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Dynamic Web services composition aims to generate a composition plan at run-time.

Semantic-based techniques rely on annotating services to facilitate the discovery of the
service components that satisfy a user need (matchmaking). The matchmaking process
places most attention on service selection rather than on the behaviour of the composed
service, and the service components are arranged considering simple control-flow patterns

(mainly sequence). In real life scenarios, however, composed service behaviour follows
complex control-flow patterns that satisfy the needs of business processes, which are gen-
erally defined through manual service composition. In this paper we present a technique

to derive complex composed service behaviour semantics, such semantics make possible
to dynamically and automatically discover complex services compositions. We have im-
plemented and tested our technique with a known dataset with better performance when
compared to simple service composition strategies.

Keywords: Dynamic service composition, semantic Web services, service behaviour,

control-flow
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1. Introduction

Web service composition is the process of combining the functionality of diverse services

(components) into a new service that provides aggregated value and can be part of another

composed service [17]. Service composition requires defining the order and conditions to
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selected, bind and invoked services. These tasks can be performed automatically or manually,

at design-time (static) or at run-time (dynamic). Dynamic and automatic composition is

desirable because it contributes to reduce the development costs of creating new services. It

can also assists developers to discover services among a myriad of existing services and to

deal with the failure of a component or a whole composed service on real time, facilitating

composed services to adapt to contextual changes.

A popular strategy for supporting dynamic and automatic service composition exploits

service signature, that is, services input and output to determine services dependencies, de-

riving a composition plan that can be seen as a graph [15]. Most research focus on enriching

services signature with additional information (pre and post conditions, quality, conceptual

semantic models, business rules, etc.) in order to improve services dependencies. Standards

such as SAWSDL [28] allow service providers to annotate web service descriptions (WSDL)

with references to semantic elements without prescribing a semantic model, which is kept

separated from the description. Popular semantic approaches such as OWL-S and WSMO

describe service semantics reling on expressive knowledge representation formalisms such as

OWL [34] and WSML [13] respectively, along with rule languages. Domain ontologies for

both OWL-S and WSMO are rich and complex and the development on either platform de-

mands significant expertise and knowledge from designers and developers on subjects such as

the corresponding domain ontology, the platforms, and the tools that enable the execution of

semantic Web Services. These characteristics imply an important limitation to the scalability

of these approaches [39, 4], for this reason, lightweight approaches such as WSMO-Lite [14],

and the Minimal Service Model (MSM) [40]. Research on semantic-based dynamic composi-

tion place a strong emphasis on the discovery of suitable candidates for a composition [10],

while the behaviour of the composed service is either highly complex, over-simplified [29] or

ignored, for instance, WSMO-Lite does not support a control-flow infrastructure but instead

this one is provided by WSMO. Manual techniques on the other hand, allow full control on

the specification of the service behaviour, resulting into a variety of complex control flows

patterns that satisfy the various needs and constraints of the business processes [46, 47].

Automatic composition is a challenge that tends to become more difficult when the number

of services increases, which is worsened if connections between services are complex (i.e. when

complex control-flow patterns are included). Some approaches that follow artificial intelligence

planning [23, 48, 26, 41, 55] derive the sequence of actions required to reach a goal state

(required outputs) from a initial state (inputs and preconditions). These techniques typically

work well for small repositories with a high number of constraints. Most of these proposals

have some drawbacks: high complexity, high computational cost and inability to maximize

the parallel execution of web services. Others [6, 18, 42] deal with a huge number of services

but they do not guarantee to obtain an optimal solution, are extremely slow and memory

intensive. An approach that is similar to us [43] finds a valid composition considering the

matching of the input-output message at a semantic level. The approach scales better than

other techniques with huge number of services, and also shows a great performance over large

repositories. However, they can discover only two of the most important control-flow patterns:

sequence and parallel.

In this paper, we present our approach for dynamic service composition (CompoSWS) that

exploits service signature and semantic annotations along with rules to identify simple and
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complex control-flow patterns between services at publishing-time (i.e. when a service provider

makes its service available in our platform). Services are connected through such patterns

forming a graph that is pre-calculated and represent the behavioural semantics of a potential

composed service. A composed service can be dynamically and automatically discovered and

assembled into an executable service at consuming-time (i.e. when an consumer requests a non

existent service but whose functionality can be provided through a services subgraph). We

propose also to extend the Minimal Service Model (MSM), which is a lightweight ontology

that captures (part of) the semantics of both Web services and Web APIs in a common

model focuses on services signature and facilitates our approachs scalability. We validate

our approach theoretically through a complexity analysis and experimentally on a known

dataset of 980 services, both at publishing-time and consuming-time, in terms of performance

(response time), and scalability (compositions of various sizes). Our results are promising and

suggest that our approach could be used in an on-line fashion. Our experience indicated some

limitations of SPARQL 1.1. Specification when querying subgraphs [5] that was resolved by

defining incremental queries (i.e. progressively reducing the search space).

This paper describes a technique to derive complex composed service behaviour semantics

that:

• Extends the MSM ontology in order to allow the specification of simple and complex

control-flow patterns based on the services signature;

• Enables the automatic discovery of such patterns through a set of rules;

• We also present the algorithms and queries required to dynamically pre-compute all the

possible combinations between services taking into account service behaviour (derived

from the control-flow patterns); and the algorithm and queries required to discover

composed services.

The contributions of this paper are two; first we improve the performance, in terms of

response time, of generating composed services without requiring in memory calculus, which

may facilitate scalability of our approach through horizontal scalability. Second we allow

the generation of more elaborate compositions that correspond to complex business patterns

adopted in most real scenarios, without losing performance when compared to approaches

that only consider simple business patterns.

2. Related Work

The most popular technique for dynamic service composition is based on service signature;

it considers the dependencies between inputs and outputs in order to generate a composition

plan at runtime. Plan generation uses techniques such as dynamic forward or backward search,

data dependency and control-flow. The plan can be represented as a directed acyclic graph

where nodes are services and arcs correspond to the dependencies between them. Such depen-

dency is established from the service signature (Input, Output), services semantic distance, or

services similarity (perfect-match, plug-in, subsume, y zero-match, etc.) [15]. The composi-

tion plan includes the services invocation control-flow. Some approaches, such as Linked-OWL

[2], require that the user defines the composition plan as an abstract workflow, services are

stored in a repository and each service component is searched for using a SPARQL query.
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Others propose a Petri net-based algebra for modelling control-flow [21]. Service behaviour

is modelled through six control-flow patterns: sequence, alternative, iteration, arbitrary se-

quence, parallel with communication, discriminator, selection, and refinement. OWL-S is a

well-know semantic service model that includes basic control flow patterns (invocation, se-

quence, alternative, join and split) [56]. A UML- based universal language considering simple

and complex interaction has been also proposed [29]. Workflows are considered complex in-

teraction patterns (sequence), but the authors do not specify how such workflows could be

modelled. In [50, 46] 43 control-flow patterns are presented in great detail.

Service discovery is achieved by defining a matching degree between services (match-

making) and the client’s request. Matchmaking is considered logics-based, if an ontological

structure is used to determine a similarity between the services and the request; non-logical,

if syntactic, structural or numeral strategies are used, or hybrid. In YASA [11] a hybrid

matchmaking mechanism pre-selects a set of services, and determines a services matching

degree using a IOPE (Input, Output, Preconditions, Effects) logical approach (exact match,

subsumption, etc.); finally, the matching degree is weighted using non logical strategies (min-

average, cupid, and combinatorial algorithms). Logical and statistical matching degree is

broader in IO OWLS- MX [27] the user determines the matching degree, and the similarity

threshold, and the service provider, requester and matchmaker share a minimal vocabulary

with mapping rules (synonyms based on a WordNet thesaurus) to classify service requests

input and output concepts. In [7], a hybrid PE (Preconditions, Effects) algorithm ranks pub-

lished services according to the semantic distance of concepts (counting edges). WordNet is

used to determine synonymy and concept subsumption. SAM is an IO matchmaking algo-

rithm for OWL-S that considers semantic descriptions for requested and provided services

[10]. The algorithm simplifies services into trees and creates a BF-hypergraph representing

the dependencies among matched services; the dependency graph in analysed to determine

whether it satisfies the user request or additional input requests are required from the client

to produce a full match.

