
Journal of Web Engineering, Vol. 15, No. 1&2 (2016) 130–169
c© Rinton Press

A SURVEY OF RESTFUL TRANSACTION MODELS:

ONE MODEL DOES NOT FIT ALL

NANDANA MIHINDUKULASOORIYA RAÚL GARCÍA-CASTRO,

MIGUEL ESTEBAN-GUTIÉRREZ ASUNCIÓN GÓMEZ-PÉREZ

Center for Open Middleware, Ontology Engineering Group

Universidad Politécnica de Madrid, Spain

{nmihindu,rgarcia,mesteban,asun}@fi.upm.es

Received April 15, 2014
Revised July 27, 2015

The REpresentational State Transfer (REST) architectural style is getting traction as
a light-weight alternative to SOAP-based Web Services in industry for building loosely
coupled applications. In addition, the REST architectural constraints induce scalability

and the World Wide Web is a great example of a distributed hypermedia system that
is built using REST principles. Despite these benefits, one of the main drawbacks of
RESTful services is the lack of standard mechanisms to support advanced quality-of-

service requirements such as transactions, which are vital to maintain the high-level of
consistency required in common enterprise scenarios. To fill this gap, several RESTful
transaction models have been proposed in the past decade; the goal of this paper is to
survey such transaction models and to analyse them based on the common transactional

scenarios that appear in most enterprise systems.
To this end, this paper presents a systematic literature review that was conducted to

identify and summarize the state of the art of the RESTful transaction models; the review
is followed by a detailed analysis of the models found in the survey. For the analysis,

the paper proposes a comparison framework for the RESTful transaction models to
evaluate them according to various dimensions, such as their capability to satisfy common
transactional scenarios, the level of transaction guarantees provided, compliance to the

REST constraints, and other miscellaneous properties. The results of the survey provide
a good overview of the current RESTful transaction models and their evolution over the
past decades and help to identify the current gaps in the state of the art. In addition,
the paper identifies a set of challenges for the current RESTful transaction models by

examining the limitations identified in the analysis. A main conclusion of this analysis is
that building a generic RESTful transaction model capable of satisfying the requirements
of all the scenarios is hard though several models solidly satisfy some specific scenarios
in some specific domains.

Keywords: REST, Web applications, Transactions

Communicated by: D. Schwabe & A. Ginige

1 Introduction

The REpresentational State Transfer (REST) architectural style is getting traction as a

lightweight alternative to SOAP-based Web Services (also known as “Big” Web Services)

in the industry [1]. One of the main reasons for this shift is that the SOAP-based WS-*

specification stack has grown significantly and has become extremely heavyweight for sim-

ple application integration scenarios. For instance, light-weight approaches are preferred in

130



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 131

cross-platform applications where accessibility from mobile devices with restricted computing

resources is vital. The REST architectural principles induce several qualities on the systems

such as scalability, loose-coupling and independent evolution, simplicity, and portability [2].

Further, RESTful architectures bring several advantages when building Internet-scale appli-

cations by taking the full advantage of the Web infrastructure with features such as caching.

Thus, there is a trend of providing RESTful interfaces as well as the SOAP-based Web Services

infrastructure that most organizations have in place. The industrial surveys undertaken by

analysts at Forrester confirm the shift towards RESTful application architectures; for exam-

ple, SOAP-only Web Service projects only make up less than 10 percent of the organizations

that they have surveyed [3].

However, one of the main criticisms, and also a barrier for adopting RESTful services

in the enterprise, is the lack of standard mechanisms to support the advanced quality of

service requirements that are essential to enterprises [1]. These requirements include security,

support for transactions, reliability, support for business processes, and service composition

[1]. This paper focuses on one of those requirements, support for transactions, with the

objective of producing a survey of the current RESTful transaction models and analysing them

according to common transactional scenarios found in traditional applications (by adapting

those scenarios to RESTful systems). This survey also helps to identify the current gaps and

challenges in the state of the art with regard to RESTful transaction models.

Transaction support is a must-have quality-of-service requirement for enterprise business

scenarios where data consistency is vital. Data consistency is important in business applica-

tions because invalid data could lead to undesired consequences such as incorrect execution,

monetary losses, and legal issues. The concept of transaction has been a key element in busi-

nesses from early days. For example, when goods are exchanged for money through several

actions such as one party providing the goods and another paying the money, both actions

have to be completed as one atomic unit. In computer applications, a transaction is defined

as a sequence of operations on the physical or abstract application state that can be considered

as a single unit of work [4]. Atomicity, Consistency, Isolation, and Durability (known by the

acronym ACID) are identified as the four main properties that a transaction should guar-

antee. Transactions ensure that systems always end up in a consistent state by establishing

that each transaction moves the system from one consistent state to another consistent state.

During the execution, each transaction is isolated from other parallel transactions, providing

an abstraction layer for system developers so that they do not have to worry about other

concurrent operations [4].

On the one hand, RESTful transaction models have been a controversial topic in the

REST community where the term “RESTful transactions” is sometimes referred to as an

oxymoron for it states that a RESTful design should avoid transactions entirely because

transaction support makes a system more complex and, as a result, hinders its scalability. On

the other hand, some researchers and practitioners believe that RESTful transactions are a

real necessity for the enterprise applications and that support for transactions is an essential

element for the wide adoption of RESTful designs in the industry [5]. Though this discussion

is still not concluded, when looking at public forums, we can observe the need for transactions

in RESTful applications, especially in brownfield development environments (i.e., when the

systems built with RESTful designs should coexist with legacy systems and support legacy



132 A Survey of RESTful Transaction Models: One Model Does not Fit All

processes).

There are two areas of RESTful service design in which transaction support is very rel-

evant: composite REST services and RESTful business workflows. In both use cases, a

component that is responsible for a composite service and/or executes the business work-

flow has to communicate with a set of RESTful services that are possibly distributed and

decentralized. To ensure the overall consistency, these actions have to be performed in a

transactional manner. In addition, there are many other scenarios such as travel booking

scenarios and business exchanges in which a user wants to carry out a set of interactions with

multiple REST services in a transactional manner.

The rest of the paper is organized as follows: Section 2 provides a background of the main

topics covered in this paper, i.e., the REST architectural style and transactions processing.

Section 3 presents the research methodology used in this work which includes a systematic

literature review and a comparison framework for RESTful transaction models. Section 4

discusses the RESTful transaction models identified in the systematic literature review, while

Section 5 analyses different transaction models with examples for common transaction sce-

narios applicable to RESTful architectures. Section 6 discusses the different qualities of these

transaction models according to the comparison framework and Section 7 presents the chal-

lenges for the current RESTful transaction models. Finally, Section 8 draws some conclusions

derived from the survey.

2 Background

This section presents a high-level background of the two main topics related to RESTful

transaction models: the REST architectural style and the concept of transaction.

2.1 The REpresentational State Transfer architectural style

The REST architectural style, initially known as “HTTP object model”, was developed as

a means of communicating Web concepts, and it provided the foundation for the modern

Web architecture [2]. In his dissertation, Roy T. Fielding explores the different architectural

aspects one should consider when building Internet-scale distributed hypermedia systems

[6]. One of the goals of that work was to understand, evaluate, and describe the architectural

designs that have made the World Wide Web successful and have allowed the Web to become a

highly distributed Internet-scale hypermedia system. An architectural style provides guidance

on developing concrete architectures for systems that are required to have certain quality

characteristics. The architectural aspects analysed include how a system is partitioned into

components and layers, how those components are connected to each other and exchange

information, and how these components can evolve interdependently [6].

The REST architectural style puts high emphasis on the scalability of the system and

the independent evolution of its components. The other properties related to the REST

architectural style include generality of interfaces, independent deployment of components,

and intermediary components that help reducing interaction latency, enforcing security, and

encapsulating legacy systems. REST introduces a set of named, coordinated architectural

constraints on hypermedia systems design and each of these constraints induces a set of

desirable properties (see Table 1) that enable the development of loosely coupled scalable

distributed systems; It also has a set of associated drawbacks.



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 133

Table 1. REST constraints, induced properties, and trade-offs

Constraint Induced property Trade-offs

Client-server portability, simplify server com-
ponents, independent evolution

-

Stateless visibility, reliability, scalability repetitive data, reduced server
control

Cache efficiency, scalability, user-
perceived performance

decreased reliability

Uniform Interface simplicity, visibility, loose cou-
pling, independent evolution

decreased efficiency, not optimal
for specific scenarios

Layered system reduced complexity, scalability overhead, latency
Code-on-demand
(optional)

extensibility reduced visibility

The REST uniform interface constraint is further elaborated with a set of sub-constraints

resource identification (addressability), uniform interface, stateless interactions, self-describing

messages, and hypermedia as the engine of application state (HATEOAS).

However, in recent years, the term “RESTful” has been used as a buzz word or a marketing

term, and most of the organizations use the term REST as tantamount to using the HTTP

protocol at the transport layer without considering the architectural constraints. As a result,

most web applications (including those calling themselves RESTful) do not consider REST

constraints in their designs. Models such as the Richardson Maturity Model categorize the

systems according to their adherence to the REST constraints [7] and provide an insight

into the impact and consequences of dropping these constraints. For example, if the uniform

interface constraint is not adhered and the interfaces are made resource-specific without being

uniform, URIs will not be enough for interacting with the resources and some out-of-band

knowledge will be required about the interface offered by the service, which leads to tightly-

coupled clients and services. Similarly, if the stateless interaction constraint is relaxed, servers

will have to maintain the conversational state for each client, making servers more complex

and less scalable.

2.2 Transactions

Transaction support is an important quality-of-service requirement in most enterprise business

scenarios. Transferring money from one account to another in a banking application is a

real-world example of where transaction support is important to ensure consistency. In the

transfer, both the deduction of money from one account and the addition of money to the

other account should occur in an “all-or-nothing” manner. The intermediate inconsistent

states such as when only one account is modified should not be visible outside the transaction

and if something goes wrong in the middle of the transfer, all accounts should be restored to

their initial values before the transaction. This section provides a background on transactions

and an overview of the different transaction types that the authors took into account when

developing the comparison framework for RESTful transaction models in Section 3.2.

Gray defined the transaction concept with atomicity, durability, and consistency [8], and

Haerder and Reuter coined the acronym ACID, adding isolation to the aforementioned three

properties [9]. Atomicity ensures that transactions change the state of the application in an



134 A Survey of RESTful Transaction Models: One Model Does not Fit All

atomic manner, i.e., either the state changes performed by all operations are reflected or no

changes are reflected (all or nothing). Consistency ensures that the result of a transaction

is correct and complete, thus it produces consistent results by transforming a system in one

consistent state into another consistent state. Isolation ensures that no concurrency anomalies

will be present when transactions are run in parallel, i.e., the outcome of a set of parallel

transactions is the same as if they were executed serially one after the other (serializability).

Finally, durability guarantees the persistence of the successfully completed transactions, i.e.,

all the changes made by a transaction are guaranteed to survive any software or hardware

failures subsequent to the commit operation of the transaction.

However, it is not always possible to guarantee the strong consistency property of the

ACID model because strong consistency may hinder other quality aspects of distributed data-

sharing systems. According to the CAP theorem [10, 11], these systems can only exhibit, at

most, two of the following three properties: consistency, availability, and tolerance to network

partitions. Furthermore, even in the absence of network partitions, data-replication-based

high-availability systems require a trade-off between consistency and latency as stated in the

PACELC theorem [12]. To overcome these issues, other consistency models propose to make a

compromise between consistency and availability/latency by relaxing consistency guarantees

in order to cater for network partitioning, fault-tolerance, and high-availability (see eventual

consistency [13] and BASE [14]).

Another orthogonal aspect to consider is the structure of the transactions. The simplest

transactions are called flat transactions [4]. Flat transactions have only one layer of control,

and they normally consist of a begin operation, a collection of business operations that have

to be carried out as a single unit of work, and, finally, a commit or a rollback operation.

Though flat transactions provide a good foundation to build transactional systems, they are

too restrictive for some complex use cases. For example, if a transaction consists of a large

number of bulk operations, it might not be efficient to rollback all the successful operations and

restart from scratch because of a failure in a single operation at the end. Thus, transactions

evolved providing more control over the flow of the transaction, i.e., when and how the commit

and rollback operations can performed.

Flat transactions with save points [4] provide an improvement to flat transactions by

adding the ability to rollback to specific points of the history that were previously established

instead of completely reversing all the effects of the transaction. Save points are useful in

those cases where it is too expensive to rollback completely and to restart the transaction

when one operation fails, and when it is more efficient to start from an intermediate state.

Chained transaction [4] are another variation to achieve a similar goal in which, instead

of having volatile save points, the transaction is organized as a set of transaction segments

chained one after the other. Once each segment is finished, the work will be committed, but

the chained transaction will continue with the same context, i.e., keeping all the resources

such as locks on objects needed for future operations.

Nested transactions [15] organize transactions into hierarchies and define sub-transactions

within a transaction that can be completed or rolled back individually. The advantage of

nested transactions is that they allow the transaction to be divided, thus, providing more

control over which parts to be committed or rolled-back. The commit of a sub-transaction

will only be visible to the parent transaction; moreover, if the parent transaction rollbacks,



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 135

all its sub-transactions are also rolled back.

