
Journal of Web Engineering, Vol. 14, No. 5&6 (2015) 443–473
c© Rinton Press

DESIGNING COMPLEX CROWDSOURCING APPLICATIONS

COVERING MULTIPLE PLATFORMS AND TASKS

ALESSANDRO BOZZON

Software and Computer Technologies Department. Delft University of Technology

Postbus 5 2600 AA, Delft, The Netherlands
a.bozzon@tudelft.nl

MARCO BRAMBILLA STEFANO CERI ANDREA MAURI RICCARDO VOLONTERIO

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano. Piazza Leonardo da Vinci, 32. 20133 Milano, Italy

{name.surname}@polimi.it

A number of emerging crowd-based applications cover very different scenarios, including
opinion mining, multimedia data annotation, localised information gathering, marketing

campaigns, expert response gathering, and so on. In most of these scenarios, applications

can be decomposed into tasks that collectively produce their results; tasks interactions
give rise to arbitrarily complex workflows.

In this paper we propose methods and tools for designing crowd-based workflows
as interacting tasks. We describe the modelling concepts that are useful in this frame-

work, including typical workflow patterns, whose function is to decompose a cognitively

complex task into simple interacting tasks for cooperative solving.
We then discuss how workflows and patterns are managed by CrowdSearcher, a sys-

tem for designing, deploying and monitoring applications on top of crowd-based systems,

including social networks and crowdsourcing platforms. Tasks performed by humans
consist of simple operations which apply to homogeneous objects; the complexity of ag-

gregating and interpreting task results is embodied within the framework. We show our

approach at work on a validation scenario and we report quantitative findings, which
highlight the effect of workflow design on the final results.

Keywords: Crowdsourcing, Workflow, Social Network, Community, Control.

1 Introduction

Crowd-based applications are becoming more and more widespread; their common aspect is

that they deal with solving a problem by involving a vast set of performers, who are typically

extracted from a wide population (the “crowd”). In many cases, the problem is expressed in

the form of simple questions, and the performers provide a set of answers; a software system

is in charge of organising a crowd-based computation – typically by distributing questions,

collecting responses and feedbacks, and organising them as a well-structured result of the

original problem.

Crowdsourcing systems, such as Amazon Mechanical Turk (AMT), are natural environ-

ments for deploying such applications, since they support the assignment to humans of simple

and repeated tasks, such as translation, proofing, content tagging and item classification, by

combining human contribution and automatic analysis of results [10]. But a recent trend

443

444 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

(emerging, e.g., during the CrowdDB Workshopa), is to use many other kinds of platforms for

engaging crowds, such as proprietary community-building systems (e.g., FourSquare or Yelp)

or general-purpose social networks (e.g., Facebook or Twitter). In the various platforms,

crowds take part to social computations both for monetary rewards and for non-monetary

motivations, such as public recognition, fun, or genuine will of sharing knowledge.

In previous work, we presented CrowdSearcher [4, 5], offering a conceptual framework, a

specification paradigm and a reactive execution control environment for designing, deploying,

and monitoring applications on top of crowd-based systems, including social networks and

crowdsourcing platforms. In CrowdSearcher, we advocate a top-down approach to application

design which is independent of the particular crowd-based system. We adopt an abstract

model of crowdsourcing activities in terms of elementary task types (such as: labelling, liking,

sorting, classifying, grouping) performed upon a data set; we define a crowdsourcing task as

an arbitrary composition of these task types. This model is not introducing limitations, as

arbitrary crowdsourcing tasks can always be defined by aggregating several operation types or

by decomposing the tasks into smaller granularity tasks, each one of the suitable elementary

type.

In general, an application cannot be submitted to the crowd in its initial formulation.

Transformations are required to organise and simplify the initial problem, by structuring it

into a workflow of crowd-based tasks that can be effectively performed by individuals, and

can be submitted and executed, possibly in parallel. Such problem decomposition assigns

different roles to performers, so that they can collectively and cooperatively solve the original

problem, reproducing a sort of “society of minds” [12]. In particular, several works [1, 11] have

analysed typical crowdsourcing patterns, i.e. typical cooperative schemes used for organising

crowd-based applications.

The motivation of our work is backed by several real-world case studies, that describe the

need of organizing the work of performers through several subsequent steps of activity, possibly

spanning different crowdsourcing platforms and/or communities of workers. The study by

Oosterman et al. [13] represents a typical motivation example. In their study they used the

crowd to count and identify different types of flowers in old artworks. In the experiments the

authors tried different configurations (e.g., asking the crowd to directly counting the flowers;

drawing the flowers upon the original images; or counting the flower inside a bounding box)

and analyzed the different levels of performance of the crowd. The experiments show that by

adding a preliminary step, where the performer draws a box around the flowers, the quality of

the final result improved. This suggests that a study on the alternative task pattern designs

can result in optimized quality of the outcome of the tasks.

The goal of this paper is to present a systematic approach to the design and deployment of

crowd-based applications as arbitrarily complex workflows of elementary tasks, which empha-

sises the use of crowdsourcing patterns. While our previous work was addressing the design

and deployment of a single task, in this paper we model and deploy applications consisting

of arbitrarily complex task interactions, organised as a workflow; we use either data streams

or data batches for data exchange between tasks, and illustrate that tasks can be controlled

through tight coupling or loose coupling. We also show that our model supports the known

crowd management patterns, and in particular we use our model as a unifying framework for

ahttp://dbweb.enst.fr/events/dbcrowd2013/

http://dbweb.enst.fr/events/dbcrowd2013/

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 445

a systematic classification of patterns.

The paper is structured as follows. After reviewing the related work in Section 2, Section

3 presents the task and workflow models and design processes. Then, Section 4 classifies the

crowdsourcing patterns and in particular distinguishes between intra-task patterns and work-

flow patterns, where the former apply to a single task and the latter relate two or more tasks.

Section 5 illustrates how workflow specifications are embodied within the execution control

structures of CrowdSearcher, and finally Section 6 discusses several experiments, showing how

differences in workflow design lead to different application results.

2 Related Work

Many crowdsourcing startupsband systems [?] have been proposed in the last years. Crowd

programming approaches rely on imperative programming models to specify the interaction

with crowdsourcing services (e.g., see Turkit [?], RABJ [?], Jabberwocky [?]).

As highlighted by [?], several programmatic methods for human computation have been

proposed [?, ?, ?, ?], but they do not support yet the complexity required by real-world,

enterprise–scale applications, especially in terms of designing and controlling complex flows

of crowd activities.

Due to its flexibility and extensibility, our approach covers the expressive power exhib-

ited by any of the cited systems, and provides fine-grained targeting to desired application

behaviour, performer profiles, and adaptive control over the executions.

