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The prime aspect of quality for search-driven web applications is to provide users with the

best possible results for a given query. Thus, it is necessary to predict the relevance of re-
sults a priori. Current solutions mostly engage clicks on results for respective predictions,

but research has shown that it is highly beneficial to also consider additional features of

user interaction. Nowadays, such interactions are produced in steadily growing amounts
by internet users. Processing these amounts calls for streaming-based approaches and

incrementally updatable relevance models. We present StreamMyRelevance!—a novel

streaming-based system for ensuring quality of ranking in search engines. Our approach
provides a complete pipeline from collecting interactions in real-time to processing them

incrementally on the server side. We conducted a large-scale evaluation with real-world

data from the hotel search domain. Results show that our system yields predictions as
good as those of competing state-of-the-art systems, but by design of the underlying

framework at higher efficiency, robustness, and scalability.
Additionally, our system has been transferred into a real-world industry context. A

modified solution called Turtle has been integrated into a new search engine for general

web search. To obtain high-quality judgments for learning relevance models, it has been
augmented with a novel crowdsourcing tool.

Keywords: Case Study, Crowdsourcing, Industry, Interaction Tracking, Learning to
Rank, Real-Time, Relevance Prediction, Streaming

1 Introduction

In a World Wide Web that has grown to a size of at least 4.48 billion pagesb, search engines are

among the most important and popular web applications, as they make enormous amounts

of content reachable. The prime aspects that determine the success of a search engine are

delivering relevant results and displaying them using the best possible ranking. If one of

aThe contents of this article were developed while Maximilian Speicher stayed at Unister GmbH as an industrial
PhD student.
bhttp://worldwidewebsize.com/ (Oct 02, 2014).
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these is not met—e.g., the most relevant result is not present at least on the first page—the

search engine is de facto useless for the user. However, before delivering results, we can only

guess their relevance for the user based on a number of factors, such as previous searches. A

common approach is to make use of generative click models, which try to predict the perceived

relevance of results based on the clicks they have received and certain assumptions about user

behavior. To give just one example, the Cascade Model [1] assumes that users examine results

from top to bottom and do not pay attention to results below their first click. Yet, clicks are

not a perfect indicator for relevance. For example, some users might tend to open a number

of results without paying closer attention at first. Also, search engines more and more try to

answer certain queries directly on the search engine results page (SERP), as facilitated by,

e.g., the DuckDuckGo Instant Answer API c. In such cases, the user does not have to click

at all anymore. Thus, additional information that complement click data should be taken

into account for predicting relevance, e.g., in terms of dwell times on landing pages [2] or

other client-side user behavior (e.g., [2, 3, 4]). Previous research has shown the value of such

page-level interactions [5, 3, 6]. Also, generative [7] as well as discriminative [6] approaches

to relevance prediction exist that engage user behavior other than clicks only.

However, with growing numbers of users and today’s asynchronous client-side technologies,

it is possible to collect vast amounts of user interactions. In particular, this applies if we

consider interactions other than clicks. Moreover, in today’s IT industry, a short time-to-

market is gaining importance. That is, to ensure user satisfaction, search engine providers

need to analyze collected information as fast as possible and feed their findings directly back

into the ranking process. The most efficient way to do so is to build on streams of data and

process them in real-time. This calls for the use of novel systems for data stream mining,

such as the distributed real-time computation system Stormd, which are currently gaining

popularity in research and industry. These systems can help to cope with the seemingly

endless streams of data produced by Internet users. Yet, none of the approaches for relevance

prediction mentioned above leverages data stream mining to process collected tracking data.
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Fig. 1. The intention behind StreamMyRelevance!—from collecting a stream of user interactions

to reordering search results based on relevance models.

We present StreamMyRelevance! (SMR), which is a novel streaming-based system for

ensuring ranking quality in search engines. Our system caters for the whole process from

tracking interactions—in terms of mouseenter, -click, -move and -leave actions on search

results—and relevance judgments to learning incremental relevance models. That is, models

that predict the relevance of a search result (for a given query) based on certain features of

user interaction—like hover duration and cursor trail/speed—that are derived from the tracked

chttps://duckduckgo.com/api (Oct 14, 2014).
dhttp://storm.apache.org/ (Oct 14, 2014).
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mouse actions. The latter can be used to directly feed predictions back into the ranking process

of the search engine, e.g., as a weighted factor in a learning-to-rank function (cf. Fig. 1).

SMR is based on Storm and leverages tracking and data processing functionalities provided

by TellMyRelevance! (TMR)—a pipeline that has proven its effectiveness in predicting search

result relevance [6]. Yet, TMR is a batch-oriented approach that does not provide means for

incrementally learning relevance models on a streaming basis. Thus, SMR wraps the borrowed

functionalities into a new system that is able to handle real-time streams. Our system has

the following three advantages over existing approaches:

1. It considers interactions beyond clicks for predicting relevance.

2. It collects and processes these interactions in terms of a stream.

3. It provides incremental relevance models that do not require reprocessing of previously

processed data.

Based on this, the core hypothesis investigated in this article reads as follows: SMR is

able to achieve the same relevance prediction quality as TMR at better efficiency, robustness

and scalability.

We have evaluated SMR in terms of its feasibility and quality of relevance predictions.

For this, ∼23 GB of real-world interaction tracking data from two hotel booking portals were

available. In this context, completed hotel booking processes were treated as indicators of

result relevance for learning models. A comparison to TMR has been performed, which due

to its batch-oriented design has look-ahead capabilities and thus more information available.

Still, our results show that SMR’s prediction quality is not significantly worse compared to

TMR. Moreover, our system in parts compares favorably with predictions of the Bayesian

Browsing Model (BBM) [8], a state-of-the-art generative click model successfully applied in

industry. Furthermore, reviews of efficiency, robustness and scalability show that SMR com-

pares favorably with the competing approaches in these respects.

Finally, we have transferred our novel approach into a real-world industry context. That

is, a specifically tailored version of our pipeline—named Turtle—has been integrated into

the architecture of a new search engine developed by the R&D department of the cooperating

company [9]. In this context, we build on a hybrid solution between TMR and SMR. Also,

unlike in the evaluation of SMR, we made use of an internal crowdsourcing tool for obtaining

relevance judgments.

In the following section, we describe important concepts our work is based on, before giving

an overview of related work. Section 3 explains the design and architecture of SMR as well

as the component architecture and integration of Turtle. This is followed by an evaluation

of effectiveness, efficiency, robustness and scalability of SMR and competing approaches in

Section 4. Limitations and potential future work are addressed in Section 5 before giving

concluding remarks in Section 6.

2 Background and Related Work

The following gives background information on the underlying concepts of Storm [10], which

are important for understanding the architecture of SMR.

The logic of a Storm application is represented as a graph consisting of spouts and bolts

that are connected by streams, i.e., unbounded sequences of data tuples. This concept is called
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a topology. On the one hand, spouts act as sources of streams by reading from external

data sources (e.g., a DB) and emitting tuples into the topology. On the other hand, bolts are

the core processing units of a topology. They receive tuples, process the contained data and

emit results as a new stream. Spouts and bolts can have multiple outgoing streams, which

provides the possibility of separating tuples within bolts and emitting them using different

streams.

The direct competitor to Storm is Yahoo!’s S4e. It as well provides distributed stream

computing functionality, but its underlying concepts and configuration are more complexf. As

described in [11], benchmarks have shown that S4 is almost 10 times slower than Storm.

Our research is related to a variety of existing work in the fields of relevance prediction

and data stream mining. An overview will be given in the following.

Concerning the relevance of search results, it is necessary to rely on human relevance

judgments—i.e., asking the user to explicitly rate the relevance of a result—for the best

possible predictions. However, since such data are usually not available in large numbers,

different solutions are required. Joachims [12] proposes to use clickthrough data instead of

human relevance judgments. Based on the cascade hypothesis [1, 8], i.e., the user examines

results top-down and neglects results below the first click, it is possible to infer relative

relevances. That is, the clicked result is more relevant than the non-clicked results at higher

positions. Using such relative relevances, Joachims engages clickthrough data as training data

for learning retrieval functions with a support vector machine approach [12]. In contrast to

the above, models like the Dependent Click Model [13] assume that more than one result

can receive clicks. That is, results below a clicked position might be examined and thus also

clicked if they are relevant.