Semantic-based service composition techniques rely on semantically annotated services to

facilitate service discovery. Annotations make explicit the semantics of the input and output

parameters, as well as the service goals among others. For instance in Kill and Nam [24],

conceptual relationships between services parameters are used to find the semantically close

services that satisfy the users requirement. This technique is based on model checking and a

matchmaking process. Other solutions are based on various description languages capturing

different services semantics. For instance, OWL- S proposes three ontologies specifying a

service (a service profile indicating the service goals, limitations, quality and requirements

for the service consumer), usage (a service model), and access (service grounding). A service

model component, the Process, describes properties such as inputs, outputs, preconditions,

parameters, and effects; the Process Control component, describes the processing state and

together they allow designers to create workflows. Unlike OWL-S, the Web Service Modeling

Ontology (WSMO) includes an execution framework and a set of four ontologies that describe

the information used by the other ontologies; the objectives fulfilled when executing the

service; the services capabilities and signature; and the mapping between components. Service

discovery is a three-step process involving the service signature and goal, whereas service

composition is generally addressed through forward-chaining techniques that determine the set
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of valid state transitions (i.e. service invocation) in order to achieve a goal [16]. WSMO-Lite

service ontology [53] is an extended Web service specification stack, adding semantic layers

that offer richer descriptions for Web services with the goal of the maximal compliance with

Web standards. SAWSDL (Semantic Annotations for WSDL) is a W3C recommendation for

semantic service descriptions, which extends XML-based WSDL with semantic annotations

without imposing a representation language (e.g. RDF, OWL, WSML, etc.), and without

prescribing a service semantic model (i. e. could be compatible with OWL-S, WSMO or

other models). Some WSDL elements can be annotated with a modelReference attribute that

refers to the equivalent concept in some semantic model through a URI.

On other hand, the DSD [25] language describes services from a pure state-based approach;

it requires services to declare its effects and pre-conditions. Services domain is modelled

through a hierarchical ontology specialized in various layers down-to instances. Instance sets

(instances subgraphs with constrained attributes) serve as a medium to specify unambiguously

consumers request and providers capabilities. A service is composed dynamically from a

request. In DSD, and such request is an instance set that specifies the expected state of

the world after a successful service execution. For YASA, a query-formatted document (i.e.

an extended SAWSDL description with annotations on the interface, operation, input and

output elements) representing an abstract description of the expected service is used as the

request specification. For WSMO, the desired goals as well as the input values are specified

[16] through abstract goal templates describing functional capabilities and constraints that

are instanced and customized by users.

Services orchestration aims to generate a composition plan determining the service compo-

nents, the data to be interchanged and the control-flow regulating services interaction. Service

orchestration is the most popular paradigm in REST service composition research. For in-

stance, the JOpera framework [36] proposes a visual language and an execution platform for

building large applications including multiple REST services. In JOpera, the orchestrator is

implemented as a central (composite) resource that drives the control and data flow. Both

flows are visually modeled as two separate design documents producing a BPEL compatible

executable program for orchestration engines. Other works such as a BPEL extension for

REST [37] and a BPEL-inspired workflow composition language called Bite [45] are used to

describe control/data flow and data transformations for web service composition and control

flow dependencies are modeled and implemented using a Petri Net in [3]. A set of control-flow

patterns that implement stateless REST service composition are described in [8]. Authors

describe a technique for decentralized REST services composition that takes into account the

constraints of REST architectural style in the composition process. The implemented control

flows follow a choreography paradigm implemented through callbacks and redirections.

Semantic REST service composition approaches model the composition as graph patterns

[30]. For instance, Verborgh et al. propose an RDF-based approach for describing RESTful

services where a service composition is implemented through SPARQL queries (N3). The

control-flow is modeled as query patterns following the RESTdesc language; data flow is

dynamically resolved when the query is performed and the served representations can be

later processed [52]. Mismatches between data formats, fully supported in JOpera, are not

considered [51]. Semantic Web technologies are used to model contextual information from

users, sensors and things so that machine-clients can make sense from the responses [22].
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Other approaches for REST service composition focus on service description. Proposals

include WADL [20], WSDL 2.0 [12], and SA-REST [31]. These descriptions facilitate the

automation of machine-client and RESTful services interaction. These languages are strongly

influenced by existing imperative service description languages (input/output) and do not

capture well the resource-centric nature of RESTful WSs (transitions of resources). ReLL

[3] differs from the other three in that it is hypermedia-centric, supports REST architectural

constraints requiring less coupling between clients and services. Semantic REST service de-

scriptions have been also proposed. For instance, hRESTS [33] proposes a microformat to

annotate HTML service descriptions that can be used also by crawlers and search engines

to find services. The microformat extends the HTML description with semantic annotations

so that RESTful services can be discovered, composed and invoked automatically. Four as-

pects of service semantics: information model, functional semantics, behavioral semantics

and nonfunctional descriptions, instances are modeled by MicroWSMO [33]. SWEET [33]

supports users in searching for suitable domain ontologies and in making semantic annota-

tions in MicroWSMO in order to provide a higher level of automation on tasks with RESTful

services, such as discovery and composition. WSMO-Lite [54] ontology is used for describing

the content of semantic annotations in WSDL.

3. Composing Web services considering complex control-flow patterns

Web service composition requires determining the service components as well as the order

in which services are invoked. Such choices can be made dynamically and automatically at

consuming-time (i.e. when a consumer requests a non existing service) by examining the

characteristics of a set of known services. As described before, services signature can be used

to determine both service components and the dependencies among them. Typically such

dependencies are simple sequence and alternative control-flow patterns (e.g. consume service

A first in order to produce and output that serves as an input for the subsequent service B).

Composed services in the real world, however, follow complex control-flow patterns in

order to fulfil the requirements and constraints of real world business processes [49]. Fur-

thermore, business process modelling comprehends up to 43 well-known control-flow patterns

[50, 46]. Semantic Web service composition, on the other hand, considers various properties

to determine a composed service, however, the few service model ontologies (OWL-S) that

contain elements that make possible to produce complex control-flow patterns are extremely

complex and verbose and control-flow related concepts and relationships cannot be derived

automatically but have to be included in the model manually, at design-time.

In order to face such problem, in this paper we extend a well-known and simple semantic

Web service ontology (MSM, the minimal service model), with minimal concepts and relation-

ships that make possible to represent relationships among services corresponding to complex

control-flow patterns. In this way it is possible to discover composed services as subgraphs

where services are interlinked following complex control-flow patterns.

In this section, we present a real-world business process model that includes various

control-flow patterns as a motivating example (subsection 3.1). Then, we extend the MSM

ontology to support complex control-flow patterns (subsection 3.2) and then we present our

approach to derive 6 control-flow patterns and the corresponding semantic relationships (sub-

section 3.3).
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3.1. Motivating and example: Finding a service to apply for a travel reimburse-

ment

We introduce a business case scenario that is used along the paper to illustrate our ap-

proach. It is inspired on the University of Minnesota travel reimbursement process (https :

//www1.umn.edu/ohr/pay/reimbursements/index.html). For demonstrating the effect of

all the composition patterns we have added complexity to the final step (12) of the process.

Figure 1 presents a business process model for the business case; it comprehends several steps

that we summarize as follows:

1. An employee must retain detailed itemized receipts for expenses of $25 or more, exclud-

ing meals, and s/he must prepare an Employee Expense Worksheet.

2. The employee must sign the worksheet.

3. The employee must attach the receipts to the worksheet and for each receipt, the system

must validate if the costs are within the margins accepted by the university.

4. After the worksheet is completed, it is sent to a Preparer and s/he verifies that the

expenses meet the University (and/or applicable sponsored fund) policy and procedures.

5. The Preparer ensures that receipts are included as required and asks the employee for

any missing receipts.

6. If any rates claimed for applicable charges (hotel, mileage, per diem, etc.) exceed

the University limits, the Preparer contacts the employee, and informs him/her of any

adjustments made to the total reimbursement.

7. The Preparer prints a barcoded Expense Report from the financial system after sub-

mitting it for approval.