Recent works propose approaches for human computation which are based on high level ab-

stractions, sometimes of declarative nature. In [?], authors describe a language that interleaves

human-computable functions, standard relational operators and algorithmic computation in

a declarative fashion. Qurk [?] is a query system for human computation workflows that

exploits a relational data model and SQL. CrowdDB [?] also adopts a declarative approach

by using CrowdSQL (an extension of SQL). DeCo [?] allows SQL queries to be executed on

a crowd-enriched datasource, with human tasks defined as fetch and resolution rules pro-

grammed in a scripting language (Python). These works do not discuss how to specify the

control associated with the execution of human tasks, leaving its management to opaque

optimisation strategies; we instead believe that the performance of crowdsourcing tasks can

hardly be estimated, hence some provision for dynamic control is essential. Moreover, current

declarative crowdsourcing platforms do not include means for precise targeting of users based

on expertise and for addressing multiple platforms and communities.

Several works studied how to involve humans in the creation and execution of workflows,

and how to codify common into modular and reusable patterns. Process-centric workflow

languages [?, ?] define business artefacts, their transformations, and interdependencies trough

tasks and their dependencies. Scientists and practitioners put a lot of effort in defining a rich

set of control-driven workflow patternsc. However, this class of process specification languages:

focus mainly on control flow, often abstracting away data almost entirely; disregard the

functional and non-functional properties of the involved resources; do not specify intra- and

inter-task execution and performer controls; and provide no explicit modelling primitives for

data processing operations.

bE.g., CrowdFlower, Microtask, uTest.
chttp://workflowpatterns.com/

http://workflowpatterns.com/

446 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

In contrast, data-driven workflows have recently become very popular, typically in domains

where database are central to processes [?, ?], and data consistency and soundness is a strong

requirement. Data-driven workflows treat data as first-class citizens, emphasise the role of

intra- and inter-task control, and ultimately served as an inspiration for our work. For instance

[?] describes a simple model for collaborative data-driven workflows, with the goal of carrying

out runtime reasoning about the global run of the system.

Very few works studied workflow-driven approaches for crowd work. CrowdLang [11] is

a notable exception, which supports process-driven workflow design and execution of tasks

involving human activities, and provides an executable model-based programming language

for crowd and machines. The language, however, focuses on the modelling of coordination

mechanisms and group decision processes, and it is oblivious to the design and specification

of task-specific aspects. Datasift [?] is a toolkit for configuring search queries so as to involve

crowds in answering them, which allows users to decide the number of involved human workers,

the query reformulation in steps, the number of items involved at each step and their cost;

the system is structured as several plug-and-play components. For these features, Datasift is

similar to CrowdSearcher, although it is dedicated to a single crowdsourcing engine (Amazon

Mechanical Turk) and it lacks an abstract query model.

3 Models and Design of Crowd-based Workflows

Although humans are capable of solving complex tasks by using their full cognitive capacity,

classical approaches used in crowd-based computations prefer to decompose complex tasks

into simpler tasks and then elaborate their result. For instance, [?] proposes methods for

producing a total ordering of elements of a set by ordering subsets and then composing the

partial orders, while [?] proposes a coupling of two activities (e.g. classifying and verifying)

so that the action performed by a given person is verified by a different person. Simple tasks

can be easily embedded into games; by using them, the diversity which is typical of human

behaviours is restricted to produce comparable answers, which can then be assembled and

aggregated so as to determine the “crowd’s opinion” through statistical approaches. Thus,

task decomposition is an important ingredient of crowd-based applications.

Following such approach, we restrict crowdsourcing tasks be to simple operations which

apply to homogeneous objects. Operations are simple actions (e.g. labelling, liking, sorting,

classifying, grouping, adding), while objects have an arbitrary schema and are assumed to be

either available to the application or to be produced as effect of application execution.

Thus, the first step in the design of a complex crowd-based application is the design of

its high-level workflow schema, which coordinates the execution of simple tasks. Prior to

dwelling into workflow design, we define tasks and their properties.

3.1 Task Model

Tasks of a crowd-based application are described in terms of an abstract model [4], crafted

after a careful analysis of the systems for human task executions and of many applications

and case studies, and represented in Fig. 1.

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 447

Performer

Task

MicroTask

Platform

Object

1

1

*

*

*

*

*

Evaluation

*

1

Object Type

*

1

1

*

1

*

Operation

1

*

* *

1 *

Account

*

1
*

1

Community

*

*

* *

1*

*

Platform
Parameters

1

1

Execution*1*

*

*

Fig. 1. Metamodel of task properties.

Task Type Performer Action

Choice Selects up to n items
Like Adds like/unlike annotations to some

items
Score Assigns a score (1..n interval) to some

items
Tag Annotates some items with tags
Classify Assigns each item to one or more classes
Order Reorders the (top n) items in the input list
Ins./Del. Inserts/deletes up to n items in the list
Modify Changes the values of some items at-

tributes
Group Clusters the items into (at most n) groups

Fig. 2. List of the crowdsourcing operation types.

Crowd Task

[T operation types]
(intra-task patterns)

Object Type

block size
min #obj
(cons)

input buffer

batch flow (on closed task)

stream flow (on closed object)

MicroTask
[MT operation types]

r

data manipulator

Fig. 3. Notation for crowdsourcing workflows.

The main strength of the model is its extreme simplicity. We assume that each task

receives as input a list of objects (e.g., photos, texts, but also arbitrarily complex objects,

all conforming to the same object type) and asks performers to do one or more operations

upon them, which belong to a predefined set of abstract operation types.

Examples of operation types are Like, for assigning a preference to an item; or Classify,

for assigning each item to one or more classes. The full list of currently supported operation

types is reported in Figure 2; they can be extended by adding custom types. For instance, a

task may consist in choosing one photo out of an input list of photos, writing a caption for

it, and then adding some tags.

Task management requires specific sets of objects to be assembled into a unit of execu-

tion, called MicroTask, that is associated with a given performer. Each MicroTask can

be invited or executed on different platforms and/or communities. The relation with

platform is specified through a series of platform parameters, specific for each platform,

that are needed in order retrieve the answers of the performers (e.g., the HIT identifier on

Amazon Mechanical Turk). A performer may be registered on several platforms (with dif-

ferent accounts) and can be part of several communities. MicroTask execution contains

some statistics (e.g., start and end timestamps). The evaluation contains the answer of the

performer for each object, whose schema depends on the operation type. For example, a like

evaluation is a counter that registers how many performers like the object, while a classify

evaluation contains the category selected by the performers for that object.

Figure 3 depicts the graphical notation adopted on our work to describe a Crowd Task.

448 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

Next sections describe each component of a task model, explaining their design rationale and

principles, and detailing their representation in the adopted notation.

3.2 Task Design

The design of each task in a crowd-based application consists of a progression of six phases

reported in Figure 4, namely 1) Operation design, i.e. deciding how each task is assembled

as a set of MicroTask operation types; 2) Object design, i.e. defining the Object

Type and preparing the actual set of objects to be evaluated, which may be extracted from

different data sources; 3) Performer design, i.e. selecting the performers that will be

asked to perform the application; 4) Workplan design, i.e. defining how each task is split

into micro-tasks, and how micro-tasks are assigned to objects; 5) Platform selection, i.e.

defining the invitation platforms, where performers are recruited, and the execution platforms,

where performers execute tasks; many different platforms may be involved in either roles;

6) UI design, i.e. defining the front end aspects of the task execution. We next define each

of these phases.