The Dynamic Bayesian Network Click Model (DBN) described in [14] generalizes the

Cascade Model [1] by aiming at relevance predictions that are not influenced by position bias.

To achieve this, the authors (besides the perceived relevance of a search result) also consider

users’ satisfaction with the website linked by the clicked result.

Generally, click models are based on the examination hypothesis, which states that only

relevant search results that have been examined are clicked [8]. Yet, not all of these models

follow the cascade hypothesis. All of the above described are generative click models that

try to provide an alternative to explicit human judgments by predicting the relevance of

search results based on click logs. The main differences to our systems—TMR and SMR—are

that we aim at predicting relevance using a discriminative approach also taking into account

interactions other than clicks. Moreover, unlike SMR, the above click models are not designed

for efficient processing of massive data streams or incremental updates.

The Bayesian Browsing Model (BBM) [8] is based on the User Browsing Model (UBM)

[15], which assumes that the probability of examination depends on the position of the last

click and the distance to the current result [8]. Contrary to UBM, BBM aims at scalability

to petabyte-scale data and incremental updates. The authors compute “relevance posterior[s]

in closed form after a single pass over the log data” [8]. This enables incremental learning of

the click model while making iterations unnecessary. Still, contrary to SMR, BBM is again a

generative model that does not leverage the advantages of additional interaction data.

ehttp://incubator.apache.org/s4/ (Sep 28, 2013).
fhttp://demeter.inf.ed.ac.uk/cross/docs/s4vStorm.pdf (Jan 06, 2014).
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Concerning user interactions other than clicks, in [5], Huang has found that these are a

valuable source of information for relevance prediction. Following, Huang et al. [3] investigate

the correlations between human relevance judgments and mouse features such as hover time

and unclicked hovers, among others. They find positive correlations (e.g., r=0.46 between

human judgments and the hover rate of clicked results) and conclude that these can be used

for inferring search result relevance. Also, part of our system is based on a scalable approach

for collecting client-side interactions described by the authors [3].

In [2], Guo and Agichtein present their Post-Click Behavior Model. They incorporate

interactions like cursor or scrolling speed on a landing page into determining its relevance,

i.e., interactions that happen post-click. This is also partly related to DBN [14], where the

relevance of the landing page is modeled separately from the perceived relevance of the result.

While this approach is promising for inferring the actual usefulness of a landing page, it would

be difficult to realize since search engines would need access to landing page interactions

through, e.g., a browser plug-in or tracking scripts.

Making use of scrolling and hover interactions, Huang et al. [7] extend the Dynamic

Bayesian Network Click Model described earlier to leverage information beyond click logs.

Their results show that this improves the performance in terms of predicting future clicks

compared to the baseline model. While this generative approach involves interactions other

than clicks, in contrast to SMR, it does not specifically aim at incremental learning or efficient

processing of massive data streams.

TellMyRelevance! TMR is a system described by Speicher et al. [6]. Parts of SMR are

based on this work, particularly in terms of client-side interaction tracking, preprocessing

of raw data and computation of interaction features. Like SMR, TMR is a discriminative

approach to relevance prediction, but in contrast is a batch-oriented system. That is, raw

tracking data have to be fetched from the key-value store at predefined intervals and it is not

possible to learn incremental classifiers. Instead, we need to completely reprocess all mouse

features and relevance judgments if we want to update an already existing model. Assume

we want to obtain an up-to-date model once a day. Then, at some point in time, it would

take longer than 24 hours to (re-)process all data that is required for the update, or the

system would have to scale accordingly, e.g., by adding faster hardware. Thus, for the sake

of feasibility it is necessary to have a solution that processes data once and only once. That

is, a streaming-based pipeline that works on a per–search session basis and learns a model

incrementally that is automatically fed back into the ranking process of the corresponding

search engine.

3 SMR: Streaming Interaction Data for Learning Relevance Models

Scenario and Requirements A large e-commerce company is developing a new semantic

search engine for travel search. For this, they are crawling a huge amount of relevant pages that

are fed into their own search index, i.e., they do not build on external APIs. Delivered results

are ordered according to a complex ranking function that comprises 29 query-independent

(e.g., length of URL) and query-dependent (similarity between query and features of a web-

page) ranking factors. One of these factors is determined by a relevance model that analyzes

clicks from past search sessions and is updated once a week. However, from current research
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Fig. 2. The main components and process flow of SMR (Streams are visualized by sequences of

chevrons; Storm topologies are annotated using a “T”).

papers the head of R&D knows of the additional value when also leveraging additional mouse

interactions. These are collected in real-time for different tracking purposes anyway. Thus,

the company intends to build on a new approach also considering such interactions beyond

clicks. Moreover, the head of R&D demands to have an up-to-date relevance model at any

given point in time to be able to provide the best possible searching experience even in rapidly

changing environments.

From the above scenario, we can derive the following requirements that have to be met

by a corresponding system satisfying the company’s demands:

(R1) Interactions beyond clicks The system pays attention to user behavior other than

clicks (e.g., cursor trail, hovers etc.) for predicting result relevance.

(R2) Stream processing The system processes all tracking and intermediate data in (near)

real-time in terms of streams.

(R3) Incremental model The delivered relevance model can be updated in an incremental

manner. That is, only the current chunk of information must be added to the previous

version of the model for an update. No reprocessing of previously processed data is

necessary.

We present StreamMyRelevance! (SMR)—a system meeting these requirements, which is

organized as a streaming-based process and described in the following sections. Its aim is to

enable processing of big data streams while leveraging the advantages of user interaction data

for the prediction of search result relevance. This supports more optimal ranking of results,

which is a major quality aspect of search-driven web applications.

The system comprises four main components as illustrated in Fig. 2: The Client-Side

Interaction Tracking component in terms of a jQuery plug-in; The Preprocessor for read-

ing and preprocessing streams of tracking data and relevance judgments; The Interaction

Features Processor for calculating interaction features from tracking data; The Classifica-

tion Processor for incrementally training a relevance model using the previously computed

features and collected relevance judgments.
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Our Storm-based system has been specifically designed with an incremental approach in

mind. The four steps above can be regarded as a sequence of independent processes. That is,

the results of each step as well as the resulting relevance models are persisted (temporarily).

As a result, in case of a crash within the system, SMR can resume its work at the step prior

to the incident without starting over from the very beginning.
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Fig. 3. Architecture of Turtle, a hybrid TMR/SMR solution in a real-world industry context.

Furthermore, we have integrated our system into a real-world search engine currently

developed by the R&D department of the cooperating company (Fig. 3). The search engine

is based on a service-oriented architecture that combines means for full-text, geo-spatial and

semantic search [9]. It features different search modes, including hotel and the commonly

known web search. The integrated system is a hybrid approach named Turtle that engages

parts of TMR [6] and SMR and has been incorporated into the search engine’s process flow

in a real industry context.

For ordering delivered results, the novel search engine currently engages a ranking function

that includes a total of 29 weighted features, such as the length of the URL or the number

of div tags contained in a webpage. These features are computed for each result for a given

query requested by the user. The overall score of a result according to the ranking function

and assigned weightings then determines its rank on the SERP. Our aim is to incorporate

Turtle relevance as an additional feature into the search engine’s ranking function. In the

following, the implementation of Turtle will be described component-wise along the lines of

the system description of SMR.