Open nested transactions [16] are a less structured version of multilevel transactions with-

out a concrete hierarchy. A compensating transaction is a transaction that could generate the

semantically reverse effect of a previous transaction and thus can cancel out the effects of the

previous transaction. Compensating transactions are used when either no commit/rollback

support is available or when transactions are long lived.

Multilevel or layered transactions [16] are a generalized version of nested transactions

where an early commit of a sub-transaction (pre-commit) is allowed and, unlike nested trans-

actions, pre-commits are globally visible. Thus, in multilevel transactions the isolation prop-

erty is relaxed so that commits of the sub-transactions are visible to the other transactions.

The atomicity property is achieved using compensating transactions rather than state-based

undo.

A saga [17] is an interaction pattern for long-lived transactions in which the work has

to be decomposed into several sub-transactions and their steps can interleave . Each sub-

transaction provides a corresponding compensating transaction that will reverse the effects

if the transaction has to be rolled back. Sagas are similar to nested transactions, but sagas

restrict the transaction hierarchy to only two levels and do not provide full atomicity at the

outer level.

Table 2. A summary of transaction types

Name Description

Flat transactions (FT) Atomic action units
FT with save points Flat transactions that can rollback to intermediate points
Chained transactions A sequence of transactions that share locks and other re-

sources
Nested transactions A hierarchy of transactions
Sagas A sequence of flat transactions that can be interleaved with

other transactions
Multi-level transactions Nested transactions with pre-commit compensation
Open-nested transactions Anarchic nested transactions
Distributed transactions Transactions in a distributed environment
Workflow transactions Transactions adapted to workflow specific requirements

Distributed transactions [18] are transactions that run in a distributed environment and

have to communicate with different nodes of a distributed system. Distributed systems are

defined as systems in which hardware or software components are located at networked com-

puters and communicate and coordinate their actions only by passing messages; nevertheless,

they provide services to the users appearing as a single entity [19]. Similar to nested trans-

actions, distributed transactions are composed of several sub-transactions, each running on

a different node. Each node generally has a resource manager that manages the resources

in that node and decides whether it can guarantee the commit of a transaction or not. In

distributed systems, one of the challenges is that the different nodes that are members of the

system can form partitions in case of network failures; as a consequence, different nodes of

the system can contain different values for the shared data.

Workflow transactions [20] incorporate workflow specific requirements to the previously-



136 A Survey of RESTful Transaction Models: One Model Does not Fit All

described transaction models. As mentioned earlier, a transaction is defined through a se-

quence of operations. In workflow transactions, these operations are mapped to workflow

activities. These individual activities can also be transactions, leading to a hierarchical struc-

ture. Unlike other types of transactions, workflow transactions commonly include human

tasks in their flow. Real actions such as drilling a hole cannot be reversed; thus, the atomicity

property has to be relaxed. Schuldt et al. provides a framework for ensuring atomicity and

isolation in the context of transactional workflows [21].

A summary of the different transaction types are listed in Table 2.

3 Research Methodology

The first objective of this work is to identify and review the current RESTful transaction

models found in the research literature as well as in the industry. This task will provide a

good overview of the state of the art of RESTful transaction models. The second objective is

to analyse and compare the identified RESTful transaction models according to their ability

to fulfil common transactional scenarios. These tasks allow us to identify capabilities and good

features of the current RESTful transaction models and also the gaps in the current state of

the art. This section outlines the research methodology used to achieve these objectives.

A systematic literature review is the most appropriate technique to find all studies available

that investigate a specific research topic or research area with a well-defined methodology in

order to identify, evaluate, analyse, and interpret such studies in a way that is unbiased and

repeatable to a certain degree [22]. Systematic literature reviews are repeatable if they follow

a rigorous auditable well-documented methodology that allows to evaluate the study for its

completeness and fairness. B. Kitchenham and S. Charters provide a set of guidelines for

performing systematic literature reviews in Software Engineering [22], including how to plan,

conduct, and report the results of the review; Section 3.1 describes the methodology we have

followed, which is based on those guidelines.

No standard framework for comparing RESTful transaction models exists to date; there-

fore we have compared and evaluated the RESTful transaction models identified in the litera-

ture review according to the comparison framework presented in Section 3.2. This framework

has been formulated based on the common transactional scenarios in traditional enterprise

applications (adapted to RESTful systems) and on other characteristics generally used to

evaluate transaction models.

3.1 Systematic Literature Review of RESTful transaction models

The first phase of the systematic literature review process involves planning the review. Plan-

ning entails three main activities: (a) identifying the need for the review, (b) specifying the

research questions, and (c) developing a review protocol [22].

The systems built conforming to the REST architectural style are presently getting trac-

tion, in the industry, as a lightweight alternative for SOAP-based Web Services, as high-

lighted by the recent Forrester research report [3]. However, there are several enterprise

Quality-of-Service requirements such as security, reliability, and transactions [1] that have to

be integrated into RESTful designs so that those systems can be used in industrial settings.

Discussions on REST-compliant transaction models have been held since the early 2000s when

the REST architectural style was first introduced but, to the best of the authors’ knowledge,



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 137

no study that summarizes these existing REST-compliant transaction models and compares

them is available at present. Such study would provide the state-of-art of REST-compliant

transaction models and would help to identify the current gaps in REST-compliant transaction

model research. Furthermore, a systematic literature review on REST-compliant transaction

models would provide the necessary background for making the right decisions in future

REST-compliant transaction models by learning from the experiences of the previous mod-

els. These were the motivations behind our systematic literature review of REST-compliant

transaction models.

The second step, specifying the research questions, is an important step in a systematic

literature review because it provides the basis for the entire review process and drives (a) the

selection of the primary studies concerned with the research question; (b) the type of data

needed to be extracted from the selected primary studies to answer the research questions;

and (c) how the data analysis and synthesis should be done so that the review report provides

a comprehensive answer to the research questions .

In this systematic literature view, the main research question that was formulated and its

related sub-questions are

• RQ1. What is the state-of-the-art of the current REST-compliant transaction models?

– RQ1.1 To which level do the current RESTful transaction models conform to the

REST constraints?

– RQ1.2 What are the transactional guarantees provided by these models?

– RQ1.3 How can common interaction patterns of RESTful systems be executed

transactionally using the current transaction models?

A review protocol defines each of the steps in the systematic literature review process.

A well-defined review protocol allows an external reviewer to evaluate the completeness and

fairness of the study, and further it makes the study repeatable to some extent. It also helps

to reduce the possibility of the researcher bias [22].

A review protocol generally consists of the following: (a) a search strategy, (b) a study

selection criteria, (c) a quality assessment criteria, (d) a data extraction strategy, and (e) a

data synthesis strategy. The following sections describe the review protocol developed for this

systematic literature review.

Search strategy – The search strategy used in the review includes the key search terms,

queries, and the data sources to be used. During the development of the search strategy, a

set of key terms was identified and these terms were enriched with a list of synonyms, abbre-

viations, alternative spellings, and similar terms. Consultations with experts in the REST

community and common keywords found in well-known papers on the REST architectural

style were used as guidelines for identifying these key terms. Table 3 shows the key terms

identified. These key terms were then combined using the Boolean operators ANDs and ORs

to generate the search strings.

In the next step, the selection of the data sources was done. Systematic literature reviews

generally only consider research literature. However, during the pilot searches the authors

discovered that a considerable number of discussions took place outside the research literature,

in particular in public forums used by the REST developer community and in technical



138 A Survey of RESTful Transaction Models: One Model Does not Fit All

Table 3. Key terms

Main term Related terms

REST Representational State Transfer, RESTful, REST-ful, REST-compliant,
REST-compliance, RESTy

Transaction transaction(s), transactional
Model model(s), technique(s), protocol(s), design pattern(s)

literature such as developer guide books (see Table 4). Thus, the authors decided that it

would be useful to include in the review public forums (where most of the REST related

discussions have happened in the past) as well as the technical literature written by well-

respected authors in the REST community. These two information sources will add value

to the literature review by providing a big picture that covers the ideas originated from the

REST developer community. Inclusion of those information sources also made it possible for

the authors to verify which ideas that started in public forums were propagated to research

literature with a comprehensive investigation and further developed to become robust models,

and which ones are still not explored in depth. Nevertheless, the models found in research

literature were given more weight in the data synthesis and analysis phases.

Table 4. Data Sources

Data source Description

Research Literature Peer-reviewed papers from journals, conferences, and workshops which
present the models or techniques that were well-thought, developed and eval-
uated. These papers are presented in a more research-oriented point-of-view.

Technical Literature Developer books published by the respected authors in the REST community.
They provide methods and techniques in a more technical-oriented manner
and include implementation guidelines.

Public forums Mailing lists such as rest-discussa, blog posts and technical interviews from
respected visionaries of the REST community. These public forums present
methods and techniques that vary from initial thoughts to ideas that are ver-
ified though an implementation and evaluated according to different aspects.

For finding relevant research literature, the following databases and citation indexes were

used: Google Scholar, IEEE Xplore, ACM Digital Library, ISI Web of Knowledge, and

Springer Link. In addition, because of their relevance in the REST related topics, the fol-

lowing individual journals were also included: Journal of Web Engineering, Journal of Future

Generation Computer Systems, ACM Transactions on the Web, and International Journal of

Web Engineering and Technology.

Study selection criteria – The study selection criteria determines which primary stud-

ies will be included and excluded from the review. The study selection criteria of this review

provides guidelines on identifying the primary studies that are most relevant to the research

question, and on selecting the studies that provide information necessary to answer the re-

search questions. Study selection criteria are devised using well-documented inclusion criteria

and exclusion criteria [22]. The main inclusion criteria used in this review are that (a) the

domain of the primary study should be systems that implement RESTful architectural styles,

and (b) the main focus of the primary study should be on transactional models. The main

exclusion criteria used are that (a) a primary study uses the term REST but the domain

of the study is mostly SOAP-based Web Services, or (b) a primary study uses the term

transaction(s) but does not provide details of a transaction model.

Quality assessment – The quality assessment criteria are used to evaluate the quality of



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 139

the primary studies selected and to further strengthen the study selection criteria. The quality

assessment criteria also help to eliminate validity threats and make the study more objective.

Different biases such as selection bias, performance bias, detection bias, and exclusion bias

can be prevented using the quality assessment criteria; protection mechanisms can also be

taken [22]. In this study, we have implemented a quality assessment criteria based on a set

of questions to ensure that each of the selected primary studies is focused on the topic of

RESTful transactions and provides some data to answer to research questions.

Data extraction strategy – The data extraction strategy provides a well-defined mech-

anism to extract the relevant data from the primary studies to answer the research questions

and also to extract other metadata required for selecting the study selection and for executing

the quality assessment criteria. Generally, data extraction forms are used for data extraction

to ensure that all the necessary data are extracted and are available in a structured manner

for further analysis and data synthesis. Additional metadata such as the name of the reviewer

and additional notes are also recorded for traceability.

This review has one main question that is focused on identifying the current REST-

compliant transaction models and three sub questions that are aimed to investigate the iden-

tified models in more detail. Thus the data extraction forms were designed by expanding each

such question in more detail so that the extracted information could be used to answer the

research questions.

Data synthesis strategy – The data synthesis strategy specifies how the results from

the primary studies will be analysed and presented. Synthesis can be either quantitative

or descriptive; for this review the synthesis was mainly descriptive because of the nature of

the research questions. The information presented was chronologically ordered whenever it

was relevant to make the evolution of RESTful transaction models visible. A more detailed

analysis of the identified models was done with respect to the second objective of this work

using the comparison framework for RESTful transaction models which is presented next.

3.2 Comparison framework for RESTful transaction models

The second objective of this work is to analyse and compare the RESTful transaction models

identified in the systematic literature review. This section describes the comparison framework

used to analyse and compare the different RESTful transaction models.

3.2.1 Dimensions of transaction models

As the first step of the comparison framework, we present a set of dimensions related to REST-

ful transaction models that can be used to cluster these models into related groups. Table 5

illustrates the main dimensions and the different alternatives in each of those dimensions.

We analysed REST-compliant transaction models along different dimensions. One of the

dimensions is the transaction guarantees provided by the model. We can identify three main

types of transactions based on the transactional guaranteed provided: ACID transactions,

long-lived actions, and business transactions. On the one hand, ACID transactions, which

are widely used in database transactions, are based on timeliness and trust, and they are

suitable for short-lived transactions within a single application (in which the actions are

trusted because they originate within a single application boundary). On the other hand,

long-lived transactions involve actions that could take hours or days to finish and thus, do not

fit well under ACID transactions. The same techniques that are used for ACID transactions



140 A Survey of RESTful Transaction Models: One Model Does not Fit All

Table 5. Analysis dimensions

Dimension Alternatives

Transaction type Short-lived ACID transactions
Long-lived transactions
Business transactions

Transaction structure Flat transactions
Checkpoints and save points
Chained transactions
Sagas
Nested transactions
Multi-level transactions
Open-nested transactions
Distributed transactions
Workflow-based transactions

Concurrency control mechanism Pessimistic locking
Optimistic concurrency control
Timestamp ordering

How uncommitted state is handled Provisional resources
Headers
Externally visible bookings

Distributed coordination Two phase commit
Paxos
TCC

cannot be used in long-lived transactions because some blocking operations could have a

negative effect on the throughput of the system and could affect its overall performance.