Crowd-based application design

Operation
design

Perfomer
design

Platform
Selection

Object
design

Workplan
design

UI
design

Fig. 4. Development process of crowdsourcing tasks.

3.2.1 Operation Design

Each task consists of one or more MicroTasks; each MicroTask performs a MicroTask Op-

erations upon objects of a given object type; the parameter r in the notation of Figure 3

indicates the number of executions that are performed for each micro-tasks, when statically

defined (default value is 1). Execution of tasks can be performed according to intra-task

patterns, as described in Section 4.

In a typical example of data analysis, that we will use as running use case, performers

are presented scenes of movies and must position them in the movie timeline, understand if

the images are spoilers (i.e. images that should not be disclosed as they suggest the movie’s

plot) and identify the actors in each scene. This can be organised in two tasks, the first one

for identifying the positioning of images and whether they are spoilers or not, and the second

one for annotating images with the actor names.

3.2.2 Object Design

Object design consists of defining the dataset which is subject to the analysis. In particular,

object design entails: 1) the definition of the schema of the objects to be analysed; 2) the

extraction or collection of the instances (e.g., from web sources, proprietary databases, plain

text, or multimedia repositories); and 3) the cleaning of the extracted objects, so as to make

them conforming to the defined schema.

Tasks have an input buffer that collects incoming data objects, described by two param-

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 449

eters: 1) the task size, i.e. the minimum number of objects (m) that allow starting a task

execution; 2) the block size, i.e. the number of objects (n) consumed by each executions.

Clearly, n ≤ m, but in certain cases at least m objects must be present in the buffer

before starting an execution; in fact n can vary between 1 and the whole buffer, when a task

execution consumes all the items currently in the buffer. Task execution can cause object

removal, when objects are removed from the buffer, or object conservation, when objects

are left in the buffer, and in such case the term new items denotes those items loaded in the

buffer since the last execution. Prior to task execution, a data manipulator may be used

to compose the objects in input to a task, possibly by merging or joining data incoming from

different sources.

3.2.3 Performer Selection

In crowdsourcing, strategies for task assignment can be roughly classified into two main

categories: push and pull assignment. With pull assignments, tasks are published on an open

board, and performers select them. This strategy is used by most crowdsourcing platforms,

and is well-suited for simple repetitive tasks. With push assignments, tasks are routed either

to individuals or to communities based upon trust, knowledge, or expertise. Performers are

either pre-selected or dynamically assigned to executions, depending on the task content.

Social platforms, such as Facebook, Twitter and LinkedIn, provide their members with

several hundreds of known contacts, with variable expertise about various topics, and with

varying availability and responsiveness. In [?] we studied social expert finding, i.e. the

process of identifying potential domain-specific experts in the crowd by mining their social

profiles. Social expert finding can be characterised by the following question: given a task

relative to a given domain, who are the most knowledgeable users for it, and which social

network is most appropriate for approaching them?

While traditional methods rely on profile information [?], in our approach we considered also

the users’ social relationships, social activities, and socially shared content. In our study

we discovered that user profiles alone are not too effective in determining expertise, as they

contain few resources compared to those that are found in the candidate’s pages; resources of

connected persons are also quite informative. We observed that, in our experimental setting,

Twitter is the most effective social network for expertise matching, and sometimes outperforms

the combined use of all social networks. It resulted most effective to identify experts in the

domains: Computer Engineering, Science, Technology, Games, and Sport. Facebook, on

the other hand, proved more effective in complementary domains, such as Locations, Sport,

Movies, TV, Music. Interestingly, despite its focus on work-related expertise, the resources

contained in LinkedIn were rarely useful for expert identification purposes. These insights

are extremely helpful for determining the best suited communities of performers for domain-

specific crowdsourcing activities. Indeed, as we have shown in our experimental evaluation of

crowdsourcing based on expert communities, the selection of the right set of performers have

a relevant impact on the quality of the results [8].

3.2.4 Workplan Design

Workplan design consists of creating micro-tasks for each task and of mapping each micro-

task to specific performers and objects. A typical workplace design operation is task splitting

[?], whose strategies must be designed by taking into account the different operation types

450 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

involved in the task, the number of objects to be evaluated in the task, and the number of

replicas that are requested for each object. The latter value is specified in the task model

notation as a circular arrow located on the top-right of the task box. Repeated executions on

the same object are customary in crowdsourcing, for the purpose of collecting responses from

various performers and then aggregating them by considering their agreement. This allows

higher confidence on the final outcome of the task. A splitting strategy must be provided

with a corresponding aggregation strategy that is able to re-compute the final result of the

task.
Plat.Type Examples Inv. Exec.

Social
Network

Facebook, Twit-
ter, G+, LinkedIn

YES Limited

Question
& Answer

Quora, Doodle Limited YES

Crowd-
sourcing

AMT, Crowd-
Flower

YES YES

Proprietary
UI

Custom developed
application

Limited YES

Email or
messaging

Mailing lists, per-
sonal email, phone
messages

YES Limited

Fig. 5. Taxonomy of platforms and use in invitation and

execution. Fig. 6. Native Facebook “like” operation.

3.2.5 Platform Selection

At this stage, after a platform-independent design, deployment platforms must be chosen.

A variety of systems are offered, and it is crucial to understand how they can be crafted to

reflect the application needs. We distinguish invitation from execution, the former process is

concerned with inviting people to perform tasks, the latter is concerned with executing tasks.

In general it is possible to use different systems for invitation and execution. Figure 5 shows

how the different kinds of platform support them.

Social Networks provide powerful interfaces for crowd selection and invitation, and limited

support for execution. Note that deployment on social network can be of two kinds [4]:

• Native implementations use the features of a specific social network for task execution.

• Embedded implementations use the execution of user-defined code from within the social

network.

For instance, Figure 6 shows how Facebook can be natively used for implementing like

operations: data objects are posted on a wall and users simply click the Facebook Like button.

Certain operations, such as liking and tagging, are best supported by native interfaces.

Question-Answering Systems are dual [?, ?], as they normally cannot support invitation (or

provide invitation mechanisms that require to provide the list of invitees from a personal

contact list), while they can support execution, although some of them only support free text

responses.

Crowdsourcing Systems support both invitation and execution, but they do it within the

context of a given platform, which acts as a market place, where invitations include the

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 451

monetary reward for each task, and after execution each performer is credited. Invitations

from other platforms are typically not allowed.

Email and other messaging systems support the invitation phase, that can be routed to specific

groups, mailing lists, or enumerated list of targets. Execution is typically delegated to other

platforms.

The most typical form of deployment consists in delivering a UI crafted around the features

of the specific objects to be shown to performers, as discussed in the next section.

3.2.6 UI Design

UI design plays an important role in crowdsourcing, as it produces the user interfaces that

permit the actual execution of tasks by performers. UIs can be designed in three main ways:

1) By exploiting default, basic UIs made available by crowdsourcing platforms (e.g., AMT);

2) By exploiting the conceptual task model for generating a simple custom UI; 3) By manually

implementing an ad-hoc user interface most suited to the task.