8. The Preparer also attaches the worksheet, receipts, and other support documentation

to the printed Expense Report and forwards it to the Approver(s).

9. The Approver reviews the Employee Expense Worksheet to verify if inadequate sub-

stantiation exists for any expense item.

10. If there is an inadequate substantiation, the Approver must request the appropriate

substantiation for the items in question. In addition, the Approver will deny any un-

substantiated expense reimbursement if it is not accompanied by an appropriate sub-

stantiation.

11. The Approver may choose to deny any reimbursement request not submitted within the

established timeline.

12. Once the Employee Expense Worksheet and attached information is appropriate, s/he

approves the transaction and determines the characteristics of the reimbursement such

as the sponsored funds from where the money must be transferred, the payment mode

(bank, cash or Paypal) and the number of payment installments.
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Fig. 1. PMN model of a travel expense reimbursement process based on the Minnesota University
reimbursement process.

Let’s suppose that even though various services provide a partial solution for the problem,

a composed service providing the whole functionality is not yet available. In this scenario,

users (e.g. a business specialist, a software engineer, an IT analyst, etc.) issue a composition

request, which in our approach is an XML file indicating the desired characteristics of a service,

as seen in Figure 2. The request can be determined through dialogs as the composition is

built, but since our focus is the composition itself, we will let out this feature and will assume

that the service request contains all the required information.

Let’s assume that a user issues the service request as described in Figure 2. In this request,

a goal element (Figure 2, line 4) is used to describe the desired activity that an atomic or

composed service will provide (e.g. to obtain a ProcessedReimbursement). The parameters

element (line 6) describes the input and output information that the user requesting the service

is providing. Note that we refer to the concept (semantics) associated to such parameters,

instead of considering it a data type or a value since the latter will be provided at runtime. In

addition, our algorithm requires at most one output but zero or more input concepts (Figure

2, lines 6 to 21). Additional constraints may be provided, for instance the user chooses

the sponsored fund that allows maximum approval limits (Figure 2, line 23), to reimburse

through a bank account (payment mode: bank, cash or paypal) (line 24) and the number

of payment installments, in this case the request specifies only three installments (line 25).

These expressions follow an XPath notation, they are resolved dynamically and bound to the

appropriate control-flow pattern depending on the concepts they refer to (i.e. input, output

or goal).

As we can see in Figure 1 and the request issued by the client (Figure 2), a model (e.g.

an ontology) that supports real world service composition must be able to represent complex
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<?xml xmlns:sb=“http://soc.ing.puc.cl/CompoWS/ServiceBehavior” 

 xmlns:reimbursement=“http://www.university.org/finance/reimburse.owl”  

 targetNamespace="http://example.com/requestReimbursement.xls"

 xmlns:tns="http://example.com/requestReimbursement.xls" 

 xmlns:rq=“http://www.soc.ing.puc.cl/CompoWS/request”  

 version="1.0" encoding="UTF-8"?>

 <xsd:complexType name="Persona">

            <xsd:sequence>

                <xsd:element name=“names” type="xsd:string" />

                <xsd:element name=“surnames” type="xsd:string"/>

                <xsd:element name="dateBirth" type="xsd:date"/>

                <xsd:element name=“personalAccount” type="xsd:integer”/>

            </xsd:sequence>

 </xsd:complexType>

<rq:request>

 <sb:Goal> <!-- Describes the goal to be achieved --> 

        <rq:modelref>reimbursement:ProcessedReimbursement </rq:modelref>

 </sb:Goal>

 <rq:parameters><!-- Describe inputs and the output to be obtained --> 

        <rq:paramIn> <!-- Inputs can be more than one -->

            <rq:name>receipts</name>

            <rq:modelref>reimbursement:Receipts</rq:modelref>
            <rq:value>[id2014,id2023,id2314,id2456]</rq:value>

        </rq:paramIn>

        <rq:paramIn> <!-- Inputs can be more than one -->

            <rq:name>person</name>

            <rq:modelref> reimbursement:PersonalData</rq:modelref>
            <rq:value type="tns:Persona">P</rq:value>

        </rq:paramIn>

        <rq:paramOut>

            <rq:name>result</name>

            <rq:modelref>reimbursement:ReimbursementResult </rq:modelref>
        </rq:paramOut>

 </rq:parameters>

 <rq:guard> <!-- Used to contain the service behaviour of composite. XPath expressions -->

  <rq:expression> math:max(reimbursement:FundApprovalLimit) </expression>

  <rq:expression> contains:(reimbursement:ReimburseByBankAccount") </expression>

  <rq:expression> for-each(reimbursement:NumPaymentInstallments,3) </expression>

 </rq:guard> 

</request>
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Fig. 2. The user request as specified in an XML document.

control-flow patterns such as those arising in the example (alternative service selection, parallel

invocation, and various synchronization patterns), as well as certain constraints (conditional

selection of responses, and iteration) that affect or result in additional control-flow patterns

(e.g. iteration). Existing Web services ontologies that consider control-flow do not consider

complex control-flow (such as iteration or conditional selection of responses) and do not

provide extensibility elements to model such new patterns easily.

3.2. Extending MSM to support complex control-flow patterns

In order to support complex control-flow patterns, we propose a simple extension to the MSM

service ontology (Figure 1). In MSM, a Service (msm:Service) has an endpoint represented

by a URL (rdf:Resource) that exposes one or more operations (msm:Operation) with In-

put/Output parameters (msm:MessageContents and msmMessagePart); these param-

eters refer to concepts in an application domain (rdf:Resource). In Figure 1, rounded
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wl:NonFuctional
Parameter

wl:Condition

wl:NonFuctional
Parameter

wl:Effect

rdf:Resource

msm: 
MessagePart

msm: 
MessageContentmsm: Operationmsm: Service

sb: Goal sawsdl:modelReference
sawsdl:*SchemaMaping

sawsdl:modelReference

xsd:string

rdf:Resource

foaf:Agent

rdf:Literal

xsd:Date

dc:source

dc:terms:issued

dc:creator
rdf:label

rdf:label
rdf:label

msm:hasInput

msm:hasOutput

msm:hasOperation

sb:patterns

sb:hasGoal

sb:hasExpression

Fig. 3. n MSM ontology extension considering control-flow patterns and guard expressions in order

to model service behavior.

rectangles represent concepts (e.g. msm:Service), arcs represent relationships between con-

cepts (e.g. msm:hasInput), and the squared rectangles represent literals (e.g. xsb:string).

In Figure 3, we can see our extension to the MSM service ontology in dotted line and

blue colour. We try to be minimalistic in our extension so that it can be applied to other

Web service ontologies as well. We use the sb (service behavior) namespace prefix to refer to

the elements our proposed extension. Service goals (sb:Goal) represent the activity that is

performed when executing a service, at a high level of abstraction (i.e. is not a service effect)

described according to a domain specific ontology. The goal is related to the service through

a sb:hasGoal relationship. Service composition may be restricted according to certain con-

straints or guard expressions (sb:hasExpresion), and services are related to other services

through relationships that represent the semantics of control-flow patterns (sb:patterns).

In this paper we model six control-flow patterns that are sub-properties of sb:patterns

(i.e. they specialize the sb:patterns relationship), each of them represent a relationship be-

tween two services: sb:sequence, sb:alternative, sb:synchronize, sb:discriminator,

sb:select and sb:iterator, which are detailed in section 3.3. Some constraints or guard

expressions that use the sb:hasExpresion relationship can be seen in Figure 2, lines 23 to

25. These are XPath expressions that are traduced to specific control-flow patterns, that is,

they contribute to generate an sb:patterns relationship, and the guard expression itself is

stored as xsd:string related to the service.

