
Journal of Web Engineering, Vol. 15, No.1&2 (2016) 001-028
© Rinton Press

DERIVING FAULT TRIGGER METRIC FOR WEB BASED SYSTEMS

SANGEETA SABHARWAL RITU SIBAL
Netaji Subhas Institute of Technology,

Department of Computer Science and Information Technology

CHAYANIKA SHARMA
University of Delhi, Delhi, India

Email: chayanika_29a@yahoo.com

Received December 15, 2014
Revised June 12, 2015

Important issues regarding web applications are measuring the complexity and reliability of the system and
testing every possible sequence of events. Hence, there is a need to identify and analyze the potential
failures of the system. In the current research work, the concept of web links and Fault Tree Analysis
(FTA) technique has been used to identify the potential failures of a web application. The web application
is divided into modules and possible faults in each module are represented by a fault tree. Each fault event
in a fault tree is assigned a measure using number of static links or dynamic links calculated using a metric
called, Fault Trigger Metric (FTM). The value of FTM is calculated at event, module and system level and
can form the basis to predict reliability/testing effort of the web application. The value of FTM at system
level is called Fault Vulnerability Metric (FVM) and can form the basis to predict reliability/testing effort
of the web application. Systems with high FVM value will be less reliable and hence will require more
testing effort.

Key words: fault tree, event, fault, web application, reliability, testing effort
Communicated by: M. Gaedke & Q. Li

1 Introduction

As we move towards pervasive computing, web applications have gained importance in many
application domains. As web applications are used in real time applications, their reliability becomes
important. One of the challenges in testing web application is the enormous interaction of events
invoked by the users. The large number of interactions with a web application results in a large number
of test cases, making testing of web application difficult. In a web application, a system is executed in
large number of client configurations, making space of possible configurations very large. This
requires extensive testing of a web application. A web application consists of a number of web pages
interconnected by static links or dynamic links. Static links also known as HTML links or hyperlinks
are connections from one web page or web resource to another. A static link is an element, an image or
a text that users can click on and navigate to the next web page. The default behavior of static link is
retrieval of another web page which is obtained by selecting the link. On the other hand dynamic links
carry out user session dependent actions [9].

2 Deriving Fault Trigger Metric for Web based Systems

The complexity of a system is closely related with maintainability, testing efforts, and
understandability [4]. Growing complexity of web applications has therefore led to high maintenance
cost. In the past, several researchers have proposed metrics for predicting the maintainability of web
applications. Ghosheh, E. et al. [2] have proposed metrics using Web Application Extension (WAE)
for Unified Modeling Language (UML) class diagrams to measure the maintainability of the web
applications. Jung, W. et al. [4] have proposed a complexity measure for a web application which is
related to the maintenance efforts. Mao, C. [6] has proposed data complexity metric using def-use pairs
in order to understand the system and to do its defect analysis. Marchetto, A. et al. [7] have proposed a
quality model based on object oriented metrics to describe the structural properties of the web based
systems and to analyze them. Thi, Q. P. et al. [11] have proposed a suite of complexity metrics using
web service definition language in order to evaluate the web services. Zhang, Y. et al. [19] proposed a
set of web site complexity metrics using only the number of static links. Shahzad, A. et al. [9]
generated test cases from web navigation graph by considering dynamic links. Butkiewicz, M. et al.
[22] identified a set of metrics to characterize the complexity of websites, both at a content level and
service level. Panda, S.K. et al. [23] measured the website usability, quality, complexity metrics based
on the construction of hierarchical structure of a web site, digit of strikeouts, and cyclomatic
complexity of a web site roadmap.

One of the popular techniques used in industries for ensuring safety, risk and reliability analysis of
a system is FTA [13, 17]. A fault tree is a logical diagram used to identify the critical events that cause
the system to fail [8, 3]. FTA is a qualitative model that provides information on the causes of
undesired events [14]. It is a deductive approach, providing useful information on the causes of
undesired events [10]. For example, for an undesired event (say server failure) of a system, the causes
of undesired events are deduced using a systematic backward stepping process [10]. FTA can be
applied to both an existing system and to a system that is being designed [10]. When applied to a
system being designed, safety requirements for the system can be derived from the fault trees. The
failure probability of the components can be estimated from the fault trees [10]. FTA can also be used
for the development of performance based critical systems [10]. When applied to existing system, FTA
can be used to identify weaknesses, to evaluate the possible newer version of the system and to
monitor and predict the behavior of a system [10]. FTA is typically used for hardware systems, but the
recent contribution shows its wide use in software as well. The UML statechart diagram and sequence
diagram are transformed into a corresponding software fault tree, enabling the testing team to identify
modules that could affect the safety of the system at the design stage [13]. Helmer, G. et al. [3]
discussed software fault tree for its use in requirement identification and analysis in an Intrusion
Detection System. The safety requirements for the systems are derived from the software fault tree.
Software fault trees are closely related to threat trees [3]. Threat trees are notable tools in the security
analysis process called “threat modeling” [33]. Needham, D. et al. [8] proposed the key node safety
metric for identifying “key nodes” within a fault tree for measuring the safety of the system. A key
node is defined as a node in a fault tree that allows a failure to propagate towards the tree root if and
only if multiple failure conditions exist in the node [8]. Wang, Y. et al. [16] have proposed a computer-
aided fault tree synthesis methodology to construct a fault tree automatically so as to mitigate the risk
involved in the conventional manual construction of fault tree. Ying, R. et al. [18] used FTA to

S. Sabharwal, R. Sibal, and C. Sharma 3

improve the efficiency of software testing. The system failure model is constructed using fault tree.
The qualitative analysis of FTA is done in order to construct minimal cut sets using down law. In down
law, one by one top-down processing is done, starting from the top event. Finally, all the resulting cut
sets are compared to derive minimal cut sets. A cut set is defined as a set of basic events whose
occurrence causes the system to fail [12]. Tian, P. et al. [12] used FTA for determining the software
module reliability and using genetic algorithm, software reliability allocation model is optimized.
Leveson, N. G. [5] emphasized on using the results of software fault tree safety analysis for identifying
safety constraints that must be met by the software’s requirements [8].