Finally, no UI is needed if tasks are natively performed on social platforms. For instance,

this is the case when a task is performed by directly exploiting the like mechanism in Facebook.

3.3 Crowd Workflow Design

Workflow design consists of designing tasks interaction; specifically, it consists of defining

the workflow schema as a directed graph whose nodes are tasks and whose edges describe

data-flows between tasks, distinguishing streams and batches.

A crowdsourcing workflow is defined as a control structure involving two or more

interacting tasks performed by humans. Tasks communicate with each other with data

flows, produced by extracting objects from existing data sources or by other tasks. Data

flows are of two kinds:

• Data streams occur when objects are communicated between tasks one by one, typi-

cally in response to events which identify the completion of object’s computations.

• Data batches occur when all the objects are communicated together from one task

to another, typically in response to events related to the closing of the computations of

the task.

Flows can be constrained based on a condition applied on the arrow. In our model,

conditions are specified as OCL statements. The condition applies on properties of the produced

objects and allows transferring only the instances that satisfy the condition.

In addition, the coupling between tasks working on the same object type can be defined

as loose or tight.

• Loose coupling is recommended when two tasks act independently upon the objects

(e.g. in sequence); although it is possible that the result of one task may have side

effects on the other task, such side effects normally occur as an exception and affect

only a subset of the objects.

• Tight coupling is recommended when the tasks intertwine operations upon the same

objects, whose evolution occurs as combined effect of the tasks’ evolution; tightly cou-

pled tasks share the same control mart and monitoring rules.

452 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

Position Scenes

[Classify]
(Static Agreement@3)

MicroTask [Classify]

Scene

block 1
min 1

Spoiler Scenes

[Like]
(Static Agreement@3)

MicroTask [Like]

Scene

block 1
min 1

5

Order Scenes

[Order]
(SortByLiking)

MicroTask [Like]

Scene

block 2
min 2

[Class=E]

[Class=B OR M]

Fig. 7. Example of crowd flow.

Object
Control

Taks
Control

Performer
Control

Platform
Control

Workflow
Control

Fig. 8. Control steps of crowdsourcing applications.

Note that loosely coupled tasks have independent control management, as described

in Section 3.4. Figure 7 shows a simple workflow example in the domain of movie scenes

annotation. The Position Scenes task asks performers to say whether a scene appears at the

beginning, middle or end of the film; it is a classification task, one scene at a time, with 5

repetitions and acceptance of results based on an agreement threshold of 3 (more on agreement

control rules in Section 3.4). Scenes in the ending part of the movies are transmitted to the

Spoiler Scenes task, which asks performers whether the scene is a spoilerdor not; scenes at

the beginning or in the middle of the movie are transmitted to the Order Scenes task, which

asks performers to order them according to the movie script; each micro-task orders just

two scenes, by asking the performer to select the one that comes first. The global order is

then reconstructed. Given that all scenes are communicated within the three tasks, they are

considered as tightly coupled.

3.4 Control

The behaviour of the crowd-based application is hardly predictable, therefore control aspects

are an important part of the design. It consists of four phases, shown in Figure 8: 1) Object

control, i.e. assembling the responses relative to each object and deciding if the work relative

to each object is either completed or need to be replanned; 2) Task control, i.e. assembling

statistics about responses relative to each task and deciding if the task is either completed

or needs to be replanned; 3) Performer control, i.e. deciding how performers should

be dynamically selected or rejected, on the basis of their performance; 4) Platform and

community control, i.e. deciding how and when a crowd platform or community should be

activated or deactivated, based on its aggregated performance.

For monitoring task execution, a data structure called control mart was introduced in

[5]; control marts are analogous to data marts used for data warehousing [?], as their central

entity represents elementary activities, surrounded by dimensions representing objects, tasks,

dA spoiler is a scene that gives information about the movie’s plot and as such should not be used in its
advertisement.

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 453

and performers. The control of objects, performers and tasks is performed by active rules,

expressed according to the event-condition-action (ECA) paradigm. Each rule is triggered by

events (e) generated upon changes in the control mart or periodically; the rule’s condition

(c) is a predicate that must be satisfied on order for the action to be executed; the rule’s

actions (a) change the content of the control mart. Rules properties (e.g., termination) can be

proven in the context of a well-organised computational framework. For a deeper description

of the rule grammar and structure see our previous work [5]. Section 5 provide examples

of control rules, described in the context of their implementation within the Crowdsearcher

framework.

3.4.1 Object Control

Object control monitors the responses for each objects, assembling them into an object

state. When enough evaluations are available, an object is closed; when evaluations are not

converging, an object can be replanned. Normally, an object is closed when agreeing answers

go beyond a given threshold or form a majority, and several majority schemes are possible

(e.g., 3/5/7 agreeing votes).

3.4.2 Task Control

Task control monitors the responses received for all the objects of the task, objects, assembling

them into a task state. When enough evaluations are available, a task is closed; when

evaluations are not converging, a task can be replanned. Task quality can be progressively

monitored and corrective actions may be taken, including adding performers or changing the

involved platform or community.

3.4.3 Performer Control

Performer control allocates responders to performers, assembling them into a performer state;

such activity guarantees that performers are rewarded by the system. The most important

aspect of performer control is spammer detection, i.e. determining the performers who

produce wrong answers in a statistically significant way. A typical strategy for spammer de-

tection in crowdsourcing is to use golden questions (or honeypots), i.e. tasks whose responses

is predefined by experts, and then test performers against them [?]. In our approach, this

requires adding properties to the object schema, so that the corresponding items can be iden-

tified and used. Spammer detection results in excluding them from future assignments. In

addition, the effects of their activity may be removed from the state of affected objects.

3.4.4 Platform and Community Control

Platform and community control allows adapting a crowd-based application; it requires Re-

planning, i.e. the process of generating new microtasks; and Re-invitation, i.e. the process

of generating new invitation messages for existing or replanned microtasks.

Crowd-based applications can be deployed over multiple systems or communities and can

dynamically adapt to their behaviour. With Cross-Platform Interoperability, applica-

tions change the underlying social network or crowdsourcing platforms, e.g., from Facebook

to Twitter or to AMT. With Cross-Community Interoperability, applications change the

performers’ community, e.g., from the students to the professors of a university. Adaptation

can be applied at different granularity levels:

454 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

(a) (b)

RULE: CountBeginning

e: UPDATE FOR Execution[Answer]
c: NEW.Answer == 'Beginning'
a: SET Object_CTRL[oid == NEW.oid].Beg += 1

µTObjExecution

Performer

TaskScene

Stat
us

Star
tTs

End
Ts

µT
as

kID

Object
Control

Performer
Control

Task
Control

Spo
ilC

at

CompObjs
TaskID
CompExecs

Name
PerformerID
Score

Spo
il

BegMidNotS
po

il

TaskID
ObjectID

CorrectPos
ImgUrl

Pos
Cat

CorrectSpoil

ObjectID

AnswerSpoil
AnswerPos

End

ObjectID

PerformerID
TaskID

MovieID

Status

PerformerID

PlatformID

Execs
Status

SpoilEvals
PosEvals

Groundtruth

Fig. 9. (a) Example of control mart for the tasks of Figure 7; (b) Example of control rule that
updates the number of responses in the Position of Scenes task.

