
Journal of Web Engineering, Vol. 15, No. 3&4 (2016) 277–309
c© Rinton Press

A DESCRIPTION-BASED HYBRID COMPOSITION METHOD OF MASHUP

APPLICATIONS FOR MOBILE DEVICES

KORAWIT PRUTSACHAINIMMIT, TAKEHIRO TOKUDA

Department of Computer Science, Tokyo Institute of Technology

Meguro, Tokyo 152-8552, Japan

{korawit, tokuda} @ tt.cs.titech.ac.jp

Received September 1, 2015

Revised January 22, 2016

Mashup application composition methods have been proposed for quick development of
new mobile applications from existing resources. The existing methods have succeeded

in developing data-flow mashup applications. However, they have limited capability to

create event-driven mashup applications. A full treatment of data-flow and event-driven
mashup composition is not yet achieved. This paper presents a new methodology for de-

veloping data-flow and event-driven mashup applications for mobile devices. Our hybrid
composition method allows integration of mobile applications and REST Web services

in a data-flow and event-driven manner. Description-based techniques and application

generator tools are applied to reduce development cost. A mashup development system
is implemented in Android mobile environment as the first experimental platform. The

evaluation results show that our method is expressive and efficient in composing mobile

mashup applications.

Keywords: Mobile device, description-based mashup, event-driven application

Communicated by: M. Gaedke & O. Diaz

1. Introduction

Mobile devices, such as smartphones and tablets, have recently gained popularity and become

common computing devices. As a result, millions of mobile applications are published through

major delivery channels covering a variety of user’s requirements. Even though a great number

and huge diversity of mobile applications are available, they are still not covering the long tail

of users’ requirements [1]. This situation drives the need for quick development of new mobile

applications. However, developing mobile applications is not practical for non-programmers or

even for novice programmers, because extensive knowledge of mobile application development

and intensive programming skills are required. Thus, recently, tools assisting mobile applica-

tion development have emerged. Mobile mashups, which employ the concept of lightweight

composition of existing resources, are one of the efficient tools supporting rapid mobile appli-

cations development.

Mobile mashups allow the creation of new applications by using lightweight composition of

existing resources. They take advantage of a combination of mobile Internet, Web service APIs

and device-specific components for enriching mobile services and enhancing user experiences

[2]. In particular, mashup applications composed using mobile device’s information are able

277



278 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

to create new results that cannot be achieved by using conventional mashup composition [3].

For example, a smartphone’s camera can be used to create a mashup application that scans

a barcode of a book, and then finds the review information from an online bookstore using

Web services [4]. Therefore mobile mashup composition becomes a capable tool that reduces

programming efforts and required skills for mobile application development.

Practically, mobile devices monitor their states and report changes in an event-driven

manner. Changes of states, such as call status, current location or battery level, are notified

to other processes as events. Mashup applications can take great advantage of the event

notification by using it as a trigger to control the execution of mashup components. For

example, we can create a mashup application that automatically shows a list of restaurants

around the current location by using a “location-changed” event as an input to a restaurant

search Web service. Event-driven mashup applications that automate tasks such as putting

the device into airplane mode when arriving at a specific location are also possible. The

event-driven composition model can expand the expressivity of mashup composition on mobile

devices by allowing the integration of various mobile events with a huge number of available

Web services. Thus, we believe that the event-driven mechanism is a compulsory attribute of

mashup composition for mobile devices.

Although a number of mobile mashup approaches are proposed [5], they still have limited

capability regarding event-driven mashup composition. Since most mobile mashup approaches

inherited the composition techniques from well-engineered Web mashup frameworks, they

employ data-flow composition style and aim for enabling data integration. Some mashup

frameworks are designed to support event-driven composition. However, the event-driven

capabilities are limited to specific domains such as location-aware applications, telephony

functions or user interface integration. A hybrid composition method that supports functional

integration in both data-flow and event-driven as well as dealing with general events of mobile

devices is not yet achieved.

To enable hybrid mashup composition for mobile devices, we first explore a novel mashup

composition model. We set up practical scenarios that represent usage of both data-flow

and event-driven mobile mashup applications, and derive a suitable component integration

model and an efficient mashup development process. To reduce development cost, we apply

a description-based mashup development technique where description languages are used as

an input to mashup generators in order to generate mobile mashup applications. The first

prototype of our mashup development tool is designed and implemented on Android platform.

We also evaluate the applicability of our approach by conducting a user experience study. In

summary, the main contributions of this paper are as follows:

• We propose a new mashup composition method for developing data-flow and event-

driven mashup applications that utilize the functional integration of mobile applications

and REST Web services.

• We present description languages and generator tools that allow developing mashup

applications with minimal programming effort.

• We show that our approach improves the efficiency of mobile mashup application com-

position, particularly the expressivity of user requirements, reusability of mashup com-

ponents, and robustness of mashup execution.



K. Prutsachainimmit and T. Tokuda 279

The organisation of this paper is as follows. We briefly explain difference of data-flow and

event-driven mashup composition, discuss the limitations of data-flow mashup composition

and review related research in the next section. The motivating scenarios and research aims

are presented in Section 3. An overview of the composition method, mechanism of mashup

component integration and mashup development process is explained in Section 4. Section

5 describes the implementation of the mashup proxy, mashup orchestration messaging and

design of the description languages. We show the result of usability evaluations, explain the

boundary of expressivity, and discuss current problems and possible improvements in Section

6. Finally, we give our conclusion in Section 7.

2. Background and Related Work

The objective of this paper is to present a mobile mashup approach that deals with data-flow

and event-driven mashup composition on mobile devices. In our view, most of the current com-

position methods and models target on the data-flow style of composition. To clearly define

our research problems and state the motivations, background information about characteris-

tics and limitation of data-flow mashup composition, the definition and scope of event-driven

mashup composition, advantages of the event-driven composition style and related research

on mobile mashups are discussed in the following subsections.

2.1. Characteristics and Limitations of Data-flow Mashup Composition

In general, data-flow mashup composition is based on the data-flow programming paradigm in

which mashup components are connected as a directed graph and communicate via message

passing. The mashup resources, such as Web content and mobile device’s information, are

combined as a workflow; passing input/output parameters between connected components to

produce mashup output [6].

Fig. 1. A sample of data-flow mashup composition on mobile device.



280 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

Figure 1 shows a sample scenario for a data-flow mashup application running on a mobile

device. This mashup application helps users to search for product information on an online

store by using device’s camera as a barcode scanner. The mashup then converts the price

of product into a specific language and shares the information on Twitter. With data-flow

mashup composition, the first mashup component, i.e. the barcode scanning application,

takes a photo of a barcode and converts it to a barcode number and sends this as an input

to the next component. The next component is a product search Web service that takes the

barcode as an input to query title and price of the product. Then, the price is converted into a

specific currency by a currency conversion Web service component. Finally, the product title

and price will be used as input for Twitter applications to create a post on a social network.

The data-flow composition pattern can represent various kinds of mobile mashup appli-

cations and it is efficient. However, using only data-flow composition patterns limits the

capability of mashup composition for mobile devices. For example, let us consider a popular

location-aware mashup application that displays point of interest (POIs), e.g. restaurants,

hotels or ATMs, around a user’s current location. By using a data-flow composition, the

mashup application gets the current location and passes it as an input to a location-based

Web service API. The Web service then finds coordinates and additional information of POIs,

and displays them as pins on a map. In a real-life situation, mobile devices may move to a

new location after the mashup execution is completed. As a result, the displayed pins of POIs

are no longer valid. Users have to manually execute the mashup application every time they

want to get updated POI locations, or let the application set a time interval to update the

result. The missing mechanism of this mashup application is the capability to listen for a

specific event and automatically execute the mashup to update the result. We can consider

this to be an event-driven mashup.

2.2. Event-Driven Mashup Composition for Mobile Devices

Event-driven mashup composition is based on event-driven programming, an architectural

style in which one or more components in a software system execute in response to receiving

event notifications [7]. We can define event-driven mashup composition as a mashup compo-

sition style in which one or more mashup components in the application logic are executed

in response to receiving an event notification. In other words, event-driven mobile mashup

applications work as a set of autonomous components that monitor their internal state for

changes, and give notice of events to other components as well as listening to events produced

by other components. When an event notification occurs, the components that are listening

to the event invoke functions or services of other components. Thus, we can compose mashup

applications in an event-driven style by pairing an event listener component with an event

handler component. Figure 2 shows a comparison of mashup composition models between

data-flow and event-driven composition.