With these three specialized relationships and one concept, we are capable of introducing

complex control-flow patterns support in the MSM semantic service model. That is, services

can relate to each other specifying the type of dependency between them as well as refer to

constraints and the goal they pursue. Furthermore, if we consider these elements in addition

to the service signature it is possible to determine such relationships automatically. In the

following subsection we extend the example presented in subsection 3.1 by including the

ontology extension presented in this section. We use the resulting service implementation

to illustrate the application of a set of rules, which are also detailed. The rules exploit our

ontology extensions to derive control-flow patterns automatically.
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1: RetainAndCheckReceipts
IN:Receipts
OUT: GetApproval
Goal: RetainReceipts

2: PrepareAndSignWorksheet
IN: GetApproval
OUT: Worksheet
Goal: PrepareWorksheet

7: P_VerifyLimits 
IN: ObteinedApproval 
OUT:ApprovalLimit
Goal:  VerifyLimits

8: VerifiyUniversityLimits
IN: ObteinedApproval 
OUT:ApprovalLimit
Goal:  VerifyLimits

6:VerifyExceedULimits
IN: ObteinedApproval 
OUT:ApprovalLimit
Goal:  VerifyLimits

sb:sequence

sb:sequence

sb:sequence

sb:iterator

13:ApprovalAndEvaluation
IN:Receipts
IN:PersonData
OUT: ReinbursementResults
Goal: ProcessReimbursement

math:max(reimbursement:FoundApprovedLimit) 

sb:hasExpression
sb:hasExpression

contains:

(reimbursement:ReimburseByBankAccount)

sb:select/
sb:discriminator

sb:select/
sb:discriminator

for-each(reimbursement:NumPaymentInstallment,3)

sb:hasExpression

9: VerifyMissingReceipts 
IN: VerifyReceipts
OUT: ApprovalLimits
Goal: CompletedWorksheet

16: ReimburseByPayPal
IN: Substantation
OUT: ApprovedReinbursement
Goal: ReimburseByPayPal

15: P_ApprovedTransaction
IN: Substantation
OUT: AprovedReinbursement
Goal: Reimburse

14: ReimburseByBankAccount
IN: Substantation
OUT: ApprovedReinbursement
Goal: Reimburse ByBankAccount

17: ReimburseByCreditCard
IN: Substantation
OUT: ApprovedReinbursement
Goal: ReimburseByCreditCard

sb:sequence

sb:discriminator/
sb:alternative

sb:select/
sb:discriminator

3: PrepareWorksheetWithReceipts
IN:Receipts
IN:PersonalData
OUT: Worksheet
Goal: PrepareWorksheet

4: AttachAndSubmitWorksheet 
IN: Worksheet
OUT: NewWorksheet
Goal: ApproveWorksheet

5:ReceiveAndVerifyExpense
IN: NewWorksheet
OUT: ObtainsApproval 
Goal: ApproveExpences

sb:sequence

sb:sequence

sb:sequence

10: SendWorksheetFinantialSystem
IN: CompleteWorksheet
OUT: FinalWorksheet
Goal: SendWorksheet

sb:sequence

11: ReviewAndVerifyWorksheet 
IN: FinalWorksheet
OUT: ApprovedWorksheet
Goal: ReviewWorksheet

12: VerifyInnadequateSubstantiation
IN: ApprovedWorksheet
OUT: Substantiation
Goal: VerifySubstantiation

sb:sequence

sb:sequence

13: DenyTheReinbursement 
IN: Substantiation
OUT: ReinbursementResults
Goal: ProcessedReimbursement

18: PrintReportAndScanImg 
IN: ApprovedReimbursement
IN:ApprovedWorksheet
OUT: ReimbursementResults
Goal: ProcessedReimbursement

sb:sequence

sb:sequence

sb:synchronize

sb:select/
sb:discriminator

sb:synchronize

sb:sequence

Fig. 4. A composition example for the travel reimbursement scenario: Services are progressively
published into our triplestore as indicated by the numbers. The composed service (19) is built
from bottom to top (backwards) when a user request is made.

3.3. Control flow patterns

In the case of the SAM algorithm [10], the dependencies among atomic services are modelled

as an in-memory tree. The SAM algorithm is executed at run-time for each client request.

Since the graph of services can grow significantly as companies merge, evolve and change their

needs, we pre-compute the possible graph of services dependencies and store the new graph in

a specialized database (a NoSQL, graph oriented database). A fragment of the resulting graph

will serve as the basis of a new composed service if it is eventually required. Our approach

generates new relationships (triples) between services that are stored for later consumption.

These relationships are sub-properties of sb:pattern represented previous in the ontology

(Figure 1).

Figure 4 illustrates a composition graph both at publishing and consuming time for the

previously introduced scenario. The control-flow patterns to derive are based on a set of rules,

detailed in the remainder of this section.
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The widely known Workflow Patterns Initiative [50] identifies 43 control-flow patterns

divided into 8 categories. In our approach, we consider 3 of 5 basic patterns, 2 out of 14

advanced patterns and 1 pattern of the remaining 6 categories in order to illustrate our

approach. They are described below.

3.3.1. Basic Control Flow Patterns

In this section patterns capturing elementary aspects of process control are discussed. The

patterns we consider are sequence, synchronization, and exclusive choice.

Pattern 1: Sequence ( sb:sequence)

A sequence pattern models dependencies between services so that a service s2 cannot

start before service s1 finishes. An sb:sequence operator is inferred when the goals of both

services (s1 and s2) are different, and service (s1) generates an output, which can be used as

an input service (s2).

Figure 4 shows an example including nineteen services, which are progressively published

by the provider. The publication process requires service descriptions to be annotated with

SAWSDL expressions that are that are taken into account to produce SPARQL 1.1 Update

sentences. These sentences generate triples that are stored into a triplestore implemented

in Jena. In the example, the process begins right after service 1 (RetainAndCheckReceipts)

is published. At this point, no relationships are generated since there are no other services.

When service 2 (PrepareandSignWorksheet) is published a sb:sequence relationship is gen-

erated between both services because they have different goals and RetainAndCheckReceipts

output matches PrepareandSignWorksheets input.

Pattern 2: Exclusive Choice ( sb:alternative)

Pattern 2 is applied to services with the same goal and output, however; in this case

the condition is applied to the goal and optionally to the input parameters. The condition

is evaluated to determine which services will be actually invoked and it can be known only

when the user issues a request. In our example, an sb:alternative relationship is created

between services 14 (ReimburseByBankAccount) and 15 (P ApprovedTransaction), since the

client requests to pay using a bank account (Reimburse goal), which impacts only service 14.

The other candidate services, 16 and 17, will be discarded because their goals are different to

the request (Figure 3 line 24). In summary, depending on the guard expression, some services

may be selected, others may be ignored and new relationships may be created. Expressions

applied to services with the same goal and output that evaluate the output results, will cause

the inclusion of services related through sb:select relationships. However, expressions that

evaluate only the goal (and optionally the input) will cause to ignore those services whose

evaluation is negative, such services will be related through an sb:alternative relationships. If

no guard expressions are applied, then the services will be related through the sb:discriminator

relationship.

Pattern 3: Synchronization ( sb:synchronize)

This pattern is applied when the inputs of a service can be obtained from the outputs of

other services, and not a single service can provide all the inputs. In the example, when service
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18 (PrintReportAndScanimg) is published, this pattern is applied; it requires the execution of

service 11 (ReviewAndVerifyWorksheet) and service 15 (P ApprovedTransaction) in order to

start its execution. Hence, an sb:synchronize relationship is created between service 18 and

11, and service 18 and 15. In the latter case, predecessors (e.g. service 15) are preferred to

final services (e.g. services 14, 16 and 17).

3.3.2. Advanced Branching and Synchronization Patterns

Advanced patterns refer mainly to parallel invocation. These patterns refer to the various

ways that the split and join part of a parallel invocation can arise in business processes. We

considered the Structured Synchronizing Merge, and the Structured Discriminator patterns.

Pattern 4: Structured Discriminator ( sb:discriminator)

In this pattern the thread of control is passed to next service when the first incoming

service finishes its execution. That is, only the output of the first service providing a response

is considered. When a service is published, the algorithm searches for services with the same

goal and output. If there exists more than one service that share the same goal and output,

a predecessor node is created (or reused if already exists) and the services are related to the

predecessor with an sb:discriminator relationships.