Business transactions are consistent changes of the state in a business that is driven by

a well-defined business function that could be either short-lived or long-lived transactions.

In business transactions, different ACID properties are required at a higher level considering

the consistency of business operations rather than the consistency of individual read/write

operations on data. For instance, atomicity can be viewed at different levels such as system-

level atomicity, business interaction-level atomicity, or operational level atomicity [23]. In

some situations such as reservation of tickets, the isolation property can be relaxed because

of the nature of the reservation business; it is expected that the reduced availability due to

an ongoing booking is visible to other buyers without making their state inconsistent.

Depending on the structure of the transaction, different types of transactions can be

identified. Starting from simple flat transactions, which are linear (i.e., lacking any structure)

and support strict ACID properties, transactions can be structured into different ways to

provide more flexibility as needed by complex scenarios such as transactions with checkpoints

and save points, distributed and nested transactions, chained transactions, sagas, multi-level

transactions, or workflow-based transactions (see Section 2.2). Most modern transaction

models, such as web service and grid transaction models, support more than one of these

structures.

Another way to look at transaction models is to analyse the concurrency control mech-

anisms used by them. Concurrency control mechanisms can be broadly classified into two

main categories: pessimistic concurrency control and optimistic concurrency control. Pes-

simistic concurrency control mechanisms assume that conflicts will be common and, hence,

transactions are synchronized early to achieve the serializability of parallel transactions. Due

to the early synchronization, the pessimistic concurrency control methods do typically block

parallel transactions in order to avoid conflicts. Thus, pessimistic concurrency controls are



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 141

not suitable when the actions take a long time. Optimistic concurrency control techniques

assume that conflicts are rare and delay the synchronization until the end of the transaction.

Optimistic concurrency control mechanisms handle conflicts when they happen rather than

avoid them. However, handling conflicts adds overhead to the process making optimistic

concurrency control not suitable when conflicts are common. Timestamp ordering is a con-

currency control mechanism where each transaction is assigned a timestamp and conflicting

operations are executed in strict order according to their timestamp. Timestamp ordering

can be either optimistic or pessimistic. In order to execute timestamp ordering algorithms,

each data item should maintain a read timestamp and a write timestamp; those timestamps

contain the data about the timestamps of the transactions that read from or written to those

data items and that will be used for accepting or rejecting incoming operations [4].

In the case of RESTful transactions, another dimension to consider is how transaction

models provide access to the uncommitted state of a resource within an ongoing transac-

tion yet to be committed. Because the REST architectural style puts the constraint on the

interactions between the clients and the resources, i.e., they have to be stateless; there are dif-

ferent approaches proposed by RESTful transaction models that allow clients to access these

intermediate states while trying to conform to the stateless constraint. One approach is to

represent these intermediate states as provisional resources. However, this approach leads to

a change in the identifier (URI) of the provisional resource, and if the resource representation

has relative URIs to other resources they will point to different resources after the change

of the identifier. This identity switch can lead to confusion in the clients and, therefore, it

should be well-defined how the identity switch is handled when the state is changed from the

original resource to the provisional resource and then back to the original resource.

Another approach for managing the uncommitted state is to have a header to identify

the transaction; in this case the representation returned by the resource will depend on

the transaction identifier. This approach is criticized as a direct violation of the stateless

REST constraint. The argument in favour of this approach is that resources are free to

return different representations of the same resource depending on the client parameters. For

example, depending on content negotiation servers send different media types of the same

resource, or depending on the client authentication and the authorization level the server

can send different levels of information. However, in both cases (the different media types

or the partial representations), the representation returned represents the same state of the

resource. By contrast, in the case of using a transaction identifier, different representations are

returned represent different states. In the special case of the reservation business model, the

uncommitted state can be externally visible as a booking, since isolation of those reservations

is not required by the model.

Finally, another dimension that is important to consider when clustering REST-compliant

transaction models is whether the transaction model supports decentralized and distributed

transaction scenarios. In these scenarios, transaction models require a coordination protocol to

handle the coordination between different components that are physically distributed across

the network and managed by different authorities. Distributed transactions use consensus

algorithms such as Two-Phase Commit (2PC) or Paxos for coordinating among themselves to

agree on the atomic outcomes of a transaction. Try-Cancel/Confirm (TCC)[5] is a simplified

form of consensus algorithms that can be implemented in conformance to the REST principles



142 A Survey of RESTful Transaction Models: One Model Does not Fit All

and is suitable for reservation scenarios.

3.2.2 Common transaction scenarios

This section presents the common transaction scenarios that may appear in transactional

RESTful systems. These scenarios, shown in Table 6, are grouped into three categories:

(a) successful (happy path) scenarios where the transaction follows the regular path and

completes successfully; (b) rollback scenarios where the transaction has to be rollbacked due

to some reason; and (c) failure scenarios where either the client or the server fails during the

execution of a transaction.

Several other orthogonal aspects, i.e., whether the resources are centralized or decen-

tralized/distributed, whether the transaction is short-lived or long-lived, and whether the

operations involved in the transaction are simple updates or include other operations such

as deletions and creations, are also considered in the successful scenarios. Nevertheless, the

scenarios present in Table 6 are not exhaustive (i.e., it does not include all the different com-

binations of these aspects) and relevant combinations are discussed when applicable in the

analysis.

Table 6. Common transaction scenarios in RESTful systems

ID Description

Successful scenarios

Scenario I A transaction that updates two resources
Scenario II A transaction that involves update, creation, and deletion operations of re-

sources
Scenario III A long running transaction that updates two resources where the update

operations take a long time (long-lived)
Scenario IV A transaction that updates resources from different applications (decentral-

ized and distributed)
Rollback scenarios

Scenario V A transaction with multiple updates where the server rejects an update be-
cause of a conflict with a parallel transaction

Scenario VI A transaction with multiple updates where the client rollbacks due to some
condition in its business logic

Failure scenarios

Scenario VII A transaction in which the client fails in the middle of the transaction
Scenario VIII A transaction in which the server fails in the middle of the transaction
Scenario IX A transaction where there are failures related to intermediaries such as com-

munication failures and message losses due to problems in the infrastructure

When considering failure scenarios, fault tolerance, and recovery, we have to consider

different fault modes in distributed systems. These modes include: byzantine or arbitrary

failures, authentication-detectable byzantine failures, performance failures, omission failures,

and fail-stop failures [24]. For this work, we do not consider the byzantine or arbitrary failures,

in which the servers can send incorrect information to the clients; however, the rest of the

failure modes are covered in the failure scenarios.

3.2.3 Analysis dimensions for RESTful transaction models

This section presents different dimensions that the comparison framework has taken into

account when analysing the RESTful transaction models.

Scenario coverage – Table 6 shows common transaction scenarios adapted to RESTful

systems. Each transaction model has been analysed to check whether the model can fulfil



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 143

each scenario. Running examples have been provided for the transaction scenarios that each

transaction model supports. These examples not only provide the information on whether a

given transaction model supports a given scenario or not but they also provide details on how

the model works in those scenarios. This information acts as the input for the analysis of the

models based on the dimensions described in the following sections.

Transactional guarantees – In this dimension, the different guarantees provided by

each transaction model have been analysed. Traditionally, transactions should guarantee all

the ACID properties i.e. atomicity, consistency, isolation, and durability (see Section 2.2).

However, because strong consistency is a trade-off between other properties such as availabil-

ity, latency, and partition tolerance, there are transaction models that relax the consistency

guarantees such as BASE [14].

REST constraints compliance – In this dimension, we analyse whether the trans-

action models conform to the REST constraints in their protocol interactions. These con-

straints include: client-server architectural style, stateless client-server interactions, labelling

of cacheability, uniform interface, layered system style, and optionally code-on-demand style

[6]. The uniform interface is further defined using four interface constraints: (1) identifica-

tion of resources, (2) manipulation of resources through representations (3) self-descriptive

messages, and (4) hypermedia as the engine of application state (HATEOAS).

HTTP compliance and support – Most systems built according to the REST ar-

chitectural style often use the HTTP protocol as the application protocol. All the RESTful

transaction models that we have identified use the HTTP protocol. The goal of this dimension

is to analyse the transaction model in terms of HTTP-related properties. The following con-

cerns were analysed: (a) conformance to the HTTP semantics in protocol interaction (i.e.,

properties of different HTTP operations such as safeness and idempotency are honoured);

(b) only standard HTTP verbs and headers are used in the protocol interactions; and (c) the

commonly used HTTP verbs (i.e., GET, PUT, POST, DELETE, . . . ) are supported by the

transaction model.

Protocol overhead – This dimension analyses the overhead added by the protocol in-

teraction and compares with the original non-transactional interactions. This overhead plays

a vital role in whether a transaction model will be widely accepted and used in practice.

When a transaction model uses the HTTP protocol, the overhead could be measured in two

different ways. On the one hand, if the protocol adds additional metadata to the request

or response payload, the additional data overhead can be measured (e.g., the increase of the

size of the payload in bytes). On the other hand, if the transaction model introduces new

HTTP round trips this will have a performance overhead with additional delays. The payload

overhead depends on the actual payload of the scenario and it is hard to calculate a generic

value for that. Nevertheless, the performance overhead can be calculated in a generic manner

considering the number of additional round trips. Thus, for this analysis we have used the

performance overhead.

Industrial adoption – In this dimension we look at whether there are implementations

that demonstrate the feasibility of implementing the model and whether there are case studies

of the model actually being used in real-world scenarios. The factors considered in this

dimension go beyond just having the availability of an implementation, for instance, as a

research prototype. Factors such as whether the implementation is evaluated for performance



144 A Survey of RESTful Transaction Models: One Model Does not Fit All

and overhead and whether the implementation is adopted by the industry and used in a

production setting are also considered.

Further, we analyse whether the transaction model can be incrementally adopted in current

systems, i.e., the introduction of the transaction model will not break any of the existing

clients or servers which are not aware of the transaction model and if the clients and servers

that use the model can gracefully fail or reject to interact when they identify that the server

or the client on the other end is not capable of providing the support for the transaction

model. This allows the clients and servers that support the transaction model and the ones

that do not do so to co-exist with each other.

4 Literature Review Results

This section presents the results of the systematic literature review that was presented in

Section 3. These results cover the literature published from 2000 till April 2014. The first

part of the section describes the RESTful transaction models that were identified in the

review, and the latter part categorizes them according to various different aspect showing the

similarities and differences of the identified models.

4.1 RESTful transaction models

One of the objectives of this work was to identify current RESTful transaction models. This

section presents the RESTful transaction models that were identified following the method-

ology defined in Section 3 and those results are grouped by the data sources: public forums,

technical literature, and research publications.

4.1.1 Public forums

Since early 2000s discussions about RESTful transactions are not scarce in public forums

on REST design principles and practical RESTful applications, such as the rest-discussb

mailing list. The conclusion of these initial discussions was that even though there are some

theoretical mismatches between the REST architectural style and transactions, there is a clear

need for transactions for various practical reasons [25]. The main focus of these discussions

was on whether the concept of transaction could be adapted for REST-compliant designs and

if so, how RESTful transaction models could be designed and implemented. This section

presents the ideas that were discussed and analyses them. These ideas were contributed by

different individuals in the mailing lists and further developed as a community effort. Later

we present how these ideas were evolved to more concrete proposals. The main ideas that

emerged in public forums include

• Single resource pattern, where the state changes that have to happen in a transactional

manner are identified and such state is enclosed as a separate first class resource so

that transactional state can be manipulated through a single stateless interaction. This

pattern is also known as single-web-resource model or abstract-transactional-resources.

• Overloaded POST pattern, where several HTTP operations are encoded into the body of

a single POST operation with the information about each HTTP operation, the URLs

of the resources on which those operations will act, and the payload information for

bhttp://groups.yahoo.com/neo/groups/rest-discuss/info



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 145

each operation when applicable. In this pattern, the POST operation submits a batch

of HTTP operations at once to be executed in the server in a transactional manner.

• Transactions as resources pattern, where a transaction is modelled as a resource itself

such that the transaction resource can be used to manage the state of the transaction

in a RESTful manner by performing different operations on the uniform interface of the

transaction resource. In addition, the transaction resource is used as a log of actions

that are related to a corresponding transaction.

• Provisional-final pattern, where a separate URL space (similar to private workspaces)

or a set of provisional resources are used to represent the intermediate states of re-

sources that are inside a transaction but not yet committed. This pattern isolates the

intermediate states of each transaction by creating a private or a provisional copy of

the resources involved, and the provisional resources are synchronized with the actual

resources at the time of the commit.

• Batch transactions pattern, where transactions are modelled as a batch of operations

transmitted in a single interaction that will be executed in an atomic manner in the

server. Batch transaction pattern can be different from overloaded POST pattern be-

cause it can use other mechanisms such as mediators for processing the batch requests.

These ideas provided the base for the more concrete RESTful transaction models presented

in the following sections.

Seairth Jacobs formulated a proposal for RESTful transactions in HTTP [26] that is based

on the transactions as resources pattern and on the use of separate URL spaces associated with

the transaction resource for representing provisional resources (provisional-final pattern). The

transaction resource is serialized as an XML document that contains the logs of the transaction

history (a series of “receipts” of the actions). Entity tags are used to refer to different versions

of the resources during the transaction. The proposal included both optimistic updates (or

delayed pessimistic) which do not involve locking resources and pessimistic updates which

involve locking. However, this proposal was not developed further as a full specification nor

was widely adopted by the industry.