In additions, the event-driven composition style is suitable for mobile mashup. Mobile

devices, such as smartphones and tablets, keep track of context information by monitoring

and reporting that information to users. Changes of state, such as a location, mail receipt,

and battery level are informed to users. These notifications can be viewed as events, which

can be used as triggers to develop event-driven applications. As a result, event-driven mobile

applications are now popular. There are many commercial applications that take advantage of



K. Prutsachainimmit and T. Tokuda 281

mobile events. These applications can help users to automate pre-defined tasks when a specific

event occurs. For example, a popular Android application called “Taskers” [8] can listen for

changes in time, location, hardware/software states and system events, then executes one or

more of 200 actions, such as launching other applications or making a phone call. While many

mobile applications are utilizing the mechanism of event notification to expand coverage of

user’s requirements, mobile mashups still cannot take full advantage of these features.

Fig. 2. The comparison of data-flow and event-driven mashup composition model.

The event-driven execution style also improves robustness of the mashup applications. For

data-flow mashup composition, the component execution is done in synchronous manner where

users start the mashup application and wait for the result. When problems occur during the

execution, such as a loss of the network connection or Web resources becoming unavailable,

the mashup application will be interrupted or terminated. In contrast, event-driven mashup

can deal with these problems by performs the component execution in asynchronous manner.

After starting the mashup application, users can switch to other applications while the mashup

application is running in the background. However, the data-flow component execution is still

required because not all mashup components support event-driven execution, and data-flow

component execution gives better performance regarding functional integration.

2.3. Related Work

The techniques of mobile mashup frameworks inherited composition methods from Web

mashup. Web mashup editors such as Yahoo Pipes [9], Intel MashMaker [10], and a mashup

platform proposed by Kaltofen et al. [11] are capable of creating mobile mashup applications.

They create mashup application as Web applications and use mobile Web browsers as a chan-

nel to deliver mashup result to mobile users. Since these mashup tools create Web-based

mashup applications, they cannot fully access and make use of mobile device’s information.

Research on context-aware mobile mashup generally applies event-driven composition.

They use a specific set of mobile events as a trigger to start mashup processes. The TELAR

mashup platform [12] presents a solution to combine location data from GPS sensors with



282 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

existing Web service APIs to create a mobile mashup application that displays POIs around

the current location. Lively for Qt [13], a mobile Web mashup implemented in JavaScript,

also presented the possibility of building location-aware mashups that utilize GPS information.

The IVO framework [14] presents the ECW (Event-Condition-Workflow) model that allows

building context-aware applications by creating workflows that decide the application logic

when a specified event is detected. These even-driven mashup approaches usually focus on

mashup composition for a specific domain, such as location-aware applications or context-

aware applications.

Telco (Telecom) mashup is another research topic that is targeted to mobile devices. Telco

mashup frameworks [15] accommodate the integration of telephony functions with Web ser-

vices. The EasyMobile composition tool [16] enables mashup composition by using telephony

functions and mobile events, such as incoming call status or change of location, as a trigger to

start mashup processes. Similar to context-aware mashup, Telco mashups allow integration

of telephony functions with Web contents using a set of pre-defined mashup components.

Tasker [8] and Trigger [17] are samples of popular Android applications that employ the

concept of mashup on mobile devices. These applications help users to automate common

tasks such as setting ringtone volume, switching Wi-Fi on or off, or launching other applica-

tions. A task-automation is composed of a situation and set of actions. The situation can

be a certain time, location, incoming call, phone orientation, and so on, while the actions

can trigger system settings on the smartphone directly. Once again, the capability of these

applications is limited to pre-defined sets of situations and actions. Importantly, they cannot

integrate their components with Web resources such as Web services.

To take full advantage of mobile device’s information, novel mashup approaches generate

mashup applications as native mobile applications. Cappiello et al. introduced MobiMash

[18], a model-driven approach for developing mobile mashups as native mobile applications.

However, this approach focuses on data integration and service orchestration rather than tak-

ing advantage of mobile device’s information and functional integration. Our previous research

[19] proposed a mashup construction system for the integration of Web applications, Web ser-

vices and mobile applications. This approach realizes the integration of Web resources and

device-specific components and employs data-flow as the main composition method. Event-

driven composition is also possible, but it requires manual programming efforts.

As discussed above, mobile mashup approaches have been proposed to facilitate mashup

composition for mobile devices. There are a number of mashup platforms that use data-flow

and event-driven composition patterns. However, the proposed methods still have limitations

when it comes to mashup composition for mobile devices. The existing approaches cannot take

full advantage of mobile device’s information. Most mashup platforms are designed to work

as a client-server system, which mashup applications run on a server and client mobile devices

access the mashup applications via mobile Web browsers. In this way, the capability to access

device-specific components such as locations, user information or sensor data, is limited to

the capability of mobile Web browsers. Even though JavaScript APIs of modern browsers can

access device-specific features [20, 21], it is still limited when compared to the capability of the

native APIs of a mobile platform. Thus, we target our mashup approach to develop mashups

as native mobile applications in order to maximize usage of mobile device’s information. In

addition, the existing approaches overlook the advantages of functional integration, especially



K. Prutsachainimmit and T. Tokuda 283

using mobile applications as mashup components. Apart from system APIs and sensors data

of mobile devices, mobile applications can be used as valuable mashup components since

they provide both functions and events that can be integrated with other types of mashup

components. Thus, in this work, we aim to allow functional integration of mobile applications

and REST Web services in data-flow and event-driven manners, as well as utilizing general

events and device-specific components of mobile devices.

Since we aim to reduce the mashup development cost by using description-based tech-

niques, description-based mashup approaches, i.e. mashup description languages [22, 23, 24],

are reviewed. We found that these novel works only focus on modelling Web resources. For

using mobile applications as mashup components, we have presented a description language

for modelling the functionality of mobile applications to allow interoperability between them

[25]. The proposed description language can be applied to enhance component integration

of mashup approaches. However, additional extensions are needed to support event-driven

mashup composition.

3. Scenarios and Analysis

In order to explore issues around hybrid mashup composition for mobile devices, we setup

three scenarios that illustrate characteristics of the hybrid composition pattern for mobile

mashup applications. These scenarios were selected from different aspects in order to reflect

important challenges for enabling both data-flow and event-driven paradigms within mashup

composition. Given these scenarios, we derive requirements needed to achieve hybrid mashup

composition and discover challenges that need to be solved.

3.1. Motivating Scenarios

The first scenario is an “event-trigger mashup”, which is used in well-known commercial mobile

applications such as Tasker and Trigger. It allows a user to create event-based automation by

listening for an event and performing additional data-flow logics when the event is fired. The

second scenario is a “data streaming mashup”. This mashup handles the stream of data that

is continuously produced from mobile devices as events, and automatically executes additional

logics to update mashup results. For the final scenario, we aim to study how to use event-

driven composition to represent mashup compositions that are usually done in a data-flow

manner.

(i) Email Translator. This scenario focuses on a common event-trigger application where

an event notification of a mobile device is used as a trigger to execute additional mashup

logics. This scenario simulates a requirement for translating the content of emails.

The situation is an international student studying in Japan. He/she uses an Android

smartphone for receiving emails from colleagues and university newsletters. However,

sometimes the content of the emails is written in Japanese. In general, email client

applications do not provide a translation function. When a new Japanese-language email

is received, he/she has to copy and paste the content into a translation application and

save the result in a note application. To solve this problem, a mobile mashup application

that helps translating email from Japanese to English is needed. In our view, this

application can be created by using event-driven mechanism with integration of existing



284 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

mobile applications and Web services. We can listen for new incoming emails using an

email client application, translate the content to a specific language using a translation

Web service and save the translated content to a note application. In addition, the

application should allow him/her to specify which email will be translated by creating

filters for email from a specific person or email containing a specific keyword.

