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Collaborative Web services QoS prediction has become an important tool for the genera-
tion of accurate personalized QoS which is a cornerstone of most QoS-based approaches

for Web services selection and composition. While a number of achievements have been

attained on the study of improving the accuracy of collaborative QoS prediction, little
work has been done for protecting user privacy in this process. In this paper, we pro-

pose a privacy-preserving collaborative QoS prediction framework which can protect the

private data of users while retaining the ability of generating accurate QoS prediction.
We combine Yao’s garbled circuit and additively homomorphic encryption via additively

secret sharing to address non-linear computations required in the process of QoS pre-

diction. We implement the proposed framework based on FasterGC, an open source
implementation of Yao’s garbled circuit, and conduct extensive simulations to study

its performance. Simulation results, together with theoretical security and complexity

analysis, show that privacy-preserving QoS prediction can be efficiently achieved in our
framework.

Keywords: collaborative QoS prediction, privacy-preserving, Yao’s garbled circuits, ho-

momorphic encryption, recommendation system
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1. Introduction

Web services, which are Internet based programmable application components, have made

great progress in the past decade. At its early stage, Web services technology was mainly

exploited to build traditional software applications such as online reservation and stock trad-

ing. Along with the rapid development of cloud computing, more and more corporations

including Amazon and Google offer cloud Web services, such as Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), for the realization of

scalable and cost-effective computing [15]. Moreover, numerous real-world devices can also

provide Web services through Device Profile for Web Services (DPWS) or RESTful API [17],
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which significantly increases not only opportunities but also challenges of Service Oriented

Computing (SOC).

QoS-based Web services selection and composition has been discussed extensively in the

recent literature [1, 2, 3, 42, 43]. A common assumption of these proposed approaches is that

accurate QoS values of Web services are always available. It is, however, still an open problem

to obtain accurate QoS values. On one hand, the QoS values advertised by service providers

or third-party communities are not accurate to service users, as they are susceptible to the

uncertain Internet environment and user context [7]. On the other hand, it is impractical

for service users to directly evaluate the QoS of all available services due to the constraints

of time, cost and other resources [48]. As an effective solution to this problem, personalized

collaborative Web services QoS prediction has received much attention recently [21, 35, 44, 46].

The basic idea is that similar users tend to observe similar QoS for the same service, so it is

possible to predict the QoS value of a service observed by a user based on the QoS values of

the service observed by the similar users to this particular user. By this kind of computation,

different users are typically given different QoS prediction values even for the same service and

the final prediction values in fact depends on their specific context. To enable collaborative

QoS prediction to work well, users must provide their observed QoS values of the services

they have invoked. Based on these provided QoS values, a variety of techniques have been

employed to improve the quality especially accuracy of prediction [7, 38, 40, 41, 47, 48].

Though many achievements have been attained on the study of improving the accuracy

of collaborative QoS prediction, little work has been done for protecting user privacy in this

process. In fact, the observed QoS values could be a sensitive information, so users may not

be willing to share them with others. For example, the observed response time reported by a

user typically depends on her location [7, 38], which means that the user’s location could be

deduced from the QoS information she provided. Consequently, an interesting but challenging

question is whether or not a recommendation system can make accurately personalized QoS

prediction for users while respecting their privacy.

In this paper, we provide a positive answer to the above question. More specifically, we

propose a privacy-preserving QoS prediction framework which can protect the privacy of the

users by means of encrypting their private data, that is, their observed QoS, and meanwhile

can make an accurate QoS prediction in the encrypted domain by running cryptographic

protocols. It should be noted that the difficulty of implementing such a framework depends

on the trade off between efficiency and accuracy. Generally, complicated computation is

required to improve the prediction accuracy, but it is inefficient even impractical to apply

these computation in the encrypted domain. On the other hand, while realizing an efficient

privacy-preserving QoS prediction is possible, the prediction accuracy may not be satisfied.

By keeping this trade off in mind, we select an effective collaborative QoS prediction approach

proposed by Zheng et al. in [46] which combines user-based collaborative filtering and item-

based collaborative filtering to achieve better QoS prediction accuracy. As will be discussed in

detail in later sections, Zheng’s approach contains a number of nonlinear computations, which

makes it impractical to construct a privacy-preserving recommendation system totally based

on homomorphic encryption, just as the one presented in [13]. To address this problem,

we combine Yao’s garbled circuit [39] and additively homomorphic encryption [32, 10] via

additively secret sharing. The main contributions of this work are two-fold:
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• A complete privacy-preserving collaborative Web services QoS prediction framework

is designed to bridge the gap between personalization and privacy. The prediction

accuracy is guaranteed by Zheng’s approach, while the accompanied complex nonlinear

computations are addressed efficiently by the delicate combination of Yao’s garbled

circuit and additively homomorphic encryption.

• The privacy-preserving collaborative QoS prediction framework is implemented based

on an open source framework FasterGC [19]. Various optimization techniques adopted

in FasterGC enables the framework to realize quite efficient QoS prediction, thus making

privacy-preserving QoS prediction not only theoretical interesting but also practical in

real applications.

The remainder of this paper is organized as follows: section introduces a representative

collaborative Web services QoS prediction framework and briefly reviews some cryptology

techniques used to building our privacy-preserving solution. Section presents the system

architecture of our privacy-preserving QoS prediction framework. In Section , we present the

details of our approach, including the design of Yao’s garbled circuits for similarity calculation

and QoS prediction, and the secure Top-K query. Security analysis and simulation results of

the proposed framework are presented in Section and Section , respectively. Finally, Section

discusses related work and Section concludes the paper.

2. Preliminaries

In this section, we first briefly introduce a representative approach for collaborative Web

services QoS prediction. Then, we review some cryptology background foundations of our

privacy-preserving QoS prediction framework.

2.1. Collaborative Web Services QoS Prediction

In the collaborative Web services QoS prediction, a user is required to provide the observed

QoS of the services her has invoked to the recommendation system. Based on the collected

QoS values, the recommendation system can predict the QoS of all available services for a user

through some complicated algorithms. The more service QoS values her provides, the higher

prediction accuracy can be achieved as more user features can be mined from the provided

data. In [47], the authors present a typical framework of collaborative QoS prediction, which

consists of three primary modules. The first module is in charge of calculating the similarity

between any two users (or services) based on the QoS values provided by users. After that, for

a given user (or item), a set of similar users (or items) can be identified by the second module

based on the similarity values. Finally, the third module generates the predicted QoS of all

available services by exploiting past service usage experiences of similar users. In practice, a

user can provide her observed QoS to the recommendation system anytime and can obtain

the predicted QoS of the services she is interested in anytime.

To realize the abstract functionality of the above three modules, some specific algorithms

must be designed. Here, we introduce an effective approach proposed in [46] which is also

served as the foundation of our work. In this approach, two types of similarity are calculated

in order to improve prediction accuracy: user similarity and service similarity. In particular,

the similarity between two users ui and ui′ are calculated based on the services they commonly
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invoked using the following equations:

Sim(ui, ui′) =
ωi,i′

∑
sj∈S(qi,j − q̄i)(qi′,j − q̄i′)√∑

sj∈S(qi,j − q̄i)2
∑
sj∈S(qi′,j − q̄i′)2

, (1)

ωi,i′ =
2× |Si

⋂
Si′ |

|Si|+ |Si′ |
, (2)

where S = Si
⋂
Si′ is the set of services that user ui and user ui′ commonly invoked, ri,j is the

QoS value of service j observed by user i, qi is the average QoS value of all services observed

by user ui, and ωi,i′ is a weight to devalue the similarity between two users if they are actually

not similar but happen to have similar QoS experience on a few co-invoked services.