Fielding, who disregarded the idea of having separate URL spaces for temporal resources

because it leads to a change of the identity of the resource (URL) during the intermediate

stages, proposed a different approach that he used in his Waka protocol [27]. In his proposal,

instead of using a separate URL space for a transaction he used an HTTP header in each

operation that contained the URI of the corresponding transaction to indicate that a given

operation is part of a transaction. It is argued whether it makes the design stateful (as in

the case of using cookies), but he defended his proposal by saying that the interactions are

still stateless because the transaction identifier is a URL that can be accessed from anywhere

so that this approach can scale to multiple servers without a problem and because the re-

sources can have multiple representations based on this header, similarly to the case of content

negotiation c.

In addition, there were discussions on how the existing transactions models could be

incorporated into RESTful architectures. The majority of the existing transaction models

chttps://groups.yahoo.com/neo/groups/rest-discuss/conversations/messages/4165



146 A Survey of RESTful Transaction Models: One Model Does not Fit All

came from the database research field and one of the main arguments against adapting them

was that database transaction models are based on ACID properties which are too restrictive

to be used on the Web. In contrast to databases, resources on the Web are mostly distributed

and are managed by decentralized parties with no central authority that controls or owns

everything. However, there were attempts to adapt existing models such as the UN/CEFACTs

technology neutral transaction model and RosettaNet Partner Interface Processes (PIPs) to

build a RESTful transaction model based on themd.

REST-*e is an initiative from the JBoss community that aimed at creating RESTful inter-

faces for common Web Service middleware services such as transactions, messaging, workflow,

security, and management similar to the SOAP-based Web Services. This initiative triggered

several discussions in the REST community and lead to two concrete proposals for REST-

ful transactions; one based on ACID transactionsf and another one based on compensating

transactionsg. These proposals were implemented using the RESTEasyh REST framework

and were included in the JBoss transaction middleware suites. As the next step, there was

an attempt to formalize these proposals as specifications to be submitted to standardization

bodies. Mark Little drafted the REST-Atomic Transactions specification to be submitted to

OASIS but that did not get enough traction and it didn’t get much support from the other

parties to move forward as a standard.

In addition to the mailing list and wiki discussions, standardization bodies such as the

World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF) pub-

lished several technical specifications that are relevant to RESTful transactions. The W3C

note on “Editing the Web - Detecting the Lost Update Problem Using Unreserved Checkout”

[28] describes how entity tags can be used to detect the lost update problem and provides an

optimistic concurrency control mechanism for the Web. Another W3C note “Identifying Ap-

plication State” [29] summarizes some good practices on how URIs should be used to identify

web application state and this note is aligned with the provisional-final pattern.

RFC4918 from the IETF on “HTTP Extensions for Web Distributed Authoring and Ver-

sioning (WebDAV)” [30] introduces two new HTTP verbs LOCK and UNLOCK that can be

used for concurrency control of Web resources. In addition to the support for exclusive and

shared lock types, the WebDAV specification defines the depth of a lock that can be used

to lock collection resources along with all its members. Even though the WebDAV protocol

provides foundation for concurrency control, not all web servers support it and thus these

HTTP operations might not be available in some web server implementations.

4.1.2 Technical literature

The technical literature, which mainly consists of technical books, describes design patterns,

idioms, best practices, and guidelines on building RESTful applications and includes sections

on how transactions can be implemented in RESTful services. These ideas and proposals align

with the ones expressed in public forums. Table 7 lists the books that discuss the RESTful

transaction models identified in the review.

dhttps://groups.yahoo.com/neo/groups/rest-discuss/conversations/messages/1399
ehttp://www.jboss.org/reststar
fhttps://community.jboss.org/wiki/TransactionalSupportForJAXRSBasedApplications
ghttps://community.jboss.org/wiki/CompensatingRESTfulTransactions
hhttp://resteasy.jboss.org/



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 147

The most predominant approach used in books is the transactions as resources pattern by

encapsulating the transaction state in a transaction resource. For representing the uncom-

mitted state, both the provisional-final pattern (i.e., using a separate URL space under the

transaction resource to represent provisional resources [31, 18]) and the use of a header to

indicate that an interaction belongs to a transaction [32] are used in different approaches.

Jim Webber et al. illustrate an approach for RESTful transactions by combining the

transactions as resources approach with two-phase commit [32]. However, they advocate to

avoid cross organizational boundary transactions as much as possible with the argument of

the additional complexity and the fact that they do not fit well with the original design of the

Web. They describe an approach, un-transactions, in which HTTP status codes are used as

coordination metadata and the consensus is built at each step. In contrast to other approaches

on RESTful transactions, error recovery is done after every interaction rather than at the end.

Thomas Erl et al. proposed a different approach by introducing stateful complex methods

with transaction semantics [33]. These methods intentionally breach the stateless REST

constraints whilst accepting that it could reduce the scalability of the system. Two new

HTTP methods are introduced: (a) the TRANS method allows carrying out the interactions

necessary to perform two-phase commit, and (b) the PREP-PUT method, which is similar to

the PUT method but does not persist the changes until they are committed. The use of new

HTTP methods hinders the wide use of the transaction model because they are not widely

supported by existing implementations.

Table 7 presents transaction models found in technical literature.

Table 7. RESTful transaction models in technical literature

Year Title Model description

2007 RESTful Web Services [31] Transactions as resources
2009 Principles of transaction processing

[18]
Transactions as resources

2010 RESTful Web Services Cookbook [34] Single resource pattern
Try-Cancel/Confirm pattern

2010 REST in Practice [32] Transaction as resources with two phase commit
Un-transactions

2011 SOA with REST [33] Stateful complex method (e.g., TRANS, LOCK,
PREP-PUT)

2013 RESTful Web APIs [35] References to WebDAV methods (e.g., LOCK)

4.1.3 Research Literature

One of the earliest research papers to mention RESTful transactions is a paper from R. Khare

and R. N. Taylor that describes a set of constraints on the configuration of components and

connectors to extend the REST architectural style for distributed and decentralized systems

[36]. These extensions include: Asynchronous REST (A+REST), Routed REST (R+REST),

REST with Delegation (REST+D), and REST with Estimates (REST+E). Among those,

only REST with Delegation and REST with Estimates are related to transaction processing.

REST+D provides ACID transactions support by introducing a MutexLock component that

acts as a proxy to the resource and provides the concurrency control to achieve serializability

of all the updates with a distributed lock protocol such as Lamport’s Bakery algorithm [37].

In addition, REST+E introduces a new consensus-free architectural style that can be used to

achieve BASE properties instead of ACID properties. A prototype implementation known as



148 A Survey of RESTful Transaction Models: One Model Does not Fit All

MOD PUBSUB open source ARREST toolkitiwas developed to evaluate to the feasibility of

approach.

Luiz Alexandre et al. proposed an optimistic technique for transaction control using the

REST architectural style [38]. In this technique, each transaction has a lifecycle that consists

of three phases: a read phase, a validation phase, and a possible write phase. After all the

resources are read, the changes are done locally and later made global in the write phase.

The proposed approach mandates each resource to have a version number that is incremented

with each update and informs about the version within its representation. If a write fails due

to a validation failure (i.e., the resource is updated by another party after the read and before

the attempt to write this transaction), the transaction has to rollback and start over again.

This approach is only suitable when such conflicts are rare, because conflicts add a big

overhead to the process. For rollback, the proposal uses the concept of compensation, which

consists of making an action in order to logically reverse the effect of a previously executed

action. For example, an action of updating a resource with a PUT could be compensated

with a PUT with the previous value. However, compensation is harder for other actions such

as DELETE. Another issue of optimistic techniques is that partial updates become visible

outside the transaction and other parallel transactions can read these values thus becoming

dependent transactions of this. For the compensation to happen without falling into adverse

cascading aborts while rollbacking, the operations on resources should have the commutativity

property such that they manipulate the resource with additions and subtransactions of data

items (i.e., it is possible to calculate the delta between two versions) [39]. Another possible

problematic situation is when two transactions repeatedly run into conflict because they

update two resources in a reverse order causing both transactions to continuously rollback.

This proposal is functionally very similar to the optimistic concurrency control of the HTTP

protocol using etags, conditional requests (e.g., If-Match), and 409 conflict header codes [40].

Alexandros Marinos et al. proposed “RETRO: A Consistent and Recoverable RESTful

Transaction Model” that uses the concepts of transactions as resources and temporary or

provisional resources to represent intermediate resource states [41]. RETRO uses locking for

concurrency control, and to follow the REST principle of resource identification, both locks

and transactions are designed as resources. The model only supports resources with structured

data representations such as XML. Each resource advertises a link to its lock collection and

transaction collection; these collections can be used to create locks and transactions associated

to a given resource.

Transaction and lock media types are defined with their semantics so the clients can

interact with them without any out-of-band knowledge. RETRO supports both shared locks

(SLOCK) and exclusive locks (XLOCK), and the lock conflicts are resolved using a lock

compatibility table. Each lock has an associated expiry time granted based on the server

defined rules. If a lock expires, all the locks of the same transaction expires to ensure the

Two-Phase Locking guarantees.

Currently, RETRO only supports GET and PUT operations and they prove the correctness

of the approach with formal proofs with the isolation theorems coming from the database

community by mapping the GET and PUT operations to read and write database operations

[42]. Apart from the general criticisms of the provisional-final resource approaches, one of

i http://mod-pubsub.org/



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 149

the main criticisms of the RETRO model is that it exposes too much metadata that is not

essential to be publicly available and metadata is too scattered in many resources. Further, it

introduces several sets of HTTP rounds trips to discover and manage locks and transactions

that could possibly be optimized.

In 2010, Luiz Alexandre et al. proposed a Timestamp-based two-phase commit for REST-

ful services (TS2PC4RS) [43] as a successor of their optimistic technique; this model uses a

non-locking concurrency control mechanism based on timestamp ordering and the two-phase

commit protocol for coordinating and reaching consensus in distributed transactions. This

approach is an extension to the Basic Timestamp (BTS) [44] approach for transactions by

adapting it to RESTful services. Timestamp-based approaches have few advantages over lock-

based approaches such as being deadlock free, because if an operation cannot be executed

due to a timestamp conflict it is restarted with a new timestamp instead of being blocked.

However, the additional overhead of the restarting operation is a drawback of this approach.

In BTS, each transaction is assigned a timestamp when it is initiated and each action (e.g.,

read, write) of the transaction has the timestamp of the corresponding transaction. Each data

item has three related metadata: (a) the largest timestamp of a write operation on the data

item (WTM), (b) the largest timestamp of a read operation on the data item.(RTM), and

(c) a list of buffered prewrites in the timestamp order (LPW).

Read/write operations from different transactions are accepted and executed in such a

way that the final execution schedule can be rearranged to an execution schedule where each

transaction is executed serially according to their timestamp ordering. This process ensures

the serializability of timestamp-based transactions. Conflicts are resolved using two main

rules: (a) a transaction’s request to read an object is valid only if that object was last written

by an earlier transaction, i.e., if the transaction’s timestamp is lower than the WTM it has

to be restarted with a new larger timestamp to read the data item; and (b) a transaction’s

request to write an object is valid only if that object was last read and written by earlier

transactions, i.e., if the transaction’s timestamp is lower than either WTM or RTM it has to

be restarted [45].

BTS is integrated with two-phase commit to ensure the atomicity in distributed trans-

actions. Generally, agents managing the resources in the two-phase commit protocol use

locking-based mechanisms and have exclusively locks to the resources that are consumed by a

transaction. Timestamp-based mechanisms integrate two-phase commit using a different ap-

proach called prewrites. Prewrites allow clients to update resources in a provisional manner,

i.e., the changes are buffered and not directly applied on the data items. Write operations are

only applied on the data items when the transaction commits. Once a prewrite is accepted,

it is guaranteed that that prewrite will be made permanent no matter when the commit op-

eration arrives. However, depending on the other prewrites on the queue, the time when the

prewrite will be written permanently varies. A transaction coordinator ensures that all the

prewrites of a given transaction are either persisted or discarded by obtaining consensus from

all agents involved in the transaction using the two-phase commit protocol [43].

In 2011, Guy Pardon and Cesare Pautasso proposed the Try-Cancel/Confirm (TCC) trans-

action model [5] based on their previous work on a lightweight transaction model for composite

systems [46]. This transaction model is suitable for the reservation business model such as

hotel or flight bookings for a single trip where all the tickets have to be reserved and booked



150 A Survey of RESTful Transaction Models: One Model Does not Fit All

or none of them. One of the main use case of this model is composite RESTful services that

atomically carry out a transaction with a set of distributed RESTful services. The composite

service acts both as the workflow engine and the transaction coordinator. The main require-

ment of the model is to maintain the autonomy and loose coupling (i.e., they are unaware

of the fact that they are part of a global transaction) [47]. To fulfil this requirement, the

model avoids using a transaction context that is shipped around to the participants. Further,

the model avoids using distributed locking by adopting the “try”, “cancel”, and “confirm”

events mapped to business services. The model does not ensure the isolation property but it

is argued that for services that fall under the reservation model this is not a problem. TCC

model provides a recovery protocol in the case of different modes of failures such as failure

of different participants and transaction coordinator, and failures in the different steps of

the transaction. The recovery protocol makes use of heuristics, such as timeouts, to handle

failures of participants.