(ii) Around Me. The second scenario is a data streaming mashup. It is a mashup applica-

tion that continuously receives notification of events as a stream of data. We reuse the

common scenario of a location-aware mashup that continuously monitors the “location-

changed” event and integrates the location with Web services to display POIs on a map

[26]. This scenario simulates a situation where a tourist is travelling in a foreign country.

While he/she is traveling in a city, he/she wants to find a restaurant around his/her

current location by using a smartphone. Using a map application, e.g. Google Maps,

he/she can use the “Local Search” feature to search for restaurants nearby. However,

when he/she walks around or moves to another place, the search result becomes invalid.

Thus, he/she has to do the search again to update the restaurant location on the map.

In this situation, he/she needs a mobile application that keeps track of the current lo-

cation and continuously pinpoints nearby restaurants. In the other words, the mashup

application should automatically update the result when the “location-changed” event

is fired.

(iii) Barcode Book Review. The third scenario focuses on a problem that is usually

solved using data-flow mashup composition. To compare event-driven composition with

data-flow composition, we reuse a scenario presented in [19]. The scenario simulates a

mobile mashup application that helps users finding information about selected books

from online stores by using a smartphone’s camera as a barcode reader. The situation

depicts a developer who wants to buy a book from a bookstore. Before deciding whether

to buy or not, he/she wants to compare the price of the local bookstore with that of

online stores. He/she also wants to read reviews and comments of people who have read

that book. With his/her smartphone, he/she needs an application that uses the camera

as a barcode reader to scan a book’s barcode. The scanned code is then used as an

input for a bookstore and a book review Website to get the title, price, description and

first review entry of the selected book.

3.2. Requirements

Based on the scenarios in Section 3.1, we derive objectives that our approach should fulfil and

address challenges that we should overcome.

Maximize usage of system event and mobile application events. In our sample

scenarios, we found that a key feature is integration of device-specific information with Web

resources. Information produced from sensors and the mobile operating system, such as a

“location-changed” (in Scenario ii.) and a “photo-taken” (in Scenario iii.), are used as triggers

to start the mashup process. In addition, mobile applications can act as event producers by

sending changes of their state to notify other processes. For example, mobile applications, such

as email clients (in Scenario i.), social network applications and etc., always send notifications

about their states to users and other applications. In our view, these notifications are valuable



K. Prutsachainimmit and T. Tokuda 285

components in mashup application composition. Thus, our approach aims to deal with events

produced from the mobile operating system and events produced from mobile applications.

Encourage reusability of mashup components. From the scenarios, we found that

mashup components can be reused for more than one scenario. However, reuse of components

requires different component configurations. For instance, scenarios i. and iii. use the same

translation Web service for translating Japanese to English and English to Japanese. In

practice, major configurations of the translation Web service in both mashup applications

are identical. However, some execution parameters, such as source and target language, may

be different in each mashup application. Thus, in order to enhance reusability, the mashup

components should be flexible enough to be reused in different mashup compositions. For

example, the mashup components should provide a user interface for managing execution

parameters at run-time in order to maximize reusability.

Support an event-driven execution model. In a conventional data-flow mashup, users

start the mashup application and wait for the result. We found that the data-flow execution

style is not suitable for our sample scenarios. For instance, in Scenario ii., users may start

the mashup application and move to other locations. The mashup application requires event-

driven execution style that deals with this situation by automatically updates the mashup

result when location is changed. Another drawback of the data-flow mashup execution is the

mashup applications have to run in the active context of mobile device. Users cannot switch

to others applications during the mashup execution. Thus, event-driven mashup execution

model is required to overcome these problems. For example, in Scenario i., users must be able

to use other mobile applications while the mashup application is running in background. The

mashup application must be activated when new email is received. To enable event-driven

execution model, mashup applications have to listen for events in background, hold up the

mashup execution, and stop the listening process when a condition is met or a user action

is received. Given this condition, resource consumption, such as the number of background

processes, should be well managed.

Simplify the mashup development process. Our approach aims to provide tools that

simplify the component configuration and mashup composition process. We target all sample

scenarios to users who do not have skills in programming. The technical knowledge on de-

veloping mashup components, as well as composing mashup applications should be reduced.

However, when we adjust the design toward simplicity, the expressive capability will be re-

duced. Therefore, another challenge is to make a balance between simplicity of configuration

and capabilities of the approach.

4. Our Approach

The key concept of our approach is the orchestration of mashup components that represents

functionality of actual mashup resources and provides a uniform integration interface. In-

stead of performing integration between mashup components directly, our approach uses a

separated process to control the orchestration and enhance loose coupling among components.

Communication among mashup components was simplified by an event bus system adapted



286 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

from the state of the art in event-driven architecture [7]. A mashup composer can use an

XML description language to serialize configurations of mashup components and plan the

composition logic. The description language is used as an input to the code generator tool

to generate the mashup components and the output mashup application. The final output

is in form of a native mobile application that is deployed to the target device and executed

as an ordinary mobile application. In the following subsections, we describe the architectural

overview of our approach. We also highlight the key ideas and techniques that we have applied

to deal with challenges in enabling hybrid mashup composition on mobile devices.

4.1. Overview of Architecture

Fig. 3. Overview of architecture.

An overview of the proposed architecture is shown in Figure 3. The mashup process relies

on cooperation between a Mashup Orchestration Process (MOP) and Mashup Proxies (MP).

The MOP is responsible for controlling the execution of mashup logic and managing the

orchestration of mashup components. It provides user interfaces that allow a mashup user to

start/stop mashup process and view the output of mashup application. The MP is used to

facilitate component integration. It acts as an intermediary between the MOP and the actual

mashup components in order to transforms a technology-specific programming interface into

a common integration protocol, called Mashup Orchestration Messaging (MOM). The MP

works with three types of mashup resources (REST Web services, mobile applications and

system functions of a mobile operating system). They also augment the mandatory event-

driven mechanism to the ordinary mashup components. More specifically, each MP listens to



K. Prutsachainimmit and T. Tokuda 287

actual events of a particular mashup component by using a proper programming interface,

and sends notifications of events to the MOP in the form of MOM. The MOP then uses this

notification and its parameters as a trigger to start particular mashup logic. To call a function

of a mashup component, MOP sends a message and parameters to a corresponding MP via

MOM. The target MP then translates the message into the proper programming interface and

invokes the target function for a result. Finally, the result from the invocation is transformed

to the common format (MOM) and sent back to the MOP.

4.2. Mashup Orchestration Messaging

This section presents the details of the orchestration process between MOP and MPs, which

is the key mechanism of our mashup composition approach. We use an orchestration process

and proxy components to manage the integration of mashup components, as well as providing

loose coupling in the integration. A messaging system and a delivery channel are used to

facilitate the communication between MOP and MPs. A conceptual model that describes the

integration process is illustrated in Figure 4. The model depicts a simple event-driven mashup

process that performs the integration of two mashup components. This model emphasizes two

key mechanisms, event listening and function calls, which are important for enabling event-

driven component integration. The model consists of the following components.

Fig. 4. Conceptual model of mashup component integration.

• Mashup Orchestration Process (MOP). This is a process that controls the execution of

mashup logic and interacts with a mashup user.

• Event Source (C1). This component represents a mashup component that produces

notifications to other components, i.e. system events or notification messages from

installed mobile applications.



288 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

• Service Provider (C2). This component represents a mashup component that provides

functionality, i.e. REST Web services or mobile applications that contain reusable

functions.

• Mashup Proxy (MP1 and MP2). These components work as intermediaries between

actual mashup resources and the mashup orchestration process. Each actual mashup

component has a designated MP to transform a technology-specific programming inter-

face into a common programming interface.

• Delivery Channel. This component is a communication channel that delivers messages

to facilitate the orchestration between MOP and MPs.

The model describes the minimum building blocks of mashup orchestration messaging,

which is the invocation of a mashup component when an event is fired. The goal is to use

an event E1 of event source C1 as a trigger to invoke function F1 of service provider C2. In

order to get a result from F1, the mashup application has to extract parameters from event

E1 and use them as input parameters for invoking F1. The detailed steps of integration are

grouped into two major tasks, which are listening to an event and calling a function.