In Figure 4 when the provider publishes service 8 (VerifyUniversityLimits) and service

6 (VerifyExceedULimits), pattern 4 is applied, since the goal and outputs of both services

are the same. Note that service 7 (P VerifyLimits) is the predecessor service created by the

system. The same case applies to services 14 (ReimburseByBankAccount), 16 (ReimburseBy-

PayPal) y 17 (ReimburseByCreditCard), which cause the generation of service predecessor

15 (P ApprovedTransaction). Notice that in this case, the goals of services 14 (Reimburse-

ByBankAccount), 16 (ReimburseByPayPal), and 17 (ReimburseByCreditCard) are special-

izations (inheritance) of the goal of service 15 (Reimburse) as defined in the reimbursement

ontology. Predecessors are not executable services (empty services); they are generated auto-

matically using the grouped services goal (or the super goal in the case of inheritance) as the

predecessor name.

Pattern 5: Structured Synchronizing Merge ( sb:select)

Similarly to pattern 4, services with the same goal and output are grouped together under

a predecessor using an sb:select relationship. However, unlike pattern 4, a condition applied

to the services output must be evaluated at runtime in order to choose the proper response

and such condition can be known only when the user provides a service request. That is, this

pattern is not pre-computed at publishing time, but calculated when the consumer issues its

request (see Section 5, Connect2 algorithm).

In Figure 3, when the consumer issues a request and specifies a guard expression on the

FundApprovalLimit output parameter (line 23), pattern 5 is applied to services 6 (VerifyEx-

ceedULimits) and 8 (VerifyUniversityLimits) since the goal of both services and their output

parameters are the same and the output parameter is FundApprovalLimit. Since a predeces-

sor was generated in the previous example, the system connects services 6 and 8 with the

predecessor with a sb:select relationship.
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3.3.3. Iteration Patterns

The following pattern deals with capturing repetitive behaviour in a workflow. We only con-

sidered the Structured loop pattern.

Pattern 6: Structured Loop (Pre-Test) ( sb:iterator)

The iteration pattern occurs when the user requests that a simple or composed service

is executed more than once. This need can be only determined from the user request, at

composing time, based on the for-each guard expression applied on some goal. In Figure 4,

the client specifies that the payment shall be performed in 3 installments only (Figure 3 line

25). Then, an sb:iterator relationship is applied to service 15 (P ApprovedTransaction).

4. COMPO-SWS

In order to test our approach we designed and built Compo-SWS, a Web service composer

that follows a two sides approach. First, it acknowledges the different roles of the service

publisher and the service consumer, and for the former case it takes advantage of the ser-

vice availability by pre-calculating all possible relationships, so that, at consuming time, the

chances of finding and already identified composed service are higher.

In Figure 5, we summarize the major architectural components of Compo-SWS. The dotted

rectangle (A) represents the Web services container on the side of the service publisher. The

publishing process (step 1) requires that the provider interact with Compo-SWS interface in

order to submit the service description. Such description must be annotated with SA-WSDL

expressions in order to be transformed, according to our ontology, into triples (step 2).

The SAWSDL descriptions contain annotations related to the service goal and data types.

The service goal annotation is an attribute of the WSDLs portType element; data types

(used as input and output) annotations refer to concepts defined in an external application

domain through a modelReference element. Figure 6(A) shows a SAWSDL description for the

PrepareWorksheetWithReceipts service. The services goal is to allow an employee to request

a process reimbursement (#PrepareWorksheet), the service’s input includes the receipts

(#Receipts) and the employee personal data ( #PersonalData); and the services output is the

worksheet (#Worksheet) registered by the service. The SAWSDL description is transformed

(step 2) into a SPARQL 1.1 Update expression that populates the triplestore. Figure 6(B)

presents the SPARQL query generated to populate the triplestore for the SAWSDL description

shown in Figure 6(A).

The generated triples are stored into a Jenas TDB triplestore. We use Apache Jena, which

is a Java framework providing functionality such as RDF and N3 parsers, and a SPARQL

engine among other features. It also provides a programming environment for RDF, RDF(S),

OWL, and SPARQL and includes an inference engine based on rules and triplestores. Once

translated, the service description is analysed by the Control Flow Analyser component, which

is responsible of executing the Connect algorithm, which connects the services together (step

3 in Figure 12) using the different relationships corresponding to the control-flow patterns.

These relationships become new triples that are stored in the database.

The client request can be provided as an XML document (see Figure 2) describing the

expected goal and output, and providing some inputs and guards (Figure 5, step 4). The

FindService algorithm is performed by the Service Discovery component (step 5), which
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Fig. 5. Compo-SWS Architecture.

executes the SPARQL queries on the triplestore. If a service is found, the user is informed

(step 6). If no service is found, the FindService algorithm is executed (step 5a) by the Service

Composer component, obtaining a subgraph of services.

The identified subgraph is returned to the user (step 7a) who is asked for approval. If the

composed service is approved, a SAWSDL description is created and stored in the triplestore

(step 7b). An executable file (Java .class) implementing the component services invocation

under the control-flow patterns is created. The bundle, including the executable file and the

service description, is deployed on the CompoSWS Provider Web services container (step 7c)

in order to expose the created services endpoint. The composed services URL is also supplied

to the user (step 7d). Our algorithms have been fully implemented in Java and SPARQL

using the Jenas SAWSDL4J API and the OWL API as well as the Pellet reasoner as inference

engine for logic-based matchmaking. In the following section, the composition algorithms for

both sides, the publisher and the consumer, are presented in detail.

5. Composition Algorithms

In this section we present the algorithms that implement the described control-flow patterns,

from the publisher and consumer perspective. When a service is published in our platform

(Figure 5, steps 1 and 2), the system pre-calculates all the possible relationships between the
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<?xml xmlns:reimbursement=“http://www.university.org/finance/reimburse.owl" >
<wsdl:definitions ... >

  <wsdl:types>

    <xsd:schema targetNamespace="http://localhost:8080/axis2/service/PrepareWorkseetWithReceipts/“>

      <xsd:element name="request"> <xsd:complexType> <xsd:sequence>

            <xsd:element sawsdl:modelReference=“reimbursement:Receipts”/>

            <xsd:element sawsdl:modelReference="reimbursement:PersonalData”/>

      </xsd:sequence> </xsd:complexType></xsd:element>

      <xsd:element name="response"> <xsd:complexType><xsd:sequence>

           <xsd:element sawsdl:modelReference=“reimbursement:Worksheet”/>

      </xsd:sequence></xsd:complexType></xsd:element>

    </xsd:schema>

  </wsdl:types>

  <wsdl:message name="op1Response"> <wsdl:part name="op1Response" type="tns:response" /> </wsdl:message>

  <wsdl:message name="op1Request">  <wsdl:part name="op1Request" type="tns:request" /> </wsdl:message>

  <wsdl:portType name="PrepareWorkseetWithReceipts">

    <wsdl:operation name="op1">

      <wsdl:input message="tns: op1Request" >

      <wsdl:output message="tns: op1Response" >

      <sawsdl:attrExtensions sawsdl:modelReference=“reimbursement:PrepareWorksheet”/>

    </wsdl:operation>

  </wsdl:portType>

  <wsdl:binding … >

  <wsdl:service … >

</wsdl:definitions>

INSERT DATA  { 

  sd:s1 a sd:Service ; 

   sd:hasUrl 'http://localhost:8080/axis2/service/PrepareWorkseetWithReceipts?wsdl'; 

          sd:hasGoal reimbursement:PrepareWorksheet  ; 

          sd:hasOperation  sd:operations1 . 

             sd:operations1 a sd:Operation . 

             sd:operations1 sd:hasIn sd:in_s11 . 

                  sd:in_s11 a sd:In ; sd:hasParameters reimbursement:Receipts .  

             sd:operations1 sd:hasIn sd:in_s12 . 

                  sd:in_s12 a sd:In ; sd:hasParameters reimbursement:PersonalData .  

             sd:operations1 sd:hasOut sd:out_s1 . 

                  sd:out_s1 a sd:Out ; sd:hasParameters reimbursement:Worksheet . }

A

B

Fig. 6. A: SAWSDL description for the PrepareWorksheetWithReceipts service; goal, input and

output are annotated. B: The N3 query using SPARQL 1.1 Update generated form the SAWSDL.

services (Figure 5, step 3) through the Connect algorithm (See subsection 5.1). The resulting

graph includes the services goals, input and output characteristics, at the semantic level,

including the presented control-flow patterns and rules.