3.1 Client-Side Interaction Tracking

3.1.1 Component Description

For client-side interaction tracking, SMR builds upon a “minimally invasive jQuery plug-

in” [6] that is provided by TMR. This plug-in tracks mouseenter, mousepause, mousestart,

mouseleave, click and clickthrough events—as also specified in Fig. 5 below—that happen

within the bounds of a search result on a SERP (R1) [6]. Each mouse event is extended

with the search query, an anonymized user ID and the ID of the corresponding result [6].
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The resulting data packets are then sent to a specified key-value store at suitable intervals

(Fig. 2) [6]. For integration, the developer has to specify jQuery selectors corresponding to

the observed SERP for (a) the HTML container element holding all results, (b) a single search

result, (c) an element within a result holding the result ID and (d) links to landing pages,

according to the following example:
var sid = (new Date()).getTime();

$.SMR({
/* the HTML <div> element with ID ’wrapper’ contains all results */

resultItemContainer: ’div#wrapper’,
/* each result is held by a <div> element with CSS class ’result’ */

resultItemSelector: ’div.result’,
/* the link with CSS class ’landingPage’ holds the ID of the respective result */

resultIDSelector: ’a.landingPage’,
/* the link with CSS class ’landingPage’ leads to the actual result URL */

linkSelector: ’a.landingPage’,
/* function extracting the result ID from the element identified by resultIDSelector */

getID: function($element) {
return $element.attr(’data-resultId’);

},
query: ’Hello, World!’, //the current query
pageNo: 1, //the current page number
sessionID: sid //a unique session ID
});

The second function provided by the plug-in is intended for recording human relevance

judgments, often also referred to as conversions, which are crucial for learning relevance

models. It is realized as a JavaScript method that can be called from anywhere, e.g., upon

clicking an upvote button next to a search result [6]. This method has to be provided with

the value of the judgment (e.g., −1 for a downvote and +1 for an upvote) as well as the

corresponding search query, session ID and user ID by the developer.

3.1.2 Algorithm

The following pseudocode summarizes the precise functionality of the client-side interaction

tracking component:
module interactionTracking {
metadata ← (searchSessionID, userID, query, listOfResults, timestamp)

add metadata to buffer

for each result r on SERP {
for each event e in (mouseenter, mousepause, mousestart, mouseleave) {
/* add event listener */

when e occurs on r {
data ← (searchSessionID, resultID, eventObject)

add data to buffer

}
}
}

repeat {
if buffer size ≥ threshold {
dataPacket ← compress(buffer)

send dataPacket to preprocessor
empty buffer

}
}
}
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module relevanceJudgments {
function registerJudgment(value) {
judgment ← (searchSessionID, userID, resultID, value)

dataPacket ← compress(judgment)

send dataPacket to preprocessor
}
}

3.1.3 Industrial Integration

attributes to 
be rated

indication of 
travel relevance

result URL

query

Fig. 4. The RHiNO tool, as shown to crowd workers, for the query “example” with results

http://example.org and http://niceexamples.com.

In the context of Turtle, the means for client-side interaction tracking have been integrated

as described above. All interactions are stored in dedicated log files by the Turtle Writer

(Fig. 3), whereas one log file corresponds to one day. Moreover, we obtain relevance judgments

through RHiNO (Quality Rating Tool for H otel and NOrmal search), which is a company-

internal crowdsourcing tool specifically developed for rating different aspects of search results.

As input, the tool requires search sessions in XML format. A search session comprises a query

and the corresponding results the search engine displays for that query. In particular, it is

possible to post all search sessions triggered by real users to RHiNO to obtain judgments for

results users actually see. Yet, it is also possible to have manually compiled lists of search

sessions evaluated, e.g., if trending queries are expected in the future.

The posted search sessions are then randomly displayed to the crowd workers, one search

session at a time (Fig. 4). It is explicitly possible that a search session is reviewed multiple

times by different evaluators. For each result contained in a session, the crowd worker has to

provide yes/no feedback on seven attributes:

bad Is the result not relevant w.r.t. the given query?

dead Does the result lead to a dead page?

duplicate Is the result a duplicate of another result in the search session?

good Is the result relevant w.r.t. the given query?

low content Does the result lead to a page with very little content?
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spam Does the result lead to a spam page?

top Is the result the best possible result w.r.t. the given query?

The ratings of these attributes are then stored to a database per query–result pair (yes

= 1, no = 0). That is, notwithstanding the algorithm given above, RHiNO bypasses the

processing of relevance judgment by SMR’s server-side components and instead instantly

stores them along with the necessary meta-information. If ratings are already present for a

query–result pair, they are summed up. The total number of ratings is stored as well for

normalization purposes.

3.2 Preprocessor

3.2.1 Component Description

After having been recorded using the above jQuery plug-in, all interaction data is received by

SMR as a stream of individual events (R2) for preprocessing (Fig. 2). Additionally, informa-

tion about a corresponding search sessiong is transferred when a user enters a SERP. These

contain an anonymous user ID, the current search query and the ordered list of all results,

among others [6]. Every event received by SMR is subsequently associated with its respective

search session. This concept is referred to as a collected search session.

It is logically not possible to process events from search sessions that have not ended yet.

Thus, all events are passed on in the SMR pipeline on a per–search session basis (R2). Since

with current web browser implementations it is unreliable to fire client-side unload events on

a SERP, this is realized using a configurable time-out on the server side. For example, if no

events related to a given session have been received for 2 minutes, it is considered finished

and the collected search session is passed on for interaction feature computation (Fig. 2).

Moreover, the preprocessing component receives human relevance judgments that are re-

quired for learning actual models. These judgments are checked for validity, i.e., whether a

corresponding search session exists during which the judgment happened. The latter is not

the case if a judgment is triggered by a user who did not perform a search beforehand, e.g.,

because they received a link to a result from a friend. Relevance judgments are persisted at

this point for later use by the Classification Processor (Fig. 2). Finally, for later filtering pur-

poses, each valid judgment is associated with the list of queries triggered by the corresponding

user ID.

3.2.2 Algorithm

The following pseudocode summarizes the precise functionality of the prepocessor:

module preprocessor {
receive dataPacket

data ← decompress(dataPacket)

for each object in data {
ID ← object.searchSessionID

switch object {
case search session metadata:

create collectedSearchSession[ID]

gFor our purposes, a search session starts when entering and ends when leaving a SERP. For example, a reload
triggers a new session, even for the same user and query.
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add metadata to collectedSearchSession[ID]

save collectedSearchSession[ID]

case mouse event:

fetch collectedSearchSession[ID]

add event to collectedSearchSession[ID]

save collectedSearchSession[ID]

case judgment:

if (collectedSearchSession[ID] exists) {
queries ← all collectedSearchSession[•].query where
collectedSearchSession[•].userID = judgment.userID

add queries to judgment

save judgment

}
}
}

repeat {
for all collectedSearchSession[ID] {
if collectedSearchSession[ID] not modified for longer than threshold {
send collectedSearchSession[ID] to interactionFeaturesProcessor
delete collectedSearchSession[ID]

}
}
}
}

3.2.3 Industrial Integration

The integration of the preprocessing component into the real-world industry context has been

realized in analogy to the above. Yet, at this point in time, the architecture of the search

engine is not streaming-oriented and thus not based on Storm [9]. Hence, it is reasonable

to neglect the Storm functionality of the preprocessor for now—according to the YAGNI

principle (“You aren’t gonna need it”)h—and instead build on a batch-wise approach, as is

also done by TMR [6].

For updating the scores of the search engine’s ranking function, Turtle must provide an

up-to-date relevance model on a weekly basis. For this, a cron job fetches the raw interaction

tracking logs created during the past week and has them prepared by the preprocessor included

in Turtle (contained in the component Feature Computation in Fig. 3).