In this paper a metric called Fault Trigger Metric (FTM) has been proposed for web based systems
to predict their reliability. FTM is computed using FTA technique and web links (static link and
dynamic link). FTA technique has been used to identify undesired events of a web application. Using
top-down approach, the web application is divided into component modules and a fault tree is drawn
for each component module of web application. Using our proposed approach, a numerical measure
called Relative Information Flow (RIF) is assigned to each fault event at a leaf node in a fault tree. RIF
is calculated using the number of static links or dynamic links connecting web pages in a web
application. The numerical measures are thereafter used to compute FTM at event, module and system
level. The FTM of a module for example, is an indicator of the probability of triggering a fault due to
that component module in software application. This helps in identifying the modules which make
software application more vulnerable to failures. Therefore, the modules with higher values of the
FTM can be redesigned even before the actual testing of web application begins. This saves the testing
effort and makes the web based system resilient to faults and henceforth more reliable. We will call
FTM of the system Fault Vulnerability Metric (FVM). FVM is the measure of system vulnerability to
undesired events or faults in web application and is based on probability of faults triggered by different
modules in web application.

The organization of the paper is as follows. The related work is presented in section 2. Section 3
illustrates the basic concepts underlying the fault tree construction. Section 4 illustrates our proposed
approach. The two case studies illustrating our approach are presented in section 5. Finally, section 6
concludes our research work and also highlights the future work.

2 Related Work

Web applications have gained remarkable significance in many application domains. Due to an
overwhelming increase in size and complexity, measuring the reliability/testing effort of web
applications has become a challenging issue and a focus of research. Several researchers have
contributed their research in the field of web based systems by modeling navigation behavior of web
applications, measuring the important factors like reliability, testability and complexity of web
applications using different techniques.

In 1999, Chong, C.W. et al. [25] analyzed the current user’s surfing behavior and proposed
efficient pre-order and Hamiltonian navigation models for increasing naive users surfing efficiency.
Hamiltonian surfing is defined as the web navigation process where the users access each web site

4 Deriving Fault Trigger Metric for Web based Systems

within the same domain exactly once [25]. Pre-order surfing is defined as a depth-first-surfing that is
useful to naive users who are interested in hierarchical surfing [25]. A fuzzy distance measure has also
been used to determine the optimal path leading to a specific target page for the experienced users. In
2000, Leung, K.R.P.H., et al. [26] proposed a web navigation model based on statechart for modeling
complex and dynamic behavior of web applications. A web navigation model is proposed to model
intra page navigation, inter page navigation, frame based navigation and dynamic content on the client
side and server side respectively. Sabharwal, S. et al. [32] proposed a graph based modeling technique
to model the navigation behavior of a web application for the purpose of testing from the information
extracted from the requirement and design documents of the web application.

Mendes, E. et al. [27] used an undergraduate university course as a case study and collected
metrics corresponding to web applications, developers, and tools. These metrics were used to generate
models for predicting design and authoring effort for future web applications. Marchetto, A. et al. [7]
defined a quality model for web applications based on a metrics suite to help the user define a
quantitative system to measure web software and to analyze/predict quality factors via structural
properties. These metrics are useful to measure some important attributes, such as complexity,
coupling, size, cohesion, reliability, defect density, and so on [7]. Dhawan, S. et al. [28] identified the
web metrics for detecting and resolving important issues of web based applications like poor
reliability, long response time and other important issues. An approach was introduced for determining
the reliability, usability index, error estimating function, web replacement policies, user model
behavior model graph, Rest Style (RS) web application effort estimation and effort estimation for web-
based systems. Alagappan, B. et al. [29] proposed web metrics based on its usability and effectiveness
for different web domain users of the web page. The proposed class of web metrics which
encompasses the structure, visual appearance and the interactive behavior of any web page are
represented as utility oriented metrics, quality oriented metrics, behavior oriented metrics and visual
oriented metrics. Butkiewicz, M. et al. [22] identified a set of metrics to characterize the complexity of
web sites. The complexity of web pages is characterized on the basis of content they include and the
services they offer. A web page is characterized by the content fetched in rendering it like the number
of objects fetched, the sizes of these objects, and the types of content [22].

3 Theoretical Foundations

In this section we will briefly introduce fault trees, statechart diagrams and different types of links in a
web application. FTA is described as an analytic technique whereby an undesired state is specified and
the system is analyzed in context of environment and operations to find all credible ways in which an
undesired event can occur [10, 14]. FTA is also one of the methods under study at the Software
Assurance Technology Center (SATC) at NASA’s Goddard Space Flight Center [30]. The purpose is
to determine its relevance to reduce the risks of software and to identify commercial software tools to
assist in using this technique [30]. FTA can be described as a deductive approach for determining the
failure probability of software components or a system.

A fault tree is a logical diagram of basic failures called “Primary failures” [15]. The top failure
(root) in fault tree is an undesired event that causes system failure. The top failure is represented as the
union of node failures. The ‘AND’ gate and ‘OR’ gate is used to construct a fault tree. A sample fault

S. Sabharwal, R. Sibal, and C. Sharma 5

tree is shown in Figure 1. The rectangle represents fault events. A rectangle symbol at the top of a fault
tree represents failure or top event. Rectangle symbols below top event are fault events/causative
events causing a top event or a failure to occur. A circle below fault event represents a basic event in a
fault tree. There are no gates or events below basic event. Basic events require no further development
and are found on the bottom of the tree. A diamond represents undeveloped or non primal event. Non
primal events are not fully developed because of lack of information or significance. A fault tree can
have non primal events at the bottom. The triangle or transfer symbol signifies a connection to another
fault tree. A fault tree branch below the transfer symbol is transferred to another location in a fault tree.
Letters, numbers or figures are used to identify sets of transfer symbol in a fault tree. Few relevant
symbols used in a fault tree are shown in Figure 2.