Likewise, the similarity between two services sj and sj′ are calculated as follows:

Sim(sj , sj′) =
ωj,j′

∑
ui∈U (qi,j − q̄j)(qi,j′ − q̄j′)√∑

ui∈U (qi,j − q̄j)2
∑
ui∈U (qi,j′ − q̄j′)2

, (3)

ωj,j′ =
2× |Uj

⋂
Uj′ |

|Uj |+ |Uj′ |
, (4)

where U = Uj
⋂
Uj′ is the set of users who invoke both service j and service j′, qj is the

average QoS value of service j observed by different users, and ωj,j′ is also a devaluation

weight to improve prediction accuracy.

Note that that both Sim(ui, ui′) and Sim(sj , sj′) are ranging from [-1, 1], and a larger

value indicates that two users (or services) are more similar [46].

Based on the above similarity values, similar users can be identified by

SU(ui) = {ui′ |ui′ ∈ T (ui), Sim(ui, ui′) > 0, ui 6= ui′}, (5)

and similar services can be identified by

SS(sj) = {sj′ |sj′ ∈ T (sj), Sim(sj , sj′) > 0, sj 6= sj′}, (6)

where T (ui) is a set of the Top-K similar users to user ui, T (sj) is a set of the Top-K similar

services to service sj , and Sim(u, ui) > 0 (or Sim(s, sj) > 0)) excludes the dissimilar users

(or services) with negative similarity values.

To predict the QoS value of service sj observed by user ui, one way is to make use of the

similar users to user ui through the following equation:

Pu(qi,j) = q̄i +
∑

ui′∈SU(ui)

Sim(ui, ui′)(qi′,j − q̄i′)∑
ui′∈SU(ui)

Sim(ui, ui′)
, (7)

and the other way is to make use of the similar services to service sj as follows:

Ps(qi,j) = q̄j +
∑

sj′∈SS(sj)

Sim(sj , sj′)(qi,j′ − q̄j′)∑
sj′∈SS(sj) Sim(sj , sj′)

. (8)
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As proved in [46], these two ways can be combined together to improve the accuracy of

QoS prediction. Specifically, the final predicted value P (qi,j) is a weighted sum of Pu(qi,j)

and Ps(qi,j) defined by:

P (qi,j) = ωuPu(qi,j) + ωsPs(qi,j), (9)

ωu =
λcu

λcu + (1− λ)cs
, (10)

ωs =
(1− λ)cs

λcu + (1− λ)cs
, (11)

where λ is an adjustable parameter to control the contribution of the two prediction ways to

the final predicted QoS value, cu and cs are confidence weights defined as follows:

cu =
∑

ui′∈SU(ui)

Sim(ui, ui′)Sim(ui, ui′)∑
ui′∈SU(ui)

Sim(ui, ui′)
, (12)

cs =
∑

sj′∈SS(sj)

Sim(sj , sj′)Sim(sj , sj′)∑
sj′∈SS(sj) Sim(sj , sj′)

. (13)

2.2. Cryptology Background

2.2.1. Security Definition Under Semi-honest Models

In this paper, we assume that all operations are done under the semi-honest model, which

means that everyone follows a pre-defined protocol, but may use the results and intermediate

knowledge that her can obtain during the execution of the protocol to deduce additional

information of others’ data. According to [4, 16], we give a formal definition of security as

follows.

Consider an ideally privacy-preserving implementation of a recommendation algorithm,

in which a trusted third party T runs the algorithm on the inputs of all users to yield the

outputs for the users. After that, T sends the corresponding output to each user and deletes

all the data. Clearly, one cannot devise a more private protocol. Now a secure multiparty

protocol P for the algorithm is private if any attack against P can be converted to an attack

against ideal implementation, and these two attacks have roughly the same success rate and

the same time-complexity. Given a protocol P, if all intermediate messages sent and received

by a corrupted party can be simulated efficiently based on the input and output of P, then P
is secure.

2.2.2. Additively Secret Sharing

A value x is additively secret shared between two parties A and B if A holds a random

number x1 sampled from a sufficiently large domain, B holds x2, and x1 + x2 = x. For

brevity, hereafter we let JxK denote additive secret sharing of x.

2.2.3. Yao’s Garbled Circuits
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Yao’s protocol [39, 27] (a.k.a garbled circuits) allows two semi-honest parties respectively

holding inputs x and y, to evaluate an arbitrary function f(x, y) without leaking any infor-

mation about their inputs beyond what can be deduced by the function output. The basic

idea is that one party (the garbled-circuit constructor) constructs a garbled version of a circuit

to compute f , while the other party (the garbled-circuit evaluator) then obliviously computes

the output of the circuit without learning any intermediate values.

The protocol starts with a boolean circuit evaluating f . To each wire wi of the circuit, the

constructor associates two random cryptographic keys k0wi
and k1wi

, which are respectively

corresponded to the bit-values bi = 0 and bi = 1. For each binary gate g, with input wires

(wi, wj) and output wire wk, the constructor first computes four values

E
(k

bi
wi
,k

bj
wj

)
kg(bi,bj)wk

, bi, bj ∈ {0, 1}, (14)

and then sends them to the evaluator party in random orders. Given the pair of keys corre-

sponding to input wires of a binary gate, the evaluator can recover the key of the output wire

by decrypting the values. It is worth noting that only the value k
g(bi,bj)
wk can be obtained, and

that no other output values can be recovered for the corresponding gate. For a given function

f(x, y), the parties first compile it to a boolean circuit. Then, the constructor garbles the

circuit by providing each gate four ciphertexts. These values are then send to the evaluator.

The only problem is how the evaluator obtains the corresponding keys to each input wire of

the circuit. The real inputs are holding by two parties independently. To the values holding

by the constructor, she can directly send the appropriate keys to the evaluator. To the val-

ues holding by the evaluator, a cryptology tool called 1-out-of-2 oblivious transfer [34, 14]

can be used to enable the evaluator to obtain the desired keys without leaking her private

information. Once obtaining the keys corresponding to all the input wires, the evaluator can

locally compute the garbled circuit gate-by-gate. This protocol also enables the evaluator to

obtain the final output by simply modifying the output values using the real bit-values.

Beginning with [28], there are many efficient implementations of Yao’s protocol [6, 18, 26,

33, 19, 25]. In [5], the authors present a very good overview of garbled circuits. These efforts

are good candidates serving as subroutine for large privacy-preserving protocols. In fact, most

subroutines require shared output. In our framework, we need the output additively shared

between two parties. Assume both parties want to use Yao’s protocol to obtain Jf(x, y)K. We

use a simple method to do this. Let the constructor first generates a random number r from

a sufficiently large domain, then she constructs a boolean circuit for calculating f ′(x, y), such

that f ′(x, y) = f(x, y) − r. She uses r as output, and the other party uses the calculating

result f ′(x, y) as output.

In our framework, Yao’s garbled circuit is implemented based on FasterGC [19], which

is a Java-based open-source framework that enables developers to compute arbitrary circuits

using elementary XOR, OR and AND gates. This framework includes several optimizations.