3.3 Interaction Features Processor

3.3.1 Component Description

The Interaction Features Processor is realized as a separate topology within our Storm-based

system (Fig. 2). It receives collected search sessions from the preprocessor that are emitted

as a stream by a dedicated spout (R2). To ensure that all interaction events associated with

a search session are ordered logically, invalid sequences of events are filtered out based on

a finite state machine (Fig. 5). This prevents the computation of faulty interaction feature

values. An invalid sequence would be, e.g., if a mouseleave happens before a mouseenter

event on the same search result. Typical causes for such a case can be faulty time stamps

or latency while transferring data from client to server. Since at the moment we specifically

focus on mouse interactions, search sessions that have been recorded on touch devices are

eliminated as well.

hCf. http://www.wikiwand.com/en/You_aren’t_gonna_need_it (Oct 22, 2014).
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Fig. 5. The finite state machine defining the possible transitions between mouse events captured

on the client side.

Subsequently, the values of the actual interaction features are calculated per query–result

pair. For example, the value of the arrival time is determined by subtracting the time stamp of

the first mouseenter event on a result from the time stamp of the page load (which is available

as meta information about the associated search session). The features we are considering

have been compiled from a variety of existing research and are in accordance with [6] (R1):

Hover time* The amount of time the mouse cursor spent within the bounds of the result

[3, 4].

Cursor movement time* The amount of time during which the cursor actually moved

within the bounds of the result, i.e., hover time minus the time the cursor stood still [6].

Arrival time The amount of time between entering the SERP and the cursor entering the

result for the first time [3, 4].

Clickthroughs* The amount of clicks on hyperlinks leading to the result’s landing page, i.e.,

the website the user ultimately wants to visit [3].

Clicks The amount of clicks on hyperlinks (within the bounds of the result) not leading to

the landing page, e.g., links showing additional info boxes [6].

Hovers* The amount of hovers over the result [3, 4].

Unclicked hovers The amount of hovers not resulting in a clickthrough event [3].

Maximum hover time* The time duration of the longest single hover action over the re-

sult [3].

Cursor trail The amount of pixels the cursor traveled within the bounds of the result [2, 4].

Cursor speed Cursor trail divided by cursor movement time [2].

Position The position of the result within the SERP, also considering the SERP’s page

number; i.e., on the second SERP for a given query, the first result has position 11,

assuming ten results are shown per SERP [3, 2].

* indicate the interactions features that showed the highest correlations with result rel-

evance in an interaction log analysis that is described later in this article. The features are

moreover averaged over the number of hovers, if possible. This applies to clicks, clickthroughs,
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cursor movement time, cursor trail, hover time and unclicked hovers [6]. Finally, the com-

puted values are persisted, which is important for later normalization purposes and actual

use of SMR’s relevance models (see below). In case feature values are already present for a

query–result pair, they are automatically updated by adding the new values and taking the

average over all values.

Within this topology, emitting a stream of collected search sessions is realized using a

spout (R2). Contrary, checking event sequence validity, the actual computation of feature

values and updating values of already existing query–result pairs are realized through bolts.

The raw search sessions and associated events are not necessarily lost after they have

been used for computing interaction features. Rather, SMR provides the option to persist all

processed data. In this way, it is possible to batch-wise train a new model from parts of old

data (e.g., after removing outdated information) before continuing to incrementally update

this new model using real-time interactions and judgments.

3.3.2 Algorithm

The following pseudocode summarizes the precise functionality of the interaction features

processor:

module interactionFeaturesProcessor {
receive collectedSearchSession[ID]

for each event in collectedSearchSession[ID] {
q ← collectedSearchSession[ID].query

r ← event.resultID

/* e.g., filter out mouseleave events with no corresponding mouseenter */

check event for validity according to Fig. 5

/* calculate interaction features, e.g. */

if event is mouseleave {
featureValues[q,r].hoverTime += (event.timestamp - lastMouseenter.timestamp)

}

...

}

/* for simplicity, q := query, r := resultID */

for all featureValues[q,r] {
for each f in (clicks, clickthroughs, cursorMovementTime, cursorTrail, hoverTime,

unclickedHovers) {
featureValues[q,r].f /= featureValues[q,r].hovers

}

if persistedFeatures[q,r] exists {
persistedFeatures[q,r] ← (persistedFeatures[q,r] + featureValues[q,r]) /

++persistedFeatures[q,r].count)

} else {
persistedFeatures[q,r] ← featureValues[q,r]

persistedFeatures[q,r].count ← 1

save persistedFeatures[q,r]

}

send persistedFeatures[q,r] to classificationProcessor
}
}
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3.3.3 Industrial Integration

The integration of the interaction features processing component into the real-world industry

context has been realized in analogy to the above, i.e., Turtle computes interaction features per

query–result pair and permanently stores them to a database (Fig. 3, Feature Computation).

Yet, at this point in time, the architecture of the search engine is not streaming-oriented and

thus not based on Storm [9]. Hence, it is reasonable to neglect the Storm functionality of the

interaction features processor for now—according to the YAGNI principle—and instead build

on a batch-wise approach, as is also done by TMR [6].

3.4 Classification Processor

3.4.1 Component Description

The Classification Processor is as well realized as a separate topology within our system

(Fig. 2). It receives the previously calculated interaction features (one set per query–result

pair) in terms of a stream that is emitted into the Storm cluster by a dedicated spout (R2).

Using the lists of queries associated to judgments during preprocessing, we filter out sets

of interaction feature values that are not associated with a user who triggered at least one

relevance judgment. This helps to ensure a good quality of our training data.

Moreover, relevance models provided by SMR highly depend on the layout of a SERP

[6]. Thus, normalization of feature values is necessary to guarantee comparability between

models related to different SERP layouts [6]. This happens in terms of dividing feature values

by the maximum value of the respective feature across all results for the given query. Since

interaction feature values arrive as a stream, maximum values change over time and have to

be constantly updated. Hence, they become more precise the longer the system runs. This is a

major difference compared to TMR, which—due to its batch-oriented nature—has look-ahead

capabilities and knows exact maximum values from the start.

In the next step, we derive the normalized relevance relN for a query–result pair using the

human relevance judgments that have been persisted in the preprocessing step. For this, all

relevance judgments judg corresponding to the query–result pair (q,r) are summed up before

dividing them by the sum of all judgments for the given query [6]:

relN(q, r) =

∑
u∈U

judg(u, q, r)∑
s∈R

∑
u∈U

judg(u, q, s)
, (1)

with U the set of users who triggered a judgment and R the set of possible results for the

query q. Normalizing judgments is important since otherwise, a result X that was among the

results of 20 queries and received 10 positive judgments (relN=0.5) would be considered more

relevant than a result Y that was among the results of only 5 queries and received 5 positive

judgments (relN=1).

Having available interaction feature values and normalized relevance of a query–result

pair, it is possible to use them as a training instance for SMR’s relevance model. For this,

the query–result pair is transformed into an instance that can be interpreted by the WEKA

API [16]. The interaction features are labeled as attributes while “relevance” is labeled as

the target attribute on which we train the model. At the moment, SMR has two built-in

classifiers available that are provided by the WEKA API and trained in parallel. That is, a
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Hoeffding Tree, which is specifically aimed at incremental learning and is suitable for very

large data sets [18], and an updatable version of Näıve Bayesi, which also works for smaller

data sets (R3). The current states of the relevance models are serialized and persisted after

each incremental update. These models are ready-to-use (R3) and can be instantly engaged

for obtaining relevance predictions and feeding them back into a SERP for results optimization

(Fig. 2). Moreover, all training instances are persisted to a file to enable manual inspections

using, e.g., the WEKA GUI.

Within this topology, emitting a stream of interaction feature values is realized using a

spout (R2). Contrary, filtering and normalization tasks as well as incrementally training the

relevance models are realized as bolts.

The incrementally trained relevance models are serialized and persisted after every update

(R3). This makes it possible to manually review the quality of the current model and interrupt

or stop training if the model is reasonably stable, which helps to prevent overfitting. Moreover,

SMR does not require to directly feed predictions by the incremental relevance model back

into the ranking process of the underlying search engine. Rather, as just described, search

engine owners are given the option to review the model before usage to ensure ranking quality.