Figure 1 Fault Tree

Figure 2 Fault Tree Symbols (Vesely et al., 1981)

6 Deriving Fault Trigger Metric for Web based Systems

UML statechart diagram is an extension of the Finite State Machine, showing a state machine with
states, transitions, events and actions [20]. Statechart diagrams mainly express the information of the
state transitions and actions response for a finite state system according to external events inspires [20,
21]. UML statechart diagrams are used to show the states an object can have during its lifetime. A
transition is a relationship between two states, indicating a possible change from one state to another
[20]. The events in statechart diagram cause the state to change along with its responses. Actions are
performed in response to events received while the object is in the state, without changing the state.

According to Shahzad, A. et al. [9], a web application typically consists of interconnected static
web pages or dynamic web pages. The interconnection is primarily defined by static links (i.e.
Hyperlinks), dynamic links (i.e. that carry out user session dependent actions) or by button actions (i.e.
Form submission, etc.) [9]. A static web page (e.g., HTML) is a client side page that is delivered to the
user exactly as stored. According to Shahzad et al. [9], a dynamic link dependent on session data
would behave differently if the user is logged in or logged off. According to Leung, K.R.P.H., et al.
[26], a static web page is defined as a web page that retains the same HTML for all the client requests
of the same URL. It must also contain no reactive or executable components [26]. A dynamic web
page is defined as a web page that returns different HTML for client requests of the same URL or
contains reactive or executable components [26].

4 Proposed Approach

We propose a top-down strategy for problem solving. The web application is divided into component
modules. Thereafter, a fault tree is constructed for each module of the web application. The potential
undesired events of the modules are determined and their basic causes are resolved using FTA. Finally
the FTM/vulnerability of the web application to failure is computed using the procedure outlined
below:

Procedure
1. Draw a UML statechart diagram for each module of the web application to detail every event

that triggers the transition.

2. Identify undesired events in the modules of the web application.

3. Identify the basic causes leading to undesired events in the web application.

4. Transform a statechart diagram into a fault tree. The undesired events causing failures in the
system are the top events in a fault tree. Figure 3 shows a fault tree where E1 is a top event.
Causative events are laid out in a fault tree with branches connected by logic gates performing
logical functions [1]. An intermediate event is a fault event which occurs because of one or
more antecedent causes acting through logic gates [14]. All intermediate events are symbolized
by rectangles in a fault tree [14]. In Figure 3, events E2, E3, E4 and E5 are fault events/causative
events of top event E1 where E3 represents an intermediate event, E2 and E4 represent basic
events and E5 represent non-primal event.

S. Sabharwal, R. Sibal, and C. Sharma 7

5. Generate navigation graph of web application. A web navigation graph is a simple graph
denoted by a set of edges and vertices where each edge represents a static link or dynamic link
and each vertex represents a web page.

The usage scenario of web application is captured using web navigation graph constructed
using Microsoft Visio 2003 tool. The web navigation graph is generated by using the
Interactive Hyperlink Selection feature in Microsoft Visio 2003 tool. Edges connecting the
nodes in a web navigation graph represent either a static or a dynamic link. Microsoft Visio
2003 tool determines the number of edges connected to a vertex irrespective of the nature of
the link. In our work, cycle in a web navigation graph is traversed only once.

Suppose event E4 in Figure 3 represents a fault event ‘User Forgot Password’. A web
navigation graph generated using Microsoft Visio 2003 tool for a fault event ‘User Forgot
Password’ is shown in Figure 4. Figure 4 shows count of number of number of links to E4 and
a number of links from E4. By selecting the custom properties in Microsoft Visio 2003 tool for
E4, the number of links (static link and dynamic link) input to E4 is 1 and the number of links
(static link or dynamic link) output from E4 is 32.

Figure 3 Fault Tree Example for Module of Web Application

8 Deriving Fault Trigger Metric for Web based Systems

Figure 4 Navigation Graph of a Fault Event ‘User Forgot Password’ or E4

6. Apply proposed metrics for determining FTM of the system/vulnerability of web application to
failure. The procedure for determining FTM of the system is as follows:

a) Calculate RIF of each causative event at a leaf node in a fault tree.

To calculate RIF, we need to identify the number of links (edges) input to and output from
each causative event at a leaf node. The aim is to determine the probability of triggering a
fault due to each causative event at a leaf node in a software application.

In our work, we have adopted the Information Flow Model [24] proposed by Henry and
Kafura for determining the Information Flow (IF) of each causative event in a fault tree.
Henry and Kafura defined the structure complexity for a procedure or component A as:-

 IF (A) = (FAN-IN (A) * FAN-OUT (A)) 2 (1)

where FAN-IN (A) is a count of the number of other components that can call or pass control
to component A and FAN-OUT (A) is a number of components that are called by component
A. In our work, we have considered FAN-IN (A) as a count of the number of other web pages
that can call or pass control to web page A via a static link or dynamic link and FAN-OUT
(A) is a number of web pages that are called from web page A via a static link or dynamic
link.

Initially, the IF of each causative event at a leaf node in a fault tree is determined from the
navigation graph of web application generated in step 5 using Microsoft Visio 2003 tool. The
IF of a causative event at leaf node, Ei (where i = 1, 2, 3…n and n is number of events) in a

S. Sabharwal, R. Sibal, and C. Sharma 9

fault tree is computed by multiplying the count of the number of static or dynamic links, ci
input to Ei and count of the number of static or dynamic links, co output from Ei. The count of
the number of input and output links on a web page is obtained from the navigation graph of
the web application. To avoid large computational value, we have removed the square
function in equation 1. Therefore, IF of each causative event Ei at a leaf node in a fault tree is
determined by applying equation 2.

IF (Ei) = (Number of ci to Ei * Number of co from Ei) (2)

Figure 5 IF of Causative Events

In Figure 5, fault tree shows the IF of each event Ei determined from navigation graph of web
application captured using Microsoft Visio 2003 tool. Next, Total Information Flow (TIF) of
a fault tree FT corresponding to the module of web application is calculated by applying
equation 3.

 (3)

IF(Ei) represents IF of event Ei at leaf node in a fault tree. For example, in Figure 5 TIF of
fault tree FT calculated using equation 3 will be:-

 TIF (FT) = IF (E2) + IF (E3) = IF (E2) + IF (E4) + IF (E5)
 = ((1* 2) + (1 * 32) + (1 * 0)) = 34

RIF of each causative event Ei at leaf node in a fault tree can now be computed using equation
4 as given below.