First, the communication and computation cost for XOR gates in the circuits is significantly

reduced using the ”free XOR” techniques [23]. Second, it gives a 1/4 communication saving

for the communication cost of 2-fan-in non-XOR gates by using the garbled-row reduction

technique [33]. Third, FasterGC implements the Oblivious Transfer (OT) extension [20] which

can execute a practically unlimited number of transfers at the cost of k OTs where k is a

(statistical) security parameter, and several symmetric-key operations per additional OT. Fi-
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nally, FasterGC contains many improved computing modules designed by [24] to use as many

as ”free XOR” gates. These optimizations enable FasterGC to be the fastest implementation

of Yao’s garbled circuit currently.

2.2.4. Additively Homomorphic Encryption

Given a key pair (E,D) and a message m in Z∗N , e = E(m) denotes an encryption of the

plaintext m, and d = D(e) denotes the decryption of the ciphertext e. A cryptosystem

is additively homomorphic if D(E(m1) × E(m2)) = m1 + m2 and there exists an efficient

re-randomization procedure that takes in a valid encryption E(m) and outputs a random

encryption of m such that even an adversary with infinite power cannot deduce how the

message m was computed. There are many practical additively homomorphic encryption

systems, such as Paillier [32] and DGK [10]. In this paper, we use the Paillier cryptosystem

to encrypt the input data of the users and to construct a cryptology protocol to query the

Top-K users. The main idea behind Paillier scheme is given below:

The encryption of a message, m ∈ ZN , by using Paillier scheme is defined as

E(m, r) = gm × rNmod(N2), (15)

where N is a product of two large prime numbers p and q, g generates a subgroup of order

N , and r is a random number in Z∗N . The public key is (N, g) and the private key is (p, q).

The additively property of the Paillier cryptosystem can be easily verified as shown below:

E(m1, r1)× E(m2, r2) =(gm1 × rN1 )× (gm1 × rN1 )mod(N2)

=gm1+m2 × (r1 ∗ r2)Nmod(N2)

=E(m1 +m2, r1 × r2).

Yao’s garbled circuit and homomorphic encryption are both effective tools for constructing

secure protocols. Considering the characteristic of collaborative QoS prediction, we design a

privacy-preserving version by combining Yao’s garbled circuit and additively homomorphic

encryption via additively secret sharing.

2.2.5. Example

We introduce a simple example here to illustrate the usage of the above cryptology techniques.

Suppose that we want to calculate a simple function f(d1, d2) = d1d2 without leaking d1 and

d2 to anyone. A solution based on the techniques discussed above is as follows. First, we

assume there are two roles, constructor and evaluator, in the subsequent computation. Then,

both d1 and d2 are additively secret shared between the constructor and the evaluator as

follows:

• d1 and d2 are encrypted by the public key of the evaluator and given to the constructor;

• the constructor randomly generates two numbers r1 and r2, computes E(d1) × E(r1)

and E(d2) × E(r2), and sends the corresponding results E(d1 + r1) and E(d2 + r2) to

the evaluator;

• the evaluator decrypts the ciphertext by her private key and obtains the plaintext d1+r1
and d2 + r2;



210 Privacy-Preserving Collaborative Web Services QoS Prediction . . .

• now, the constructor holds −r1 and −r2, and the evaluator holds d1+r1 and d2+r2, so d1
and d2 are both additively secret shared as −r1+(d1+r1) = d1 and −r2+(d2+r2) = d2.

Constructor Evaluator

ADD ADD

MUL

d1d2

d2 + r2−r2

d2d1

d1 + r1−r1

Fig. 1. A simple circuit for secure multiplication

After that, the constructor and the evaluator cooperatively construct a garbled circuit

with respective inputs 〈−x1,−x2〉 and 〈d1 + x1, d2 + x2〉. Fig.1 is a conceptual view of this

circuit, which consists of three basic circuits: two ADD circuits to realize the additive of two

numbers and one MUL circuit to realize the multiplication of two numbers. Each ADD circuit

takes as input one data from the constructor (e.g., −x1) and one data form the evaluator (e.g.,

d1 +x1), and generates the corresponding sum which is encoded as part of the garbled-circuit

computation (e.g., g(d1), though in the figure we still use d1). Then, the MUL circuit takes

the outputs of the two ADD circuits as its input and generates the corresponding product.

Note that the final result of a garbled circuit could be in the form of inner encoding (e.g.,

g(d1d2)) which can be handled by other circuits, or in the form of plaintext (e.g., d1d2) so

that it can be understood by other applications. Note also that the final result is hold by the

evaluator according to the realization of garbled circuits.

3. System Architecture

This section gives an overview of our approach which actually can be regarded as a privacy-

preserving version of the collaborative QoS prediction framework described in Section . As

shown in Fig. 2, there are three roles in our framework:

• Users: Users are the consumers of various Web services including the crypto service

mentioned below. They are required to provide the observed QoS values of services

they have invoked to a recommendation system, and, as a reward, they can obtain

recommendations especially QoS prediction of unknown Web services from the recom-

mendation system.

• Recommendation System (RS): RS has a business interest in generating recommenda-

tions especially QoS prediction for the users.

• Crypto Service Provider (CSP): CSP is a third party who has a business interest in

providing cryptographic service. She has private keys for the Paillier cryptosystem.

All the above roles are assumed to be semi-honest. The goal of our framework is to

make QoS prediction for the users without leaking any piece of the private information about
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Recommendation System (RS) Crypto Service 

Provider (CSP)

Prediction 

Circuit

Similarity

Circuit

Similarity

Computation

Secure 

Top-K query

request

Find Similar

Users & Services

QoS Prediction

Circuit 

Constructor

Secure Top-K

Participant

Circuit 

Constructor

Circuit 

Evaluator

Secure Top-K

Participant

Circuit

Evaluator

User 1

 User 2

User m

recommendation

feedback

private keypublic key

public key

public key

feedback

Fig. 2. System architecture of privacy-preserving collaborative QoS prediction

them. As a preliminary step of privacy-preserving collaborative QoS prediction, users need

to encrypt their observed QoS values by the public key of CSP before sending them to RS.

More specifically, if user ui has invoked service sj and observed a QoS value qi,j , she needs to

send the encrypted values E(qi,j) and E(−qi,j) to RS. Besides, she needs to send RS E(−q̄i)
where q̄i is the average observed QoS value of all services she has invoked. Recall that RS

does not have the corresponding decryption key, so RS cannot access the sensitive data of

user ui.

As mentioned in Section , a typical recommendation system for QoS prediction has three

modules: similarity computation, find similar users and services, and QoS prediction. In

our framework, every module is endowed with the ability of privacy-preserving through the

combination of Yao’s garbled circuits and homomorphic encryption. More specifically, given

a user u who wants to know a predicted QoS of service s, RS and CSP will cooperatively

construct a garbled circuit which can compute the similarity values between u and other

users as well as the similarity values between s and other services based on the encrypted

data provided by users. The outputs of this garbled circuit, that is, similarity values, are

given to the secure Top-K protocol cooperatively run by RS and CSP to generate the Top-K

similar users to u and Top-K similar services to s. The secure Top-K are implemented based

on homomorphic encryption and a special garbled circuit called comparison circuit. Based

on these similar users and similar services, RS and CSP will cooperatively construct again a

garbled circuit to calculate the expected QoS of s observed by u. All the intermediate results

are in the form of either ciphertext or the inner encoding of garbled-circuit computation, and

therefore are kept secret to both RS and CSP.