When a consumer requests a service (Figure 5, step 4), the system looks for an existing

service (Figure 5, step 5) executing the Connect2 algorithm. If no service can be found, the

system finds a graph fragment that satisfies all or most of the users requests (Figure 5, step

5a). The latter task is accomplished by executing the FindService algorithm (See subsection

5.2). If the consumer approves the proposed service, the graph is used as the behaviour

(control-flow) of a composed service, which is created, deployed, and publisher later in our

system.

5.1. Pre-computing the graph: the Connect algorithm

SPARQL is an RDF query language that operates over the data graph model underlying

a triplestore. It has some limitations for expressing queries where the length of the path

of the consulted graph model is variable, that is, every arc of a graph must be statically

and explicitly defined in a SPARQL query. Since we are modelling service dependencies as

graphs, our workflows have unpredictable lengths. The Connect algorithm addresses this issue

by breaking down the graph query in two steps. Figure 7 presents the algorithm following

Gooneratne [19].

In lines 2 to 12 (Figure 7 ), the algorithm uses a SPARQL query to look for the occurrence

of the select, discriminator and alternative patterns. That is, it looks for services with a

goal and output that is equal to the published services goal and output. For instance, when
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Connect (S) {

   // FIND DISCRIMINATOR PATTERNS

   // Search services witch the same goal and output (Q1)

  C ←  FindNode(Goal(S), Output(S))

  for each S’ ∈ C do

// find the predecessor of S’

P ←  Predecessor(S’) (Q2)

if P is Null then

            P ←  CreatePredecesor(S’) (Q3)      

        // connect the service S with P

ConnectDiscriminator(S, P);

  end

  // FIND SEQUENCE AND SYNCHRONIZE PATTERNS 

  // Search services with different goal and same output of S      

  C ←  FindNode(Goal(S), Output(S)) (Q4)

  for each  S’∈ C do

    if relationship(S’, S) = sequence then

     connectSequence(S, S’); 

    else

      if relationship(S’, S) = synchronization then

     connectSynchronize(S, S’);

   end

  I ←  FindInput(S)

  for each I’∈ I do

    C ←  FindNode(Goal(S), I) (Q5)

    for each S’ ∈  C do

       if relationship(S’, S) =  sequence then

     connectSequence(S, S’); 

       else

         if relationship(S’, S) = synchronization then

      connectSynchronize(S, S’);

   end

  end 

1
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32

Fig. 7. Connect algorithm, step 1 (lines 1 to 12) and Connect algorithm, step2 (lines 13 to 30).

service 3 is published, the algorithm searches for services with a #PrepareWorksheet goal and

#Worksheet output (see Figure 8 (Q1)).

The resulting graph is evaluated to determine if all the nodes that share the same goal

and output are associated to a predecessor through a sb:select, sb:discriminator, or

sb:alternative relationships. Figure 8 (Q2) presents a SPARQL query looking for a prede-

cessor for a specific service (PrepareWorksheetWithReceipts). If the predecessor exists but the

relationships are missing, nodes and predecessor are connected. If there is not an available

predecessor, it is created and the relationships are established (Figure 8 (Q3)).

In lines 13 to 32 (Figure 7 ), the sequence and synchronize patterns are discovered using

two queries (see Figure 8 (Q4 and Q5)). Q4 looks for services with a goal different than

the published services goal and with an input parameter that matches the published services

output parameter (Figure 8 (Q4)). Q5 looks for services with a goal different than the pub-

lished services goal and with an output parameter that matches at least one of the published

services input parameters (Figure 8 (Q5)).

5.2. Consuming services

When a consumer requests a service, the system attempts to find an atomic service providing
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INSERT DATA  { 

 sd:s3P a sd:Service ; 

 sd:hasUrl 

   'http://localhost:8080/ws/sP5?wsdl'; 

 sd:hasGoal reimbursement:VerifyLimits; 

 sd:hasOperation  sd:operation3 . 

 sd:operation3 a sd:Operation . 

 sd:operation3 sd:hasOut sd:out . 

 sd:out a sd:Out ; sd:hasParameters  

      reimbursement:Worksheet.} (Q3)

 SELECT  ?x ?url ?goal ?op ?in ?inT ?out ?outT 

 WHERE { ?x  rdf:type sd:Service. ?x sd:hasUrl ?url. 

         ?op rdf:type sd:Operation. 

         ?x sd:hasOperation ?op. 

         OPTIONAL { ?op sd:hasIn ?in . 

               ?in sd:hasParameters ?inT.} 

         ?op sd:hasOut ?out . 

         ?out sd:hasParameters ?outT . 

         ?x sd:hasGoal ?goal . 

         ?x2  rdf:type sd:Service . 

         ?x sd:discriminator ?x2. 

         ?x2 sd:hasUrl 

         "http://localhost:8080/ws/

                 PrepareWorksheetWithReceipts?wsdl".}

(Q2)

 SELECT  ?x ?url ?op ?in ?inT ?out

         (reimbursement:PrepareWorksheet AS ?goal)   

         (reimbursement:Worksheet AS ?outT) 

 WHERE{ ?x  rdf:type sd:Service. ?x sd:hasUrl ?url.  

       ?op rdf:type sd:Operation . 

       ?x sd:hasOperation ?op . 

       OPTIONAL { ?in sd:hasParameters ?inT . 

                  ?op sd:hasIn ?in.} 

       ?out sd:hasParameters reimbursement:Worksheet. 

       ?op sd:hasOut ?out  . 

       ?x sd:hasGoal reimbursement:PrepareWorksheet . 

       FILTER NOT EXISTS { ?y  rdf:type sd:Service.  

                            ?y sd:discriminator ?x.       

                            FILTER (?x = ?y )} }

(Q1)

 SELECT   ?x ?url ?goal ?op ?in 

   (reimbursement:ApprovalLimit AS ?inT) ?out ?outT

 WHERE{ ?x  rdf:type sd:Service . ?x sd:hasUrl ?url .

 ?op rdf:type sd:Operation . 

 ?x sd:hasOperation ?op . 

 ?in sd:hasParameters reimbursement:ApprovalLimit. 

 ?op sd:hasIn ?in. 

 ?out sd:hasParameters ?outT. ?op sd:hasOut ?out. 

 ?x sd:hasGoal ?goal. 

     FILTER(?goal != reimbursement:VerifyLimits).  

    FILTER NOT EXISTS { ?y rdf:type sd:Service.  

                           ?y sd:discriminator ?x.  

                           FILTER (?x = ?y )} }

(Q4)

SELECT ?x ?url ?goal ?op ?in  ?inT 

       ?out (reimbursement:ObtainedApproval AS ?outT) 

WHERE{ ?x  rdf:type sd:Service . ?x sd:hasUrl ?url .

 ?op rdf:type sd:Operation. 

 ?x sd:hasOperation ?op.

 ?op sd:hasOut ?out. 

 ?out sd:hasParametersreimbursement:ObtainedApproval. 

 ?op sd:hasIn ?in.?in sd:hasParameters ?inT.

 ?x sd:hasGoal ?goal . 

    FILTER(?goal != reimbursement:VerifyLimits) .   

      FILTER NOT EXISTS { ?y  rdf:type sd:Service.  

                          ?y sd:discriminator ?x.  

                          FILTER (?x = ?y )} }

(Q5)

Fig. 8. Q1 query finds all the services with the same goal and output. Q2 query looks for a

specific service predecessor. Q3 creates a predecessor in no one is available. Q4 and Q5 look for
services with a goal other than the published services goal, in particular (Q4): Finds services with
an input parameter that matches the published service output and (Q5): Looks for services with
an output parameter that matches one of the published service input parameter.

the requested functionality. Otherwise, the system looks for a subgraph of services of variable

length that satisfies clients needs. The subgraph is a set of interrelated services containing all

or most of the information provided by the user (input), called origin nodes; and containing

the expected goal and result (output) required by the user, called target nodes. Notice that it

may be necessary various services in order to cover all the user requests input parameters, and

there may be some parameters that no service in the system support. Our approach minimizes

the number of services required to cover the user request, and additional parameters shall be

required to the user in an interactive fashion if needed, but such feature is out of the scope

of this paper.