 (4)

10 Deriving Fault Trigger Metric for Web based Systems

 For example, in Figure 5, RIF of causative events at leaf node using equation 4 will be:-

 RIF (E2) = (1*2) / 34 = 0.06

 RIF (E4) = (1*32) / 34 = 0.94

 RIF (E5) = (1*0) / 34 = 0

b) Assign Strength (G) to gates used in a fault tree based on their probability of triggering a
fault.
Causative events in a fault tree are connected by logic gates. The probability of triggering
a fault by a causative event in a fault tree also depends on the type of logic gate attached to
it. To determine the value of FTM at module level, we therefore need to calculate the
strength of logic gates in a fault tree.

 Table 1 Truth Table of Fault Tree Logic Gates
INPUTS OUTPUT

A B AND PAND NOR OR NAND XOR

0 0 0 0 1 0 1 0
0 1 0 0 0 1 1 1
1 0 0 0 0 1 1 1
1 1 1 1 0 1 0 0

Table 2 Strength of Fault Tree Logic Gates
S.

No.
Gate Strengt

h
1. AND, PAND,

NOR
1

2. OR, NAND 2n -1
3. XOR n

The strength of a particular gate is derived from its truth table. The commonly used gates in
a fault tree are OR, XOR, AND, NOR, NAND and priority AND (PAND) gate. The truth
tables of these gates are shown in Table 1. The truth table of logic gates has two inputs A
and B. In truth table, “0” represents false value and “1” represents true value. The strength
assigned to various gates is shown in Table 2. In AND gate, output or undesired event
occurs if and only if all incoming inputs or causative events occur. So, it has a low
probability of causing undesired event and is assigned strength of value 1. In PAND gate,
the output event occurs when both input events get executed and one input event precedes
another. The input events must be ordered in PAND gate. The AND and PAND gates have
similar functionality except ordered or prioritized inputs in PAND gate. Thus, PAND gate
has been assigned the same strength as that of AND gate, i.e., 1. The NOR gate functions
like a combination of an OR gate and a NOT gate. The NOR gate is used to indicate that
the output occurs when all the input events are absent and is assigned the same strength as
that of AND and PAND gates, i.e., 1. In OR gates, output or undesired event occurs if and

S. Sabharwal, R. Sibal, and C. Sharma 11

only if at least one of the input gets executed. Therefore, if n is the number of causative
events, then the probability of triggering a fault by at least one of the input out of n
causative events is 2n-1. Therefore, strength assigned to OR gate is 2n-1. In NAND gate,
output event occurs when at least one of the input events is absent. The probability of
triggering a fault by NAND gate is same as OR gates. Therefore, NAND gate is assigned
same strength as that of OR gate, i.e., 2n-1. In XOR gate, output event occurs if exactly one
of the two input events occurs and the other input event does not occur. So, the strength of
XOR gate is n.

c) Compute the value of FTM of each intermediate event Ei in a fault tree.

An intermediate event occurs because of one or more antecedent causes acting through
logic gates [14]. In FTA, the causes of undesired events are deduced using systematic
backward stepping process (bottom to top). Therefore, the value of FTM of a module is
deduced by determining the FTM of intermediate events at the lowest level first.

In a fault tree, FTM is computed on the basis of strength assigned to the logic gate Strength
(G) attached to an event and the RIF value of causative events connected to the logic gate.
It is defined as a measure of probability of triggering a fault in the module due to an
intermediate event. The algorithm for calculating the value of FTM for an intermediate
event FTM (Ei) in a fault tree is shown in Figure 6. For example, for a fault tree given in
Figure 5, FTM for event E3, i.e., FTM (E3) is calculated as given below:-

 FTM (E3) = ((RIF (E4) + RIF (E5)) × Strength (G))
 = ((RIF (E4) + RIF (E5)) × 22 -1)

 = (0.94 + 0) × 3 = 2.82

Figure 6 Algorithm for Computing FTM of Intermediate Event

d) Compute the value of FTM of each fault tree FTM (FT) in web application.

Algorithm 1: Compute FTM of an Intermediate Event: Compute_FTM (E)

 Let Ei is an intermediate event of a fault tree.
 RIF (Ei) is Relative Information Flow of event Ei.
 Eij is the jth causative event of Ei triggering the event Ei connected through gate G (where j =
1...n).
 Strength (G) is the probability of triggering a fault by the logic gate, G rooted at Ei.
 Let FTM (Ei) represents the Fault Trigger Metric value of event Ei.
 n is number of causative events of event Ei
for each event Ei

1. Set FTM (Ei) = 0
2. for (j = 1 to n)
3. FTM (Ei) = FTM (Ei) + RIF (Eij)
4. FTM(Ei) = FTM(Ei) * Strength(G)
5. End for

12 Deriving Fault Trigger Metric for Web based Systems

To compute the value of FTM at module level, we need to determine the RIF value of the
causative event triggering a top event in a fault tree and strength of logic gate attached to
top event in a fault tree.

The FTM value of each fault tree is determined by computing the FTM value of a top event
using equation 5. FTM (FT) for a module gives a measure of probability of triggering a
fault in web application due to that module.

 (5)
Where Ei represent a causative event triggering a top event of fault tree FT connected
through logic
gate Gtop. Strength (Gtop) is the probability of triggering a fault by gate Gtop. The higher is
the probability of FTM (FT) for a module, higher will be the probability of occurrence of
fault in web application due to that module.

Figure 7 Flowchart for the FVM Determination of Web Application

S. Sabharwal, R. Sibal, and C. Sharma 13

e) Compute the value of FTM (SYS) or FVM of complete web application.

To determine the reliability of web application, the value of FTM at system level is
computed. To compute the value of FTM at system level or FVM, we require the value of
FTM (FT) or FTM at module level. FTM (SYS) or FVM is computed by summing up the
FTM value of all the modules of the web application as given in equation 6.

 (6)

The higher is the value of FTM (SYS) or FVM, lower will be the reliability of the system
which in turn will require more testing effort. The flow chart of our proposed approach is
shown in Figure 7.