Listening to an event.

1 MOP listens for EM1 event messages via the delivery channel.

2 MP1 is used as an intermediary component between C1 and MOP. It listens to an actual

event E1

3 Once C1 produces event E1 with parameter p1, MP1 transforms the technology-specific

event E1 into a common event message EM1 including parameter p1.

4 MP1 posts the transformed event onto the delivery channel to notify the MOP.

5 Once the MOP receives the event notification, it extracts parameter p1 and uses it to

invoke function F1.

Calling a function.

1 MOP sends an invocation message FM1 with parameter p1 through the delivery channel.

2 MOP then listens for a callback event EM2 to process the result.

3 Once MP2 receives the invocation message, it transforms the message into the proper

programming interface.

4 MP2 forwards the call F1 and parameters p1 to actual component C2.

5 After C2 has finished the execution, it informs MP2 as a callback F1 with a result r1.

6 MP2 then transforms F1 with return parameter r1 into an event message EM2 with

return parameter r1.

7 MP2 posts the transformed event onto the delivery channel to notify the MOP.

Finally, the MOP receives the notification (EM2 with return parameter r1) as an event,

and then extracts r1 for using in the rest of the mashup process.

For the orchestration process, our model allows integration in an asynchronous manner,

particularly when calling functions. In general, mashup components invoke a function of other

components using synchronous messaging, i.e. sending an invocation message and waiting for

a result. However, the synchronous method may not work well on mobile devices because

they are often moved to different locations. Changing the location of devices may cause



K. Prutsachainimmit and T. Tokuda 289

network unavailability problems that interrupt the execution of resource-consuming mashup

components, e.g. invoking a Web service function. Thus, performing asynchronous calls and

waiting for notification of a result as an event can increase robustness of mashup applications.

4.3. Mashup Development Process

In general, mashup development consists of two major processes: component development and

mashup composition. The component development is the process for describing functionality

and properties of mashup components, while the mashup composition is related to defining

how components interact with each other. Developing a high quality mashup component

requires high-level technical knowledge that end-users cannot accomplish by themselves [27].

For example, developing a Web service component requires a good understanding of the

REST protocol and the JSON data format. Therefore, in order to optimize the efficiency of

the overall mashup development process, our approach divides the development process into

three stages: 1) Component Development, 2) Mashup Composition and 3) Mashup Execution.

Each state is designed for a different group of users, which require different levels of technical

skill. An overview of the mashup development process is shown in Figure 5.

Fig. 5. Overview of mashup development process.

1 Component Development. The goal of this process is transforming actual mashup

resources into reusable mashup components. To develop a mashup component, the

component developer composes a component description file that contains configurations

of functionalities and events. This file is then used as an input for the component builder

tool to generate the mashup proxy. At the end, the generated mashup proxy is published

to the repository. In order to efficiently describe the functionalities and events of each



290 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

component, the component developers require the knowledge of related technologies, i.e.

Web service APIs, inter-application integration protocols, XML and JSON. Thus, we

designed this process for an IT specialist or a programmer who understands the stated

technologies.

2 Mashup Composition. This is the process of building a new mashup application by

using existing mashup components. The process starts with a mashup composer describ-

ing composition logic of a mashup application and saves it as a mashup composition file.

During the composition, the mashup composer can query the component repository to

see which mashup components are available. After finishing the design of the composi-

tion logic, the mashup composition file is used as an input for the mashup generator tool

in order to generate output mashup application. Then, the output mashup application

is stored in mashup application repository. This process requires less technical knowl-

edge than the component development, since the description in this stage is abstracted

to be technologically independent. Thus, the mashup composer can be a programmer

or an advanced user who understands idea of mashup (i.e. concept of operations, events

and parameter mapping) and experienced in composing XML document.

3 Mashup Execution. In the mashup execution state, the generated mashup applica-

tion is installed to a target device. The execution starts out by validating the required

components of the installed mashup application. In case of a required mashup compo-

nent is not installed, the mashup application will inform the user about the required

mashup components. Once all required components are installed, an end-user can run

the mashup application as an ordinary mobile application.

In this approach, we propose two XML description languages, one for component de-

velopment process and the other one for mashup composition process. For the component

development process, we used a description language called XLIMA (eXtended Language for

Interoperability of Mobile Applications). XLIMA inherits the concepts and design from a

description language called LIMA, which is our previous language for interoperability of mo-

bile application [25]. A mashup component developer can use XLIMA for describing abstract

functionalities and technical configurations of mashup components. XLIMA description files

are then used as input for the component builder tool to generate mashup proxies as na-

tive mobile applications. For mashup composition, a description language called MEDAL

(Mashup Event-Driven Annotation Language) is used for representing hybrid mashup com-

position logic. Instead of including mashup component configurations together with mashup

composition descriptions as ordinary mashup description languages do, MEDAL contains only

the description of mashup component integration, but provides a mechanism to link to exter-

nal mashup component configuration files (XLIMA files). Similarly, MEDAL description files

are used as input for the mashup generator to generate mashup applications as native mobile

applications.

5. Implementation

The first prototype of the hybrid mashup development system is implemented on the Android

platform. We selected Android as the first experimental platform because it is widely used and

has the highest potential when compared to other mobile platforms. As discussed previously,

an important technique of our approach is the Mashup Orchestration Messaging (MOM).



K. Prutsachainimmit and T. Tokuda 291

Therefore, challenges and solutions of implementing MOM and its components for Android

smartphones and tablets are discussed in this section.

5.1. Mashup Proxy

The mashup proxy (MP) plays an important role in our component integration. It acts as

an intermediary between actual mashup components and the orchestration process. An MP

is responsible for forwarding function calls from a mashup component to an actual mashup

resource, as well as passing the event notifications from an actual mashup resource to the other

mashup components. Each mashup resource has a dedicated mashup proxy to transform

a heterogeneous programming interface into a unified integration protocol. The following

subsections discuss challenges and solutions for implementing a mashup proxy on Android

platform.

5.1.1. Invoking Functions of Mashup Components

Mashup proxies can deal with two types of mashup components: mobile applications and

REST Web services. In the case of mobile applications, our approach applies Android’s In-

tent [28] as the invocation protocol. Intent is an inter-application communication technique

that abstracts description of an operation to be performed. It can be used for launching

applications, sending messages and parameters to applications, or communicating with back-

ground services. In order to invoke a mobile application for a result, a mashup proxy sends

an Intent with identifier information (i.e. the name and parameters of the target mobile ap-

plication) to the Android system. The Android system then invokes the target application

using the specified information. When the target application finishes the requested task, the

result is sent back to the Android system as an Intent. The result Intent is then passed to the

mashup proxy to extract the result parameters. In the case of Web service invocation, the

HTTP request messages and callback functions are used. Therefore, we design each mashup

proxy to contain an “Asynchronous Invocation” module that takes care of invoking mobile

applications and REST Web service APIs, and a “Callback Handler” module that takes care

of extracting the result returned from the target mashup component. Figure 6 shows the

functional invocation mechanism of the mashup proxy.

Fig. 6. Functional invocation mechanism of mashup proxy.



292 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

5.1.2. Dealing with General Event of Mobile Devices

A mashup proxy is designed to handle general events occurring within mobile devices, in-

cluding system events and mobile application events. In general, Android operating system

notifies the system events, such as battery status, call received status or changes of device

configurations, to other applications by using Android Intent objects. In addition to provid-

ing a mechanism for launching other applications, Intent is also used to broadcast system

wide messages to other applications. This requires the implementation of Broadcast Intents

and Broadcast Receivers. An application can listen to a specific system event by register-

ing a Broadcast Receivers to the Android system. When that system event is occurred, the

registered application will receive the notification as Broadcast Intents. Mobile applications

can also produce events by broadcasting Intents. Thus, the same technique can be applied

to handle both events produced by Android system and mobile applications. Another major

source of events is the “Notification Center”. Many mobile applications report their states to

the notification center, such as when a new email is received or a wireless network is detected.