3.4.2 Algorithm

The following pseudocode summarizes the precise functionality of the classification processor:
module classificationProcessor {
/* for simplicity, q := query, r := resultID */

receive featureValues[q,r]

if there exists a judgment where q in judgment.queries {
/* normalize featureValues */

for each f in features {
fetch persistedFeatures[q,•] where persistedFeatures[q,•].f is global maximum
featureValues[q,r].f ← featureValues[q,r].f / persistedFeatures[q,•].f
}

compute relevance according to Equation 1

wekaInstance ← (featureValues[q,r], relevance)

fetch model

train model on wekaInstance using WEKA API

save model

}
}

3.4.3 Industrial Integration

Currently, the search engine’s ranking function is applied approximately once a week rather

than computing the rank of a result on the fly when a user triggers a query. That is, the

ranking score of a result contained in the search engine’s index is updated and stored every

seven days, which means that at this point in time, the architecture of the search engine is

not streaming-oriented and thus not based on Storm [9]. Therefore, it is reasonable to base

Turtle on a batch-wise approach, as is also done by TMR.

Turtle engages SMR’s approach of incrementally learning relevance models (F. 3, Model

Learning). That is, we make use of the Näıve Bayes and Hoeffding Tree classifiers, whereas

i http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html

(Oct 07, 2013).
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only feature values of query–result pairs from the database are added that have not yet been

used for learning. Feature values of query–result pairs that have already been considered

are flagged accordingly in the database. In case the feature values of a query–result pair are

updated by the Interaction Features Processor, the already processed flag is reset to false.

As RHiNO crowd workers rate a total of seven attributes for a query–result pair, we can

train models to predict each one of these. Moreover, we have introduced a three-class notation

of relevance that is determined as follows:

relevanceq,r =


good, if Ngood

q,r > Nbad
q,r

neutral, if Ngood
q,r = Nbad

q,r

bad, otherwise

, (2)

with Ngood
q,r being the number of “good” ratings for result r and corresponding query q

etc. Thus, Turtle can provide models for a total of eight target attributes.

Once an up-to-date model is provided by our tool, it is possible to obtain the Turtle

relevance as an additional weighted feature for the updated ranking function. The turtle

relevance is thereby the predicted relevance r̂el for a query–result pair (q,r) as provided by

Turtle’s relevance model RM :

RM(q, r, ~I) = r̂el(q, r) , (3)

given that interaction feature values ~I are present for (q,r). The new relevance feature

is then incorporated into the search engine’s ranking function LTR (“learning to rank”) as

follows:

LTR(q, r) = x1 · feature1(q, r) + · · · + xn · featuren(q, r) + xn+1 · r̂el(q, r) , (4)

with xi being the weightings of the individual features.

The ranking function consists of query-independent as well as query-dependent features.

Query-independent features are intrinsic properties of a result—such as the length of the

URL—that are independent of the query the result is delivered for. Query-dependent features

are specific to a result only for a given query, e.g., the similarity between the query and the

result’s title. As relevance can only be predicted for a result with a certain query in mind,

Turtle relevance belongs to the set of query-dependent ranking features.

When updating the ranking score of a query–result pair, our system checks whether inter-

actions have been tracked in a corresponding search session. If interactions are present, but

crowd worker ratings (as delivered by RHiNO) are not, we make use of the Turtle relevance

for determining the ranking. Otherwise, we can directly use crowd worker ratings (if present)

or omit the new ranking feature.

4 Evaluation

To show SMR’s capability of coping with realistic workloads, we have performed a large-

scale log analysis of real-world user interactions. The anonymous data used were collected

on two large hotel booking portals. We used the number of conversions (i.e., when a hotel

has been actually booked by users) as relevance judgments for training our models. This

stands in contrast to commonly used click models, where clicks are the prime indicators of
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relevance. First, we compare SMR to its analogous batch-wise approach TMR (cf. [6]) in

terms of the prediction quality of the two systems. Second, we provide BBM (as a state-of-

the art generative click model aiming at stream processing; cf. [8]) with the same set of raw

interaction logs and compare its quality of relevance prediction against that of SMR. Third,

we check SMR against a version of itself that considers clickthroughs only (SMRclick) as well

as an analogous version of TMR, i.e., TMRclick. Results indicate that SMR is able to provide

reasonably good relevance predictions that are not significantly different from those of TMR

and might compare favorably to those of BBM—although the difference is not significant.

Moreover, our system is superior to corresponding discriminative approaches that do not

consider interactions other than clickthroughs. Fourth, we engage a slightly modified version

of our industry system Turtle to investigate the significance of interactions on preceding (i−1)

and succeeding (i+ 1) for predicting the relevance of a result i. Our outcomes indicate that

the significance is negligible. Subsequently, we have a look at the efficiency, robustness and

scalability of the evaluated approaches. Results show that SMR can easily cope with realistic

workloads in a manner that is robust to external influences. This is especially important in

real-world settings with big data streams.

For detailed figures and descriptive statistics, see http://vsr.informatik.tu-chemnitz.

de/demo/SMR. Also, we provide training data and serialized models for reproducing this

evaluation using WEKA (cf. [16]).

4.1 Effectiveness

4.1.1 Method

Approximately 23 GB of raw tracking data were collected by SMR’s interaction tracking

facilities on two large hotel booking portals. Of these, ∼10 GB of interaction logs were

chosen for evaluation, which correspond to ∼3.8 million search sessions over a period of

10 days. Based on these, we computed interaction features for a total of 86,915 query–

result pairs (cf. Sec. 3.4). Because the collected data contained critical information about

the cooperating company’s business model, it was a requirement that all data was saved to a

key-value store controlled by the company. In particular, we are not allowed to publish the

concrete conversion–to–search session (CTS) ratio. Yet, it can be stated that this ratio is

very low, i.e., #conversions � #search sessions.

We divided the chosen raw interaction data into 10 distinct data sets DS0 –DS9 (∼0.7–

1.5 GB each) that were intended for training relevance models and corresponded to one day

each. Since SMR cannot—due to its streaming-based nature—use fixed maximum values

for interaction feature normalization (cf. Section 3.4), it produces different feature values for

the same tracking data compared to TMR. Thus, processing the above raw data sets with

both systems yields a total of 20 data sets containing interaction features and relevances (i.e.,

normalized conversions) of the extracted query–result pairs: DS 0
TMR–DS 9

TMR from TMR and

DS 0
SMR–DS 9

SMR from SMR. For this, we considered only search sessions that were produced

by users who triggered at least one conversion (in terms of booking a hotel). Conversions are

treated as relevance judgments in analogy to [6], i.e., a greater number of conversions implies

higher relevance and vice versa. For evaluating SMR, we simulated a stream of search sessions

based on the logs containing raw interaction data.
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Table 1. Evaluation of two exemplary models highlighting that the MCC is a more suitable

measure for our evaluation.
TN FP FN TP F-measure MCC

DS1
SMR 13413 115 362 48 0.959 0.171

DS4
SMR 2944 39 120 28 0.940 0.258

The Storm cluster used for evaluation was based on Amazon EC2 j. It comprised four

computing instances. An additional machine was used for logging purposes and hosting the

database used. All computers in the Storm cluster were instances of type m1.large, featuring

two CPUs and 7.5 GB RAMk.

4.1.2 Matthews Correlation Coefficient

In analogy to [6], we observed a very low ratio of booked hotels to search sessions. In addition

with a high query diversity this leads to more than 99% of the query–result pairs having a

relevance of either 0.0 or 1.0. Therefore, in this evaluation, we treat relevance prediction as a

binary classification problem with two classes: “bad” (relevance < 0.5) and “good” (relevance

≥ 0.5). With more than 90% of the query–result pairs having a bad relevance and less than

10% having a good relevance, these classes are rather unbalanced. Thus, we use the Matthews

Correlation Coefficient (MCC) for evaluations of model quality, which is particular suitable

for cases with unbalanced classes [17].