5 Determining Reliability of Web based Systems

In this section, we will discuss our proposed approach for determining reliability/testing effort of web
based systems by taking two case studies. As already discussed in the previous sections, FTA
technique has been used to analyze the potential faults of a web application. To estimate FVM of the
system, the potential faults of the web application are identified and laid out in a fault tree in top to
bottom manner. The FVM is further used to estimate the reliability of the web application. A web
based system with a higher value of FVM is more vulnerable to faults and therefore less reliable and
vice versa. Also a less reliable system will require more testing effort which is not preferable.

5.1. Case Study 1: Web Based Job Portal Application

In this section, we present a case study wherein we will compute the FVM of a web based Job Portal
application using our proposed approach. The steps for determining the FVM value of web application
using our approach are as follows:

5.1.1. System Analysis

To illustrate our approach, we have gathered requirements for a web based Job Portal. The goal of the
application is to provide a portal for job seekers to submit their curriculum vitae (CV). The employer
of the company can shortlist best CV based on the criteria posted for a vacancy. The application
requires the employee and Jobseeker registration on the Job Portal. This requires a new user ID
(alphanumeric) and password (minimum length 6) for the registration. There is a separate control panel
for employee and job seeker handling the web application. The employer can search jobseekers profile
by keywords, download CV, job profile and date of job posted, can retrieve passwords reset by
automated generated mail, can register employer or a company and post jobs. Job seeker can search
jobs based on criteria (experience, qualification, etc.), add and update own CV andget new job
notification by mail. The application has browser compatibility with Mozilla, email is verified when
user register on the web site.

Using a top-down strategy, the application is divided into three modules, i.e. Employee Login, Job
Seeker Login and Search a Job. The statechart diagram for each module is shown in Figure 8, Figure 9
and Figure 10 respectively.

14 Deriving Fault Trigger Metric for Web based Systems

 Figure 8 Statechart Diagram for Employee Login Figure 9 Statechart Diagram for Job Seeker Login

Figure 10 Statechart Diagram for Search a Job

S. Sabharwal, R. Sibal, and C. Sharma 15

5.1.2. Fault Tree for Job Portal Web Application

Fault trees are drawn for different modules of the web application. The fault trees are constructed by
identifying the fault events and determining the relationship between them for causing the failure event
in the particular module.

Table 3 Failure Modes and Mechanism of Employee Login/Jobseeker Login Module
Failure Effect Failure Mode Mechanism
Login Failed • Invalid User Id

• Invalid Password
• Incompatible Browser
• Server connection Failed

Human error, expired account
Human error
Browser used other than Mozilla
Network error

Table 4 Failures Modes and Mechanism of Search a Job Module
Failure Effect Failure Mode Mechanism
Job Not Found • Page Failed to Load

• No Match Found

Browser used other than Mozilla, Server load Increases

The keyword does not exist in the database

The system is analyzed and the top events or undesired events in web application are defined. The
faults identified in Job Portal application are shown in Table 3 and Table 4 respectively. Fault tree is
constructed by determining the relationship between the causes of top event and identifying them to
resolve the failure.

Figure 11 Fault Tree for Employee Login

16 Deriving Fault Trigger Metric for Web based Systems

Figure 12 Fault Tree for Job Seeker Login

Figure 13 Fault Tree for Search a Job

In Figure 11, E1 is a top event, E2 and E3 are intermediate events/causative event where as E4, E5,
E6 and E7 are basic/causative events. In Figure 12, E8 is a top event, E9 and E10 are intermediate
events/causative events, E11, E12, E13 and E14 are basic events/causative events. In Figure 13, E15 is a
top event, E16 and E17 are intermediate events/basic events, E18, E20, E21 are basic events/causative
events and E19 is non-primal event/causative event.

5.1.3. Determining Reliability of Job Portal Web Application

Once the fault trees are constructed, next we draw the web navigation graph of the Job Portal
application using Microsoft Visio Studio 2003 tool as shown in Figure 14.

S. Sabharwal, R. Sibal, and C. Sharma 17

Figure 14 Web Page Navigation Graph of Job Portal Web Application

5.1.3.1. Applying Proposed Measures on Fault Tree

The metrics proposed in section 4 are applied to the fault tree constructed for Job Portal application.
The web page navigation graph as shown in Figure 14 represents the lower level view of our
application. We have applied proposed metrics on the fault tree constructed for three modules, namely
Employee Login, Job Seeker Login and Search a Job as shown in Figure 11, Figure 12 and Figure 13
respectively. The steps for determining FVM of Job Portal application are illustrated in Table 5.

The RIF of each causative event in a fault tree is determined by applying equation 4. The FTM
value of all intermediate events in fault trees corresponding to the modules of the Job Portal web
application is calculated by applying Algorithm 1 given in Figure 6. The FTM value of each fault tree

18 Deriving Fault Trigger Metric for Web based Systems

in Job Portal application is calculated by applying equation 5. Finally the FVM value of the Job Portal
system, FVM (SYS1) is determined by applying equation 6 as shown below:

 FVM (SYS1) = 45.5 + 44.4 + 45 = 134.9

Table 5 Calculation of FTM of different modules of Job Portal Application

MODULE
Metric Employee Login (FT1) Job Seeker (FT2) Search a Job (FT3)
IF (Ei) IF(E4) = 1*1 = 1

IF(E5) = 1*6 = 6
IF(E6) = 1*6 = 6
IF(E7) = 1*6 = 6

IF (E11) = 1*1 = 1
IF (E12) = 1*1 = 1
IF (E13) = 1*32 = 32
IF (E14) = 1*32 = 32

IF (E18) = 1*7 = 7
IF (E19) = 1*1 = 1
IF (E20) = 1*1 = 1
IF (E21) = 1*1 = 1

TIF (FTi) TIF (FT1) = 19 TIF (FT2) = 66 TIF (FT3) = 10

RIF (Ei) RIF (E4) = 1/19 = 0.05
RIF (E5) = 6/19 = 0.32
RIF (E6) = 6/19 = 0.32
RIF (E7) = 6/19 = 0.32
RIF (E4+E5+E6+E7) = 1.01