Theoretically, the above computation can be performed after RS receives a query from
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a user. In practice, however, we notice that this computation can be carried out during

the idle time of RS and PSP even before any user asks for prediction. That is, though the

privacy-preserving version is somewhat time-consuming especially compared with the original

version of collaborative QoS prediction, a user will receive prediction from RS shortly after

her request without any delays.

4. Privacy-Preserving QoS Prediction

In this section, we present the specific design of our privacy-preserving QoS prediction frame-

work. Section introduces the details of garbled circuits for the calculation of user similarity

and service similarity. Section explains the secure Top-K query which can find Top-K similar

users and services in a encrypted domain, and finally Section gives the garbled circuits for

the final QoS prediction.

4.1. Similarity Calculation

4.1.1. Circuit Composition

The similarity calculation through formula 1 and formula 3 requires the combination of mul-

tiple basic operations including additive, multiplication, division and square root. The latest

version of FasterGC library does not support multiplication, division and square root, so

we first extend it by providing several modules to implement these operations. In [30], the

authors present a good overview of implementation of these modules. Multiplication can be

implemented by using the Karatsuba algorithm [22], where the cost of multiplying two k -bit

is at most 3klog23 single digit operations. Considering that k is very short in the context of

QoS prediction, we implement the multiplication using standard school method, which costs

k2 bit operations. The division is also implemented by standard school method. The square

root implementation is realized using an iterative but data-agnostic method presented in [9].

MULMUL MUL MUL

ADD ADD ADD

x1 x2y1 y2 x3 y3 xK yK

∑K
k=1 xkyk

......

......

......

Fig. 3. Conceptual view of SoP circuit. Its input is two vectors X = [x1, x2, · · · , xK ] and

Y = [y1, y2, · · · , yK ]. Its output is their dot product
∑K

k=1 xkyk

Based on these basic operations, we can construct a composite circuit to calculate simi-

larity. Note that, formula 1 and formula 3 have the following common structure:

ω
∑
XY√∑

X2
∑
Y 2

(16)



L. Li, A. Liu, Q. Li, G-F Liu, Z-X Li 213

where X = {x1, x2, · · · , xK} and Y = {y1, y2, · · · , yK} are two vectors and ω is a real number.

As
∑
XY is an important kind of computation here, we first construct a composite circuit

SoP (Sum of Product). Fig. 3 shows the conceptual view of a SoP circuit which consists of

K MUL circuits and K − 1 ADD circuits. The kth MUL circuit generates xkyk by taking

xk and yk as its input. The kth ADD circuit produces the sum of the output of its directly

previous ADD circuit and the output of kth MUL circuit. It is easy to verify that the output

of the last ADD circuit is
∑K
k=1 xkyk.

SoP SoP

MULMUL

SQR

DIV

SoP

X Y X X Y Yω

Sim

Fig. 4. Conceptual view of SIM circuit. Its input is one real number ω and two vectors X and Y .

Its output is
ω

∑
XY√∑

X2
∑

Y 2

The composite circuit SIM for similarity computation is shown in Fig. 4. The numerator

in formula 16 is the output of a MUL circuit whose input is the real number ω and the output

of a SoP circuit that computes
∑
XY . The denominator in formula 16 is generated by a

SQR circuit which computes the square root of the output of a MUL circuit that multiplies∑
XX and

∑
Y Y generated by two SoP circuits. By assigning proper values to X and Y ,

the SIM circuit can calculate the similarity defined in formula 1 and formula 3.

Before discussing the assignment of X and Y , we note that Yao’s garbled circuits only

support computation for integers, so it may cause severe loss of accuracy when conducting

division or square root. To overcome this shortcoming, we use fixed-point representation of

floats with a λ-bit fractional part where the integer d represents a float 2−λd. In particular,

we have:

1. Division: a/b = a · 2λ/b

2. Square root:
√
a =
√
a · 22λ

4.1.2. Input Preparation

If privacy issue does not need to be taken into account, the assignment of X and Y for the

computation of Sim(ui, ui′) would be quite easy by letting xj be qi,j − q̄i, yj be qi′,j − q̄i′
and K be |S|. However, neither RS nor CSP can completely hold qi,j − q̄i (or qi′,j − q̄i′) by
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herself as this will lead to information leakage about the sensitive data of users. It is therefore

necessary to make qi,j − q̄i and qi′,j − q̄i′ be additively secret shared between RS and CSP.

The additively secret sharing of qi,j − q̄i can be achieved as follows. As RS knows E(qi,j)

and E(−q̄i), she can compute E(qi,j−q̄i) which equals to E(qi,j)×E(−q̄i). Then, RS randomly

generates a number rj , and sends E(qi,j − q̄i + rj) to CSP who can decrypt this value using

her private key. Then, as shown in Fig. 5, RS and CSP can cooperatively construct for each

service sj ∈ S an ADD circuit with respective inputs −rj and qi,j− q̄i+rj . The output of this

circuit is g(qi,j− q̄i), that is, the inner encoding of qi,j− q̄i in the garbled-circuit computation,

which can be safely assigned to xj . Note that the purpose of using the random number rj is

to mask the private value qi,j− q̄i, so this random number must be sampled from a sufficiently

large domain to achieve statistical security. In general, for an l -bit number, choosing r as a

random (l + σ)-bit integer suffices to give statistical security O(n ∗ 2−σ). Likewise, qi′,j − q̄i′
can be additively secret shared and g(qi′,j − q̄i′) can be safely assigned to yj .

SIM∑
sj∈S(qi,j − q̄i)(qi′,j − q̄i′)

xj yj

ADD

−rj1 −rj2qi,j − q̄i + rj1 qi,j − q̄i + rj2

ADD

qi,j − q̄i qi′,j − q̄i′

Fig. 5. Procedure of generating input for the SIM circuit to compute user similarity

Though user similarity and service similarity have quite similar definitions (see formula 1

and 3), it is much more difficult to realize the additively secret sharing of qi,j − q̄j for each

user ui ∈ U as no one knows the values of q̄j . To address this problem, we first note that:

q̄j =

∑
uk∈Uj

qk,j

|Uj |
, (17)

by which qi,j − q̄j can be rewritten as follows:

qi,j − q̄j =
qi,j |Uj | −

∑
uk∈Uj

qk,j

|Uj |
. (18)

Also note that RS holds |Uj |, E(qi,j), and E(−qk,j) for every user uk ∈ Uj , based on which

RS can calculate by herself the encrypted value of the numerator:

E(qi,j |Uj | −
∑

uk∈Uj

qk,j) = E(qi,j)
|Uj |−1

∏

uk∈Uj
k 6=i

E(−qk,j) (19)

Through the above operation, RS now holds the ciphertext and plaintext of the numerator

and the denominator in formula 18, respectively. Then, RS generates a random number ri
in a sufficiently large domain and sends E(qi,j |Usj | −

∑
uk∈Usj

qk,j + ri) to CSP who can
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SIM∑
ui∈U (qi,j − q̄j)(qi,j′ − q̄j′)

DIV DIV

xi yi

−ri1 −ri2

qi,j |Usj | −
∑

uk∈Usj
qk,j + ri1

qi,j′ |Us′j
| −∑

uk∈Us′
j

qk,j′ + ri2

qi,j′ − q̄j′qi,j − q̄j

Fig. 6. Procedure of generating input for the SIM circuit to compute service similarity

also decrypt this value using her private key. Finally, as shown in Fig. 6, RS and CSP

cooperatively construct for each user ui ∈ U a DIV circuit with respective inputs −ri and

qi,j |Usj | −
∑
uk∈Usj

qk,j + ri. The output of this circuit is in the form of g(qi,j − q̄j) and can

be safely assigned to xi. A similar procedure can be applied to the calculation of qi,j′ − q̄j′
and yi can be set accordingly.