The TCC model is based on a set of assumptions: (a) each RESTful service participating

in a transaction is loosely-coupled with other RESTful services participating in the same

transaction and with the transaction manager coordinating the transaction; (b) requests to

the RESTful services can fail in a non-transient way; (c) atomicity should be guaranteed; and

(d) RESTful services temporarily reserve resources for a given request and will not reserve

them forever. In 2014, the authors proposed a Transaction as a Service [48] approach where

the transaction coordinator is provided as a RESTful service on the web. This service allows

clients to delegate the confirmation and recovery logic to a third-party service, eliminating

them from the need to write boilerplate code to handle the protocol logic.

Finally, in 2012, Sebastian Kochman et al. proposed a transaction processing system for

RESTful services following the concept of batch operations called AtomicREST [49]. The goal

of their system is to provide a transaction system that is transparent to non-transactional

clients and that does not require changes to existing RESTful services to provide transaction

support. Their approach proposes an overlay network of mediators and proxy servers that

provides the transaction support over existing services. For the services that do not support

rollback or restoring to previous versions, they propose a simple (best-effort) compensation

mechanism.

The main components of AtomicREST include: Server, Client, Mediator, and Proxy.

Mediators and Proxies provide a middleware infrastructure for carrying out batch operations

with minimum changes to the existing services. AtomicREST provides algorithms for each of

these components to execute a RESTful transaction. The transaction processing may involve

a single mediator in the simple case of a decentralized application or multiple mediators

when the participating RESTful services are distributed and decentralized. Their paper on

AtomicREST [49] provides both theoretical proofs of their algorithms to guarantee ACID

properties and a performance evaluation where they show that the total overhead time per

transaction is linearly dependent on the number of transaction requests.

Table 8 summarizes the transaction models found in the research literature.

5 Analysis of the models

This section analyses the RESTful transaction models found in the systematic literature

review presented in Section 4 according to the comparison framework defined in Section 3.2.



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 151

Table 8. RESTful transaction models in research literature

Year Model

2004 REST+D / REST+E (ARRESTED) [36]
2009 Optimistic technique for transactions using REST [38]
2009 A consistent and recoverable RESTful transaction model (RETRO)

[41, 42, 50]
2010 Timestamp-based two phase commit protocol for RESTful services

(TS2PC4RS) [43, 51, 52]
2011 Try-Cancel/Confirm pattern (TCC) [5, 48]
2012 Atomic REST batched transactions [49]

The analysis includes a clustering of the transaction models based on different dimensions

and an evaluation of the models based on common transaction scenarios.

5.1 Clustering of the RESTful transaction models

By analysing the results of the review for RESTful transaction models, from the REST com-

munity forums to technical and research literature, we can identify several approaches for

achieving RESTful transactions. Some techniques mix aspects from different approaches

(e.g., ARRESTED, which introduces new HTTP methods and also uses delegation of proxies,

or AtomicREST which uses batched transaction and also mediators). Table 9 summarizes the

different transactions techniques identified.

Table 9. RESTful transaction approaches

Approach Examples

Abstract composite resources RESTful Web Services Cookbook
Batched transactions Atomic REST , Overloaded POST
Transactions as resources Principles of transaction processing

RESTful Web Services, RETRO
Optimistic concurrency control Optimistic technique for transactions using REST
Timestamp ordering based approaches TS2PC4RS
Introductions of new methods SOA with REST, ARRESTED
Delegation with proxies or mediators Atomic REST, ARRESTED
Reservations with cancel/confirm TCC

5.1.1 Transaction type

Table 10 shows the different transaction types (see Section 3.2.1) that are supported by the

identified models. Transaction approaches such as abstract composite resources or batched

transactions can be used in different types of transaction techniques by using both a syn-

chronous mode (e.g., with 200 OK responses) in ACID transactions and an asynchronous

mode (e.g., with 202 Accepted responses) in long-lived and business transactions. In the

TCC model, an appropriate expiration time can be used to support long-lived transactions

though this could possibly mean that resources are reserved for a longer time in case of

cancellations.

5.1.2 Transaction structure

The most simple type of transactions is a flat transaction where the transaction consists of

a begin operation, a set of business operations, and finally a commit, a rollback, or an abort

operation. However, to be suitable for more complex business workflows, new transaction

types such as flat transactions with save points, chained transactions, distributed transactions,



152 A Survey of RESTful Transaction Models: One Model Does not Fit All

Table 10. Transaction type supported

Transaction type Examples

Short-lived ACID transac-
tions

RETRO, ARRESTED, Atomic REST, RESTful Web
Services Cookbook, Overloaded POST, RESTful Web
Services

Long-lived transactions Optimistic technique for transactions using REST,
TCC

Business transactions TS2PC4RS, TCC

nested transactions, multi-level transactions, and open-nested transactions (see Section 2.2)

were introduced. These different types of structured transactions add more flexibility to the

transactions workflows, allow some efficiency boosts, and minimize resource blocking through

partial commits and partial rollbacks.

Current RESTful transaction models are still in the early stages and are only concerned

in flat transactions and distributed transactions. Distributed transactions in RESTful trans-

actions will be discussed separately in a following section.

5.1.3 Representation of the uncommitted state (isolation)

A transaction takes the state of the system from one consistent state to another consistent

state. Thus, before a transaction is started and when a transaction is committed, rollbacked,

or aborted the system is in a consistent state. In between these two events, the system goes

through a set of intermediate states that are only visible within the transaction and these

intermediate states are isolated from the parties outside the transaction.

However, within the transaction (e.g., for the client(s) who is/are executing the transac-

tion) there should be a way to access the intermediate uncommitted state. The aforementioned

transaction approaches use different mechanisms for representing uncommitted state, which

are summarized in Table 11.

Table 11. Uncommitted state representation

Approach Examples

Provisional resources RETRO, RESTful Web Services
HTTP headers REST in Practice
Reservations TCC

In the abstract composite resource approach (e.g., in RESTful Web Services cookbook)

and batched transaction models (e.g., Atomic REST or Overloaded POST), the representation

of uncommitted state is irrelevant because the operations are submitted in a single HTTP

interaction and executed as a batch. In transaction models where the isolation property is not

guaranteed such as the optimistic technique for transactions using REST, the uncommitted

state is immediately visible as the resource state after each operation. In TS2PC4RS, the

uncommitted state is kept as a queue of prewrites which are not directly accessible (i.e., they

do not have a resource identifier on their own) or modified.

5.1.4 Concurrency control mechanisms

Transaction processing systems use concurrency control mechanisms to control the access

to the resources and to achieve the necessary serializability while executing parallel access

to resources. The RESTful transaction models identified in the previous section use several



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 153

concurrency control mechanisms, which are summarized in Table 12. The TCC model uses

pessimistic reservation where the clients can make concurrent reservations until the resources

are fully reserved and becomes blocking beyond that point, that is, before any other client

can make further reservations, a previous reservation must be cancelled.

Table 12. Concurrency control mechanisms

Concurrency control mechanism Examples

Pessimistic locking RETRO, ARRESTED, Atomic REST
Optimistic concurrency control Optimistic technique for transactions using REST
Timestamp ordering TS2PC4RS
Other TCC (Pessimistic reservation)

5.1.5 Distributed transactions and coordination

Some of the transaction models identified in the study support distributed transactions. Table

13 shows how the distributed transactions are handled by each of the transaction models

identified.

Table 13. Distributed coordination

Coordination protocol Examples

Two-phase commit TS2PC4RS
Try-Cancel/Confirm TCC

Atomic REST describes a proposal for distributed transaction using a communication

algorithm among many mediators [49] and the RETRO model mentions distributed transac-

tions as part of their future work [41]. The abstract composite resource approach mentioned

in the REST Web Services Cookbook, the Overloaded POST and the transaction as a re-

source approaches described in the RESTful Web Services book do not support distributed

transactions.

5.2 Scenario analysis

In this section, transaction models are analysed for the different scenarios identified in the

comparison framework. Only the models found in research literature (see Table 8) are included

because they capture the ideas from the other sources in a more developed and comprehensive

manner. The ARRESTED model is not included because it does not provide details on how

to execute the scenarios and the “Optimistic technique for transactions using REST” model

is not included because the TS2PC4RS model is an evolution of the same model from the

same authors. The following sections illustrate first each scenario in detail, and then discuss

how the identified models behave.

5.2.1 Scenario descriptions

First we present the successful scenarios. Scenario I involves updating two resources that

belong to a single application and Table 14 shows the HTTP operations involved.

Scenario II involves additional HTTP operations (POST and DELETE) to create a new

resource and delete a resource within the transaction; Table 15 shows an example of the

operations involved in the scenario. In this scenario, the “http://example.org/res/” resource

acts as a collection that allows creating new resources through the POST operation.



154 A Survey of RESTful Transaction Models: One Model Does not Fit All

Table 14. Scenario I - Successful update

OP URL Response

GET http://example.org/res/A 200 OK
GET http://example.org/res/B 200 OK
PUT http://example.org/res/A 204 No Content
PUT http://example.org/res/B 204 No Content

Table 15. Scenario II - Resource creation and deletion

OP URL Response

GET http://example.org/res/ 200 OK
POST http://example.org/res/ 201 CREATED

Location: http://example.org/res/C
GET http://example.org/res/D 200 OK
DELETE http://example.org/res/D 204 No Content

Scenario III is similar to Scenario I but the update operations take a longer time and are

handled in an asynchronous manner. Table 16 shows an example of the HTTP operations

involved.

Table 16. Scenario III - Long running operations

OP URL Response

GET http://example.org/res/A 200 OK
GET http://example.org/res/B 200 OK
PUT http://example.org/res/A 202 Accepted
PUT http://example.org/res/B 202 Accepted

Scenario IV is similar to Scenario I but the two resources belong to two different ap-

plications. Thus, resource management is decentralized and could span across organization

boundaries. Table 17 shows an example of the HTTP operations involved where resources

come from two applications hosted in “example.org” and “remote.example.org”.

Table 17. Scenario IV - Distributed and decentralized resources

OP URL Response

GET http://example.org/res/A 200 OK
GET http://remote.example.org/res/B 200 OK
PUT http://example.org/res/A 204 No Content
PUT http://remote.example.org/res/B 204 No Content

Scenario V and Scenario VI are rollback scenarios. A possible sequence of operations for

Scenario V is shown in Table 18 where the server rejects the update in the fourth operation

because that update conflicts with an update for another client between the time of the first

and forth operations.

Table 18. Scenario V - Rollback due to a conflict

OP URL Response

GET http://example.org/res/A 200 OK
GET http://example.org/res/B 200 OK
PUT http://example.org/res/A 204 No Content
PUT http://example.org/res/B 409 Conflict

Scenario VI is similar to Scenario V but instead of a server-rejected update, the client

wants to voluntarily rollback the third operation due to its business logic. Thus, it is a

client-initiated rollback instead of a server-forced rollback.



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 155

Scenarios VII, VIII, and IX are failure scenarios. In Scenario VII, the client fails in the

middle of a transaction, for instance, after the third operation in Table 14. These failures

have implications because, on the one hand the system is left in an inconsistent state and,

on the other hand, these failures could lead to unreleased locks and make the system block

resources more than necessary. In Scenario VIII, the server fails in the middle of a transaction,

for instance, a “500 Internal Server Error” or non-responding sever. Scenario IX is about

communication losses and message losses. For instance, in the third or fourth operation of

any of these scenarios, the request or the response message could get lost due to an unreliable

network communication.

5.2.2 RETRO model

In this section, we analyse the behaviour of the RETRO model. The implementation of

Scenario I would require the HTTP operations shown in Table 19. The RETRO model

works only with resources with an XML representation and the resource representation should

advertise link relations to a transaction collection and a lock collection as shown in Figure 1;

those collections are to be used to create transactions and to lock resources.

Table 19. RETRO Model - Scenario I

N OP URL Response

1 GET http://example.org/res/A 200 OK
2 POST http://example.org/trans/ 201 CREATED

Location: http://example.org/trans/1
3 POST http://example.org/res/A/locks 201 CREATED

Location: http://example.org/res/A/locks/1
4 GET http://example.org/res/A/locks/1 200 OK
5 GET http://example.org/res/A 200 OK
6 PUT http://example.org/res/A/1 201 CREATED
7 GET http://example.org/res/B 200 OK
8 POST http://example.org/res/B/locks 201 CREATED

Location: http://example.org/res/B/locks/1
9 GET http://example.org/res/B/locks/1 200 OK
10 GET http://example.org/res/B 200 OK
11 PUT http://example.org/res/B/1 201 CREATED
12 DELETE http://example.org/trans/1 200 OK

Figure 1 - Transaction collection and lock collection link relations
<lockable>

<link rel=’lockcollection’ href=’http://example.org/res/A/locks/’ />

<link rel=’transactionCollection href=’http://example.org/trans/’ />

</lockable>

After discovering the transaction collection link (Step 1), the client creates a transaction

by POSTing new transaction to the transaction collection (Step2). The transaction resource

semantics is defined with a specific media type (application/vnd.retro-transaction+xml); the

transaction resource contains information about the associated transaction collection, lock

collection, and the owner of the transaction.