RIF (E11) = 1/66 = 0.01
RIF (E12) =1/66 = 0.01
RIF (E13) = 32/66 = 0.48
RIF (E14) = 32/66 = 0.48
RIF (E11+E12+E13+E14) = 0.98

RIF (E18) = 7 / 10 = 0.7
RIF (E19) = 1/ 10 = 0.1
RIF (E20) = 1/ 10 = 0.1
RIF (E21) = 1/ 10 = 0.1
RIF (E18+E19+ E20+ E21) = 1.0

FTM (Ei) FTM (E2) = (0.05+0.32) * (22-
1) = 1.11
FTM (E3) = (0.32 + 0.32) *
(22-1) =1.92

FTM (E9) =
(0.01+0.01) * (22-1) = 0.06
FTM (E10) =
(0.48 +0.48) *(22-1)= 2.9

FTM (E16) =
 (0.7 + 0.1)*(22-1)= 2.4
FTM (E17) =
(0.1+0.1)*(22-1)= 0.6

FTM
(FTi)

FTM (FT1) =
(1.11+1.92)*(24-1)= 45.5

FTM (FT2) = (0.06 + 2.9) * (24-1)
= 44.4

FTM (FT3) = (2.4+0.6) *(24-1)
= 45

5.2 Case Study 2: Web Based Contoso University Application

In this section, we present another case study wherein we will compute the FVM of Contoso
University application using our proposed approach. We have downloaded the open source code
sample web application of the Contoso University from the Microsoft gallery [31]. The project is run
on Visual Studio 2010 .NET framework. The web application is developed using ASP.NET. The steps
for determining the FVM value of Contoso University application using our approach are as follows:

5.2.1. System Analysis

There are seven modules in the Contoso University namely Login, Home, About, Students, Courses,
Instructors and Departments. The Contoso University application provides access to users of university
to view, search and edit information about students, instructors, courses and departments. The login
module provides users to access web application. New users can register in Login module. The Home
module links to other six modules of the Contoso University application. The About module provides
statistics of the student body. The users can view the detailed information about the courses taught at
the university in the Courses module. Information about instructors and assigned assignments to them
can be viewed in Instructors modules. The user can assign new assignments and remove old
assignments assigned to the instructor. Information about departments in the university like name of
department, budget, start date, the administrator can be searched and edited by the users in the

S. Sabharwal, R. Sibal, and C. Sharma 19

Departments module. Figure 15 shows the information about all links in Contoso University parsed by
Visio 2003 tool.

The About, Home and Login modules of the Contoso University application have not been
identified with any failures. For analysis of web application reliability, we are considering four
modules of Contoso University namely Students, Courses, Instructors and Departments. Using a top-
down strategy, the application is divided into four modules, i.e. Students, Courses, Instructors and
Departments. The statechart diagram for each module is shown in Figure 16, Figure 17, Figure 18 and
Figure 19 respectively.

Figure 15 Links in Contoso University

20 Deriving Fault Trigger Metric for Web based Systems

 Figure 16 Statechart Diagram for Students Figure 17 Statechart Diagram for Courses

 Figure 18 Statechart Diagram for Instructors Figure 19 Statechart Diagram for Departments

S. Sabharwal, R. Sibal, and C. Sharma 21

5.2.2. Fault Tree for Contoso University Web Application

Fault trees are drawn for different modules of the web application. The fault trees are constructed by
identifying the fault events and determining the relationship between them for causing the failure event
in the particular module.

Table 6 Failures Modes and Mechanism of Modules in Contoso University
Module Failure Effect Failure Mode Mechanism

Students

Courses

Instructors

Departments

 New student information
insertion failed.

New course information
insertion failed.

Allotment of office
assignments to instructors
failed.

Addition of new department
failed.

• Property field set to null
• Invalid data types conversion

• Property field set to null
• Invalid data types conversion
• Violation of primary key

constraints

• Property field set to null
• Invalid data types conversion

• Property field set to a null value.
• Delete statement conflict with

reference constraint.

Client error, Server Error

Client error, Server Error

Client error, Server Error

Client error, Server Error

The system is analyzed and the top events or undesired events in web application are defined.
Table 6 shows the faults identified in the Contoso University application. The fault tree constructed for
four modules, namely Students, Courses, Instructors and Departments are shown in Figure 20, Figure
21, Figure 22 and Figure 23 respectively.

22 Deriving Fault Trigger Metric for Web based Systems

Figure 20 Fault Tree for Students

Figure 21 Fault Tree for Courses

S. Sabharwal, R. Sibal, and C. Sharma 23

Figure 22 Fault Tree for Instructors

Figure 23 Fault Tree for Departments

5.2.3. Determining Reliability of Contoso University Web Application

Once the fault trees are constructed, next we draw the web navigation graph of the Contoso University
application using Microsoft Visio Studio 2003 tool as shown in Figure 24.

5.2.3.1. Applying Proposed Measures on Fault Tree
The metrics proposed in section 4 are applied to the fault tree constructed for the Contoso University
application. We have applied proposed metrics on the fault tree constructed for four modules, namely
Students, Courses, Instructors and Departments as shown in Figure 20, Figure 21, Figure 22 and
Figure 23 respectively. The steps for determining FVM of Contoso University application are
illustrated in Table 7.