Task granularity, when the re-planning or re-invitation occur for the whole task.

Object granularity, when the re-planning or re-invitation is focused on one (or a few)

objects.

Adaptation at execution time requires a switch-over, which denotes the time interval during

which adaptation occurs. A switch-over can be continuous (i.e., results from previously

involved platforms or communities continue to be accepted), instantaneous (i.e., results of

initiated tasks of previous platforms/communities are considered if they were produced before

the switch-over and either blocked or disregarded afterwards), or reset (i.e., all the results

from previous platform or community are disregarded).

3.4.5 Workflow Control

Workflow control, as the name suggests, allows the coordination of tasks in a crowd workflow.

It builds upon the same rule based mechanism described in [5] and exploited for the previously

described control aspects.

Control is performed differently depending on whether interacting tasks are tightly coupled

or loosely coupled. Tightly coupled tasks share the control mart structure (and the respective

data instances), thus coordination is implemented directly on data. Each task posts its own

results and control values in the mart. Dependencies between tasks are managed through

rules that trigger the creation of new micro-tasks and their executions, upon production of

new results.

Figure 9(a) shows a sample control mart for the three tasks tightly connected Position

of Scene and Order of Scene tasks in the example scenario, which we assume to be tightly

connected, thus using the same data mart. The control mart stores all the required infor-

mation for controlling the task’s evolution and is automatically defined from the task spec-

ifications. Figure 9(b) reports a simple control rule that updates the number of responses

with value “Beginning” after receiving an answer. This rule has the following behaviour:

every time a performer performs a new evaluation on a specific object (UPDATE event on

µTObjExecution), if the selected answer is “Beginning” (the condition part of the rule), then

it increases the counter of the “Beginning” category for that object (Object CTRL[oid ==

New.oid] selected the correct object, then the correct property can be accessed with the dot

notation).

Loosely coupled tasks have independent control marts, hence their interaction is more

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 455

complex. As loosely couple tasks do not share a data space, we rely on an event-based

publish-subscribe communication model: upon changes in its state (e.g. task termination,

object evaluation completed), a task emits an event, which carries information about the

changed state (e.g. the ID of the completed object), and it is then captured by the subscribed

tasks. Each subscribed task reacts to the event according to the business logic contained in its

data manipulation stage. This event-based mechanism is described in more details in Section

5.

4 Crowdsourcing Patterns

Several patterns for crowd-based operations are defined in the literature. We review them in

light of the workflow model of Section 3. We distinguish four classes:

• Intra-Task Patterns. They are typically used for executing a complex, single task by

means of a collection of operations which are cognitively simpler than the original task.

Although these patterns do not appear explicitly in the workflow, they are an essential

ingredient of crowd-based computations.

• Workflow Patterns. They are used to describe a crowd application from a control-flow

perspective, to represent the execution order of tasks.

• Crowd-flow Patterns. They are used to structure the solution of problems that

require the coordination of different tasks, each demanding for a different cognitive

approach; results of the different tasks, once collected and elaborated, solve the original

problem.

• Auxiliary Patterns. They are typically performed before or after both intra-task and

workflow patterns in order either to simplify their operations or to improve their results.

• Workflow Patterns. (e.g. sequence, parallelism, join synchronisation, etc.) are com-

mon in disciplines like (business) process modelling and service orchestration; therefore,

we omit their description and refer the reader to relevant works in literature [?][?].

Next, we analyse the other pattern class separately.

4.1 Intra-Task Patterns

Intra-task patterns apply to complex operations, whose result is obtained by composing the

results of simpler operations. They focus on problems related to the planning, assignment, and

aggregation of micro tasks; they also include quality and performer control aspects. Figure

10 describes the typical set of design dimensions involved in the specification of a task. When

the operation applies to a large number of objects and as such cannot be mapped to a single

pattern instantiation, it is customary to put in place a splitting stratgy, in order to distribute

the work, followed by an aggregation strategy, to put together results. This is the case in

many data-driven tasks stemming from traditional relational data processing which are next

reviewed.

456 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

Pre-Processing Post-
Processing

Task

C
on
se
ns
us

Sp
lit
tin
g

As
si
gn
m
en
t

Ag
gr
eg
at
io
nmicroTaskmicroTaskmicroTask

microTaskmicroTaskmicroTask
microTaskmicroTaskmicroTask

Fig. 10. Building blocks of an Intra-Task Pattern.

4.1.1 Consensus Patterns

The most commonly used intra-task patterns aim at producing responses by replicating the

operations which apply to each object, collecting multiple assessments from human workers,

and then returning the answer which is more likely to be correct. These patterns, referred

to as consensus or agreement patterns, assume the existence of a population of workers that

collaboratively produce the correct answer. Typical consensus patterns are: 1) StaticA-

greement [5]: a simple approach that accepts a response when it is supported by a given

number of performers. For instance, in a tag operation we consider as valid responses all the

tags that have been added by at least 5 performers; 2) MajorityVoting [?]: an agreement

approach that accepts a response only if a given number of performers produce the same

response, given a fixed number of total executions; 3) ExpectationMaximisation [?]: an

adaptive approach that alternates between estimating correct answers from task parameters

(e.g. complexity), and estimating task parameters from the estimated answers, eventually

converging to maximum-likelihood parameter and answer values.

4.1.2 Join Patterns

Crowd join patterns, studied in [?], are used to build an equality relationship between match-

ing objects in the context of crowdsourcing tasks. Examples of join patterns are: 1) Sim-

pleJoin, which consists in defining microtasks performing a simple classification operation,

where each execution contains a single pair of items to be joined, together with the join pred-

icate question, and two buttons (Yes, No) for responding whether the predicate evaluates to

true or false; 2) OneToManyJoin is a simple variant that includes in the same microtask

one left object and several right candidates to be joined; 3) ManyToManyJoin includes in

the same microtask several candidate pairs to be joined.

4.1.3 Sort Patterns

Sort patterns determine the total ordering of a set of input objects. Examples of sort patterns

are: 1) SortByGrouping [?] orders a large set of objects by aggregating the results of the

ordering of several small subsets of them; 2) SortByScoring [?] asks performers to rate

each item in the dataset according to a numerical scale; SortByLiking [5] is a variant that

simply asks the performer to select/like the items they prefer. The mean (or sum) of the

scores achieved by each image is used to order the dataset. 3) SortByPairElection [5] asks

workers to perform a pairwise comparison of two items and indicate which one they like most.

Ranking algorithms (such as Elo [?]) calculate their ordering. 4) SortByTournament [?],

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 457

presents to performers a tournament-like structure of sort tasks; each tournament elects its

champions that progress to the next level, eventually converging to a final order.

4.1.4 Grouping Patterns

Grouping patterns are used in order to classify or clustered several objects according to their

properties. Examples of sort patterns are: 1) GroupingByPredefinedClasses[?] occurs

when workers are provided with a set of known classes. 2) GroupingByPreference [?]

occurs when groups are formed by performers, for instance by asking workers to select the

items they prefer the most, and then clustering inputs according to ranges of preferences.