Capturing messages from the notification center also allows us to enable an event-driven

mechanism. Therefore, we design each mashup proxy to contain an “Event Manager” and an

“Event Handler” module. The Event Manager takes care of intercepting system broadcast

messages and notification center messages. The Event Handler controls the execution logic

corresponding to the listening events. Figure 7 shows the event handling mechanism of the

mashup proxy.

Fig. 7. Event handling mechanism of mashup proxy.

5.1.3. Managing Run-Time Parameters of Mashup Proxy

An additional challenge of a mashup proxy is managing run-time configurations of mashup

components. In practice, a mashup proxy deals with a specific invocation protocol of actual

mashup components by receiving and passing parameters. Some invocation parameters might

be constant values while others may be different for each execution. For example, calling a

weather forecast Web service requires a constant URI and a data extraction rule, which re-

mains the same in all invocations. On the other hand, a mashup user may change certain

parameters, such as geographic coordinates and units of temperature, in every execution.

For this reason, we have designed the mashup proxy to contain a module called “Parameter-



K. Prutsachainimmit and T. Tokuda 293

ized UI” to provide a user interface for managing invocation parameters of actual mashup

components.

5.1.4. Building a Mashup Proxy

To create a mashup proxy, a mashup component developer composes an XML description

file (XLIMA) that describes abstract operations, events and technical configurations of the

actual mashup components. The composed description file is then used as input for the Proxy

Builder tool to generate a mashup proxy as a mobile application. Finally, the generated

Android application is installed to the target device. The code generation process of the

proxy builder is illustrated in Figure 8.

Fig. 8. Code generation process of proxy builder.

The first step of the code generation process is Preliminary Parser reads an XLIMA de-

scription file. It then extracts XML descriptions and separates them into two parts: Abstract

Elements and Implementation Elements. The abstraction elements contain abstract descrip-

tion of shared functionalities and events, while the implementation elements contain technical

details of the invocation. Next, Abstraction Code Generator takes the abstraction elements

as an input to generate Abstract Code, i.e. a simplified JAVA programming structure corre-

sponding to abstract functionalities and events described in the description file. Meanwhile,

the Implementation Code Generator extracts the implementation elements and uses them to

generate Implementation Code, which is JAVA programming codes that contain concrete de-

tails of functional invocation and event listening. At this stage, code templates from the Code

Template Repository are used. The code templates are matched with specified configurations

of target mobile applications or REST Web services in order to generate the corresponding

JAVA programming codes. Using code templating technique also provides flexibility for the

code generator to create programming codes that support heterogeneous configurations of

various mashup components. After the code generation processes have finished, Packaging

module combines the abstract code with the implementation code and builds a complete code

structure of Android mobile application. It then compiles the combined code as an Android



294 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

application package (.apk). Finally, the mashup proxy file is distributed and installed to

target devices as an ordinary Android application.

5.2. XLIMA

XLIMA is an XML description language that is used for creating mashup proxy. Component

developers use XLIMA to describe a mashup component by declaring abstract functions and

events, and specifying invocation configurations. The structure of XLIMA files and a brief

description of each section are shown in Figure 9.

Fig. 9. Structure of XLIMA description language.

Abstraction. The abstraction section of XLIMA is designed for describing functions, events,

and data types of mashup components. The description is written as technology-independent

configurations. In other words, functions and events are described with an identifier, in-

put/output parameters names and data types similar to a function declaration in a program-

ing language. Figure 10-A shows a sample of an event declaration which contains the id of the

mashup component, an event name and event parameters. Figure 10-B shows a declaration

of a translation function. XLIMA allows defining a return parameter as an event in order to

enable asynchronous integration between mashup proxies. In this example, other components

can get the result from the “translate” function by listening for the “on translated” event,

which will occur when the translation function finishes the execution.

Implementation. The implementation section of XLIMA is designed for describing the in-

vocation configuration of functions and events that are declared in the abstract information

section. The description in this section is written in terms of technology-dependent config-

urations. In other words, functions and events are described with their specific invocation

protocols. Figure 11-A shows a sample of a mobile application component that listens to an



K. Prutsachainimmit and T. Tokuda 295

Fig. 10. Sample of XLIMA’s abstraction section.

event (email is received) using the Intent broadcasting protocol. Figure 11-B shows REST

Web service configurations, i.e. URI, query string, data format and result extraction path, of

a translation Web service component.

Fig. 11. Sample of XLIMA’s implementation section.

Binding. The binding section of XLIMA is designed for specifying mappings between the

abstract declaration and invocation information. This section is separated from the abstract

and implementation sections in order to provide maximum loose coupling. Mashup composers

are flexible to create a group of related functions and events that come from different actual

mashup components. The description in this section is written as mapping rules that bind

each pair of abstract and implementation information together. Figure 12-A shows a sample

of an event binding. An abstract event declaration “on email received” is paired to an actual

event of a mobile application called “K9EmailListener”. Figure 12-B shows two samples of

binding. The “invoke” binding type is used for binding a component’s function with a Web

service API, while the “event” binding type is used for binding an asynchronous result from

the Web service with an event of the component. For parameter mapping, we applied the

mapping techniques from MCDL [22] , which includes three mapping rules: direct, template

and parse. In addition, the source parameter of a mapping rule can refer to a user interface

element to obtain a run-time parameter from a mashup component.

User Interface Description. This section of XLIMA is designed for describing user inter-

face elements that is used for managing run-time parameters of a mashup component. Mashup



296 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

Fig. 12. Sample of XLIMA’s binding section.

composers can specify type of required user interface and bind the value with a parameter of

an existing mashup component (as illustrated in the sample of Binding section). The descrip-

tion in this section will be generated as a configuration screen of the mashup proxy. Figure 13

shows an example of the user interface section and the generated user interface of a mashup

proxy.

Fig. 13. Sample of XLIMA’s user interface section.

5.3. Mashup Orchestration Messaging System

The mashup components integration relies on the orchestration among mashup proxies (MPs)

and a mashup orchestration process (MOP) through a delivery channel. Since we create MP

and MOP as native mobile applications, an efficient delivery channel that facilitates inter-

application communication must be carefully considered. In general, most mobile platforms

provide a standard mechanism to allow communication and data exchanging among applica-

tions. For Android, several inter-process communication (IPC) techniques, e.g. AIDL, Bound

Service or Intent, can be used to facilitate orchestration between MPs and MOP. Although,

using low-level IPCs, such as AIDL and Bound Service, is more capable, it requires complex

configurations and has less maintainability. For Intent, our previous study on the interop-

erability of mobile applications shows that Android’s Intent can be efficiently used as the

component integration protocol [25]. Thus, we select Intent as integration protocol for the

delivery channel.

To realize the way that the mashup orchestration messaging works, the following section

explains mechanism of the “Email Translation Scenario”. This scenario is a language trans-



K. Prutsachainimmit and T. Tokuda 297

lation mashup that helps translating content of the incoming emails into a specific language.

The mashup application listens for new incoming emails. When an email has arrived, it

translates the content from Japanese into English, and saves the translated text to a note

application. The orchestration mechanism of this mashup scenario is shown in Figure 14, and

the required components of this mashup scenario are as follows.

• Email Client Application. This is a mobile application component: an open-source

e-mail client on Android called K-9 Email [29]. When a new email is received, this

application produces an event notification in the form of Intent Broadcasting.

• Translation Web Service API. This is a Web service component: an online language

translation service called Mymemory Translator [30]. This Web service API uses the

REST architecture and JSON data format.

• Note Application. This is a mobile application component: an Android mobile applica-

tion called Evernote [31]. This application provides Intent integration information that

allows creating a new note and additional operations.

Fig. 14. Component orchestration model of Email Translator scenario.

1 When the mashup application is started, the MOP subscribes to event “email received”

of Email Proxy and waits for the event. Email Proxy then uses Intent configurations,

specified in the XLIMA file, to register itself to receive event notifications from K-9 Mail

application. Once the K-9 Mail application receives a new email, it notifies the listening

processes of the “email received” event by using Intent Broadcasting. It also provides

two pieces of information, subject and content, of the new email as event parameters.

The Email Proxy then creates a mashup event as a Broadcast Intent and posts to

Android system.

2 The MOP then receives the event notification and executes the specified mashup logics

(3 and 4).

