise aaij =0.

 4.2. The Domain-Level View

The domain-level view is the top-level view of the Web service network in our proposed model.

Different from the service-level view, it captures the collaboration relation between two abstract types

510 Exploring Web Services from a Network Perspective Using Multi-Level Views

of Web services, instead of two concrete Web services. It answers the question: What kinds of Web

services are more likely to be combined to create new applications? The domain-level view can also be

represented using an undirected weighted graph GD=(D, ED, WD), where the vertex set D represents the

set of Web service categories, the edge set ED represents the set of connections between Web service

categories, and WD is the set of weights on the edges which indicate the strength of connections.

The domain-level view can be constructed from the service-level view by applying the rule that if

there exist services in two domains that have concurred in at least one Mashups, i.e., have direct

connections in the service-level graph, the two service domains shall be connected using a link. For

example, given two service domains Di and Dj, an edge ED(i,j) will be generated between them if only

there exist services Ai∈Di and Aj∈Dj, have concurred in at least one Mashups. Suppose there are two

different service domains Di and Dj, the weight on the edge (Di,Dj) between Di and Dj, i.e., WD(i,j), is

calculated as follows:

 (,)
(,)

(,) (,) (,)

i j

i j i j

Aa D b D

D i j

A A Aa D b D a D b D

W a b
W D D

W a W b W a b

 (2)

where the numerator ∑a∈Di∧b∈DjWA(a,b) is the sum of the weights on the edges connecting services in

Di with services in Dj; the denominator is actually the sum of the weights on the edges which connect

services in Di or Dj with other arbitrary services. Specifically, we use ∑a∈DiWA(a,*) to represent the

sum of the weights on the edges connecting services in Di (e.g., a) with arbitrary services, and

∑b∈DjWA(b,*) to represent the sum of the weights on the edges connecting services in Dj (e.g., b) with

arbitrary services. Please note that Eq. (2) is not only available for two different service domains. It can

also be used for measure the weight on the link connecting a domain with itself.

To illustrate the construction of the domain-level view, Figure 6 provides an example. Suppose

that Web services A1, A2 and A3 belong to service domain D1, A4 and A5 belong to service domain D2,

and A6 belongs to service domain D3. With Eq. (2), the connection weights between D1 and D2 is

calculated as follows: WD(D1,D2)= (0.667 + 0.250 + 0.333) / (0.667 + 0.250 + 0.333 + 0.333 + 0.500 +

0.250 + 0.333 + 0.500) = 0.395. Likewise, the connection weights between the other service domains

can be obtained. Figure 6 shows the results.

Figure 6 Illustration of the domain-level view construction

4.3. The Tag-Level View

The domain-level view can reveal some top-level characteristics of a Web service network. However,

due to the limited number of Web service domains, the domain-level view may be too “rough” to

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 511

depict the Web service network. For instance, at ProgrammableWeb.com, there are only 67 Web

service domains (i.e., abstract types). Furthermore, it is unreasonable to say that a Web service belongs

to only one domain. To refine the service domain-level view and allow a service belonging to multiple

domains, we therefore introduce the tag-level view of the Web service network. A tag of a service can

help identifying a category of services, and a service usually has a few tags, as indicated by

ProgrammableWeb.com. We consider that different tags make different contributions to the

identification of services in a Web service ecosystem. The difference of contribution of a tag is

represented as a weight that can be treated as the degree of the tag in contribution to the identification

of services.

The following discussions describe how to build the tag-level view based on the service-level view.

The tag-level view can also be modelled as an undirected weighted graph GT=(T,ET,WT), where the

vertex set T represents the set of tags for annotating services, the edge set ET represents the set of edges

representing links between service tags, and WT is the set of weights on the edges, indicating the

strength of links between service tags. Two tags Ti and Tj in the tag-level graph are linked if only there

are at least two services annotated by Ti and Tj respectively that have concurred in the same Mashup,

i.e., have a direct link in the service-level graph. To measure the weights on edges in the tag-level

graph, we propose a tag ranking method for services, which evaluates the degree of membership of a

service to the sub-domain represented by a tag, or in other words, the importance weight of a tag to a

service. This is done by exploiting various types of description information of services, such as service

name, service category name and comments.