For instance, let’s consider the example shown in the business scenario previously pro-

posed (See Figure 1). The requested goal is to determine the Reimbursement Conditions

(ProcessedReimbursement goal, ReimbursementResults output) given certain receipts an em-

ployee personal data (Receipts, and PersonalData input parameters respectively). The user

also prefers that the fund maximum approval limit is granted (FundAppovalLimit, see line

23 in Figure 2), and the payment option is through a bank account (ReimburseByBankAc-

count, see line 24 in Figure 2), and indicates that 3 (NumPaymentInstalment, see line 25 in

Figure 2) will be the maximum number of payment instalments. Lets consider as well that

only services 1 to 19, as described in the example (see Figure 4), have been published in our
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Connect2 (S) {

   // FIND ALTERNATIVE AND SELECT PATTERNS

   // Search services witch the same goal and output (Q1)

  C ←  FindNode(Goal(S), Output(S))

  for each S’ ∈  C do

// find the predecessor of S’

P ← Predecessor(S’) (Q2)

if P is Null then

            P ← CreatePredecesor(S’) (Q3)      

        // connect the service S with P

ConnectSelectAlternative(S, P);

  end

  // FIND ITERATOR PATTERN

  ConnectIterator(S);

end

Fig. 9. The Connect2 algorithm generates sb:select, sb:alternative and sb:iterator relationships
as defined by the corresponding control-flow patterns.

system. That is, services 1 to 19 have been related through the sb:sequence, sb:iterator,

sb:synchronize, sb:alternative, sb:select and sb:discriminator control-flow patterns.

Inputs, outputs and goals are described through concepts in an ontology. Some researches

[11] exploit the ontology structure and the concept syntax in order to determine a more

relaxed similarity degree among concepts, which increases the candidates set. In this paper

we consider only exact similarity among concepts since our focus is the composition that

takes place once candidates have been found. We plan to include such hybrid approaches

as future work. As discussed in Section 3.3, patterns 3 (sb:select), 4 (sb:alternative),

and 5 (sb:iterator) can be only applied when the user issues his or her request. That

is, the Connect2 algorithm looks for services with the same goal and output and creates

the predecessors if necessary connecting the services with sb:select, sb:alternative or

sb:iterator patterns. The Connect2 algorithm is shown in Figure 9.

Once the Connect2 algorithm completes the graph, the FindService algorithm seeks for

an atomic service that matches the requests input, output and goal (line 5, query QF1 in

Figure 10). If such service cannot be found, the algorithm searches for the set of nodes that

contains the goal and the output defined in the user request that is the set of target nodes,

using a SPARQL 1.0 Query (line 8, query QF2 in Figure 10).

Figure 10, lines 11 to 22 is a backtracking algorithm that, starting from a target node

(first element of a queue Q), builds a graph until the set of origin nodes are reached. The

algorithm incrementally finds services leaving out those that cannot allow it to arrive to a

valid solution (i.e. includes only services containing at least one input that matches the

user request input I). The resulting graph includes the services related through the defined

control-flow relationships.

Considering the patterns of our study, there are only two ways that services can create

compositions that include more than one service, that is, either they form a sequence (at

least 2 services) or they are invoked in parallel (at least 2 services). These cases correspond

to the sb:sequence and sb:synchronize patterns. The other patterns represent services

that are connected either to themselves (sb:iterator) or to an abstract service (predeces-

sor) but have connections among them (sb:discriminator, sb:select, sb:alternative).

Since the nodes in the resulting subgraph are interlinked with control-flow relationships, it is
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24

FindService (S)

  G ← Goal(S)

  O ← Output(S)

  I ← Inputs(S)

  // Search atomic service with similar goal, inputs and output (QF1)

  S* ← FindNode(G, I, O)

  if S* not is Null then

    C <- FindNode(G, O) (QF2)

   for each S’ ∈  C do

      Q ← CreateAndEnqueue(S)

P = Ø

  while not is empty Q do

      S ← FirstInQueue(Q)

      if S not visited then

         Visited(S)

         C ← FindRequireServices(S)

        for each S’ ∈  C do

            R ← Next(C)

            if R not visited then

                 Enqueue(R)

                 If R has equal input  I  then

                    P ← P + R

       S* ← S*  +  P

    return S*

 end

Fig. 10. The FindService algorithm is responsible for finding a simple service or discovers the
subgraph between a target and origin nodes, generating a subgraph that represents the composed
service behaviour.

possible to create a composed service that implements the corresponding logic. In our case,

we generate a Java Web Service class that implements the new composed service. That is,

the composite is a bundle containing a SAWSDL description and the functional modules (i.e.

Java classes) implementing the invocation of services according to the workflow represented

by the subgraph. The description contains the set of inputs and the output defined by the user

request; it is also stored in our triplestore. It will be possible to generate a BPEL description

supporting the proposed control-flow patterns, however such alternative will be considered

for future work.

In our example, the origin service is service 3 (PrepareWorksheetWithReceipts) because it

contains two input parameters (Receipts and PersonalData) that match the user request input.

The subgraph contains related services that include the output parameter (Reimbursemen-

tResult) and the goal (ProcessedReimbursement) as requested by the user. In our example,

the algorithm finds one possible solution starting from service 3 (PrepareWorksheetWithRe-

ceipts) to service 18 (PrintReportAndScaimg) passing through services 3, 4, 5, 6, 9, 10, 11,

12, 14 and 18. Hence, a new composite service ApprovalAndEvaluation will be created, and

the guard expressions (line 23 for services 6 and 8; 24 for service 14; and 25 for service 15 in

Figure 2) will be triggered and evaluated at run-time, depending on the user preferences (at

run-time), additional control-flow relationships could be created for the composite graph.

6. Evaluation

In this section, we evaluate our approach theoretically, through an analysis of complexity,

and experimentally by measuring performance and scalability. Our analysis considers one
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SELECT  ?url                                        (QF1)

 WHERE{?x sd:hasOperation ?op.  ?x sd:hasUrl ?url.

     ?in0 sd:hasParameters reimbursement:Receipts. 

     ?op sd:hasIn ?in0. 

     ?in1 sd:hasParameters reimbursement:PersonalData. 

     ?op sd:hasIn ?in1. ?out sd:hasParameters  

        reimbursement:ReimbursementResult. 

     ?op sd:hasOut ?out.                      

   ?x sd:hasGoal reimbursement:ProcessedReimbursement. }                                    

SELECT  ?x ?url ?operation ?in ?inT ?out                 (QF2)

WHERE { ?x sd:hasOperation ?op . 

  OPTIONAL { ?in sd:hasParameters ?inT . 

             ?op sd:hasIn ?in  .} 

  ?out sd:hasParameters. ?x sd:hasUrl ?url.  

  ?operation sd:hasOut ?out reimbursement:ReimbursementResult. 

  ?x sd:hasGoal reimbursement:ProcessedReimbursement. }                                       

Fig. 11. Query (QF1) seeks for an atomic service that matches the requests input, output and
goal. Query (QF2) searches for the set of nodes that contains the goal and the output defined in
the user request that is the set of target nodes.

operation per service, although it can be extended to include more operations. We also

consider a single output parameter and zero or more input parameters.

6.1. Provider complexity: publishing a new service

Complexity is calculated considering V , the number of nodes in a graph (services); E, the

edges between the nodes (relationships); and k, the number of input parameters for each

node. As described before, when a new service is registered in the platform, the possible

relationships between services are calculated. The worst-case time complexity analysis of the

Connect() algorithm, connect(V,E, k), considers three phases, a) finding the nodes matching

the new service goals and outputs (line 4 to 13, Figure 5 ) and b) finding the services with a

goal that differs from the new service goal, but has at least one input that matches the output

of the new service (line 17 to 25, Figure 7 ), and c) finding services with a goal different than

the new service but with an output that matches the new services inputs (line 27 to 36, Figure

7 ).

Lets consider M , the number of nodes representing services with the same goal as the new

service, and M the number of services with different goal, let be V the total set of nodes,

such that V = M +M .