3 The MOP invokes “translate” function of the Translation Proxy by sending an invo-

cation message and parameters as Intent. When the Translation Proxy receives the



298 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

invocation message and parameters, it creates a HTTP request message by using con-

figurations specified in the XLIMA file, and sends the request message to the translation

Web service.

4 The MOP subscribes to the event “result completed” of the Translation Proxy to receive

the translation result. Once the Translation Proxy receives the HTTP response message,

it extracts the translated text and creates an event by using the translated text as a

parameter. Then, the created event is posted to Android system as Intent Broadcasting.

5 The MOP receives the notification of “result completed” event. It extracts the trans-

lated text parameter to use as input of additional components.

6 The MOP then invokes the Evernote application through the Note Proxy by using the

translated text as a parameter for Evernote’s Intent.

Finally, the translated text is saved to the note application, and the mashup process waits

for the next event notification. The screenshots of this scenario are presented in Figure 15.a

Fig. 15. Screenshots of Email Translator mashup application.

The development process of this mashup application starts from creating XLIMA descrip-

tion files of three mashup components. The created description files are used as input for the

mashup proxy builder to generate three mobile applications that work as mashup proxies.

Then, the generated mashup proxies are installed to the target device. The next step is cre-

ating a mashup application by composing a MEDAL description file. The created MEDAL

aK-9 Email and Evernote must be installed and logged in with a valid user account before the
mashup application is started. The video demonstrating Email Translator mashup can be viewed at
https://www.youtube.com/watch?v=Iut0UcmgTCY



K. Prutsachainimmit and T. Tokuda 299

file is used as an input for the mashup application generator to generate a mobile application

that works as the mashup application. The generated mashup application is then installed

to the target device. Finally, the user can run the mashup application as an ordinary mobile

application.

5.4. MEDAL

MEDAL is an XML description language for describing the composition logic of mashup ap-

plications. It is designed for representing hybrid mashup composition, which is the integration

of mashup components in data-flow and event-driven manners. The structure of MEDAL files

and a brief description of each section are shown in Figure 16.

Fig. 16. Structure of MEDAL description language.

Declaration. This section is designed for the declaration of mashup components that will

be used in the mashup application. A mashup component can be declared by specifying the

URI of an XLIMA description file. The declaration allows other parts of the description refer

to events and functions of the declared mashup component. The XML script in Figure 17

shows a sample declaration section that declares four mashup components.

Fig. 17. Sample of MEDAL’s description for mashup component declaration.



300 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

Mashup. This section of MEDAL is designed for describing hybrid mashup component inte-

gration. Mashup composers can define a sequence of component execution as a conventional

data-flow style or define an event-driven execution that intercepts a target event and executes

corresponding mashup components. Figure 18 shows a sample of mashup description for the

hybrid integration of four mashup components.

Fig. 18. Sample description of a hybrid mashup composition with MEDAL.

The essential properties for this section are as follow.

• Listener: Define an event that will be listened for.

• Handler: Define actions that will be performed when the listening event occur.

• Data-flow: Define a data-flow component execution.

• Invocation: Specify a function that will be called.

An event listener can contain one or more event handlers. Each event handler can contain

one or a data-flow of actions that will be performed after the event has occurred. Component

C1 and C2 are executed in an event-driven way, which is listening for a new email and

translating the content to a specific language. C3 and C4 are composed as a data-flow style,

which saves the translated content to a note application and publishes it to a social network.

Event transformation. We found that sometimes events that are directly produced from

mashup components are less usable. For example, in Android devices, every changes of the

remaining battery level are alerted to mobile users as system events. However, a mashup

application may only interested in low battery situation, such as the remaining battery is less

than 5 percent. This section of MEDAL is designed for describing event transformation rules

for filtering uninterested events. Figure 19 shows a description of an event transformation

rule that allows a mashup application to define the low battery event.

Output. Some mashup applications require user interface elements, such as text, tables or

maps, to display the mashup result. This section of MEDAL is designed for formatting and

displaying the mashup output as a Web pages or pinpoints on a map. Mashup composers



K. Prutsachainimmit and T. Tokuda 301

Fig. 19. Sample description of event transformation in MEDAL.

can create a Web page style output by composing HTML tags embedded with output data

from the mashup components. A map style output requires set of locations and data that

will be displayed on a map as pins. The output acts as a built-in mashup proxy that receives

invocation and parameters from other mashup components. The received parameters are

formatted and displayed on the output screen of mashup application. The XML script in

Figure 20 shows a sample of displaying a mashup result using in a map. Location-based

results from a Web service can be displayed as pins on a map by calling “showPOI” function

of the output proxy. The configuration of the map, such as mode, zoom level or pin icon can

be specified in the “mapview” tag.

Fig. 20. Sample description of mashup output formatting in MEDAL.

6. Evaluation

The evaluation of our approach is divided into 3 subsections. We report the empirical eval-

uation results regarding the usability of our mashup development system in Section 6.1. We

illustrate the bounds on expressiveness and explain the extensibility of our composition model

in Section 6.2. In section, 6.3, we discuss problems and limitations found in the current com-

position method and suggest possible solutions.



302 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

6.1. Usability Evaluation

The main purpose of our mashup composition method is reducing effort and required skills in

developing mobile mashup applications. We aim to minimize the required skills of a mashup

composer to the level of advanced user or novice programmer, i.e. a user who has experienced

in composing XML documents and understand basic programming concept. In order to

evaluate applicability of our method, a usability evaluation by human composers is conducted.

The evaluation focuses on the mashup composition process. We used a pre-questionnaires

to select 10 mashup composers who have background knowledge in composing XML docu-

ments and understand the concept of operation, event, and parameter. The selected com-

posers were asked to use MEDAL to complete two mashup compositions, a tutorial and a

freestyle composition. For the tutorial, composers followed a step-by-step guide to build

a mashup example called “email translator” that is described in Section 3.1. The tutorial

also explains concepts of hybrid mashup composition and describes the specification of the

MEDAL language. Output of the tutorial is a complete MEDAL description file, which will be

verified by the mashup application generator. We then explained the composition model and

demonstrated the output mashup application before the composers continued to the freestyle

composition.

Table 1. Mashup Components for Usability Evaluation

Name Type Description
Input Components
Barcode Scanner MA Scan barcodes and return as a text by using device’s camera.
Location Provider MA Get current user location
Photo MA Take photos using device’s camera
System MA Device’s status monitoring
Email MA Monitor incoming email and get the content
Location-based processing components
GooglePlace WS Search for places around a location
GourNavi WS Search for restaurant around a location
OpenWeatherMap WS Search for weather information by location
GeoName WS Search for place name of a location
Yelp WS Search for local business around a location
Flickr Location WS Retrieve photos from the Flickr photo sharing service
Text-based processing components
Flickr Search WS Retrieve photos from the Flickr photo sharing service
Online Shopping WS Search for product information from online stores by using barcode or keyword
YouTube WS Retrieve video link from the YouTube
Translate WS Translate text to a specific language
OCR WS OCR Scan function that converts text in an image to a text
Exchange Rate WS Do currency conversion
Train Schedule WS Search Japanese train schedule information
Output components
Facebook MA Update status with current logged in Facebook account
Twitter MA Tweet a message with current logged in Twitter account
Evernote MA Create note messages on a note application
SMS MA Send SMS
Email MA Send Email
Text2Speech MA Read input text out as speech
Dropbox MA Save a file to Dropbox
Launcher MA Launch an application



K. Prutsachainimmit and T. Tokuda 303

In the freestyle composition, composers were asked to create a mashup application from

existing mashup components using concepts they have learned in the prior task. The mashup

components are created using XLIMA and the mashup proxy builder. The list of mashup

components and their descriptions are shown in Table 1.

26 mashup components are generated. The mobile application components were selected

from commonly used applications that contain reusable functions and available in the top

charts of the Google Play Store. Web service components were selected from the popular

APIs listed by ProgrammableWeb [32]. The components are categorized into input, process-

ing, and output components for better understanding of the composers. Composers were

allowed to study a component specification document before the composition began. The

document contains details of available components, including list of functions, events and

their parameters.