Once a transaction is created, the next step is to lock the resource by POSTing a lock to

the lock collection (Step 3). The created lock resource has to be retrieved to find which is

the URL of the conditional resource representation associated with the locked resource (Step



156 A Survey of RESTful Transaction Models: One Model Does not Fit All

4). The resource has to be retrieved again to ensure that the read operation happened within

the transaction after it was locked (Step 5). Then the resource is updated by PUTing the

updated resource representation to the conditional resource representation (Step 6).

For updating the second resource, resource B, similar steps have to be followed (Steps

7-11). Finally, the transaction can be committed by deleting the transaction resource (Step

12). To sum up, the RETRO model requires 12 steps (HTTP round-trips) to execute Scenario

I in a transactional manner.

The RETRO model only supports the GET and PUT operations; thus Scenario II, which

involves the POST and DELETE operations, is not supported. RETRO is limited to the GET

and PUT operations because they can be directly mapped to the read and write operations

allowing the authors to use the existing theorems from the database world to prove the

correctness of the model. The RETRO model is not a good fit for long-running transactions

in Scenario III because it uses pessimistic locks which block resources. Besides, it does not

have support for the distributed and decentralized transaction in Scenario IV.

Server-initiated rollbacks in Scenario V are handled using locks. If a transaction already

holds a lock for a resource, a second transaction cannot obtain a conflicting lock for the same

resource. Such request (e.g., Step 8 in Table 19) will lead to a ’403 Forbidden’ response.

The client can retry the transaction after a delay or rollback by deleting the lock collection.

Similarly, a client-initiated abortion of a transaction in Scenario VI is done by deleting the

transaction lock collection that will release all the locks and void any changes done. The

RETRO model does not describe how to handle failure scenarios (Scenarios VII-IX).

In summary, the RETRO model closely follows the REST principles, allows metadata dis-

covery using links without eliminating the need for out-of-band communication, and properly

uses media types. However, the lack of support for HTTP operations such as POST and

DELETE and the lack of distributed transactions are two major drawbacks of the RETRO

model.

5.2.3 TS2PC4RS Model

This section presents how the timestamp-based two phase commit protocol for RESTful ser-

vices (TS2PC4RS) handles the same scenarios. In the TS2PC4RS model, each transaction is

assigned a timestamp based on when it was started. Table 20 shows the HTTP operations

involved in Scenario I. It assumes the transaction identifier is ‘10c1’ and according to the

TS2PC4RS model, each resource is postfixed with it.

Table 20. TS2PC4RS - Scenario I

N OP URL Request

Content

Response

1 GET http://example.org/res/A/10c1 - 200 OK
2 GET http://example.org/res/B/10c1 - 200 OK
3 PUT http://example.org/res/A/10c1 Updated A 200 OK
4 PUT http://example.org/res/B/10c1 Updated B 200 OK
5 PUT http://example.org/res/A/10c1 commit = true 200 OK
6 PUT http://example.org/res/B/10c1 commit = true 200 OK

In the TS2PC4RS model, and as shown in Table 21, each resource maintains (a) WTM, the

largest timestamp of a write operation; (b) RTM, the largest timestamp of a read operation;

and (c) LPW, a list of buffered prewrites in timestamp order. When a transaction attempts



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 157

to execute an operation, an algorithm is used to decide whether the transaction satisfies the

conditions that are required to simulate a serial schedule based on their timestamp order.

Table 21 shows how values of RTM, WTM, and LPW are changed during each operation and

what is the condition that is being checked to decide whether the operation is allowed or not.

Table 21. State changes of each operation of transaction 10c1

N OP Res
Before

Condition
After

RTM WTM LPW RTM WTM LPW

1 GET A (3, c2) (6, c2) - TS >WTM (10, c1) (6, c2) -
2 GET B (7, c2) (8, c2) - TS >WTM (10, c1) (8, c2) -
3 PUT A (10, c1) (6, c2) - TS >RTM

TS >WTM
(10, c1) (6, c2) Ac1

4 PUT B (10, c1) (8, c2) - TS >RTM
TS >WTM

(10, c1) (6, c2) Bc1

5 PUT A (10, c1) (6, c2) Ac1 true (10, c1) (10, c1) -
6 PUT B (10, c1) (8, c2) Bc1 true (10, c1) (10, c1) -

The resource read operations (Steps 1 and 2) are only allowed if the timestamp of the

transaction is greater than the WTM value. In addition, if the timestamp is greater than the

current RTM, the RTM is updated to the timestamp of the current transaction (see Steps 1,

2 in Table 21). For instance in Step 1, we assume that the resource A was last read (RTM)

by a transaction with an identifier of ‘3c2’ and last written (WTM) by a transaction ‘6c2’.

Thus, this operation is allowed as the identifier of the current transaction i.e. ‘10c1’ is bigger

than the WTM. After the operation, the RTM is changed to ‘10c1’.

Once a successful read of the resource is done, it can be updated by sending a prewrite to

the resource using the PUT operation (Steps 4 and 5). These operations will be successful

only if the timestamp is greater than both RTM and WTM values. If successful, a prewrite is

added to the queue (see Table 21). If the timestamp is lesser than the RTM (i.e., a transaction

with a greater timestamp has seen the current resource state) or lesser than the WTM (i.e.,

a transaction with a greater timestamp has written the current resource state), the operation

is rejected. If all prewrites are successful, the client can send a commit message to all the

resources in the transaction. At this stage, prewrites of the given transaction will be written

to the resource persistent state.

Scenario II requires support for the POST and DELETE operations and the TS2PC4RS

model does not support those operations. The TS2PC4RS model can be used in Scenario III

which involves long-lived transactions because it is an optimistic non-blocking model. Dis-

tributed transactions in Scenario IV are supported using inbuilt two-phase commit protocol.

In the TS2PC4RS model, the client acts as the two-phase commit coordinator and coordinates

whether prewrites have to be persisted or discarded.

In the TS2PC4RS model, the server decides to accept or not prewrites based on the

timestamp of the transaction. In Scenario V, if the RTM of the resource is greater than

the timestamp of the transaction the server rejects the prewrite by sending a “409 Conflict”

response. In Scenario VI, the client can abort the transaction any time by sending abort

messages instead of commit messages and the corresponding prewrites will be discarded. The

TS2PC4RS model does not describe the failure scenarios in detail.

In summary, the TS2PC4RS model provides an optimistic timestamp-based mechanism

for RESTful transactions. The model fails to adhere to some REST constraints such as state-



158 A Survey of RESTful Transaction Models: One Model Does not Fit All

lessness and does not utilize standard mechanisms such as link relations or media types. The

TS2PC4RS model supports distributed transactions. Because it is an optimistic approach,

this model is more suitable when conflicts are rarely expected.

5.2.4 Try-Cancel/Confirm Model

This section presents how the Try-Cancel/Confirm (TCC) model handles each scenario. The

TCC model is suitable for reservation use cases where a client wants to perform multiple

purchases (e.g., a travel booking example where someone wants to book a flight and a hotel

or two flight segments). In these scenarios atomicity is the main requirement because a partial

reservation is not useful for the user.

The scenarios explained in Section 5.2 have to be adapted to a reservation scenario in

order to analyse the TCC model. Thus, the two resource updates of Scenario I are replaced

with a flight and a hotel reservation and the HTTP operations involved are shown in Table

22.

Table 22. TCC - Scenario I

N OP URL Response

1 GET http://flight.example.org/flight/EX1 200 OK
2 GET http://hotel.example.org/madrid/ 200 OK
3 POST http://flights.example.org/booking/ 302 OK

Location: http://flights.example.org/booking/1
4 POST http://hotel.example.org/booking/ 302 OK

Location: http://hotel.example.org/booking/1
5 PUT http://flight.example.org/booking/1 204 No Content
6 PUT http://hotel.example.org/booking/2 204 No Content

A client first retrieves the flight/hotel resource where it finds the link for the reservation

service and other information needed for a reservation, such as flight times, cost, or room type.

Then it creates reservations by POSTing the required information to the respective services

(Steps 3 and 4). In the response, the server provides both a participantLink object with a

tcc link relation that can be used to cancel or confirm the reservation and an expiration time

for the reservation as shown in Figure 2. The client uses the tcc link to confirm by PUTing

a confirmation message (Step 5 and 6) or to cancel by DELETEing the reservation. If a

reservation is not confirmed before it expires, the cancellation is done automatically.

Figure 2 - The ’tcc’ Participant Link object
{ "participantLink": {

"uri":"http://flights.example.org/booking/1",

"expires":"2014-06-31T00:00:00.000+01:00",

"rel":"tcc"

}

}

Scenario II is irrelevant to the TCC model as the transaction semantics of the TCC model

is defined in the business logic level and not at the resource management level. The reservation

action is mapped to a POST operation because it creates the participant link resource. Thus,

in the TCC model PUT and DELETE on service resources (not protocol resources such as

participant reservation link) do not make much sense.



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 159

Because the TCC model is not based on locks and is non-blocking, long-running trans-

actions in Scenario III can be implemented. In general, the reservation model includes long-

running transactions because reservations can involve human actions that might take a long

time to complete. The timeout mechanisms in the TCC model can be adjusted based on the

expected duration of the transaction. Because RESTful services in the TCC model are loosely

coupled, the protocol works exactly the same way with distributed and decentralized resources

in Scenario IV. Whether the resources are managed by a single centralized application or by

several decentralized applications is transparent to the TCC model.

In the TCC model the server can indicate the client that a resource is not available for

reservation (similar to Scenario V) in two possible ways. When the client checks the availabil-

ity of a resource using a GET request (Step 1), the server can respond with a 204 response

code without a body to let the client know that no resources are available for reservation.

However, if the resource was available when the client first checked but later becomes unavail-

able (Step 3) the server will reject the POST request. In Scenario VI, the clients can cancel

the reservations any time during the transaction by DELETEing the reservations.

The TCC model describes the different failure models and how they are handled [5]. The

client failures are handled using the timeouts. In the case of a server and communication

failures that happen before confirming any of the reservations, the client can cancel the rest

of the reservations. The TCC model only fails to guarantee atomicity when a client has

confirmed one participant and finds out the second one is timed out.

5.2.5 The Atomic REST model

The Atomic REST model provides a middleware layer that encapsulates the transaction

processing by providing a proxy for RESTful services and an API for clients that take part

in transactions. The HTTP operations for the Scenario I are shown in Table 23.

Table 23. Atomic REST - Scenario I

N OP URL Response

1 GET http://example.org/res/A 200 OK
2 GET http://example.org/res/B 200 OK
3 POST http://example.org/mediator 200 OK

In the Atomic REST model, transactions are performed as batch operations, i.e., the

clients set all the operations as a batch and execute them in one HTTP interaction. Because

Atomic REST is a middleware-oriented approach, the client can use a code snippet similar

to the one shown in Figure 3 to execute the transaction which then will be converted to the

message shown in Figure 4 and sent to the mediator.

Figure 3 - The Atomic REST Client API
soa.atomicrest.client.TransactionBulk transaction;

soa.atomicrest.client.Collection<Response> resp;

transaction.add(new Request("PUT", accessUrl1).content("5"));

transaction.add(new Request("PUT", accessUrl2).content("10"));

resp = transaction.run(true);

transaction.clear();



160 A Survey of RESTful Transaction Models: One Model Does not Fit All

Figure 4 - The message to the mediator
<transactionElement>

<RequestElement method="PUT" uri="http://example.org/resources/A">

<headers><header key="Content-Type">text/plain</header></headers>

<content mediaType="text/plain">5</content>

</RequestElement>

<RequestElement method="PUT" uri="http://example.org/resources/B">

<headers><header key="Content-Type">text/plain</header></headers>

<content mediaType="text/plain">10</content>

</RequestElement>

</transactionElement>

In the Atomic REST model, Scenario II is similar to Scenario I but with different HTTP

methods as parameters. The Atomic REST model does not define special mechanisms for

long running transactions. However, because the transaction processing logic is mostly done

in mediators and proxies, the middleware can be adapted to long running transactions of

Scenario III.

A distributed transaction mechanism is proposed using multiple mediator communications

[49] for Scenario IV. The mediator receiving the initial request from a client becomes the

leader and broadcasts the transaction to other mediators in a decentralized system, and each

mediator executes a part of the transaction as a subtransaction. The leader then collects all

the results and returns them to the client. However, this algorithm is not still implemented

in their system.

Scenarios V and VI, which involve rollbacks, are not applicable to batched transaction

models where the operations are submitted as a batch. The rollback of individual operations

is handled transparently to the client. The Atomic REST model does not define a recovery

model for failure scenarios and does not describe how failures are handled.

6 Discussion

In this section, we analyse the models based on the dimensions that are presented in the

comparison framework for RESTful transaction models defined in Section 3.2. The following

sections include analyses on scenario coverage, transaction guarantees, REST constraint com-

pliance, protocol compliance, protocol overhead, and industrial adoption of each transaction

model.

6.1 Scenario coverage

Table 24 summarizes the scenario analysis described in Section 5.2. If a transaction model

successfully handles a scenario it is marked with a “X” and if it fails to handle or does not

describe how to handle the scenario it is marked with a “X”. If a scenario is not applicable

to a certain model, it is marked as “N/A”. Though all models handle the basic scenario of

updating multiple resources, some advanced scenarios are not handled by several models.