Suppose that service Ai has m tags T1,T2,…,Tm, and its description information such as name,

category name, and comments are denoted by di1, di2, di3 respectively, then the importance weight of a

tag Tj to Ai is calculated as follows:

3

1

3

1 1

((,) 1)
(,)

((,) 1)

i j ikk
j i m

i j ikj k

f Occur T d
IM T A

f Occur T d

 (3)

where Occur(Tj,dik) is the occurrence number of Tj in dik, and f1, f2, f3 are the tunable weights which

respectively represent the importance of the service’s name, category name and comments. From our

intuitions, a tag is more important to a service if it appears in the service’s name or category name.

Therefore, we rank f1, f2, f3 as f1≥ f2≥ f3. Based on the service-level graph, we use the following

equation to calculate the weight of the edge between two tags Ti and Tj on the tag graph:

(), ()

(,) ((,) (,) (,))
i j

T i j A i u j va A T b A T
W T T W a b IM T A IM T A

 (4)

where A(Ti) represents the subset of Web services with the tag Ti, and A(Tj) represents the subset of

Web services with the tag Tj. Figure 7 is an example illustrating how to use Equation (4) to calculate

the weight of an edge between two tags and how to construct the tag-level graph of a Web service

network. The left diagram of Figure 7 represents a simple service graph, which includes two Web

services and five tags. Suppose that WS1 have two tags T1 and T2, and WS2 has three tags T3, T4 and T5.

The weights of edges between services as well as edges between services and tags are provided. With

Eq. (4), we can calculate the weights of edges between these tags, as shown in the right diagram of

512 Exploring Web Services from a Network Perspective Using Multi-Level Views

Figure 7. For instance, taking T1 and T3 into consideration, we have

WT(T1,T3)=0.26*(0.154*0.589)=0.022.

0.145 0.855 0.589 0.206 0.205

0.260

0.
00
8 0.

00
8

0.
13
1

0.
04
6

0.
04
6

0.
02
2

WS1 WS2

T1 T2 T3 T4 T5

T1 T2

T3 T4 T5

Figure 7 Illustration of the tag-level view construction

5 Empirical Analysis

In this section, we employ the proposed three-level view model to analyze the Web service network

which is built using the real data collected from ProgrammableWeb.com. The general statistics,

structural properties, and some vital patterns of each view of the Web service network are presented.

5.1. Analysis on the service-level view

We firstly employ the ProgrammableWeb.com dataset to construct the service-level view and measure

the connection weights between every pair of services using Eq.(1). With the setting α=1, Table V

presents the top-10 API pairs that have the largest connection weights and their corresponding weight

values.

TABLE V THE TOP-10 API PAIRS WITH THE LARGEST CONNECTION WEIGHTS

Web API Web API Connection Weight

Twilio Twilio SMS 1.000

Mendeley PLoS Search 0.365

Travel Booking Engine Travelport 0.249

Hoiio Voice Hoiio SMS 0.239

Google Maps Flash MapLarge 0.236

FanFeedr Sports News FanSnap 0.224

HAMweather Aeris Handset Detection 0.224

TelAPI Zapier 0.224

PriceSpin Primal 0.224

Figure 8 uses a grid to visualize the collaboration relationships between the top-50 most popular

services, with their weights being indicated by the darkness of cells, i.e., darker cells indicate larger

weights. The numbers on the horizontal and vertical axes are IDs of the services, which are assigned to

services according to their positions in the descending ranking of services based on their usage times.

That is, the service with ID x indicates that it is the x-th frequently used service. From Figure 8 we can

see, there are quite a few cells which are apparently darker than the other cells. For instance, the cell

(12, 7) has the darkest shading, indicating that the corresponding two services Twilio SMS and Twilio

have the largest connection weight according to Eq. (1).

app:ds:descending

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 513

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Figure 8 Visualization of the connection weights between the top-50 most popular APIs

The structure of the service-level graph is also shown in Figure 9. A bigger node is used to

represent a Web service with a higher connection degree. To filter weak connections, we set a

threshold 0.02 for the connection weight, such that the edges whose weights are smaller than 0.02 are

not taken into account. We also analyzed the structural properties of the generated service-level graph,

as shown in Table VI. We can see that it has a very small diameter and a high clustering coefficient,

which indicate that the service graph has a relatively strong small-world property.