4.1.3. Output Processing

As shown in Fig. 4, the output of the SIM circuit is a similarity value, which is also a kind

of sensitive information of users and thus cannot be revealed to neither RS nor CSP. Note

again that its inner encoding g(Sim) is a part of garbled-circuit computation and is therefore

privacy-preserving. In order to facilitate later secure Top-K query, however, we also make it

additively secure shared between RS and CSP. For each similarity value Simk, RS provides a

random number rk generated from a sufficient large domain. An ADD circuit is then created,

which takes rk and g(Simk) as input and generates Sim′k = rk + Simk. Consequently, RS

holds −rk and CSP holds Sim′k, and these two values are also called two additive shares of

Simk.

4.2. Secure Top-K Query

To generate the final prediction, the similarity values between a specific user (or service)

and the Top-K similar users (or services) should be calculated. Recall that the similarity

values have been shared between RS and CSP, so the problem is equivalent to the following.

Two participants RS and CSP additively share an n-dimensional vector (Ja1K, · · · , JanK) and

want to obtain the Top-K values (Jat1K, · · · , JatkK). A naive solution is to directly use the

Comparison circuit [19] to compare the elements in the input vector, and then select the

desired elements. This process seems to be secure, but in fact it is not. When the parties

invoke the Comparison circuit, the comparison result will reveal to both parties, and this will

lead to substantial information leakage about users. To deal with this problem, we first let

two participants engage a shuffle protocol on input vector, and the output of this protocol

is a new n-dimensional vector (Jaπ1
K, · · · , Jaπn

K), where π(−) is a random permutation key

where neither of the participants knows it. Suppose that a1i denotes the part of ai hold by

RS and a2i is hold by CSP. The shuffle protocol is given as follows.
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1. CSP generates a public-private keypair (E,D) for a homomorphic encryption scheme.

CSP encrypts her shares of (a1, · · · , an) to generate the encrypted sequence W =

(w1, ..., wn), wi = E(a2i ), and then she sends RS the sequence W and the public key E.

2. RS generates a random sequence R = (r1, ..., rn) over a sufficient large domain and

a random permutation π1 of n numbers. She encrypts her sequence R to obtain U =

(u1, ..., un), ui = E(ri), and then she multiplies the components of the sequences W and

U to obtain V = (v1, ..., vn), where vi = wi ∗ ui. RS computes V ′ = (vπ1(1), ..., vπ1(n))

and sends it to CSP.

3. CSP decrypts the components of V ′ to get (a2π1(1)
+ rπ1(1), ..., a

2
π1(n)

+ rπ1(n)).

4. RS outputs (a1π1(1)
− rπ1(1), ..., a

1
π1(n)

− rπ1(n)).

5. RS and CSP exchange the roles, and execute the above process again.

By executing this protocol, neither of the parties knows the order of the new sequence.

Thus, revealing which elements in the new sequence (Jaπ(1)K, · · · , Jaπ(n))K have larger values

will not leak any sensitive information. Now the secure Top-K query problem can be converted

to the classic Top-K query in which the data is hold by one party, as we can use a Comparison

circuit to replace comparison operations. In [8], two efficient solutions with O(n) computation

complexity can be used to search the K -th ranked element, and we can directly use any of

them with post comparing each element with the K -th ranked element to finish the Top-K

query. In addition, a simply method which required K rounds query the largest element can

also be applied when K is small enough. Once the query process finishes, two participants

can easily select the shares Simui,ui′ , where user ui′ is one of the Top-K similar user to ui.

As seen in formula 7, the computation of Pu(qi,j) also requires the value of qi′,j − q̄i′ for

each user ui′ ∈ SU(ui). This also should be addressed in the secure Top-K query because

we cannot identify which services belong to SU(ui) only based on similarity values and thus

cannot determine the value of qi′,j− q̄i′ after secure Top-K query. We present here an efficient

solution based on data binding. First recall that qi′,j − q̄i′ has already been additively secret

shared between RS and CSP after the computation of formula 1 (see Fig. 5), that is, RS

holds ri′ and CSP holds qi′,j − q̄i′ + ri′ . Then, the share Jqi′,j − q̄i′K can be bound with the

corresponding similarity share JSim(ui, ui′)K to engage in the above shuffle protocol. By using

the Comparison circuit to obtain the positions of Top-K similarity shares, RS and CSP can

obtain the desired shares of Sim(ui, ui′) and qi′,j − q̄i′ directly.

The same idea can be applied to the computation of Ps(qi,j) which requires the value

of qi,j′ − q̄j′ for each service sj′ ∈ SS(sj). One notable difference here, however, is that

after the computation of formula 3, the value qi,j′ − q̄j′ is only hold by CSP in the form of

inner coding of garbled-circuit computation (see Fig. 6). Therefore, RS needs to generate a

random number rj′ and then cooperates with CSP to construct an ADD circuit to generate

qi,j′ − q̄j′ + rj′ which is then given to CSP.

4.3. QoS Prediction

We are in the position to make the final QoS prediction which is also achieved by a composite

garbled circuit whose general structure is depicted in Fig. 7. We first note that the Top-K
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similar users (or services) returned by the secure Top-K query may actually contain some

dissimilar users (or services) as their similarity values are negative. That is, the secure Top-K

only returns T (ui) rather than SU(ui) for user ui (see formula 5), but SU(ui) is required in

formulae for QoS prediction. Instead of directly filtering these dissimilar users (or services),

we introduce another garbled circuit to set negative similarity values to 0 so that formulae

for QoS prediction can be correctly done on T (ui). As shown in Fig. 8, an ADD circuit is

used to compute Simk which is additively secret shared, and then a MUX circuit is used to

set negative Simk to 0. Given a MUX circuit which has two normal inputs, say x and y, and

one special input called control bit b, its output is determined by the control bit b: if b = 1,

then the output is x; otherwise, the output is y. In our circuit, the control bit is assigned

with the sign of Simk which equals to 0 if Simk < 0 and 1 otherwise.