Scenario II is not applicable to the TCC model because it operates on a business level

instead of on a resource management level. Scenarios V and VI, which involve rollbacks, are

not applicable to the Atomic REST model because it is a batched transaction model.

Only the TCC model defines a recovery model for the failure scenarios and only the



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 161

Table 24. Scenario coverage by transaction model

Scenario RETRO TS2PC4RS TCC Atomic

REST

Scenario I X X X X

Scenario II X X N/A X

Scenario III X X X X

Scenario IV X X X X
Scenario V X X X N/A
Scenario VI X X X N/A
Scenario VII X X X X
Scenario VIII X X X X
Scenario IX X X X X

TS2PC4RS and the TCC models describe and implements distributed transactions. The

RETRO model has distributed transactions in their future work plan and Atomic REST has

devised an algorithm, but their implementation does not support distributed transactions.

6.2 Transaction guarantees

In this section, we analyse the RESTful transaction models based on the ACID transaction

guarantees. Table 25 shows a summary of the transaction guarantees provided by each model.

Table 25. ACID transaction guarantees by transaction model

Property RETRO TS2PC4RS TCC Atomic

REST

Atomicity X X X X

Consistency X X X X

Isolation X X X X

Durability X X X X

One point to note in Table 25 is that not all properties are equally dependent on the

transaction model. While the atomicity and isolation properties are highly dependent on the

transaction model, the consistency and durability properties are mostly guaranteed by the ap-

plication logic. Each application generally has its validation rules to verify that each operation

results in a valid system state and this validation along with the atomicity property ensures

that a transaction always moves the system from a consistent state to another consistent

state. The durability property is guaranteed by the persistence layer of the applications.

Optimistic approaches such as TS2PC4RS do not guarantee isolation because the uncom-

mitted intermediate states are visible outside the transaction and because isolation is not

considered by design in reservation models such as TCC.

6.3 REST constraint compliance

In this section, we present the analysis of the RESTful transaction models with respect to

the REST constraints. Table 26 analyses the transactional models according the REST con-

straints, except the Uniform Interface, whose analysis is broken down by sub-constraints in

Table 27 due to its particular high-relevance in RESTful systems.

The RETRO and TS2PC4RS models are not stateless because part of the session state is

maintained in the server. The Atomic REST model breaks the uniform interface constraint

by overloading the POST operation. The TS2PC4RS and Atomic REST models do not use

specific media types to send self-descriptive messages, nor do they utilize hypermedia controls



162 A Survey of RESTful Transaction Models: One Model Does not Fit All

Table 26. REST constraints by transaction model

Constraint RETRO TS2PC4RS TCC Atomic

REST

Client-server architectural style X X X X

Stateless client-server interactions X X X X

Cacheability X X X X

Layered system style X X X X

Table 27. Uniform Interface constraints by transaction model)

Constraint RETRO TS2PC4RS TCC Atomic

REST

Identification of resources X X X X

Uniform interface X X X X
Manipulation of resources through representations X X X X

Self-descriptive messages X X X X
Hypermedia as the engine of application state X X X X

to drive the application state.

6.4 HTTP compliance and support

Even though the REST architectural style is not dependent on the HTTP protocol, HTTP is

the de-facto protocol used in RESTful applications. Thus, in this section we analyse the com-

pliance with the HTTP protocol when used within a transaction model. The TS2PC4RS

model violates the safe property of the GET operation, i.e., the GET operation in the

TS2PC4RS model has side effects.

Then we look at the support for common HTTP verbs. The RETRO, TS2PC4RS, and

TCC models support the GET and PUT operations but do not support the POST and

DELETE operations. Because TCC is a business level protocol, it does not require the

POST and DELETE operations in business operations and it uses DELETE for cancelling a

participant. The Atomic REST model supports all four aforementioned operations.

6.5 Protocol overhead

In this section, we analyse the overhead added by each transactional model. As discussed

in the comparison framework for RESTful transaction models in Section 3.2, the overhead

is measured using HTTP round trips. The first column of Table 28 presents the number of

round trips required without the transaction support and the next columns show the round

trips required by each model for each scenario when supported.

Table 28. Performance overhead by transaction model

Scenario Without TS RETRO TS2PC4RS TCC Atomic REST

Scenario I 4 12 6 6 3
Scenario II 4 N/S N/S N/S 3
Scenario III 4 N/S 6 6 3
Scenario IV 4 N/S 6 6 N/S
Scenario V 5 14 5 4 1
Scenario VI 5 14 6 4 N/S

For Scenario V, we considered two updates where the server rejects the second update and

for Scenario VII the client wants to rollback when the first update is finished and before the

second update.



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 163

The RETRO model has the highest overhead because transaction and lock creations in-

volve several steps and because the metadata are scattered in many resources. The Atomic

REST model, due to its batch operations, has the least overhead, furthermore, it is even more

efficient than the original scenario implementation in terms of round-trips. The TS2PC4RS

and TCC models have a similar moderate overhead.

6.6 Industrial adoption

As for industrial adoption, the TCC model, which is focused on the reservation model, has

more success compared to other models. The TCC model is integrated as part of the Atomikos

ExtremeTransactionsj transaction management product developed by Atomikos. In addition,

it is used in the Atomic Browser [53].

The RETRO model is developed under the OPAALS research project in the context of

generative Web information systemsk. The Atomic REST model is developed under the IT-

SOA project, and an implementation is available on its websitel. However, authors didn’t find

industrial usages of these models outside their projects.

In order to analyse the compatibility with the existing clients and servers and to find

out whether or not the protocol can be incrementally adopted, we used Scenarios I and II

but with a non-transactional client (that is, a client unaware of the transaction protocol)

interacting with a resource of an ongoing transaction by using a safe operation such as GET

and an unsafe operation such as PUT or DELETE. In the RETRO model, GET will return

the last committed value, and the unsafe operations will return 405 Method Not Allowed

status code [41]. This behaviour is compatible with existing clients because the error flow is

handled using standard HTTP protocol status codes. The TS2PC4RS model does not define

how non-transactional client requests (i.e., a request without a timestamp based transaction

identifier) are handled during an ongoing transaction. In the TCC model, as it is a business

level protocol, the client should be aware of the protocol to create, cancel, or confirm the

reservations, thus, incremental adoption is not possible. The aforementioned scenarios of

intermediate interactions does not apply to the Atomic REST model because it is a batched

transaction model.

7 Challenges

Based on the analysis of the existing transaction models discussed in this paper, we have

identified the following challenges for the current RESTful transaction models [54].

7.1 Decentralized and distributed services

Transactions that involve resources managed by multiple authorities is one of the main chal-

lenges in current RESTful transaction models. The main problem of decentralized authorities

is the need for coordination and agreement with regard to the final outcome of a transac-

tion whilst ensuring its atomicity, an issue that requires complex failure modes and recovery

mechanisms [19]. This is a common problem in distributed computing that is typically solved

using a consensus protocol, e.g., the two-phase commit (usually the XA protocol). However,

the majority of the RESTful transaction models (except for two models) do not cover this

jhttp://www.atomikos.com/Main/ExtremeTransactions
khttp://www.opaals-oks.eu/
l http://www.it-soa.eu/en/resp/atomicrest/



164 A Survey of RESTful Transaction Models: One Model Does not Fit All

scenario and the challenge is to design a stateful consensus protocol without violating the

REST constraints.

Distributed systems in which the ordering and timing of events is relevantmrequire the

synchronization of logical clocks of different nodes [55]. Currently, mechanisms such as Lam-

port timestamps and vector clocks are used for ordering events in distributed systems [55].

How these approaches can be applied to REST services for ordering the actions on different

resources and how timestamps can be used consistently still remain a challenge to be solved.

7.2 Contradiction of statelessness and isolation

The statelessness REST constraint states that servers should be stateless and should not

maintain any conversation state with the client (client-stateless-server) [6]. However, the

isolation ACID property states that any intermediate change of a transaction should not be

visible to ongoing parallel transactions. This requires servers to maintain intermediate states

for actions that are not committed by maintaining a session state for a transaction. Thus,

these two properties are in conflict.

Current isolation-preserving REST transaction models solve this problem representing

these session states as a set of temporary resources that have their own identifiers (URLs).

Despite this approach aligns with W3C best practicesn, it is arguably a REST anti-pattern, as

those temporary resources do not represent resource state but application (or session) state.

Furthermore, this approach introduces a new challenge: link transparency. When working

with temporary resources, it is necessary to distinguish links that point to temporary resources

from those that point to original resources, so that when the transaction is committed, all

the links of original representations point to original resources.

An alternative approach to solve this issue could be the usage of a mechanism similar to

that proposed by the Memento frameworko for providing access to representations of different

resource states using the same identifier (URL). However, this approach directly violates the

stateless REST constraint.

7.3 Issues related to concurrency control

Locking has been the prominent solution for achieving isolation in transactions in the database

field [4] and most RESTful transaction models have followed the same path. However, there

are several issues that need to be taken care of when using this technique, in particular:

availability, deadlock prevention, and fairness guarantees.

Availability is a fundamental aspect of distributed applications; therefore, transaction

models should minimize the negative effects of locks on the availability of resources. This issue

is deepened by the fact that operations in REST applications take longer due to transport

overheads (HTTP).

Deadlocks and resource starvation are common problems when locks are not used con-

sistently or when fairness is not guaranteed. These become important specially when the

acquisition and release of locks is managed by different clients. One corner case would be a

misbehaved client (or a client with a defect) not releasing the locks after it has finished with

a transaction.

mThose in which agents residing in different nodes of the system have to perform actions in a particular order.
nhttp://www.w3.org/2001/tag/doc/IdentifyingApplicationState\#UseURIsforStates
ohttp://www.ietf.org/rfc/rfc7089.txt



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 165

Current approaches use two-phase locking with a growing phase and a shrinking phase to

prevent deadlocks; they also use timeouts to get some degree of fairness (lock auto-release

after timeout). However, the enforcement of two-phase locking and achieving fairness remains

a challenge for the RESTful transaction models.

Another alternative is to use the optimistic concurrency control mechanisms provided by

HTTP using conditional updates with ETags. However, this approach does not guarantee

isolation as intermediate states of the resources become visible outside the transaction.

7.4 Resource granularity and composition

REST allows resources to be at different granularity levels. Thinking in a hierarchical model,

an application could simultaneously provide both a high-level view of an entity via a coarse-

grained resource and a detailed view using a fine-grained resource. Also, collection resources

found in specifications such as AtomPubp, Hydra [56], or the Linked Data Platformqare special

cases of resource composition.

These particular cases lead to problematic situations when locks are used with these

resources, i.e., locking a specific resource might not prevent the information carried in that

resource from being read or updated because this information is not exclusively bounded

to such resource. Thus, resource locking might not effectively prevent the access to the

locked resource state since the same data may be exposed by a different resource that is not

being locked. Managing the overall consistency when the same state is exposed via multiple

resources remains a challenge for RESTful transaction models.

7.5 Heuristic generation

Most of the transaction models make use of heuristics when deciding on certain transaction

parameters such as timeouts [41, 5]. In this particular case, generating a suitable timeout is a

challenge because it not only affects the performance but also the correctness of the model, i.e.,

a premature timeout can decrease the performance or make the system consistently fail [5].

In scenarios that involve decentralization and distribution, heuristics generation is even more

difficult since most of the information is not known in advance, and not known by a single

party. Most of the RESTful transaction models do not provide algorithms nor guidelines for

heuristic generation; thus, this remains a challenge.

7.6 Gap between research and industry

Though several transaction models have been proposed in the past decade, only few are used in

industry. Out of the current approaches, the overloaded POST method seems to be the most

widely used mechanism for REST transactions due to its simplicity and efficiency. However, it

has a main disadvantage: it cannot handle distributed and decentralized authority scenarios.

It is worth taking a look at why the other approaches are not taking so much traction.

One of the key issues is the complexity and overhead added by the transaction mechanisms.

Another aspect is that they are defined on their own, when in practice they have to be

integrated with existing development frameworks as well as to take into account other cross-

cutting concerns, i.e., security. Thus, the challenge is to define a simple yet efficient REST-

compliant protocol that provides transactional guarantees, which can be seamlessly integrated

phttp://atompub.org/
qhttp://www.w3.org/TR/ldp/



166 A Survey of RESTful Transaction Models: One Model Does not Fit All

with other technologies of the REST development stack.

8 Conclusions

There has been a great deal of discussion in forums, technical literature, and research lit-

erature about RESTful transaction models. One of the main contributions of this work is

to accumulate the knowledge about RESTful transaction models and present it in a suc-

cinct yet comprehensive manner. The paper presents detailed descriptions of different REST

transaction approaches and models and provides running examples of common transactional

scenarios for a selected representative set of models. Further, the paper analyses the trans-

action models found using a comparison framework for RESTful transactions defined in this

work. This analysis shows the current state of the art of RESTful transaction models and

illustrates the gaps and challenges that the future RESTful transaction models have to fulfil.

The main conclusion of the analysis of the existing RESTful transaction models is that

one model does not fit all. RESTful transaction scenarios are diverse in many dimensions and

no transaction model fulfils the requirements of every scenario. On the contrary, these models

are designed to cover specific scenarios. According to our analysis one good example is the

reservation business model, for example, booking a hotel and a flight for a single trip where

all the tickets have to be reserved and booked or none of them. The analysis shows that TCC

is the best candidate when developing applications following this model, as it covers all the

scenarios and addresses the identified challenges.