For a binary classification problem, the Matthews Correlation Coefficient is defined as [17]:

MCC =
TP × TN − FP × FN√

(TP + FN )(TP + FP)(TN + FP)(TN + FN )
. (5)

The MCC is based on numbers of TP = true positives, TN = true negatives, FP = false

positives and FN = false negatives and is therefore related to the F-measure, which is given

by F = 2 × precision×recall
precision+recall with precision = TP

TP+FP and recall = TP
TP+FN .

Yet, the MCC is a more balanced measure for highly unbalances classes [17]—as is the

case in this evaluation—, which is demonstrated in Table 1 based on Random Forest models

trained for two representative data sets of different sizes. Thus, in the following, we are going

to report MCC rather than F-measure values, which are skewed and unrealistically high since

TN � FP + FN + TP for all data sets.

4.1.3 SMR vs. TMR

Based on the data sets described above, we trained a total of 20 Näıve Bayes classifiers (10 per

system), as provided by TMR and SMR through the WEKA APIl. Thereby, our system used

the updatable version of the classifier for incremental learning. The Näıve Bayes classifier was

chosen because the amount of data available for evaluation was too small to train reasonably

good Hoeffding Tree classifiers [18]. All classifiers learned have been evaluated using 10-fold

cross validation, from which we obtained corresponding MCC values. As can be seen in Fig. 6,

the difference between SMR and TMR is not significant across the 10 data sets. This result

jhttp://aws.amazon.com/ec2 (Sep 30, 2013).
khttp://aws.amazon.com/en/ec2/instance-types/#instance-details (Oct 05, 2013).
l Relevance models provided by SMR and TMR are highly sensitive to layout specifics of the corresponding
SERPs [6]. Yet, since the two hotel booking portals feature the exact same layout template, it is valid to use
combined data from both portals for training the same model(s).
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Fig. 6. MCC values for DS0–DS9 (threshold = 0.5).

has been validated using a Wilcoxon rank sum test, with p>0.05 (α=0.05, W=75, 95.67%

conf. int. = [-0.047, 0.004]). It implies that statistically, SMR yields the same prediction

quality as TMR, even though it has less information available; particularly in terms of feature

normalization and missing look-ahead capabilities. While Fig. 6 shows only MCC values at a

threshold of 0.5, our result is underpinned by the exemplary receiver operating characteristic

(ROC) curves depicted in Fig. 7, where SMR does not dominate TMR or vice versa. TMR

performs slightly better in terms of its true positive rate for small false positive rates (> 0.15),

while SMR does so for false positive rates ? 0.15. Yet, the areas under ROC lie close together

(AUROCTMR = 0.850, AUROCSMR = 0.861), which shows that both systems’ predictions are

considerably better than chance (AUROC = 0.5), but prediction quality is not significantly

different. These results are similar for the remaining nine data sets.

4.1.4 SMR vs. BBM

Fig. 7. ROC values for DS7 .

Additionally, we have compared SMR’s prediction quality to that of a state-of-the-art

generative click model designed for very large amounts of data and incremental learning. For

this, we have used an existing re-implementation of BBM—as described in [8]—and provided



M. Speicher, S. Nuck, L. Wesemann, A. Both, and M. Gaedke 405

it with the exact same raw interaction logs. Fig. 6 shows that BBM yields slightly better

predictions for four out of ten data sets (DS0 –DS2 , DS9 ) at a threshold of 0.5 while SMR

has a better prediction quality for the remaining six data sets. For this, predictions of BBM

have been compared to the normalized relevances computed by SMR based on the available

conversions. The difference between the two approaches is not significant according to a

Wilcoxon rank sum test (α=0.05, W=64.5, p>0.05, 95.67% conf. int. = [-0.177, 0.021]).

Still, our result indicates that SMR has the potential to provide relevance predictions that

compare favorably to BBM. Particularly, Fig. 7 suggests that predictions of BBM can be

partly dominated by SMR’s predictions for certain data sets. That is, for the exemplary data

set DS7 , BBM has a slightly better true positive ration than SMR only for a small interval

around a false positive rate of ≈ 0.25. Also, with a value of 0.826 the AUROC of BBM is

considerably better than chance, but lower compared to both, SMR (0.861) and TMR (0.850).

Since we expect SMR’s prediction quality to increase with amounts of data larger than used

in this evaluation, we hypothesize that our system can predict relevance at least as good as

BBM, whose predictions are being successfully used in industry.

4.1.5 SMR vs. SMRclick vs. TMRclick

Table 2. Wilcoxon rank sum tests for SMR vs. SMRclick and SMR vs. TMRclick.

α W p 95.67% confidence interval
SMR vs. SMRclick 0.05 84.5 <0.05 [-0.075, -0.020]
SMR vs. TMRclick 0.05 90.0 <0.01 [-0.101, -0.044]

To investigate the influence of the additional user interactions, we have performed a

comparison of SMR to versions of itself and TMR that consider clickthroughs only, named

SMRclick and TMRclick. Results show that SMR outperforms the click-only approaches across

all 10 data sets (Fig. 6) based on 10-fold cross-validation. Moreover, the MCC differences

between SMR and SMRclick/TMRclick are significant, as has been shown by two Wilcoxon

rank sum tests (Table 2). Our results are further supported by the ROC curves shown in

Fig. 7, where SMR (AUROC = 0.861) performs better than both SMRclick (AUROC = 0.834)

and TMRclick (AUROC = 0.759). In fact, the ROC curve of TMRclick is dominated by that

of SMR across all thresholds, particularly clearly for false positive rates > 0.3. Moreover,

SMRclick shows a better true positive ratio compared to SMR only for a small interval around

a false positive rate of ≈ 0.2. These findings underpin that adding interaction data other

than clicks yields considerable improvements for discriminative approaches, as has also been

outlined in [3, 5]. This is true even if clickthroughs show a correlation with relevance that is

notably higher than those of the additional attributes (e.g., r=0.34 for DS 2
TMR).

4.1.6 Interactions on Preceding/Succeeding Results

In [6, Sec. 3.5.3], Speicher et al. investigate correlations between mouse features of a search

result and its relevance. Following this, we have engaged a slightly modified version of Turtle

to reprocess a fraction of the data used in [6]. Unfortunately, the novel search engine—into

which Turtle has been integrated—had not yet delivered a sufficient amount of high-quality

tracking data; therefore we had to rely on existing data sets. With these, we have investigated

correlations of the relevance of a result i with mouse features of the preceding (i − 1) and

succeeding (i + 1) results. Particularly, we used data sets DS1 and DS2, as described in [6].
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While DS2 could be completely reprocessed, due to technical limitations we were only able to

reprocess approximately 2⁄3 of DS1 (which we therefore refer to as DS1′). Yet, this does not

affect the generality of our results (in the context of the data used). Correlations are given

in Table 3.

Table 3. Correlations between relevance of result i and mouse features of results i− 1, i and i+ 1.

DS1′ DS2 combined
Pearson’s r i− 1 i i+ 1 i− 1 i i+ 1 i− 1 i i+ 1

avg. hover time 0.02 0.20 0.02 0.02 0.19 0.02 0.02 0.20 0.02
arrival time 0.06 0.14 0.03 0.07 0.14 0.06 0.07 0.14 0.05

clicks 0.03 0.07 0.03 0.00 0.09 -0.01 0.01 0.09 0.00
clickthroughs 0.01 0.42 0.03 0.01 0.35 -0.01 0.01 0.37 0.00

hovers 0.00 0.16 -0.02 0.01 0.16 -0.01 0.01 0.16 -0.01
max. hover time 0.03 0.20 0.03 0.03 0.19 0.03 0.03 0.20 0.03

cursor trail 0.01 0.06 -0.01 0.00 0.06 0.02 0.00 0.06 0.01
cursor move time 0.03 0.18 0.04 0.03 0.19 0.03 0.03 0.19 0.03

cursor speed 0.10 0.13 0.09 0.07 0.14 0.06 0.08 0.14 0.07
#instances 5439 8969 5400 10514 19875 10381 15953 28844 15781

Our analysis was based on the assumption that if less or more interactions happen on

preceding/succeeding results, this should be an indicator of how interesting result i appears

to the user—and thus also of its relevance. However, as can be seen, there exist no considerable

correlations between mouse features of results i − 1 and i + 1 and the relevance of result i.