24 Deriving Fault Trigger Metric for Web based Systems

Figure 24 Web Page Navigation Graph of Contoso University Web Application

Table 7 Calculation of FTM of different modules of Contoso University Application
MODULE

Metric Student (FT1) Course (FT2) Instructor (FT3) Department (FT4)
IF (Ei) IF (E4) = 14*14 = 196

IF (E5) = 14*14 = 196
IF (E6) = 14*14 = 196
IF (E7) = 14 *14 = 196

IF (E9) = 13*14 = 182
IF (E11) = 13*14 = 182
IF (E12) = 13*14 = 182

IF (E14) = 13*16 = 208
IF (E15) = 14*14 = 196

IF (E17) = 14*16 = 224
IF (E18) = 14*16 = 224

TIF (FTi) TIF (FT1) = 784 TIF (FT2) = 546 TIF (FT3) = 404 TIF (FT4) = 448

RIF (Ei) RIF (E4) = 196/784 = 0.25
RIF (E5) = 196/784 = 0.25
RIF (E6) = 196/784 = 0.25
RIF (E7) = 196/784 = 0.25
RIF(E4 + E5 + E 6 + E7) =
1.0

RIF (E9) = 182/546 = 0.33
RIF (E11) =182/546 = 0.33
RIF (E12) = 182/546 = 0.33
RIF (E9 + E11 + E12) = 0.99

RIF (E14) = 208 / 404 = 0.51
RIF (E15) = 196/ 404 = 0.49
RIF(E14 +E15) = 1.0

RIF (E17) = 224/448 = 0.5
RIF (E18) = 224/448 = 0.5
RIF(E17 +E18) = 1.0

FTM(Ei) FTM(E2) = (0.25+0.25) *
(221) = 1.5

FTM (E3) = 1.5

FTM(E10) =
(0.33+0.33)*(22-1)= 1.98

‐‐‐‐‐‐‐‐‐‐‐‐‐ -------------

FTM
(FTi)

FTM (FT1) =
(1.5+1.5)*(24-1) = 45

FTM (FT2) =
 (0.33+1.98)*(23-1) = 16.17

FTM (FT3) =
(0.51+0.49)*(22-1) = 3

FTM (FT4) =
(0.5+0.5)*(22-1) = 3

The RIF of each causative event in a fault tree is determined by applying equation 4. The FTM
value of all intermediate events in fault trees corresponding to the modules of the Contoso University
application is calculated by applying Algorithm 1 given in Figure 6. The FTM value of each fault tree

S. Sabharwal, R. Sibal, and C. Sharma 25

in Contoso University application is calculated by applying equation 5. Finally the FVM value of the
Contoso University system, FVM (SYS2) is determined by applying equation 6 as shown below:

FVM (SYS2) = 45 + 16.17 + 3 + 3 = 67.17

5.3 Result Analysis

According to Aggarwal, K.K. et al. [24], the basis of IF metric is found upon following premises. All
but the simplest systems consist of components, and it is the work that these components do and how
they are fitted together that influences the complexity of a system [24]. According to system theory,
the components that are highly coupled and that lack cohesion tend to be less reliable and less
maintainable than those that are loosely coupled and that are cohesive [24]. Coupling is the degree of
linkage between one component to others in the same system [24]. According to Jung, W. et al. [4]
also complexity of a system is closely related with maintainability, testing efforts, and
understandability. In our work, the degree of coupling is defined in terms of number of static links or
dynamic links that are input to causative event and a number of static links or dynamic links that
output from a causative event in a module. This degree of coupling is then used to measure RIF of
each causative event in a fault tree. The value of FTM at event, module and system level is determined
from the value of RIF and forms the basis to determine the value of FVM. Based on the concept of
system theory, components having a high degree of coupling require more efforts to maintain. In our
proposed approach components or module in a web application having high value of FTM or FVM
(SYS) therefore is less reliable than the components having low value of FTM or FVM (SYS) and thus
require more efforts to maintain.

The FVM values of the Job Portal system and the Contoso University system are 134.9 and 67.17
respectively. The high FVM value of Job Portal System clearly suggests that it is more complex as
compared to the Contoso University System. Hence Job Portal system will require more efforts to
maintain. Similarly out of four fault trees drawn for the Contoso University application, maximum
number of faults is contributed by the fault tree of Student module, i.e., FT1. Therefore, the reliability
of FT1 is the lowest which implies that the testing effort or testability of Student module is highest
among other modules of the Contoso University application. On the other hand, in the case of Job
Portal application, the FTM value of all the three modules is almost equal. This implies that testing
effort or maintainability of all the three modules is almost equal.

It can be further concluded that the testability or testing effort of Contoso University application
can be reduced if the occurrence of faults due to the Student module can be reduced. For this the
designer is advised to redesign the Student module in the Contoso University system. It is to be noted
that this information is available before the commencement of actual testing of web application and
therefore will help in reducing the testing effort of the web application.

6 Conclusion and Future Work

In this paper, an approach to predict the reliability of the web application is proposed using the concept
of static link, dynamic link and FTA technique. We have made the first attempt to apply FTA
technique for measuring the reliability/testability of web applications. The concept of FTA technique
has been used to identify the weak areas or potential failures of web application. In order to do so, the

26 Deriving Fault Trigger Metric for Web based Systems

web application is divided into modules where each module is represented by a fault tree. Each fault
event in the fault tree leading to undesired event is assigned a measure calculated using a metric named
as FTM. The value of FTM is calculated at event, module and system level. The value of FTM at
system level is called FVM and can form the basis to predict reliability/testing effort of the web
application. However, the areas which need to be redesigned in a module will form a part of the future
work. Also in the future we will be extending this approach to compute the value of FTM for any type
of event driven systems by combining it with code coverage models like control flow and data flow
models. We will extend our approach by analyzing the static source code of web based systems by
considering points-to analyses, value elimination, context and control flow analyses. Finally, we also
propose to perform theoretical and empirical validation of the proposed metric.

References

1. Barnhart, C. and Laborte, G. Handbooks in Operations Research & Management Science:
Transportation. Elsevier, 2007, 14, First edition.

2. Ghosheh E., Black S. and Qaddour J. Design Metrics for Web Application Maintainability
Measurement. in Proceedings of International Conference on Computer Systems and
Applications, 2008, 778-784.

3. Helmer, G., Slagell, M., Honavar, V., Miller, L. and Lutz, R. A Software Fault Tree Approach
to Requirement Analysis of an Intrusion Detection System. in Symposium on Requirements
Engineering for Information Security, 7(4), 2001, 207-220.

4. Jung, W., Lee, E., Kim, K. and Wu, C. A Complexity Metric for Web Applications based on
Entropy Theory. in 15th Asia Pacific Software Engineering Conference, IEEE, 2008, 511-518.