However, if an application does not fit under the reservation model, the TCC model cannot

be applied; furthermore, none of the other alternatives is able to cope with all the scenarios

described in Section 5.2. For example, the create and delete operations in a decentralized

environment and failure handling are not supported by the alternative models analysed in the

paper. The readers can use the analysis performed in this paper to identify which existing

models fit their requirements based on the properties of those models and to understand

their characteristics and limitations. This understanding enables the readers to choose the

most appropriate model based on the application requirements. However, because the analysis

shows a gap in the current state-of-the-art regarding isolation-preserving RESTful transaction

models further research [57] has to be done to understand the feasibility of improving the

existing models or defining new models that can cope with those scenarios. As this paper

summarizes the state-of-the-art and shows how RESTful transaction models have evolved

over the time, it could provide valuable input for such research.

Further, the paper presents seven challenges based on the analysis of the existing RESTful

transaction models. The root of most of the challenges is the impedance mismatch between

the strong consistency transaction guarantees (i.e., the ACID properties) and the REST con-

straints. For instance, the management of uncommitted temporary resources to ensure the

isolation property conflicts with the stateless REST constraint, making it a challenge to satisfy

both properties in isolation-preserving REST transaction models. Further, these strong con-

sistency models require the serialization isolation level which is commonly achieved through

pessimistic locking. Nevertheless, pessimistic locking leads to several challenges regarding to

availability, fairness guarantees, faults and misbehaviour in distributed environments. The

models which do not require the isolation property (e.g., TCC and TS2PC4RS) address most

of the challenges but the models that are designed to guarantee the ACID properties still do



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 167

not address these challenges. Further research has to be done to see how these challenges can

be addressed in strong consistency RESTful transaction models.

Acknowledgements

This research has been supported by the 4V: Volumen, Velocidad, Variedad y Validez en

la gestin innovadora de datos (TIN2013-46238-C4-2-R) project with the BES-2014-068449

grant, and the ALM iStack project of the Center for Open Middleware at the Universidad

Politécnica de Madrid.

References

1. C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web Services vs. “Big” Web Services:
Making the Right Architectural Decision,” in Proceedings of the 17th International World Wide
Web Conference (WWW’08). Beijing, China: ACM, Apr 2008, pp. 805–814.

2. R. T. Fielding and R. N. Taylor, “Principled design of the modern web architecture,” ACM
Transactions on Internet Technology, vol. 2, no. 2, pp. 115–150, May 2002.

3. E. Maler and J. Hammond, “The Forrester Wave: API Management Platforms,” Forrester Re-
search, Cambridge, USA, Tech. Rep. Q1 2013, Feb 2013.

4. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, 1st ed. California,
USA: Morgan Kaufmann, Sep 1992.

5. G. Pardon and C. Pautasso, “Towards distributed atomic transactions over RESTful services,” in
REST: From Research to Practice. Springer, Aug 2011, vol. 1, pp. 507–524.

6. R. T. Fielding, “Architectural styles and the design of network-based software architectures,”
Ph.D. dissertation, University of California, 2000.

7. E. Wilde and C. Pautasso, REST: From Research to Practice. Springer, 2011.
8. J. Gray, “The Transaction Concept: Virtues and Limitations,” in Proceedings of the 7th Interna-

tional Conference on Very Large Data Bases (VLDB ’81), vol. 7. VLDB Endowment, Sep 1981,
pp. 144–154.

9. T. Haerder and A. Reuter, “Principles of transaction-oriented database recovery,” Journal of ACM
Computing Surveys (CSUR), vol. 15, no. 4, pp. 287–317, Dec 1983.

10. E. A. Brewer, “Towards Robust Distributed Systems,” in Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing (PODC’00). Portland, Oregon, USA: ACM,
Jul 2000, pp. 7–8.

11. S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-tolerant Web Services,” SIGACT News, vol. 33, no. 2, pp. 51–59, Jun. 2002.

12. D. J. Abadi, “Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only
Part of the Story,” Computer, vol. 45, no. 2, pp. 37–42, Feb 2012.

13. W. Vogels, “Eventually Consistent,” ACM Queue, vol. 6, no. 6, pp. 14–19, Oct. 2008.
14. D. Pritchett, “BASE: An ACID Alternative,” ACM Queue, vol. 6, no. 3, pp. 48–55, May 2008.
15. J. E. B. Moss, Nested Transactions: An Approach to Reliable Distributed Computing. Cambridge,

MA, USA: MIT Press, Jan 1985.
16. G. Weikum and H.-J. Schek, “Concepts and applications of multilevel transactions and open nested

transactions,” in Database transaction models for advanced applications, A. K. Elmagarmid, Ed.
San Francisco, CA, USA: Morgan Kaufmann, 1992, pp. 515–553.

17. H. Garcia-Molina and K. Salem, “Sagas,” in Proceedings of the 1987 ACM SZGMOD Conference,
ser. 3, vol. 16. San Francisco, US: ACM, May 1987, pp. 249–259.

18. P. A. Bernstein and E. Newcomer, Principles of Transaction Processing, 2nd ed., ser. The Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann, Jun 2009.

19. G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concepts and Design,
5th edition. Addison-Wesley, 2011.



168 A Survey of RESTful Transaction Models: One Model Does not Fit All

20. J. Eder and W. Liebhart, “Workflow transactions,” in Workflow Handbook 1997. John Wiley &
Sons, 1997, pp. 195–202.

21. H. Schuldt, G. Alonso, C. Beeri, and H. Schek, “Atomicity and isolation for transactional
processes,” ACM Trans. Database Syst., vol. 27, no. 1, pp. 63–116, 2002. [Online]. Available:
http://doi.acm.org/10.1145/507234.507236

22. B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature reviews in
Software Engineering,” Keele University and Durham University, EBSE Technical Report, Jul
2007.

23. M. P. Papazoglou, “Web Services and Business Transactions,” World Wide Web: Internet and
Web Information Systems (WWW), vol. 6, no. 1, pp. 49–91, Mar 2003.

24. S. Poledna, Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism, ser. The
Springer International Series in Engineering and Computer Science. Norwell, MA, USA: Kluwer
Academic Publishers, 1996, vol. 345.

25. M. Little, “Rest and transactions?” 2009, InfoQ article, [accessed 3-February-2014]. [Online].
Available: http://www.infoq.com/news/2009/06/rest-ts

26. S. Jacobs, “Thoughts on a RESTful Transaction Process in HTTP,” Feb 2004, [accessed
3-February-2014]. [Online]. Available: \url{http://www.seairth.com/web/resttp.html}

27. R. Fielding, “Waka: A replacement for HTTP,” 2002, ApacheCon US, [accessed 3-February-2014].
[Online]. Available: http://gbiv.com/protocols/waka

28. H. F. Nielsen and D. LaLiberte, “Editing the web: Detecting the lost update problem using
unreserved checkout,” World Wide Web Consortium, W3C Note, May 1999.

29. T. Raman and A. Malhotra, “Identifying Application State,” World Wide Web Consortium, TAG
Finding, Dec 2011.

30. L. Dusseault, “HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV),”
Internet Requests for Comments, IETF, RFC 4918, June 2007. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7232.txt

31. L. Richardson and S. Ruby, RESTful web services: Web services for the real world. CA, USA:
O’Reilly Media, May 2007.

32. J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hypermedia and Systems Archi-
tecture. CA, USA: O’Reilly Media, Sep 2010.

33. T. Erl, R. Balasubramanians, C. Pautasso, and B. Carlyle, SOA with REST: Principles, Patterns
& Constraints for Building Enterprise Solutions with REST, 1st ed. Prentice Hall, Aug 2012.

34. S. Allamaraju, RESTful Web Services Cookbook: Solutions for Improving Scalability and Simplic-
ity. O’Reilly Media and Yahoo Press, Feb 2010.

35. L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs. O’Reilly Media, Sep 2013.
36. R. Khare and R. N. Taylor, “Extending the Representational State Transfer (REST) Architectural

Style for Decentralized Systems,” in Proceedings of the 26th International Conference on Software
Engineering (ICSE 2004). Scotland, UK: IEEE, May 2004, pp. 428–437.

37. L. Lamport, “A new solution of Dijkstra’s concurrent programming problem,” Communications
of the ACM, vol. 17, no. 8, pp. 453–455, Aug 1974.

38. L. A. H. da Silva Maciel and C. M. Hirata, “An optimistic technique for transactions control using
REST architectural style,” in Proceedings of the 2009 ACM symposium on Applied Computing.
ACM, 2009, pp. 664–669.

39. H. F. Korth, E. Levy, and A. Silberschatz, “A Formal Approach to Recovery by Compensating
Transactions,” in Proceedings of the 16th International Conference on Very Large Data Bases
(VLDB 1990). Brisbane, Australia: Morgan Kaufmann, Aug 1990, pp. 95–106.

40. R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests,”
Internet Requests for Comments, IETF, RFC 7232, June 2014. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7232.txt

41. A. Marinos, A. Razavi, S. Moschoyiannis, and P. Krause, “RETRO: A consistent and recoverable
RESTful transaction model,” in Proceedings of the 7th IEEE International Conference on Web
Services (ICWS 2009). San Sebastian, Spain: IEEE, Jul 2009, pp. 181–188.



N. Mihindukulasooriya, R. Garćıa-Castro, M. Esteban-Gutiérrez, A. Gómez-Pérez 169

42. A. Razavi, A. Marinos, S. Moschoyiannis, and P. Krause, “RESTful transactions supported by
the isolation theorems,” in Proceedings of the 9th International Conference on Web Engineering
(ICWE 2009). Springer Berlin Heidelberg, 2009, pp. 394–409.

43. L. A. H. da Silva Maciel and C. M. Hirata, “A timestamp-based two phase commit protocol for
web services using rest architectural style,” Journal of Web Engineering, vol. 9, no. 3, pp. 266–282,
Sep 2010.

44. S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems, ser. Mcgraw-Hill Com-
puter Science Series. McGraw-Hill College, Mar 1985.

45. G. F. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concepts and
Design, 5th ed. Addison-Wesley, May 2011.

46. G. Pardon and G. Alonso, “Cheetah: a lightweight transaction server for plug-and-play internet
data management,” in Proceedings of the 26th International Conference on Very Large Data Bases
(VLDB 2000). Cairo, Egypt: Morgan Kaufmann Publishers Inc., Sep 2000, pp. 210–219.

47. C. Pautasso and E. Wilde, “Why is the Web Loosely Coupled? A Multi-Faceted Metric for Service
Design,” in Proceedings of the 18th International Conference on World Wide Web (WWW ’09).
Madrid, Spain: ACM, Apr 2009, pp. 911–920.

48. G. Pardon and C. Pautasso, “Atomic Distributed Transactions: a RESTful Design,” in Proceedings
of the companion publication of the 23rd international conference on World wide web. Seoul, South
Korea: ACM, Apr 2014, pp. 943–948.

49. S. Kochman, P. T. Wojciechowski, and M. Kmieciak, “Batched transactions for RESTful web ser-
vices,” in Current Trends in Web Engineering, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, June 2012, vol. 7059, pp. 86–98.

50. A. Razavi, A. Marinos, S. Moschoyiannis, and P. Krause, “Recovery management in RESTful
interactions,” in Proceedings of the 3rd IEEE International Conference on Digital Ecosystems and
Technologies (DEST’09). IEEE, Jun 2009, pp. 419–424.

51. L. A. H. da Silva Maciel and C. M. Hirata, “Fault-tolerant timestamp-based two-phase commit
protocol for RESTful services,” Software: Practice and Experience, Special Issue on Web Tech-
nologies, vol. 43, no. 12, pp. 1459–1488, Dec 2013.

52. ——, “Extending timestamp-based two phase commit protocol for RESTful services to meet
business rules,” in Proceedings of the 2011 ACM Symposium on Applied Computing (SAC ’11).
TaiChung, Taiwan: ACM, Mar 2011, pp. 778–785.

53. C. Pautasso and M. Babazadeh, “The Atomic Web Browser,” in Proceedings of the 22nd interna-
tional conference on World Wide Web (WWW’13), Rio de Janeiro, Brazi, May 2013, pp. 217–218.

54. N. Mihindukulasooriya, M. Esteban-Gutiérrez, and R. Garćıa-Castro, “Seven challenges for REST-
ful transaction models,” in Proceedings of the companion publication of the 23rd international
conference on World wide web, Seoul, South Korea, Apr 2014, pp. 949–952.

55. L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications
of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

56. M. Lanthaler and C. Guetl, “Hydra: A Vocabulary for Hypermedia-Driven Web APIs.” in Pro-
ceedings of the 6th Workshop on Linked Data on the Web (LDOW2013), ser. CEUR Workshop
Proceedings, vol. 996, May 2013, pp. 11–16.

57. N. Mihindukulasooriya, R. Garćıa-Castro, and A. Gómez-Pérez, “A Distributed Transaction Model
for Read-Write Linked Data Applications,” in Engineering the Web in the Big Data Era, ser.
Lecture Notes in Computer Science. Springer International Publishing, 2015, vol. 9114, pp.
631–634.