SoP mADD

MUL

DIV

ADD

SoP

DIV

ADD

DIV

MULMUL

ADD

XOR

X Y

∑
XY

∑
XX

cu
q̄i

Pu(qi,j)
λcu

λ

X X X

(1− λ)cs

λcu + (1− λ)cs

ωu

ωs

Ps(qi,j)

P (qi,j)
r

P (qi,j)
⊕

r

∑
xk∈X xk

Fig. 7. Conceptual view of QoS prediction circuit

Note that the procedures of computing ωuPu(qi,j) and ωsPs(qi,j) are the same, so only

the procedure of computing ωuPu(qi,j) is shown in Fig. 7 due to limited space. The input

of this computation is two vectors: X = [x1, · · · , x|SU(ui)|], Y = [y1, · · · , y|SU(ui)|] where

xi′ = Sim(ui, ui′), yi′ = qi′,j − q̄i′ , ui′ ∈ SU(ui). Note that both xi′ and yi′ are additively

secret shared between RS and CSP, so they need to cooperatively construct an ADD circuit

to generate xi′ or yi′ . The circuit mADD computes the sum of all elements in a vector. For

formula 7, one addend q̄i can be generated by an ADD circuit whose inputs are −ri hold by

RS and q̄i + r hold by CSP, while the other addend can be generated by the composition
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ADD

MUX

−rk

0

Simk + rk

Simk
sgn(Simk)

Simk′

Fig. 8. Conceptual view of filtering circuit

of SoP, mADD and DIV circuits. For formula 8, the generation of the addend q̄j is more

complicated because RS does not hold E(q̄j). To address this problem, CSP and RS holding

E(qi,j) first can cooperatively construct an ADD circuit to generate g(qi,j). Then, they can

construct a SUB circuit to generate g(q̄j) as CSP holds g(qi,j− q̄j). The computation of g(ωu)

is straightforward and the corresponding procedure is shown in the right part of Fig. 7. One

notable point is that RS knows λ, so this value can be directly given to a circuit.

The final prediction value P (qi,j) is also a kind of private user information, so it should be

kept secret to both RS and CSP. A simple method is to divide P (qi,j) into two random shares.

Instead of using additively secret sharing, XOR gate is used here as its overhead is nearly free.

Specifically, RS generates and holds a random number r and CSP holds P (qi,j)
⊕
r which is

the output of the QoS prediction circuit. After that, RS and CSP send these shares to the

user who can easily obtain the final QoS prediction value by executing exclusive-or operation

on the shares she has just received.

5. Security Analysis

There are three kinds of participants in our framework: Users, RS and CSP. The messages

received by each kind of participant during recommendation process are listed as follows.

• Users: The users who want to know the QoS of a particular service receive two random

shares at the end of recommendation.

• RS: RS receives several encrypted data from the users before making prediction, some

information during the running of Yao’s garbled circuits, and some information during

the secure Top-K query.

• CSP: CSP receives some information during the running of Yao’s garbled circuits as

well as the output of each circuit, and some information during the secure Top-K query.

To the users, the final prediction values are the final output of our framework, so they

can efficiently simulate the random shares by generating numbers from the same domain. To

RS and CSP, except for the process of executing Yao’s garbled circuits and secure Top-K

query, the only information revealed to them is either ciphertext or random shares. Clearly,

this kind of information does not contain any privacy data, and we can simulate them by

simply generating random numbers. In [27], the authors present a formal security proof for

Yao’s garbled circuits, which ensures the message received during the process of running Yao’s
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garbled circuits will not cause any information leakage. During the process of secure Top-K

query, two participants received some comparison results. However, the comparisons occurs

behind executing shuffling, so the comparison results do not contain any sensitive information.

6. Experiments

In this section, we present the complexity analysis and performance results of our privacy-

preserving QoS prediction framework. We first note that a real Web services QoS dataset is

available in [45], which includes QoS values of 5,825 real-world Web services observed by 339

users. This dataset is quite useful when studying the accuracy of QoS prediction. In this

paper, however, our objective is to provide a privacy-preserving QoS prediction, so we focus

on computational complexity rather than accuracy. In particular, the prediction accuracy

of our framework is the same as that of non-privacy-preserving version presented in [46]. In

terms of computational complexity, 339 users is too small to study the performance of our

approach, so we create a synthetic dataset with M = 10, 000 users and N = 10, 000 services.

Our framework is implemented in Java and tested on two computers (with Inter Xeon E5-

2609 2.4GHz, 8GB RAM, Ubuntu Linux 12.04, and JRE 1.7) connected through a 100 Mbps

LAN. The parameters used for the experiments are listed in Table 1. Note that, the runtime

performance of our framework is affected by |U | and |S| (see formulae 1 and 3), which are

actually changes as users provide new observed QoS values. In our experiments, however,

we consider fixed |U | and |S| to make our results comparable. Specifically, we introduce two

parameters α and β such that |U | = αM and |S| = βN .

6.1. Complexity analysis

Table 1. Parameter list used for the experiments

NP

Parameter Symbol Default Value
Number of users M 5000
Number of services N 5000
Common user ratio α 0.02
Common service ratio β 0.02
Bit size of QoS value L 20
Top-K similar users or services K 50
matrix density ζ 10%
Message space of the cryptosystem n 1024 bits
security parameter r 80 bits

As the primary overheads of our framework comes from cryptographic operations and circuits

execution, we give an analysis for each of them as follows.

Table. 2 summaries the computation and communication complexity of cryptographic

operations required in our framework. To prepare the input for the garbled circuits of simi-

larity calculation, RS needs to execute O(M |S|+N |U |) times encryption on random numbers

and executes O(M |S| + N |U |) times multiplication and O(N |U |) times exponentiation on

ciphertext. After that, she sends these ciphertext to CSP, which costs O(M |S| + N |U |)
communication overheads. Meanwhile, CSP needs to receive these ciphertext from RS, so
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the communication overheads is also O(M |S|+N |U |). Besides, CSP needs to decrypt these

ciphertext to obtain the shares of the input of garbled circuits for similarity computation,

which costs O(M |S| + N |U |) times decryption. In the secure Top-K query, both RS and

CSP need O(M +N) times encryption and decryption, and the data transfer between them

requires O(M +N) communication overheads. To the users, the main overheads is to encrypt

their private data and transfer the ciphertext to RS. The computation and communication

overheads are both O(M + N). Note that, M and N have the same contribution to the

computation and communication complexity, and this was also verified by our experiments,

so we only report the experimental results for the effect of M on our framework in this paper

due to limited space.
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different steps of the proposed framework
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Fig. 10. α’s effect on the number of ”Non-free” gates

required in the similarity calculation

The number of ”Non-free” gate is an important metric to measure the overhead of Yao’s

garbled circuits [19]. Table. 2 summaries the number of ”Non-free” gates required in different

steps of our framework. The main overheads in the process of similarity computation is the

execution of O(M |S| + N |U |) MUL and ADD circuits, which requires O((L2 + L)(M |S| +
N |U |)) ”Non-free” gates. In the secure Top-K query, O(M + N) ADD and COM circuits

are required, which costs O((M + N)L) ”Non-free” gates. The garbled circuits for QoS

prediction requires O(K) ADD, MUL and DIV circuits, so the corresponding ”Non-free” gate

is O(K(L2 + L)). Fig. 9 depicts the number of ”Non-free” gates required in different steps.

Clearly, most ”Non-free” gates are consumed by similarity calculation. Besides, the number

of ”Non-free” gates required by similarity calculation and secure Top-K query increases as the

number of users increases, but QoS prediction only needs nearly constant number of ”Non-

free” gates, which coincides with the conclusion presented in Table 2. Since most ”Non-free”

Table 2. Computational and communication complexity for RS, CSP and Users. E: Encryption,

D: Decryption, Mul: Multiplication, Exp: Exponentiation, C: Communication
NP

RS CSP Users
E O(M |S|+N |U |) O(M +N) O(MNζ)
D O(M +N) O(M |S|+N |U |) –
Mul O(M |S|+N |U |) O(M +N) –
Exp O(N |U |) – –
C O(M |S|+N |U |) O(M |S|+N |U |) O(MNζ)
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Fig. 11. L’s effect on the number of ”Non-free” gates

required in the similarity calculation
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gates are spent on similarity calculation, we also conduct experiments to study the effect of

other variable parameters on the number of ”Non-free” gates required in similarity calculation.