4.1.5 Performer Control Patterns

Quality control of performers consists in deciding how to engage qualified workers for a given

task and how to detect malicious or poorly performing workers. The most common patterns

for performer control include: 1) QualificationQuestion [?], at the beginning of a micro-

task, for assessing the workers expertise and deciding whether to accept his contribution or

not. 2) GoldStandard, [?] for both training and assessing worker’s quality through a initial

subtask whose answers are known (they belong to the so-called gold truth. 3) Majority-

Comparison, [5] for assessing performers’ quality against responses of the majority of other

performers, when no gold truth is available.

4.1.6 Community Allocation Patterns

These patterns enable the spawning of crowdsourcing tasks upon multiple communities of

performers, thus leveraging the peculiar characteristics and capabilities of the community

members. By community we mean a set of people that share common interests (e.g., football

club fans, opera amateurs,...), have some common feature (e.g., leaving in the same country or

city, or holding the same degree title) or belong to a common recognised entity (e.g., employee

in an office, workgroup or employer; students in a university; professionals in a professional

association; ...). Leveraging communities for crowdsourcing includes both the possibility of

statically determining the target communities of performers, and also dynamically changing

them, taking into account how the community members behave when responding to task

assignments. Dynamic adaptation of crowdsourcing campaigns to community behaviour is

particularly relevant because it can be very effective for obtaining answers from communities,

with very different size, precision, delay and cost, by exploiting the social networking relations

and the features of the task. Examples of community allocation patterns are: 1) Expertise

Level, i.e. the re-planning of a crowdsourcing task to different platforms, each featuring

performers with a different level of expertise w.r.t. the task’s topic. For instance, a task could

be re-planned from a human computation platform to a social network when the performers

of the former community provide unsatisfactory quality performance. 2) Crowd Capacity

Relocation, i.e. re-planning due to unsatisfactory execution time performance, i.e. when a

task initially planned for execution in a social network takes too long to be completed.

4.2 Auxiliary Intra-Task Patterns

The above tasks can be assisted by auxiliary operations, performed before or after their

executions, as shown in Figure 10. Pre-processing steps are in charge of assembling, re-shaping,

or filtering the input data so to ease or optimise the main task. Post-processing steps are

458 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

typically devoted to the refinement or transformation of the task outputs into their final form.

Examples of auxiliary patterns are: 1) PruningPattern [?], consisting of applying simple

preconditions on input data in order to reduce the number of evaluations to be performed.

For instance, in a join task between sets of actors (where we want to identify the same person

in two sets), classifying items by gender, so as to compared only pairs of the same gender.

2) TieBreakPattern [?], used when a sorting task produces uncertain rankings (e.g. because

of ties in the evaluated item scores); the post-processing includes an additional step that asks

for an explicit comparison of the uncertainly ordered items.

4.3 Crowd-Flow Patterns

Create Decide

Improve Compare /
Verify

Find Fix

(a)

(b)

(c)

Auxiliary Task

Fig. 11. Template for complex task patterns.

Very often, a single type of task does not

suffice to attain the desired crowd business

logic. For instance, with open-ended multi-

media content creation and/or modification,

it is difficult to assess the quality of a given

answer, or to aggregate the output of sev-

eral executions. A Crowd-Flow Pattern

is a workflow of heterogeneous crowdsourc-

ing tasks with co-ordinated goals. Several

crow-flow patterns defined in the literature

are next reviewed; they are comparatively

shown in Figure 11.

Create/Decide [?], shown in Figure 11(a),

is a two-staged pattern where first workers

create various options for new content, then

a second group of workers vote for the best

option. Note that the create step can include

any type of basic task. This pattern can have

several variants: for instance, with a stream

data flow, the vote is typically restricted to

the solutions which are produced faster, while with a batch data flow the second task operates

on all the generated content, in order to pick the best option overall. The create and decide

steps can be combined in arbitrary ways. For instance, to provide an alternative character-

isation of the decision process, multiple executions of the create task can be performed in a

sequential or parallel fashion. In such cases, the content generation task is generated multiple

times, and workers are asked to compare the content generated by previous tasks in order

to make a decision about which content to produce in output. Such a comparison can be

performed sequentially or in parallel at multiple stages.

Improve/Compare [?], shown in Figure 11(b), iterates on the decide step to progressively

improve the result. In this pattern, a first pool of workers creates a first version of a content;

upon this version, a second pool of workers creates an improved version, which is then com-

pared, in a third task, to decide which one is the best (the original or the improved one). The

improvement/compare cycle can be repeated until the improved solution is deemed as final.

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 459

Find/Fix/Verify [1], shown in Figure 11(c), further decomposes the improve step, by split-

ting the task of finding potential improvements from the task of actually implementing them.

4.4 Auxiliary Crowd-Flow Patterns

Auxiliary tasks can be designed to support the creation and/or the decision tasks. Examples of

auxiliary crowd-flow patterns are: 1) AnswerBySuggestion [?]: given a create operations

as input, the provided solution can be achieved by asking suggestions from the crowd as

follows. During each execution, a worker can choose one of two actions: it can either stop

and submit the most likely answer, or it can create another job and receive another response

to the task from another performer. The auxiliary suggestion task produces content that can

be used by the original worker to complete or improve her answer. 2) ReviewSpotcheck

strengthens the decision step by means of a two-staged review process: an additional quality

check is performed after the corrections and suggestions provided by the performers of the

decision step. The revision step can be performed by the same performer of the decision step

or by a different performer.

5 Implementation

Fig. 12. Architecture of the Crowdsearcher platform.

The design process is supported by a plat-

form prototype, called CrowdSearchere. The

software is written in JavaScript and run-

ning on the Node.jsf server; a demonstra-

tion video of the platform is available on

YouTubeg. Figure 12 depicts the architec-

tural organisation of CrowdSearcher: the

main modules, described in details in the

next sections, are the Configuration And

Management Interfaces, the Task Execution

Framework, and the Reactive Environment.

CrowdSearcher has been designed with mod-

ularity and extensibility in mind: therefore,

a set of APIs simplify it evolution with new

functionalities, but also the integration with

third-party application.

5.1 Configuration And Management Interfaces

CrowdSearcher include several interfaces to support the specifying and monitoring of crowd-

based applications through a step-by-step approach, where each step is supported by suitable

wizards. Figure 13 shows four design steps for our running case study: 1) Definition of a basic

task, the analysis of scenes for the movie 007 Skyfall using a fuzzyclassify method, subdividing

scenes in three classes (begin, middle, end) and with spoiler detection. 2) Platform selection,

selecting Amazon Mechanical Turk (AMT) with a given template interface, url, price (1 cent)

and duration (60 minutes). 3) Object control strategy, with the level of agreement, the number

ehttp://crowdsearcher.search-computing.com
fhttp://nodejs.org
ghttp://www.youtube.com/watch?v=wX8Dvtwyd8s

http://crowdsearcher.search-computing.com
http://nodejs.org
http://www.youtube.com/watch?v=wX8Dvtwyd8s

460 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

(a) (b)

(c) (d)
Fig. 13. Four design steps: (a) task design; (b) platform selection; (c) object control; (d) task

summary (including the list of control rules).

of awaited answers, the platform where to replan. 4) Task configuration summary (including

list of control rules, see later), to be used for a final control before deployment.