Figure 9 Overview of the service-level view

TABLE VI STRUCTURAL PROPERTIES OF THE SERVICE VIEW

Property Val

u

e
Vertices 1,028

Total Edges 8,510

Maximum Geodesic Distance (Diameter)* 7.000
Average Geodesic Distance 2.610

Graph Density* 0.008
Average Clustering Coefficient 0.317

Average Degree 16.556

514 Exploring Web Services from a Network Perspective Using Multi-Level Views

* Graph diameter is the length of the longest and the shortest hop path in the graph.
* Graph density is the number of edges (excluding self-links) presented in the graph divided by the maximal possible number

of edges in the graph.

TABLE VII THE TOP-10 CATEGORY PAIRS WITH THE LARGEST CONNECTION WEIGHTS

API Category API Category Connection Weight

Telephony Messaging 0.399

Financial Project Management 0.270

Financial Office 0.254

Games Widgets 0.244

Sports Events 0.199

Entertainment Recommendations 0.191

Reference Education 0.185

Media Management Tagging 0.181

Storage Office 0.162

Advertising Email 0.159

5.2. Analysis on the domain-level view

This section analyzes the Web service network from the domain-level view, i.e., the top-level view.

The domain-level graph is an abstraction of the Web service network by treating each service domain

or category as a node. With the domain-level graph, we can obtain the connection characteristics of

various service domains.

According to the definition of the domain-level graph proposed in section III, we use Eq. (2) to

calculate the connection weights between service domains. Table VII shows the top-10 largest

connection weights between Web service categories (as specified in Table II). We can see, the largest

connection weight occurs between the service categories Telephony and Messaging, which indicates

that, services in the Telephony and Messaging domains are often composed together to create Mashups.

5 10 15 20 25 30 35 40 45 50 55 60 65

5

10

15

20

25

30

35

40

45

50

55

60

65

Figure 10 Visualization of the connection weights between all service domains (i.e., categories)

Figure 10 visualizes the connection weights among all service domains of Web services at

ProgrammableWeb.com. The horizontal and vertical axes represent the ID of service domains which

were specified in Table II. Again, let darker cells indicate greater connection weights. We can see, the

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 515

cell (15, 17) or (17, 15) have the darkest shading, which indicates that there is strong connection

between Social and Mapping. Likewise, the cell (3, 7) or (7, 3) is also relatively dark, indicating that

there exists a strong connection between Photos and Video.

Figure 11 Overview of the domain-level view

TABLE VIII STRUCTURAL PROPERTIES OF THE DOMAIN VIEW

Property Valu

e

Vertices 67.000

Total Edges 1,692.

000

Maximum Geodesic Distance (Diameter) 3.000
Average Geodesic Distance 1.469

Graph Density 0.383

Average Clustering Coefficient 0.698
Average Degree 25.254

The structure of the domain-level graph is shown in Figure 11, where larger node indicates service

domains with more connections. Again, to filter unnecessarily weak connections, we set a threshold

0.01 for the connection weight, the edges whose weights are smaller than 0.01 are not taken into

account in the domain-level graph. As can be seen in Figure 11, there are mainly 10 dominant service

domains in the Web service ecosystem, such as Tools, Internet, Social, Financial, Enterprise,

Reference, Mapping, Shopping, Science, and Government, and there are significant connections

between Social and Mapping, Music, Video, Photos etc.

The basic structural properties of the domain-level graph are presented in Table VIII. As expected,

the domain-level graph has a high connection density, and thus has a very small diameter and average

distance. It also has a high clustering coefficient.

TABLE IX EXAMPLES OF THE IMPORTANCE WEIGHTS OF TAGS

API T1 T2 T3 Domain

Google Calendar events calendar - Calendar
0.145 0.855 -

Facebook Credits payment games virtual Payment
0.589 0.205 0.206

516 Exploring Web Services from a Network Perspective Using Multi-Level Views

360voice games xbox social Games
0.493 0.254 0.253

TABLE X THE TOP-10 TAG PAIRS WITH THE LARGEST CONNECTION WEIGHTS

Tag Tag Connection Weight

social photo 0.772

mapping viewer 0.587

telephony sms 0.546

mapping display 0.540

mapping places 0.512

sms TTS 0.508

social microblogging 0.500

deadpool search 0.497

search mapping 0.437

shopping auction 0.436

5.3. Analysis on the tag-level view

According to the definition of the tag-level graph presented in section III, we use Eq. (3) to calculate

the connection weights between service tags. We set f1, f2, f3 in Eq. (3) to 0.450, 0.350, and 0.200

respectively. Thus the importance weights of all tags for each service are determined. For example, we

computed the importance weights of tags for WAPIs Google Calendar, Facebook Credits and 360voice,

which are shown in Table IX. The importance weights of the tags events and calendar to Google

Calendar are 0.145 and 0.855 respectively.