The greatest correlations are 0.10 for cursor speed on result i − 1 and 0.09 for cursor speed

on result i + 1, as opposed to a correlation of 0.42 between clickthroughs on result i and its

relevance. The correlations of mouse features of result i are of the order of the numbers given

in [6].

Our results indicate that users seem to be treating search results as independent entities

on SERPs. However, this finding holds only for the interaction data collected in the specific

travel search setting described in [6]. Thus, additional analyses with data from general search

settings should be conducted. In particular, the above correlations show differences compared

to [3], who investigated such a more general setting.

4.2 Efficiency, Scalability and Robustness

4.2.1 Efficiency and Scalability

SMR is a feasible approach for processing web-scale interaction data. In contrast, TMR uses a

batch-wise approach and non-incremental classifiers [6]. This means that all training data (in

terms of query–result pairs, i.e., interaction features and relevances) already put into a model

have to be reprocessed for an update. For training an up-to-date model, this yields a time-

complexity of O(c(q + q′)) with c = complexity of adding one instance to the classifier used,

q = #query–result pairs in new search sessions since last processing and q′ = #previously

processed query–result pairs. Assume we receive one log with raw interaction data per day

and want a daily model update. Then the amount of data that needs to be reprocessed grows

linearly. At some point, processing these data would take longer than 24 hours unless we add

more/faster hardware to the system, which is, however, not a feasible approach in the long-

term. Particularly, reprocessing previously processed query–result pairs involves numerous

slow database requests. To give just one concrete example from our evaluation, TMR needs

∼5 hours for processing a single 1.5 GB log on a dual-core machine with a 2.3 GHz Intel Core
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i5 CPU and 4 GB RAM. Since this corresponds to one day, processing the logs for two days

would already take ∼10 hours etc. This means that after five days, we exceed a processing

time of 24 hours, which makes it impossible to provide a daily model update unless we use a

better machine than the given one.

In contrast, SMR does not need to reprocess logs from previous days since data is processed

on a per–search session basis and models are learned incrementally. Thus, a model update

considers only one search session at a time and the time-complexity of the update is q times

the complexity of the classifier used, with q = #query–result pairs in search session. For

instance, “constant time per example [i.e., a query–result pair in our case]” [18] if using a

Hoeffding Tree, which would be q ×O(1) = O(q). The time-complexity for preprocessing the

raw data of a search session is the same for TMR and SMR. That is, O(e + qu), with e =

#events in search session, q = #query–result pairs in search session and u = complexity of

updating a DB entry. SMR needs ∼2 hours for processing all search sessions in a 1.5 GB log

using the cluster described in Section 4.1.1. For this, the search sessions have been put into the

system at the highest possible frequency. The log used corresponds to one day of real-world

traffic from two hotel booking portals. This means that—using simple interpolation—SMR

would be able to cope with approximately 12 times the load based on the relatively simple

cluster set-up used.

Finally, BBM has been specifically designed for incremental updates and web-scalability.

As described in [8], 0.25 PB of data were processed using the generative click model. The

authors state that it was possible to compute relevances for 1.15 billion query–result pairs in

three hours on a MapReduce [19] cluster. BBM’s time-complexity for updating a relevance

model is O(s), with s = #new search sessions since last processing.

Due to the differences in system architecture—TMR runs on a single node while the

other two approaches require a cluster—the above is not an absolute, hardware-independent

comparison of performance. Rather, it describes relative performances between the three sys-

tems. An overall, relative comparison of efficiency and scalability of the compared approaches

is shown in Table 4.

4.2.2 Robustness

Being based on Storm, SMR is a highly robust system by design. In particular, it features

guaranteed message passingmand high fault-tolerancen if one or more nodes die due to exter-

nal reasons—which happened numerous times during our evaluation. In such a case, SMR

continued processing the current interaction data from the step prior to the incident.

In [8], Liu et al. do not explicitly address the robustness of their approach. Rather, BBM

has been designed for use as a MapReduce job on a Hadoop cluster. That is, differences in

robustness between SMR and BBM originate from corresponding differences between Storm

and Hadoop. Particularly, Hadoop has disadvantages when it comes to guaranteed message

processing or when supervising/master nodes are killed.

Finally, TMR is the least robust of the compared approaches. In case the processing of a

batch of data is stopped due to external reasons (e.g., a memory overflow), all data need to be

reprocessed. In particular, this means that already computed values of interaction features

mhttps://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing (Dec 30, 2013).
nhttps://github.com/nathanmarz/storm/wiki/Fault-tolerance (Dec 30, 2013).
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are useless since contributions of already processed data cannot be subtracted out before

starting over an iteration. Therefore, careful evaluation and set-up of the required hardware

are necessary before using TMR to minimize the risk of costly and time-consuming errors.

4.3 Discussion and Summary

In this evaluation, we have shown that SMR does not perform significantly less effective than

TMR, even though it relies on lower-quality information for training its relevance models.

Moreover, SMR is more efficient, robust and scalable compared to its batch-wise predecessor.

The difference of SMR’s predictions to those of the generative state-of-the-art click model BBM

were not significant as well. Yet, our results indicate that our discriminative approach can be

advantageous over BBM for certain data sets and that it is more robust at similar efficiency

and scalability. Finally, we have underpinned the value of interaction data other than clicks

for relevance prediction, with clickthrough-only versions SMRclick and TMRclick performing

significantly worse than SMR. However, there are some points remaining for discussion.

4.3.1 Discussion

Why does SMR show the tendency to perform better than TMR, although its training data are

of lower quality? As described in Section 3.4, the maximum values for feature normalization

change during the processing of a data set due to SMR’s streaming-based nature (i.e., no

look-ahead is possible). This means that SMR has less information available and as a result,

the training data has lower quality. However, the different feature values for query–result

pairs that appear early in a data set can—purely by chance—lead to better predictions of

SMR. This is especially the case because in this evaluation we were working with relatively

small and closed data sets, as compared to a real-world setting. Hence, we strongly assume

that in such a setting, the already non-significant difference between SMR and TMR would

become even smaller.

Why does BBM make better predictions than SMR for DS2 but predicts worse for DS7 ?

SMR computes almost the same amount of query–result pairs for the two data sets, with

nearly identical means and distributions of the individual interaction features. In contrast,

BBM has approximately 12% less search sessions available in DS7 compared to DS2 , which is

due to the fact that search sessions are treated differently by BBM. Our system treats every

page load event on a SERP as the beginning of a new search session. That is, if a user clicks

a result and then returns to the SERP for clicking another result, SMR interprets this as two

separate sessions. However, BBM handles this as a single search session with two clickthrough

events. Besides containing more of these “combined” search sessions, DS7 also features ∼12%

less clickthrough events. All in all, this results in BBM having less data available for training

its relevance model, which is an explanation for the lower-quality prediction compared to

DS2 . The same holds for other data sets showing similar differences, DS2 and DS7 are only

used for representative purposes here.

Why are the MCC values relatively low (< 0.5) in general? The data collected for evalua-

tion featured a very low CTS ratio, i.e., the amount of interaction data exceeded the available

relevance judgments by far. To give just one example, the CTS ratios of both DS0 and DS1

lie under 1%, which is similar for the remaining data sets. This and the fact that the data sets

used for evaluation were relatively small (compared to a realistic long-term scenario) leads to

a rather low data quality. Yet, in an evaluation with larger amounts of data, we would expect
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increasing MCC values. Particularly, Huang et al. state that “adding more data can result

in an order of magnitude of greater improvement in the system than making incremental

improvements to the processing algorithms” [7].