We then observed three elements in the evaluation: Composition Pattern, Planning Time

and Composition Time. We measured the complexity of the composition by considering the

component integration model and the number of components used in each composition. For

planning time, we measured the time that composers used to finish the planning document,

which contains the description of the mashup application, a list of selected mashup components

and a component integration model. Finally, the composition time was measured from the

time spent in using a text editor to create the MEDAL description file. Table 2 shows result

of the evaluation.

Table 2. Usability evaluation result

Composer Complexity Planning Time (min) Composition Time (min) Total Time(min)
ID Comp. Count Total Avg. Total Avg. Total Avg.

C001 2 0:12 0:06 0:10 0:05 0:22 0:11
C002 4 0:14 0:03 0:13 0:03 0:27 0:06
C003 5 0:13 0:02 0:21 0:04 0:34 0:06
C004 4 0:11 0:02 0:12 0:03 0:23 0:05
C005 4 0:13 0:03 0:15 0:03 0:28 0:07
C006 3 0:23 0:07 0:13 0:04 0:36 0:12
C007 4 0:22 0:05 0:11 0:02 0:33 0:08
C008 3 0:05 0:01 0:05 0:01 0:10 0:03
C009 3 0:22 0:07 0:11 0:03 0:33 0:11
C010 4 0:15 0:03 0:17 0:04 0:32 0:08

Avg. Time/Component 0:04 0:03 0:07
Avg. Total Time 0:15 0:12 0:27

It appears that all users succeeded in developing a mashup application using our method.

All 10 composers have finished their mashup composition with a little support, e.g. concerning

the detailed specification of MEDAL and configuration of particular mashup components. The

result shows that the total composition time is related to complexity of composed mashup

applications, i.e. the number of used components. The average time to compose a simple

mashup application, using 3 mashup components as input, processing, and output, is less

than 30 minutes. This is significantly lower when compared to manual development. The

planning and composition time is also related to the complexity of the mashup application.

However, for some particular users, i.e. C006 and C008, it can be seen that the total planning

time is quite different even if the complexity is identical. In this case, we found that U008



304 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

stated in the pre-questionnaire that he/she has experience in mobile mashup development. It

could be inferred that that planning time may have related to user’s experiences in mashup

composition, especially data-flow or event-driven styles. Therefore, we can assume that the

planning and composing time might be reduced when the composers are more familiar with

the hybrid composition model and the MEDAL specification.

After the freestyle task, the composers were asked to fill out post-questionnaires to eval-

uate satisfaction of the mashup approach and comprehension of MEDAL description lan-

guage. The post-questionnaires consist of 10 of 5-points Likert scale questions and additional

questions about personal opinions. Figure 21 shows the 5-points Likert scale result of the

post-questionnaires.

Fig. 21. Post-questionnaires result.

• Most composers gave high ratings concerning the ability of MEDAL to assist their com-

positions and the comprehensibility of configurations for defining data-flow and even-

driven mashup logic. They also indicated that they are able to create additional mashup

applications using our approach. The result also shows that composers understand the

expressivity limitation of our approach.

• Composers have given additional comments about our method. They requested more

mashup components, configuration sections supporting conditional statements, and as-

sistant tools such as visual mashup composition or a MEDAL editor.

• Composers are interested in developing mashup components. In our approach, develop-

ing mashup components requires XML editing skills and additional knowledge on Web

service specifications and mobile application configurations. The evaluation results of a

previous study shows that even novice composers can deal with component configuration

using a description language and a generator tool [19]. Thus, we believe that mashup



K. Prutsachainimmit and T. Tokuda 305

composers should be capable of developing mashup components using our approach.

However, a component development evaluation should be conducted.

6.2. Expressivity Evaluation

In order to evaluate the expressivity, we simulated the possible mashup compositions that

can be built by using our approach. To the best of our knowledge, the number of possible

mashup compositions can express the capability to deal with a variety of user requirements

and bounds on expressiveness of our mashup composition method.

The simulation uses two common composition patterns with the set of mashup components

used in Section 6.1. The result from 6.1 indicated that the commonly used composition

patterns are input-process-output (IPO) and input-process-process-output (IPPO), which is

consistent with the common patterns found in the evaluation result of previous study [19].

By using a simple composition model such as IPO or IPPO, our method can create mashup

applications that cover broad areas of requirements. Let us consider an example of creating

location-based mashup applications in Figure 22.

Fig. 22. Simulations on generating location-aware mashup applications.

By using GPS locations combined with one of 5 possible location-based Web services and

8 alternative mobile applications, we can generate 40 mashup applications using the IPO

pattern. In addition, if we added one more component that converts location into text, i.e.

GeoName, the location name can be integrated to additional text-based components to create

more 56 mashup applications with the IPPO pattern. Moreover, our integration model also

supports multiple output components that help increase the number of possible compositions.

Even though the number of possible mashup compositions is considerably large, some

compositions might not practical. Therefore, instead of only doing simulations, real mashup



306 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

application development is conducted. Table 3.a shows a sample of practical mashup appli-

cations generated by our approach.

Table 3. Sample of generated mashup applications

Application Components Pattern Description
Last Train [MA]GPSLocator Data-Flow Use the current location to find
Display last train schedule [WS]GooglePlace nearest train station and use the

[WS]Train Schedule station name to find the schedule
of the last train.

Photo Diary [MA]Camera Data-Flow Use the camera to take photos
Create a diary in a note [M]GPSLocator and find information of the photos.
application including photo [WS]GeoName Finally, the photos and information
and related information [WS]Wikipadia are saved to Evernote.

[MA]Evernote
Wish List [MA]Xzing Barcode Data-Flow Use Xzing application scans barcodes
Tweet a message about [WS]GoogleShopping of interested items.
interested shopping items [WS]Translate Then, finds title and price from the

[WS]ExchangeRate online stores. Finally, translates and
[MA]Twitter tweet as a wish list.

Check In [E]Wi-Fi Connected Event-Driven When connected to a Wi-Fi network,
Send a message when [MA]Facebook send a message to a friend via
you arrived at a place. Facebook application
Battery Tweet [E]Battery Status Event-Driven When battery status is lower than
Tweet when battery is low [MA] Twitter 5%, tweet a message to friends
Blind Buddy [E]Location Changed Hybrid When the location has changed,
Assist the blind by speaking [WS]GeoName speak the new place name out loud.
the current place’s name [WS]Translate
out loud [MA]Text2Speech

The composition of practical mashup applications is extensible. For example, the Web

service component of “Last Train” application, which finds the schedule of last train, can be

replaced with other Web services, such as a restaurant or hotel search, weather information,

photo retrieval or some other location-based services. Similarly, the simple integration of

an event and a mobile application component, i.e. Arrival Status and Battery Tweet, can

be easily customized to address different problems. We can change the event and mobile

application component to different pairs such as speak the message out loud when an SMS is

received or call another Web service component when the location has changed.

6.3. Discussion

6.3.1. Constraints of mobile application components

Since our approach relies on the capabilities of Android Intent, mobile applications that are

capable to be used as mashup components must support the Intent integration as well as

publishing information about their Intent configurations. In fact, not all applications support

Intent integration. Moreover, the level of Intent supporting is different for each application.

As a result, the component developer should be aware that some applications can work as a

service function, while some applications can only work as a final component to display or

receive the output. However, modern mobile operating systems, such as Android and iOS,

aMA:Mobile application, WS:Web service, E:Event trigger



K. Prutsachainimmit and T. Tokuda 307

have extended capability of inter-application communication to accommodate data sharing

among applications. For instance, we can share a photo with social network applications by

pressing the share button on the photo gallery, and selecting a target from a list of compatible

applications. As a result, we believe that most recent mobile applications can be used as

mashup components in our approach. This also increases the possibility of implementing our

approach for other mobile platforms.

6.3.2. Limitations of event-driven composition.

In our approach, a mashup application can listen for multiple events. One event can have

multiple handlers to execute multiple mashup logics. However, the current composition model

still does not support simultaneous events with one or multiple handlers. The possible solution

is using a technique called “Sticky Broadcast Intent”, which holds the Intent Broadcasting

as a background service. This kind of Intent allows other processes or applications to access

the notification at any time. However, we did not include this mechanism in the scope of

our mashup composition because listening for an event requires a background process, which

consumes more resources. More importantly, simultaneous events composition is rarely used

in typical event-driven applications.