For the case of a) the worst-case time complexity analysis occurs when M = V , that

is all the nodes matches the new service goal, hence, the order of this step is calculated as

TConnect(V,E, k) = V , that is the process of creating a relationship between the new service

and the previously existing services. For the case of b), the worst-case scenario occurs when

the new service output matches all the previously stored services input, in this case, the order

is TConnect(V,E, k) = V . For the case of c), the worst-case scenario occurs when given the

new services k inputs, every V node output matches the new services input, hence the order

is TConnect(V,E, k) = V ∗ k. That is, for each input of the new service, a relationship is

established with all the existing nodes. Therefore in the worst case, the algorithm has order
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TConnect(V,E, k) = V ∗ k time complexity. Hence, the algorithm is lineal.

6.2. Consumer complexity: atomic or composed (on the fly) service

When consuming a service, the algorithm FindService() recursively finds a graph of services

providing the desired functionality. The worst-case time complexity for FindService() is

defined as TFindService(V,E, k) = 1, that is, it performs a query searching for an atomic

service that matches users criteria (Figure 9, QF1, line 3). If there is no atomic service, the

algorithm will perform also a single query searching for the services matching the users request

goal and output. In this case the time complexity is calculated as TFindService(V,E, k) the

query result will include a list of nodes N < V , the algorithm performs a depth-first recursive

search. The end of the recursion occurs when a nodes or a set of nodes inputs (k) matches

the user requirements inputs. The worst case time complexity of the depth-first search is E

(all the edges) and, since this search must be performed for all the results obtained in the

previous query the time complexity is TCreatePath(V,E, k) = E ∗ N . Hence, the order of

complexity for the consumer phase is E ∗N time complexity, that is, O(N2) complexity.

6.3. Experimental evaluation

In order to measure the performance and scalability of our approach, we used a SAWSDL test-

bed collection semi-automatically derived from a SAWSDL public dataset (SAWSDL- TC3

WSDL11). Descriptions were annotated with a goal concept since the collection considered

only input/output concepts. The original collection consisted of 1080 Web services covering

different application domains: education, medical care, food, travel, communication, economy

and weaponry. We only used 980 services for this test and discarded all services with no

outputs. We ran our experiments on an Intel Xeon E5620 with 2,4 Ghz 4Core and 3 GB

RAM, running on Linux Ubuntu 11.04. We performed the tests 10 times and we averaged all

the results in order to obtain a reliable measure. We evaluated the pre-computing response

time when publishing a new service (the connect algorithm) and the response time when

requesting a service (service discovery and composition).

6.3.1. Performance analysis: Publishing time

We measured the time it takes to add a new service to the graph, varying the number of

web services from 1 to 980. In order to avoid additions with no effects (no relationships) we

added first the biggest set of unique nodes arranged in a deep relationship (i.e. sequence or

synchronize) conforming a composite. In our dataset, the largest possible composed service

corresponds to a set of four nodes connected with a sequence relationship (three edges). We

added these services first and the remainder nodes were added in random order, one by one.

The experiment was run 10 times and the results averaged.

In Figure 12 the response time obtained when publishing services is shown as a histogram

of 10 intervals; tables a) and b) presents some descriptive analysis. The response time is 0

for a total of 79% of the added services; this result varies from 69% to 94% according to the

applied pattern. The average response time is 7 milliseconds, again varying according to the

pattern, the maximum response time (average) obtained is 105 milliseconds corresponding

to the addition of a service that causes the generation of various select (or discriminator)
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Fig. 12. Descriptive analysis of the performance results when publishing services.

relationships. The standard deviation is about 17 milliseconds, which is, three times the

average.

Fig. 13. Accumulated maximum response time obtained from the connect algorithm.

Figure 14 shows the time response results (y-axis) when publishing the Web services (x-

axis), in seconds. The figure shows the distribution of such values. As can be seen in the

figure, the time for pre-computing services composition increases with the number of web

services, this is explained since the more available services, the more comparisons must be

performed and probably the more relationships must be created. Notice also that the select

and discriminator patterns have the same behaviour; this is because both relations are created

at the same time. In addition, the alternative relationship is created only when a consumer

requests this relation, hence it was not included in our analysis.

6.3.2. Performance analysis: Consumer time

We measured the response time needed to process Web services requests. Following a similar

strategy, we published first a set of four connected services and then added the remainder
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Fig. 14. Response time considering the sequence, select, discriminator, and synchronize patterns.

services randomly. We performed queries asking for services that we knew included 1 (SS), 2

(2CS), 3 (3CS) and 4 (4CS) services, however, we did not stored the composed services into

the triplestore (so that, they need to be discovered every time a query is performed). The

experiment was ran 10 times and the results averaged. Figure 14 shows the mean execution

time required for processing the queries; as we can observe the response time increases as the

number of Web services in the triplestore increases. This is explained because we perform

deep and breadth searches, so that, the more services are published, the more likely they

conform complex composites and hence the time spent by the createPathComposedService

algorithm increases.

Fig. 15. Response time when searching for atomic and composed services including 1 (SS), 2
(2CS), 3 (3CS) and 4 (4CS) services.

6.3.3. Performance evaluation and metrics

We compared our approach using eight public repositories from Web Service Challenge 2008

[9], CompoIT [43, 44] and WSD [35], since the datasets present the same size and perform

a similar task. However, notice that service composition implemented in such approaches

correspond to simple control-flow patterns, namely sequence and alternative, requiring deep

search instead of both deep and breadth search, which is our case. In addition, the WSC

challenges as well as WSD perform only the search task, leaving out the composition step

(and time); CompoIT and WSD considers search by similarity whereas we are limited to

exact matches which causes that they can obtain a high number of composed services while

we are limited to exact matches. Figure 16(a) summarizes the results of these approaches
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in terms of the number of relevant services (Serv) number of discovered services used in the

generated service compositions, dynamic service composition or discovery time (Time(ms))

in milliseconds; that is, the time required to process a user service request and perform the

discovery of services and composition if possible. Figure 16(b) presents a comparison of the

top-8 approaches. The number of I/O parameters however is around 5700 (taking into account

semantic concepts) for WSC while we keep 7 I/O parameters.

The quality of each composition includes also the complexity of the composed services.

The depth of a composed service in the WSC dataset falls between 5 to 8, comprehending also

10 to 20 services, whereas the deepest composed service in our dataset includes 5 composition

layers and 43 services. However, our composed services include the sequences/synchronize

pattern (depth) as well as the select/discriminator pattern (breadth). For the latter case, the

broadest composed service includes 21 services.
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Fig. 16. A comparison, based on number of services composed or discovered versus response
time and the quality of the solution, among our approach (CompoSWS) and the WSC challenge,
CompoIT and WDS.

7. Conclusions

In this paper we propose a technique for automatically deriving simple and complex com-

posed service behaviour from the component services characteristics, dynamically. In order

to deal with the resulting complexity, we also propose a strategy for pre-computing possible

relationships resulting in a control-flow graph. Later, queries can identify graph fragments

as potential candidates for a complete or partial composed service, automatically and dy-

namically. Our results provide good evidence of the potential of our approach. Despite the

increasing response time at publishing-time, 75% of such responses took almost 0 seconds.

Regarding the consumer-time, our observations testify that as the composites are stored, the

service response time also decreases. An important limitation of our approach is the need for

providers, and consumers to know beforehand the ontologies describing the concepts associ-

ated with inputs, outputs and goals as well as properly writing the request and annotating the

services. Possible solutions for such challenges include the emergence of popular ontologies

in various niches such as FOAF describing social relationships, Good Relations describing

e-Commerce, among others.

In this paper we used semantic Web technologies but we placed an emphasis on the graph

nature of the data model rather than the semantic aspects. SPARQL 1.1 presents some limi-

tations to perform queries such as those needed in our work but other NoSQL databases and

languages such as Neo4J, Cipher, and Gremlin may serve to provide an alternative imple-
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mentation with better performance. In addition, we exploited only concept specialization in

order to implement goal queries as described in the ontologies, however, other techniques that

range from logical (plugin, subsumed-match, subsumed-by-match) to statistical (similarity by

nearest neighbour, pearson, jacquard, etc.) or a hybrid, will be applied as future work. In

such cases, we expect an explosive growth in the number of relationships between services

and possible a degrading performance and scalability. Finally, we just explored 6 control-flow

patterns out of the numerous existing and ones in order to prove the feasibility of our ap-

proach, this work should be extended to determine the feasibility of automatically deriving

the remaining patterns.
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