5. Leveson, N. G. Software Safety in Embedded Computer Systems. in Communications of the
ACM, 34(2), 1991, 34–46.

6. Mao, C., Control and Data Complexity Metrics for Web Service Compositions. in Proceedings
of 10th International Conference on Quality Software, Zhangjiajie, IEEE, 2010, 349-352.

7. Marchetto, A. and Trentini, A. Evaluating Web Applications Testability by Combining Metrics
and Analogies. in Proceedings of 3rd International Conference on Information and
Communication Technology, Cairo, IEEE, 2005, 751-779.

8. Needham, D. and Jones, S. A Software Fault Tree Metric. in 22nd IEEE International
Conference on Software Maintenance”, IEEE, 2006, 401- 410.

9. Shahzad, A., Raza, S., Azam, M.N., Bilal, K., Inam, U. H. and Shamail, H. Automated
Optimum Test Case Generation Using Web Navigation Graphs. in IEEE conference on
Emerging Technologies, IEEE, 2009, 427-430.

10. Stamatelatos, M., Vesely, W., Fragola, J., Minarick III, J. and Railsback, J. Fault Tree
Handbook with Aerospace Applications. NASA, 2002, version 1.1, available at:
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf, (Last accessed 19 Nov 2014).

S. Sabharwal, R. Sibal, and C. Sharma 27

11. Thi, Q.P., Quang, D.T. and Quyet, T.H. A Complexity Measure for Web Service. in
Proceedings of International Conference on Knowledge and Systems Engineering, Hanoi,
IEEE, 2009, 226-231.

12. Tian, P., Wang, J., Zhang, W. and Liu, J. A Fault tree Analysis based Software System
Reliability Allocation using Genetic Algorithm Optimization. in World Congress on Software
Engineering, IEEE, 2009, 194-198.

13. Towhidnejad, M., Wallace, D.R. and Gallo, A.M. Validation of Object Oriented Software
Design with Fault Tree Analysis. in Proceedings of the 28th Annual NASA Goddard Software
Engineering Workshop, IEEE, 2003, 209-215.

14. Vesely, W.E., Goldberg, F.F., Roberts, N.H. and Haasl, D. F. Systems and Reliability Research.
U. S Nuclear Regulatory Commission, NUREG–0492, 1981, available at:
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf. (Last accessed
20 Nov 2014)

15. Vesely, W.E. A Time Dependent Methodology for Fault Tree Evaluation. in Nuclear
Engineering and Design 13, 1970, 337-360.

16. Wang, Y., Teague, T. West, H. and Mannan, S. A New Algorithm for Computer-Aided Fault
Tree Synthesis. Journal of Loss Prevention in the Process Industries 15, Elsevier, 2002, 265–
277.

17. Xiang, J. and Yanoo, K. Formal Static Fault Tree Analysis. in International Conference on
Computer Engineering and Systems, Cairo, IEEE, 2010, 280–286.

18. Ying, R., Hong, L. and Huawei, L. Research on Technique of Software Testing based on Fault
Tree Analysis. in International Conference on Computer Science and Network Technology,
IEEE, 2011, 1718- 1720.

19. Zhang, Y., Zhu, H. and Greenwood, S. Website Complexity Metrics for Measuring
Navigability. in Proc. of the 4th International Conference on Quality Software, IEEE, 2004,
172-279.

20. Li, L., He, T. and Tang, S. Consistency Checking and Test Generation for UML Statechart
Diagram via Extended Context-free Grammar. in 6th International Conference on New Trends
in Information Science and Service Science and Data Mining, IEEE, 2012, 633-638.

21. Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

22. Butkiewicz, M., Madhyastha, H.V. and Sekar, V. Characterizing Web Page Complexity and Its
Impact. in IEEE/ACM Transactions on Networking, 22(3), June 2014, 943-956.

23. Panda, S.K., Swain, S.K. and Mall, R. Measuring Web Site Usability Quality Complexity
Metrics for Navigability Intelligent Computing, Communication and Devices. in Proceedings
of ICCD 2014. Advances in Intelligent Systems and Computing, 308 AISC (Vo1) Springer
Verlag, 2015, 393-401.

24. Aggarwal, K.K. and Singh, Y. Software Engineering. New Age International Publishers, 2007,
3rd Edition.

25. Chong, C.W., Ramachandran, V. and Eswaran, C. Web Navigation Efficiency Analysis. in
International Conference on Systems, Man, Cybernetics, Vol. 4, IEEE, 1999, 69-73.

28 Deriving Fault Trigger Metric for Web based Systems

26. Leung, K.R. P, Hui, L.C. K., Yiu, S. M. and Tang, R.W.M. Modeling Web Navigation by
Statecharts. in COMPSAC, IEEE, 2000, 41-47.

27. Mendes, E., Mosley, N. and Counsell, S. Web Metrics-Estimating Design and Authoring Effort.
in Multimedia, 8(1), IEEE, 2001, 50-57.

28. Dhawan, S. and Kumar, R. Analyzing Performance of Web-Based Metrics for Evaluating
Reliability and Maintainability of Hypermedia Applications. in International Conference on
Broadband Communications, Information Technology and Biomedical Applications, IEEE,
2008, 376-383.

29. Alagappan, B., Alagappan, M. and Danishkumar, S. Web Metrics based on Page Features and
Visitor’s Web Behavior. in Proceeding of 2nd International Conference on Computer and
Electrical Engineering, Vol.2, IEEE, 2009, 236-241.

30. Towhidnejad, M., Wallace, D.R. and Gallo, A.M. Fault Tree Analysis for Software Design.
Annual NASA Goddard Software Engineering Workshop, IEEE, 2002, 24-29.

31. https://code.msdn.microsoft.com/aspnet-MVC-application-b01a9fe8.(Last accessed 3 April
2015)

32. Sabharwal, S., Bansal, P. and Aggarwal, M. Modeling the Navigation Behavior of Dynamic
Web Applications. International Journal of Computer Applications, 65(13), March 2013, 20-
27.

33. Morikawa, I. and Yamaoka, Y. Threat Trees Templates to Ease Difficulties in Threat Modeling.
in 14th International Conference on Network based Information Systems, Tirana, IEEE, 2011,
673-678.