With the importance weights of tags, we calculate the connection weights between tags with

Formula (4). Table X shows the top-10 largest connection weights between tags. We can see, the

largest connection weight occurs between the tags social and photo, which indicates that, services

concerning social and photo are often composed together to create Mashups.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Figure 12 Visualization of the connection weights between the top-50 most popular tags

Figure 12 uses a grid to visualize the connection weights between the top-50 most popular tags,

where the horizontal and vertical axes represent the ID of tags. Similarly, we let darker cells indicate

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 517

larger connection weights. As can be seen from Figure 12, the cell (4, 4) has the deepest dark shading,

indicating that services with the tag Internet are frequently composed.

TABLE XI THE PROPERTIES OF THE TAG-LEVEL VIEW

Property Val

u

e

Vertices 525.00

0
Total Edges 25456.

000

Maximum Geodesic Distance (Diameter) 4.000
Average Geodesic Distance 2.043

Graph Density 0.093
Average Clustering Coefficient 0.799

Average Degree 48.488

The structure of the tag-level graph is shown in Figure 13, where larger node indicates service tags

with more connections. Likewise, to filter unnecessarily weak connections, we set a threshold 0.01 for

the connection weight, the edges whose weights are smaller than 0.01 are not taken into account in the

tag-level graph. The basic structural properties of the tag-level network are shown in Table XI.

Figure 13 Overview of the tag-level view

6 Visual Analysis Tool for Web Service Networks

In order to implement the above model for exploring Web service networks, we developed a visual

analysis tool, as shown in Figure 14. It has the following three major functionalities.

Firstly, it can be employed to construct Web service networks. In this work, we use the data crawled

from ProgrammableWeb.com as input to construct the Web service networks. However, our tool is

developed for general purpose and thus can also use other Web services datasets to construct Web

service networks.

Secondly, it can be employed to visualize the Web service networks from different-level views and

in different styles. The tool fully implemented the three-level view model described in this paper. By

default, the service-level view of the Web service network is exhibited. When the user chooses the

domain-level view, the various Web service domains and the connections between them will be

518 Exploring Web Services from a Network Perspective Using Multi-Level Views

exhibited. Otherwise, when the user chooses the tag-level view, all service tags and the connections

between them will be exhibited. The user can filter nodes or links with low connection degrees or

weights to simplify the views. The user can employ the tool find the services, tags or service categories

that have the highest connection weights. The user can also zoom in or zoom out the views to make

them clearer. Moreover, the views can be displayed in different layouts in styles.

Thirdly, it can be employed to analyse and report the structural properties of the Web

service network at different levels, such as these listed in Table VI, VIII and XI. It can

also be employed to mining other kinds of relation between Web services such as the

similarity relation and the potential collaboration relation.

Figure 14 A visual analysis tool based on the proposed three-level view model

7 Conclusion

In this paper, we proposed a three-level view model for exploring Web service networks which is built

based on the collaboration relation between Web services. The model is composed of the service-level

view, the tag-level view and the service domain-level view, which are intended to capture different

characteristics of the Web service network. By employing the real Web service data collected from

ProgrammableWeb.com, we provided an implementation of the proposed three-level view model, and

analyzed the characteristics of the Web service ecosystem represented by ProgrammableWeb.com.

Finally, a visual analysis tool for exploring and analysing Web service networks is presented.

Since the reuse rate of Web services is still very low, a deep investigation of Web service

ecosystem is certainly helpful for promoting the understanding and reuse of Web services. The

proposed model provides a sound way for the investigation of Web service ecosystem. It can help

users find interesting service compositions or composition patterns more efficiently and easily. In the

M-D Tang, F-F Xie, B-Q Cao, S-X Lyu, J-X Liu 519

future work, we will explore more effective techniques for mining the relation between services, tags

and service categories, and will conduct more experiments to evaluate the proposed three-level view

model. In addition, we will consider improving the visual analysis tool by enriching its functionalities.

Acknowledgement

The work described in this paper was supported in part by the National Natural Science Foundation of

China under grant No. 61402168, No. 61572186 and No. 61572187, and in part by the Scientific

Research Fund of Hunan Provincial Education Department of China under Grant 15K043.

References

1. X. Liu, Y. Hui, W. Sun, and H. Liang, Towards service composition based on mashup, IEEE

Congress on Services, pp.332-339, 2007.