From Fig. 10, we can see that the number of ”Non-free” gates increases almost linearly as

α increases no matter how many users and services are taken into account (e.g., the red line

represents the case where there are 2,000 users and 2,000 services). The results shown in

Fig.11 are also in accord with our theoretical analysis.

6.2. Runtime Performance
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Fig. 13. α’s effect on the average runtime of

similarity calculation
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Fig. 12 depicts the average runtime of different steps of our framework for predicting one

QoS value over 10 runs. Again, we can see that most time are spent on similarity calculation,

Table 3. ”Non-free” gates required in different steps of the proposed framework

NP

Step ”Non-free” gates
Step ”Non-free” gates

Similarity Calculation O((L2 + L)(M |S|+N |U |))
Secure Top-K query O((M +N)L)
QoS Prediction O(K(L2 + L))
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but the required time is still linear in the number of users in the recommendation system.

Fig. 13 and Fig. 14 show α’s and L’s effects on the average runtime of similarity calculation,

respectively. Clearly, the average runtime increases linearly as α increases, and quadratically

as L increases.

Finally, we report the average overall runtime that our framework takes to generate a

recommendation for a single user. When there are 1,000 users and 5,000 services, the overall

runtime is about 45 minutes. When there are 10,000 users and 5,000 services, the overall

runtime is about 7.5 hours. As mentioned earlier, this computation can be done offline, so

a user can generally obtain a recommendation shortly after her request without any delays.

In addition, the overall runtime can be also reduced significantly through code optimization,

parallelization and dedicated hardware. In summary, the overall runtime of the proposed

framework is linear with the number of users and the number of services, and thus possesses

a good scalability.

7. Related Work

In [35], the authors present a standard user-based collaborative filtering algorithm to predict

QoS. In [46], the authors combine user-based and item-based collaborative filtering, which

greatly improve the accuracy of prediction. After that, various techniques have been designed

and adapted to further improve the quality of prediction [7, 21, 38, 40, 41, 44, 47, 48]. The

focus of these works is different from ours, but they can serve as the foundation of our

framework.

The need for privacy protection for recommendation systems, particularly those using

collaborative filtering techniques, triggered research efforts in the past years. Shokri et al.

present a recommendation system built on distributed aggregation of user profiles, which

suffers from the trade-off between privacy and accuracy [37]. In [31, 30], Nikolaenko el al con-

sider two basic problems in the privacy-preserving recommendation: matrix factorization or

ridge regression. For the first problem, they propose a solution based on Yao’ garbled circuit.

For the second problem, they design a hybrid method by combing YGC and additively homo-

morphic encryption. Their work can serve as the building blocks to design privacy-preserving

recommendation systems. However, our work does not need matrix factorization and ridge

regression. In [13], the authors present a solution to generate private recommendations via

homomorphic encryption and data packing. Our framework differs from their work in the

following ways: 1) in their work, the complex non-linear computations are conducted by users

as they are assumed to know which items are rated by other users, however, this assump-

tion is too strong as it can lead to information leakage. In our framework, these non-linear

computations are done by RS and CSP through garbled circuits, which guarantees no infor-

mation leakage; 2) in their work, a threshold is set to determine which users belongs to the

Top-K similar user, which is also impractical. On the contrary, our secure Top-K query does

not need such a threshold; 3) both user similarity and item similarity are considered in our

framework while they only take user similarity into account, which makes our problem much

more difficult than theirs.

On the other hand, there is also a number of works that aim at database privacy under

the differential privacy paradigm [11, 12, 29]. This kind of work is orthogonal to ours, as we

have different threat models. In differential privacy, a database owner has full access to the
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data in the clear. The privacy threat arises from releasing a function over the data to a third

party, which may use it to infer data values of users in the database. In our work, however,

both RS and CSP pose a threat to user data.

8. Conclusion

To the best of our knowledge, this is the first piece of work that designs a privacy-preserving

collaborative Web services QoS prediction framework: users send their encrypted observed

QoS to the recommendation system who cooperates with a crypto service provider to generate

a recommendation in the encrypted domain by running cryptographic protocols. The final

recommendation and all the intermediate results during recommendation are either ciphertext

or random shares, which ensures our framework is secure. To guarantee prediction quality,

we have built our framework on the approach presented in [46]. As this approach requires a

number of non-linear computations, we have employed Yao’s garbled circuit instead of pure

homomorphic encryption. To realize efficient QoS prediction, we have selected FasterGC as

the implementation base and have extended it by adding several useful modules for garbled

circuits. We have given a formal proof of the security of our framework, analyzed its compu-

tational and communication cost, and conducted extensive simulations. Both theoretical and

empirical results show that our framework provides a secure and efficient collaborative Web

services QoS prediction.

Acknowledgment This work was partially supported by Natural Science Foundation of

China (Grant Nos. 61572336, 61303019, 61402313).

References

1. M. Alrifai, D. Skoutas, and T. Risse, ”Selecting Skyline Services for QoS-Based Web Service
Composition,” Proc. Int’l Conf. World Wide Web (WWW’10), pp. 11-20, 2010.

2. M. Alrifai and T. Risse, ”Combining global optimization with local selection for efficient QoS-
aware service composition,” Proc. Int’l Conf. World Wide Web (WWW’09), pp. 881-890, 2009.

3. D. Ardagna and B. Pernici, ”Adaptive Service Composition in Flexible Processes,” IEEE Trans.
Software Engineering, vol. 33, no. 6, pp. 369-384, June 2007.

4. D. Beaver, Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, no 4, pp. 75-122. 1991.

5. M. Bellare, V. Hoang, P. Rogaway, ”Foundations of garbled circuits,” Proc. ACM conference on
Computer and communications security (CCS’12), pp. 784-796, 2012

6. A. Ben-David, N. Nisan, B. Pinkas, ”Fariplaymp: a system for secure multi-party computation,”
Proc. ACM conference on Computer and communications security (CCS’08), pp. 257-266, 2008

7. X. Chen, Z. Zheng, X. Liu, Z. Huang, and H. Sun, ”Personalized QoS-Aware Web Service Recom-
mendation and Visualization,” IEEE Trans. Services Computing, vol. 6, no. 1, pp. 35-47, January-
March 2013.