How does SMR deal with click spam? Click spam is a major problem in systems where

clicks are the main indicator for relevance [20]. However, in the specific setting we are focusing

on in this paper, a high number of conversions indicates high relevance. Since conversions

imply a confirmed payment, we do not have to deal with “traditional” click spam as described

in [20]. Yet, in settings where no conversions are available, our discriminative approach has

to rely on other indicators of relevance, such as clicks on social media buttons, for training

its models. In such cases, additional measures have to be taken that prevent fraudulent

behavior aiming at manipulating relevance models. Potential measures could be based on,

e.g., filtering pre-defined behavior profiles, blacklists, personalized search [20] or the ranking

framework described by [21].

4.3.2 Summary

Table 4. Overall relative comparison of the considered approaches.

effectiveness efficiency robustness scalability
SMR 0 ++ ++ ++
BBM − ++ + ++
TMR (baseline) 0 0 0 0
SMRclick −− ++ ++ ++
TMRclick −− 0 0 0

Table 4 shows a comparison of all approaches considered in the evaluation. Since the

systems—due to differences in the underlying architectures—are difficult to compare in an

absolute, hardware-independent manner, we give a comparison of relative performances. Us-

ing TMR as the baseline, “0” indicates similar performance, “+”/“−” indicate a tendency

and “++”/“−−” indicate a major or significant difference.

Table 5. High-level comparison of TMR, SMR and the hybrid solution Turtle.

raw data processing feature computation incremental models
TMR [6] batch-wise batch-wise ∅
SMR real-time (Storm) real-time (Storm) 4
Turtle batch-wise (cron job) batch-wise (cron job) 4

Moreover, a high-level comparison of different aspects of TMR, SMR and Turtle is given

in Table 5.

5 Limitations and Future Work

The following section discusses the limitations of (a) the novel streaming-based system SMR

as well as (b) the more specific industry solution Turtle, and provides an overview of potential

future work.

5.1 SMR

As described in this article, SMR specifically aims at relevance prediction in the context of

travel search. One specific feature of this setting is the fact that we can use hotel booking

conversions as indicators of relevance. However, in a more general setting, other implicit or
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explicit relevance judgments are necessary. For example, one could obtain such judgments by

providing optional vote up/down buttons to visitors or tracking clicks on Facebook “Like”

buttons of a search result. Hence, we have transferred SMR into a real-world industry context

with a more general search setting. For this, we make use of an additional crowdsourcing tool

that delivers relevance judgments produced by internal crowd workers. The limitations of the

resulting new system Turtle are described in the following section.

Concerning the evaluation of our system, we had to rely on relatively small data sets

compared to the real-world settings the system is intended for in the long-term. As part of

our future work, we intend to evaluate SMR with larger data sets that simulate a real-world

setting of a time-span considerably longer than 10 days. This will also give us the chance to

investigate the performance of the Hoeffding Tree classifier, which becomes feasible only for

very massive amounts of data [18].

Currently, SMR is only able to track client-side interactions on desktop PCs, i.e., mouse

input. However, since the mobile market is steadily growing, an increasing number of users

access search engines using their (small-screen) touch devices. This demands for also making

use of touch interactions for predicting the relevance of results. Leveraging these valuable

information is especially important for search engine owners and intended in future versions

of SMR.

Finally, interaction features are often coupled with temporal features or their values change

over time. This has to be addressed in the context of concept drift [22]. SMR is generally

capable of handling changing data streams, as Tsymbal states that “[i]ncremental learning is

more suited for the task of handling concept drift” [22]. However, the Näıve Bayes classifier

used in the context of this paper would have to be replaced by an adequate concept drift–

ready learner. A potential candidate is the CVFDT learner, which is based on Hoeffding trees

and dismisses a subtree based on old data whenever a subtree based on recent data becomes

more accurate [23].

5.2 Turtle

In Section 3, we have described Turtle—a hybrid TMR/SMR solution that serves as an

industrial use case. It uses crowdsourced relevance judgments for learning corresponding

models. Turtle is a pragmatic approach tailored to the needs of the novel search engine it has

been integrated into.

Yet, the system still has several shortcomings. First, a company-internal crowdsourcing

tool is not optimal for obtaining a maximum possible number of human relevance judgments,

as the number of crowd workers is rather limited. Therefore, as part of future work, it would be

desirable to integrate our solution with Amazon Mechanical Turko to attract a larger number

of crowd workers. This, in return, would be less optimal concerning the cost factor from the

company’s point of view, which makes it necessary to find a trade-off between number of

crowd workers and costliness. Yet, over a course of approximately two weeks, RHiNO was

able to deliver ratings for 14,378 query–result pairs.

Second, a query–result pair whose feature values have been considered for learning a

relevance model might be updated when new search session data are available. Thus, it

has to be considered again in the next iteration of incrementally updating the model. This

ohttps://www.mturk.com/mturk/welcome (Oct 23, 2014).
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means that interaction feature values become more representative over time and relevance

models require a decent amount of training data for delivering good predictions. This holds

particularly if the Hoeffding Tree classifier is used.

Finally, we were not yet able to meaningfully evaluate Turtle, as the novel search engine is

still in a closed beta state. Thus, the interaction data tracked so far is not of a large enough

size and good enough quality (interaction features for 1,516 query–result pairs, as opposed to

86,915 query–result pairs in the evaluation of SMR). However, we are determined to report

on this as part of future work.

6 Conclusions

This article introduced SMR, which is a novel approach to providing incremental models

for predicting the relevance of web search results from real-time user interaction data. Our

approach helps to ensure one of the prime aspects of search engine quality, i.e., providing users

with the most relevant results for their queries. In contrast to numerous existing approaches,

SMR does not require reprocessing of already processed data for obtaining an up-to-date

relevance model. Moreover, our system involves interaction features other than clicks and

was specifically designed for coping with large amounts of data in real-time. This allows for

feeding relevance predictions back into SERPs with relatively low latency.

For evaluating SMR, we have simulated a real-world setting with large amounts of inter-

action data from two large hotel booking portals. Comparison of our system to the analogous

batch-wise approach TMR showed that SMR is able to predict relevances that do not dif-

fer significantly, although it has less information available for training. Furthermore, we

have compared the discriminative SMR approach to BBM—a generative state-of-the-art click

model for incrementally processing big data streams that is successfully applied in industry.

Results show that prediction quality does not differ significantly between the two systems.

Still, they indicate that predictions by SMR might compare favorably to those of BBM, as it

outperforms the click model for the majority of data sets. Additionally, we have considered a

click-only version of SMR that was compared to the complete system. From the significantly

better predictions of the latter, we conclude that interactions other than clicks yield valuable

information for relevance prediction and should not be neglected.

Additionally, we have transferred our system into a real-world industry context that focuses

on general web search rather than a hotel booking setting. For this, we have engaged a

hybrid solution—named Turtle—comprising parts of both, TMR and SMR, as the novel search

engine does not yet build on a streaming-based approach. To obtain relevance judgments for

learning corresponding models, we have furthermore developed a new crowdsourcing tool for

rating search results w.r.t. a given query. Using Turtle, it is possible to incorporate relevance

predictions based on user interactions into the process flow of the novel search engine. That

is, predictions are used as a weighted feature of the global ranking function.

As future work, it is planned to further optimize the system regarding performance and

perform an evaluation with even larger amounts of real-world interaction data. Moreover,

we intend to also focus on touch interactions rather than limiting our system to the desktop

PC setting. Finally, future work will include an evaluation of Turtle, which to date was not

possible due to a lack of sufficient high-quality tracking data.
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the original research paper with an in-depth explanation of SMR’s algorithmic contribution,

e.g., the finite state machine defining valid sequences of mouse cursor events. Moreover, we

describe a new SMR-based hybrid solution named Turtle that has been integrated into a

real-world search engine. A modified version of Turtle has been used to extend the original

evaluation by investigating the significance of interactions on preceding/succeeding results for

predicting relevance. Also, we give more details about the specific time-complexity of our

system and competing approaches. As a minor extension, we present a scenario from which

three requirements for the system are derived.