2. A. P. Barros and M. Dumas, The rise of web service ecosystems, IT professional, Vol. 8, pp. 31-37,

2006.

3. K. Huang, Y. Fan, W. Tan, and X. Li, Service Recommendation in an Evolving Ecosystem: A Link

Prediction Approach, Proceedings of the 2013 IEEE 20th International Conference on Web

Services, June 28-July 3, 2013, Santa Clara, CA.

4. S. Yu and C. J. Woodard, Innovation in the programmable web: Characterizing the mashup

ecosystem, Proceedings of the Service-Oriented Computing–ICSOC 2008 Workshops, 2009,

Sydney, Australia.

5. K. Huang, Y. Fan, and W. Tan, An Empirical Study of Programmable Web: A Network Analysis

on a Service-Mashup System, Proceedings of the 2012 IEEE 19th International Conference on

Web Services, June 24-29, 2012, Honolulu, HI.

6. C. Cherifi and J.-F. Santucci, Analyzing Web Services Networks: A WS-NEXT Application,

Ubiquitous Computing and Communication Journal, pp.60-77, 2011.

7. S. Wang, W. Su, X. Zhu, H. Zhang, A Hadoop-based approach for efficient web service

management, Int. J. Web and Grid Services, Vol. 9, No. 1, pp.18-34, 2013.

8. X. Dong, A. Halevy, J. Madhavan, E. Nemes, J. Zhang. Similarity search for web services,

Proceedings of the Thirtieth international conference on Very large data bases, 2004.

9. F. Liu,Y. Shi, J. Yu, T. Wang, J. Wu. Measuring Similarity of Web Services Based on WSDL.

Proceedings of the 2010 IEEE 17th International Conference on Web Services, July 5-10, 2010,

Miami, Florida.

10. P. Plebani, B. Pernici. URBE: Web Service Retrieval Based on Similarity Evaluation. IEEE

Transactions on Knowledge and Data Engineering, Vol. 21 No.11, pp.1629-1642, 2009.

11. K.Elgazzar, A.E. Hassan, P. Martin. Clustering WSDL Documents to Bootstrap the Discovery of

Web Services. Proceedings of the 2010 IEEE 17th International Conference on Web Services, July

5-10, 2010, Miami, Florida.

12. R. Aydogan and H. Zirtiloglu, A Graph-Based Web Service Composition Technique Using

Ontological Information, Proceedings of the 2007 IEEE 14th International Conference on Web

Services, July 9-13, 2007, Salt Lake City, UT.

13. X. Liu, G. Huang, H. Mei. Discovering Homogeneous Web Service Community in the User-

Centric Web Environment. IEEE Transactions on Services Computing, Vol. 2 No.2, pp.167-181,

2009.

14. H. Kil, S.C. Oh, E. Elmacioglu, W. Nam, D. Lee: Graph Theoretic Topological Analysis of Web

Service Networks, WWW, Vol. 12, No. 3, pp. 321-343, 2009.

15. C. Cherifi, V. Labatut, and J. F. Santucci, Web Services Dependency Networks Analysis,

International Conference of New Media and Interactivity (NMI 2010), pp.115-12, 2010.

520 Exploring Web Services from a Network Perspective Using Multi-Level Views

16. Z. Feng, B. Lan, Z. Zhang and S. Chen, A Study of Semantic Web Services Network, The

Computer Journal, Vol. 58 No. 6, pp. 1293-1305, 2014.

17. L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, WT-LDA: User Tagging Augmented LDA for

Web Service Clustering, Proceedings of the Service-Oriented Computing, December 2-5, 2013,

Berlin, Germany.

18. J. Hwang, J. Altmann, and K. Kim, The structural evolution of the Web 2.0 service network,

Online Information Review, Vol. 33 No.6, pp.1040-1057, 2009.

19. G. Wang，J. Liu, B. Cao, M. Tang. Mashup Service Classification and Recommendation based on

Similarity Computing, Proceedings of the 2nd International Conference on Social Computing and

Its Applications, November 1-3, 2012, Xiangtan , China.

20. B. Cao, J. Liu, M. Tang, Z. Zheng, Guangrong Wang. Mashup Service Recommendation based on

User Interest and Social Network, Proceedings of the 2013 IEEE 20th International Conference on

Web Services, June 28-July 3, 2013, Santa Clara, CA.