8. T. Cormen, C. Leiserson, R. Rivest and C.Stein, ”Introduction to algorithms,” the MIT press
9. J. W. Crenshaw, ”Integer square roots,” Embedded Systems Programming, Feb. 1998

10. I. Damg̊ard, M. Geisler, and M. Krøgaard, ”Efficient and secure comparison for on-line auctions,”
Proc. Australasian Conf. Information Security and Privacy (ACSIP’07), pp. 416-430, 2007

11. C. Dwork, ”Differential privacy,” Proc. Automata, Languages and Programming (ICALP’06), 2006
12. C. Dwork and J. Lei, ”Differential privacy and robust statistics,” Proc. ACM STOC Symposium

on Theory of Computing (STOC’09), 2009
13. Z. Erkin, T. Veugen, T. Toft, and R.L. Lagendijk, ”Generating Private Recommendations Effi-



224 Privacy-Preserving Collaborative Web Services QoS Prediction . . .

ciently Using Homomorphic Encryption and Data Packing,” IEEE Trans. Information Forensics
and Security, vol. 7, no. 3, pp. 1053-1066, June 2012

14. S. Even, O. Goldreich, and A. Lempel, ”A randomized protocol for signing contracts,” Commun.
ACM, vol. 28, no.6, 1985

15. S. Garg, S. Versteeg, R. Buyya, ”A framework for ranking of cloud computing services,” Future
Generation Comp. Syst. (FGCS) vol. 29, no. 4, pp 1012-1023, 2013

16. O. Goldrich, Foundations of Cryptography: Volume 2, Basic Applications, Cambridge university
press, 2004

17. D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, D. Savio, ”Interacting with the SOA-Based Internet
of Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Services,” IEEE T.
Services Computing (TSC) vol. 3, no. 3, pp. 223-235, 2010

18. W. Henecka, A. Sadeghi, T. Schneider et al, ”Tasty: tool for automating secure two-party computa-
tions,” Proc. ACM conference on Computer and communications security (CCS’10), pp. 451-462,
2010

19. Y. Huang, D. Evans, J. Katz et al, ”Faster secure two-party computation using garbled circuits,”
Proc. USENIX Security Symposium, 2011

20. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, ”Extending oblivious transfers efficiently,” Proc.
CRYPTO’03, 2003

21. Y. Jiang, J. Liu, M. Tang, and X. F. Liu. An effective web service recommendation method
based on personalized collaborative filtering. Proc. IEEE Int’l Conf. Web Services (ICWS’11), pp.
211-218, 2011

22. D. Knuth, The Art of Computer Programming, Vol. 2, Semuninumerical Algorithms, 3rd ed.
Addison-Wesley, 1997

23. V. Kolesnikov and T. Schneider, ”Improved garbled circuit: Free XOR gates and applications,”
Proc. Automata, Languages and Programming (ICALP’08). Springer, 2008

24. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, ”Improved garbled circuit building blocks
and applications to auctions and computing minima,” Proc. Cryptology and Network Security
(CANS’09), Springer, 2009

25. B. Kreuter, A. Shelat, C. Shen, ”Billion-gate secure computation with malicious adversaries,”
Proc. USENIX conference on Security symposium, 2012

26. Y. Lindell, B. Pinkas, N. Smart, ”Implementing two-party computation efficiently with security
agains malicious adversaries.” Proc. International conference on Security and Cryptography for
Networks (SCN’08), pp. 2-20, 2008

27. Y. Lindell and B. Pinkas, ”A proof of Yao’s protocol for two-party computation,” J. Cryptology,
2009

28. D. Malkhi, N. Nisan and B. Pinkas, ”Fairplay-secure two-party computation systems,” Proc.
USENIX conference on Security symposium, pp. 287-302. 2004

29. F. McSherry and I. Mironov, ”Differentially private recommender systems: Building privacy into
the Netflix prize contenders,” Proc. ACM SIGKDD international conference on Knowledge dis-
covery in data mining (KDD’09), 2009

30. V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. ”Privacy-preserving
ridge regression on hundreds of millions of records,” Proc. IEEE Symposium on Security and
Privacy (S&P’13), 2013

31. V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. ”Privacy-
Preserving matrix factorization,” Proc. ACM conference on Computer and communications secu-
rity (CCS’13), 2013

32. P. Paillier, ”Public-key cryptosystems based on composite degree residuosity classes,” Proc. Ad-
vances in Cryptology (EUROCRYPT’ 99), pp. 223-238, 1999

33. B. Pinkas, T. Schneider, N. Smart, ”Secure two-party computation is practical,” Proc. Interna-
tional Conference on the Theory and Application of Cryptology and Information Security (ASI-
ACRYPT’09), pp. 250-267, 2009

34. M. Rabin, ”How to exchange secrets by oblivious trarnsfer,” Technical Report TR-81, Aiken



L. Li, A. Liu, Q. Li, G-F Liu, Z-X Li 225

Computation Laboratory, Harvard University, 1981
35. L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, ”Personalized qos prediction forweb

services via collaborative filtering,” Proc. IEEE Int’l Conf. Web Services (ICWS’07), pp. 439-446,
2007

36. Y. Shen, J. Zhu, X. Wang, L. Cai, X. Yang, B. Zhou, ”Geographic Location-Based Network-Aware
QoS Prediction for Service Composition,” Proc. IEEE Int’l Conf. Web Services (ICWS’13), pp.
66-74, 2013

37. R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J. Hubaux, ”Preserving privacy in collab-
orative filtering through distributed aggregation of offline profiles,” Proc. ACM conference on
Recommender systems (RecSys’09), pp. 157-164, 2009

38. M. Tang, Y. Jiang, J. Liu, and X.Liu, ”Location-Aware Collaborative Filtering for QoS-Based
Service Recommendation”, Proc. IEEE Int’l Conf. Web Services (ICWS’12), pp. 202-209, 2012

39. A.C.-C. Yao. How to generate and exchange secrets. Proc. IEEE Symposium on Foundations of
Computer Scirence (FOCS’86), pp. 162-167, 1986

40. L. Yao, Q.Z. Sheng, A. Segev, J. Yu, ”Recommending Web Services via Combining Collaborative
Filtering with Content-Based Features,” Proc. IEEE Int’l Conf. Web Services (ICWS’13), pp.
42-49, 2013

41. Q. Yu, Z. Zheng, and H. Wang, ”Trace Norm Regularized Matrix Factorization for Service Rec-
ommendation,” Proc. IEEE Int’l Conf. Web Services (ICWS’13), pp. 34-41, 2013

42. T. Yu, Y. Zhang, and K.-J. Lin, ”Efficient algorithms for Web Services Selection with End-to-End
QoS Constraints,” ACM Trans. Web, vol. 1, no. 1, pp. 1-26, 2007

43. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalaggnanam, and H. Chang, ”QoS-Aware
Middleware for Web Services Composition,” IEEE Transactions on Software Engineering, vol. 30,
no. 5, pp. 311-327, 2004

44. Q. Zhang, C. Ding, and C.-H. Chi. Collaborative filtering based service ranking using invocation
histories. Proc. IEEE Int’l Conf. Web Services (ICWS’11), pp. 195-202, 2011

45. Y. Zhang, Z. Zheng, and M.R. Lyu, ”Exploring Latent Features for Memory-Based QoS Prediction
in Cloud Computing,” Proc. IEEE Symposium on Reliable Distributed Systems (SRDS 2011),
Madrid, Spain, Oct.4-7, 2011

46. Z. Zheng, H. Ma, M.R. Lyu, I. King, ”WSRec: A Collaborative Filtering Based Web Service
Recommender System,” Proc. IEEE Int’l Conf. Web Services (ICWS’09), pp. 437-444, 2009

47. Z. Zheng, X. Wu, Y. Zhang, M.R. Lyu, and J. Wang, ’QoS Ranking Prediction for Cloud Services,”
IEEE Trans. Parallel and Distributed Systems, vol. 24, no. 6, pp. 1213-1222, June 2013

48. Z. Zheng, H. Ma, M.R. Lyu, and I. King, ”Collaborative Web Service QoS Prediction via Neigh-
borhood Integrated Matrix Factorization,” IEEE Trans. Services Computing, vol. 6, no. 3, pp.
289-299, July-September 2013