6.3.3. Mashup Development Process.

This research aims to improve the mashup composition by reducing the programming efforts

and required technical skills. A common challenge is that managing configurations of mashup

components requires technical knowledge. As a result, state-of-the-art mashup approaches

delegate the component development process to users with higher programming skills; so

called component developers [33]. Our approach applies this concept by separating the com-

ponent description language from the mashup composition language. Component develop-

ers use XLIMA, a technology-dependent language, while MEDAL, a technology-independent

language, is designed for mashup composers. In addition, we enhance reusability and main-

tainability of our mashup components by building them as mobile applications. Updating the

configuration of mashup components does not affect the mashup application. Importantly, the

run-time configuration feature of our mashup components is a key to improving component

reusability.

6.3.4. Component Reusability and Resource Consumption.

The conventional mobile mashup approaches build mashup output as a single mobile appli-

cation. Mashup components are placed in the same application context with the mashup

orchestration process. As a result, a mashup application can become a resource-consuming

process because of less component reusability. Let us consider multiple mashup applications

that use the same mashup components. During the execution of these mashup applications,

each identical mashup component allocates their own resources from the device even if they

perform the same task. To address this problem, the unique idea of our mashup composition

is building mashup components and mashup applications as separated mobile applications.

In this way, we can take advantage of the automatic resource management of the mobile

operating system. Separating the processes of mashup components and mashup applications



308 A Description-Based Hybrid Composition Method of Mashup Applications for Mobile Devices

also enhances reusability and reduce resource consumption. The mashup components that

run as ordinary mobile applications will be kept as inactive process when there is no mashup

execution. In this way, multiple mashup processes can reuse the existing mashup components

in different composition logics while the resource consumption level is equal to that of one

mashup application.

7. Conclusions and Future Work

This research proposed a new methodology for developing mashup applications for mobile

devices. The existing methods have succeeded in developing data-flow mashup applications.

They, however, have limited capability to create event-driven mashup applications. We pre-

sented a full treatment hybrid mashup composition method that utilizes both data-flow and

event-driven composition. This method allows the composition of mobile applications and

REST Web services in both data-flow and event-driven ways. In order to realize the novel

architecture of component configurations and component integration, practical scenarios for

both data-flow and event-driven mashups were set and analysed. The concept of using an

inter-application communication protocol to facilitate orchestration of mashup proxies and a

mashup orchestration process is discovered and applied. The description languages and code

generator tools are used to reduce mashup development cost, and to separate component de-

velopment process from the mashup composition process. To demonstrate the applicability

of our approach, we implemented our first prototype in the Android mobile environment and

conducted usability evaluations.

The evaluation results have shown that the proposed approach improves expressivity and

reduces the cost of developing mobile mashup applications. Finally, we discussed limitations

found in our current composition methods and suggested possible solutions. In the future, we

aim to implement our approach for other mobile platforms, and reduce the required program-

ming skills by applying an end-user programming paradigm such as visual programming.

References

1. C. Anderson (2007), The Long Tail: Why the Future of Business Is Selling Less of More by Chris
Anderson. Journal of Product Innovation Management, Vol. 24, , pp. 130.

2. K.Xu, X.Zhang, M.Song, and J.Song (2009), Mobile mashup: Architecture, challenges and sugges-
tions. Management and Service 2008 , pp 25.

3. E.Maximilien (2008). Mobile mashups: Thoughts, directions, and challenges. Semantic Computing,
IEEE International (2008), pp. 614617.

4. P.Chaisatien, and T.Tokuda (2011), A Description-based Approach to Mashup of Web Applica-
tions, Web Services and Mobile Phone Applications. Information Modelling and Knowledge Bases
XXII, Frontiers in Artificial Intelligence and Applications, Vol. 225, pp 174-193.

5. V.Agarwal, S.Goyal and S.Mittal (2012), Towards Enabling Next Generation Mobile Mashups.
Mobile and Ubiquitous, pp. 1325.

6. S.Chowdhury, Roy, et al, (2011) Composition patterns in data flow based mashups. Proceedings of
the 16th European Conference on Pattern Languages of Programs (EuroPLoP’11). 2011.

7. Michelson, M.Brenda (2006), Event-driven architecture overview Patricia Seybold Group Vol. 2.
8. Tasker. https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm.
9. Yahoo Pipe. https://pipes.yahoo.com/.

10. R.Ennals and M.Garofalakis (2007), MashMaker: mashups for the masses Proceedings of the 2007



K. Prutsachainimmit and T. Tokuda 309

ACM SIGMOD international conference on Management of data (SIGMOD ’07), pp. 11161118.
11. S.Kaltofen, M.Milrad and A.Kurti (2010), A cross-platform software system to create and deploy

mobile mashups. Springer Berlin Heidelberg, pp. 518521.
12. A.Brodt and D.Nicklas (2008), The TELAR mobile mashup platform for Nokia internet tablets.

Proceedings of the 11th international conference on Extending database technology Advances in
database technology - EDBT ’08, pp. 700.

13. F.Nyrhinen, A.Salminen, T.Mikkonen, and A.Taivalsaari (2010), Lively mashups for mobile de-
vices. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering, 35 LNICST, pp. 123141.

14. V.Realinho, T.Romo, and A.Dias (2012), An event-driven workflow framework to develop context-
aware mobile applications. International Conference on Mobile, pp. 22.

15. H.Gebhardt, M.Gaedke, F.Daniel, et al (2012), From mashups to telco mashups: A survey. IEEE
Internet Computing 16, pp. 7076.

16. Sanders, R.Torbjorn, F.Mbaabu, and M.M.Shiaa (2012) End-user configuration of telco services.
16th International Conference on Intelligence in Next Generation Networks.

17. Trigger. https://play.google.com/store/apps/details?id=com.jwsoft.nfcactionlauncher.
18. C.Cappiello, M.Matera, M.Picozzi, A.Caio, and M.Guevara (2012), MobiMash: end user develop-

ment for mobile mashups. In Proceedings of the 21st international conference companion on World
Wide Web, ACM, pp. 473-474.

19. P.Chaisatien and T.Tokuda (2013), A description-based composition method for mobile and teth-
ered Mashup applications. Journal of Web Engineering Vol. 12.1-2, pp. 93-130.

20. WAC Specification. http://specs.wacapps.net.
21. W3C’s Device API Working Group. http://www.w3.org/2009/dap/
22. S.Aghaee, and C.Pautasso (2011), The mashup component description language. Proceedings of

the 13th International Conference on Information Integration and Web-based Applications and
Services, ACM, pp. 311-316.

23. EMML. http://www.openmashup.org/.
24. M.Sabbouh, J.Higginson, S.Semy, and D.Gagne (2007), Web mashup scripting language. Proceed-

ings of the 16th international conference on World Wide Web WWW 07, pp. 13051306.
25. K.Prutsachainimmit and T.Tokuda (2014), LIMA: A Modeling Language for Enhancing Mobile

Application Interoperability. Information Modelling and Knowledge Bases XXV 260, pp. 98.
26. A.S.Voulodimos and C.Z.Patrikakis (2008), Using personalized mashups for mobile location based

services. In Wireless Communications and Mobile Computing Conference, IWCMC’08. Interna-
tional, pp. 321-325.

27. C.Cappiello, F.Daniel, M.Matera, and C.Pautasso (2010), Information quality in mashups. Inter-
net Computing, IEEE, Vol. 14(4), pp. 14-22.

28. Intent. http://developer.android.com/reference/android/content/Intent.html.
29. K-9 Email. https://play.google.com/store/apps/details?id=com.fsck.k9
30. MyMemory Translation API. http://mymemory.translated.net/doc/spec.php.
31. Evenernote (Android). https://play.google.com/store/apps/details?id=com.evernote
32. ProgrammableWeb. http://www.programmableweb.com.
33. F.Daniel and M.Matera (2009), Turning web applications into mashup components: issues, models,

and solutions. Springer Berlin Heidelberg, pp. 45-46.