Note that the design framework supports a declarative style of control, whereas a designer

can indicate how objects, tasks, performers, platforms and communities should be controlled.

These declarations are automatically translated into active rules, as discussed in Section 5.3.

5.2 Task Execution Framework

CrowdSearcher offers a plug-in environment for transparently deploying crowd-based appli-

cations over several social networks and crowdsourcing platforms. A built-in Task Execution

Framework (TEF) provides support for the creation of custom task user interfaces, to be de-

ployed as stand-alone application, or embedded within third-party platforms such as Amazon

Mechanical Turk or Facebook. Alternative approaches for the implementation of operations

on these crowd-based systems are discussed on [4]. Specific modules are devoted to the invita-

tion, identification, and management of performers, thus offering support for a broad range of

expert selection paradigms, from pure pull approaches of open marketplaces, to pre-assigned

execution to selected performers.

Figure 14 shows the platforms currently supported by the CrowdSearcher. In particular,

Invitation indicates if our tool is able to use the platform for inviting performers to the task,

Execution (TEF UI) indicates if the TEF interface is embedded in the platform environment,

and Execution (Native UI) indicates if CrowdSearcher is able to deploy the task using the

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 461

Platform Invitation Execution
(TEF UI)

Execution
(Native UI)

AMT N/A yes yes
Facebook yes yes yes
Twitter yes N/A N/A

Fig. 14. Deployment platforms supported by the tool. “N/A” means that the particular type of
deploy is not supported by the platform itself.

native interface of some platform (for example deploying the task on AMT using its native

proprietary interface).

5.3 Reactive Environment

Most crowdsourcing systems only provide limited and predefined controls; in contrast, our

approach provides fine-level, powerful and flexible controls. We define high-level abstractions

for declaring task control, as well as low-level rules for implementing such control, which

typically encompasses the evaluation of arbitrary conditions on objects, performers, tasks,

platforms, and communities.

Starting from the declarative specification described in Sections 3 and 4, an automatic

process generates task descriptors and their relations. Single tasks and their internal strategies

and patterns are transformed into executable specification; we support all the intra-task

patterns described in Section 4, through model transformations that generate the control

marts and control rules for each task [5].

Task interactions are implemented differently depending on whether interacting tasks are

tightly coupled or loosely coupled. Dependencies between tasks are transformed into rules

that trigger the creation of new micro-tasks and their executions, upon production of new

results by events of object or task closure.

Each task produces in output events such as ClosedTask, ClosedObject, ClosedMicrotask,

ClosedExecution. We rely on an event-based, publish-subscribe mechanism, which allows

tasks to be notified by other tasks about some happening. Loosely coupled tasks do not

rely on a shared data space, therefore events carry with them all the relevant associated

pieces of information (e.g., a ClosedObject event carries the information about that object;

a ClosedTask event carries the information about all the closed objects of the task). The

workflow structure dictates how tasks subscribe to events of other tasks. Once a task is

notified by an incoming event, the corresponding data is incorporated in its control mart by

a-priori application of the data manipulation program, specified in the data manipulator stage

of the task. Then, reactive processing takes place within the control mart of the task.

Modularity allows executability through model transformations which are separately ap-

plied to each task specification. Automatically generated rules and mart structures can be

manually refined or enriched when non-standard behaviour is needed.

Rules are triggered by changes in control tables and express the result control logic, that

can be specified through high level directives. Typical examples of rules consider how to

decide that an object is closed or that a performer is a spammer.

Objects are closed when they are associated with enough evaluations to provide a conclu-

sive response, i.e. a majority of equal answers. The smallest possible majority calls for two

equal answers, and is recognised by Rule 1.

462 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

Rule 1 MajorityResultRule.
e: UPDATE FOR Object_CTRL

c: (NEW.Begin== 2) or (NEW.Middle == 2) or (NEW.End == 2)

a: SET Scene[oid==NEW.oid].Position = NEW.Answer,

SET Task_CTRL[tid==NEW.tid].CompObj += 1

This rule is triggered by any change of the object control table, and simply checks that

one of the attributes Begin, Middle or End is equal to 2; then it sets the scene position equal

to the current answer and increases the number of completed objects in Task CTRL.
Of course, different majority conditions are possible, which can be arbitrarily complex and

depend also on the number of evaluations, e.g.,

C1: (Eval>5) and ((Begin>0.5*Middle) or (Middle>0.5*Begin) ...)

C2: (Eval>10) and ((Begin>0.8*Middle) or (Middle>0.8*Begin)...)

C3: Eval>15

The above cases denote three distinct rule conditions; they can either be embedded into
three different rules or their disjunction could be embedded into a single rule. The effect is
to close the object as soon as one of the three conditions is true. With enough micro-task
completions, the condition Eval>15 becomes eventually true.

Another case of control rule is identification of spammers. Performers are identified as
spammers when they are associated with enough wrong answers. A simple rule for identifying
spammers is:

Rule 2 SpammerIdentificationRule.
e: UPDATE FOR Performer_CTRL

c: (NEW.Eval > 10) and (NEW.Wrong > New.Right)

a: SET Performer[Pid==NEW.Pid].Status = ’Spammer’

This rule is triggered by any change of the performer control table, and simply checks that
after 10 evaluations the number of wrong answers exceeds the number of right answers; then
it sets the performer’s status to ‘Spammer’.

Of course, different spammer identification conditions are possible, e.g., condition C1
identifies as spammer whoever performs 4 errors, condition C2 selects as spammer anyone
who has given more than 20% of wrong answers, condition C3 uses two thresholds.

C1: Wrong == 4

C2: Wrong > 0.2*Eval

C3: ((Eval>10) and (Wrong>3)) or (Wrong>Right)

In the control framework, relational rules are translated into JavaScript; triggering is
modelled through internal platform events. Precedence between rules reacting to the same
event is implicitly obtained by orderly translating all such rules into a single script. For
example, rule 3 computes majority of answers for the classify operation.

numberOfAnswers is the minimum number of answers needed and agreement is the number
of performers that must agree on a particular category. The rule has three main parts: (i)
lines 15–20 updates the control variable (total number of answer and the count of the selected

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 463

category); (ii) lines 23–41 select the category that currently has the higher count and set the
control variables; (iii) lines 43–49 close the current object if termination conditions are met.

Rule 3 Calculation of the majority for a classify operation.
var performRule = function(data, config, callback){

// Array of categories

var categories = data.task.operation.params.categories;

// Minimum number of answers

var numberOfAnswers = config.numberOfAnswers;

// Agreement needed

var agreements = config.agreement;

var applyMajority = function(annotation,callback){

var object = annotation.object;

// Updating the metadata

var count = object.getMetadata(’count’);

object.setMetadata(’count’,count+1);

var selectedCategoryCount = object.getMetadata(annotation.response);

object.setMetadata(annotation.response,selectedCategoryCount+1);

// Build the data structure [category, count]

var categoriesMetadata = [];

_.each(categories,function(category){

var count = {

category:category,

count: object.getMetadata(category)

};

categoriesMetadata.push(count);

// Selecting the category with maximum count

var max = _.max(categoriesMetadata,function(categoryCount){

return categoryCount.count;

});

// Verifying that the maximum is unique

var otherMax = _.where(categoriesMetadata,{count:max.count});

if(otherMax.length==1){

object.setMetadata(’result’,max.category);

}

// Checking if the object should be closed

// If numberOfAnswers is equal to 0, then ignore the parameter

if(count === numberOfAnswers || numberOfAnswers=== 0){

if(max.count >= agreement){

object.setMetadata(’status’,’CLOSED’);

}

}

return object.save(domain.bind(callback));

)};

//Call the applyMajority function of each annotation

(object)

return async.eachSeries(annotations,domain.bind(applyMajority),callback);

};

var params = {

agreement: [’number’],

numberOfAnswers: [’number’]

};

6 Experience and Evaluation

The implementation of Crowdsearcher granted the opportunity to put our approach at work
in the development of several real-world applications. In Section 6.1 we will describe some

464 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

of our experience in modelling real-world case studies. Section 6.2 and Section 6.3 report on
the experiments conducted with various pattern-based workflow scenarios, defined using our
model and method and deployed by using CrowdSearcher as design framework and Amazon
Mechanical Turk as execution platform.

6.1 Approach in use

Our approach has been used in several real-world projects, for instance:

Multimedia Analysis and Search [7][9]: in the context of the FP7 CUbRIK Integrating
Project, we introduced a conceptual and architectural framework for addressing the design,
execution and verification of tasks by a crowd of performers. By combining CrowdSearcher
with an infrastructure for multimedia analysis, we created several applications (e.g. trademark
and logo detection in video) that demonstrates how the contribution of (expert) crowds can
improve the recall of state-of-the-art traditional algorithms, with no loss in terms of precision.

Cultural Heritage Items Annotation [13]: in the context of the COMMIT Dutch national
program, several experiments of crowdsourced cultural heritage collection annotations were
performed. In collaboration with several institutions such as the Rijkmuseum Amsterdam, we
instrumented several experiments aimed at showing the performance of alternative crowd-flow
configurations for expert annotation of artworks.

In addition, we instrumented several experiment scenarios, aimed at supporting our research
activities, while validating the applicability and flexibility of our approach. For instance:

Politician party [5]:In this experiment we asked the crowd to classify the political affiliation
of 30 members of the Italian parliament. To single performer is presented a set of photos and
names and has to match the single politician to the correct political party.

Politician law [5]: In this experiment we presented photos of 50 members of the Italian
parliament and asked the crowd to indicate if they have ever been accused, prosecuted or
convicted. Each performer sees, in a fixed amount of time, a number of photos which raises
as a function of the performers ability, and, after he give his answer, the system presents a
report with correct answers and the ranking of the other performers.

Politician order [5]: The objective of this experiment was to produce the total ranking of
25 politicians. At each performer is presented a pair of politicians and is asked to choose the
one he likes the most.

Model search (1) [2]: In this experiment we asked the crowd to evaluate the results of
a query performed on a model repository. Given the query, and two possible results, the
performers had to choose which one is better.

Model search (2) [3]: In this experiment we asked the crowd to evaluate the ranked results
of a query performed over a model repository. Given the query and two possible ranks, the
performer had to decide which one was better.

Transportation: In this experiment we asked the crowd to validate the classification of tweet
related to public transportation made by an automatic tool. The performers had to evaluate
the correctness of the topic, geo-localization and polarity of the tweets.

Movie Scenes [6]: In this experiment we asked the crowd to classify images taken from
movie scenes. Each performer had to tell if an image belonged to the initial, middle or final
part of the film, and, in the latter two cases, if the image was a spoiler.

Movie actors [6]: In this experiment we asked the crowd to identify actor in movie scenes.
In particular this scenario was divided in two parts: in the first the performers had to insert

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 465

Experiment Dataset preparation UI generation Monitoring Tuning

Politicians Party 1.5 4 5 1
Politicians Law 1.5 2 7 1.5
Politicians Order 1.5 2 3 1
Model Search 1 3 3 0 (*) 1
Model Search 2 3 3 0 (*) 1.5
Transportation. 1 5 0 (*) 1
Movies Scenes 1 4 2 1
Movies Actors 2 3.5 0.5 (*) 0.5
Image Select 1.5 4.5 1.5 1

Fig. 15. Development effort for different applications (man/days). (*) = high reuse of existing

rules.

the name of the actors present in the image and in the second they had to validate the answers
given by the others.

Professors images [8]: In this experiment we asked the crowd to evaluate of relevance images
about the professor of retrieved through the Google Image API. We asked the performers to
specify whether each image represents the professor himself, some relevant people or places,
other related materials (papers, slides, graphs or technical materials), or it is not relevant at
all.

Among the various aspects we studied, we considered the cost of development of the different
applications. Figure 15 reports the approximate development effort of nine recent application.
Note that data preparation and UI generation (ad hoc) were required regardless of the adopted
method. Our approach to monitoring required large efforts for the first applications, which
was well compensated by a high reuse of rules in the subsequent applications. Note also that
our method enables fast prototyping of applications in the small scale, with small crowds who
give interaction feedbacks; tuning is quite efficient, as it can be done by changing configuration
parameters from within the design framework.

6.2 Experiments With Intra-Task and Crowd-Flow Patterns

We consider several scenes taken from popular movies, and we enrich them with crowd-
sourced information regarding their position in the movie, whether the scene is a spoiler, and
the presence of given actors in each scene. In the experiments reported here we considered
the movie “The Lord of the Rings: the Fellowship of the Ring”. We extracted 20 scenes and
we created a ground-truth dataset regarding temporal positioning and actors playing in the
scenes. Each configuration stresses a different combination of Intra-Task and Crowd-Flow
patterns. We compare cost and quality of executions for different workflow configurations.

Scenario 1: Scene Positioning . The first scenario deals with extracting information
about the temporal position of scenes in the movie and whether they can be considered as
spoilers. Two variants of the scenario have been tested, as shown in Figure 16: the task
Position Scenes classifies each scene as belonging to the beginning, middle or ending part of
the movie. If the scene belongs to the final part, we ask the crowd if it is a spoiler (Spoile
Scenes task); otherwise, we ask the crowd to order it with respect to the other scenes in the
same class (Order Scenes task).

Tasks have been configured according to the following patterns:

Position Scene: task and microtask types are both set as Classify, using a StaticAgreement
pattern with threshold 3. Having 3 classes, a maximum number of 7 executions grants that
one class will get at least 3 selections. Each microtask evaluates 1 scene.

466 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

Position Scenes

[Classify]
(Static Agreement@3)

MicroTask [Classify]

Scene

block 1
min 1

 Spoiler Scenes

[Like]
(Static Agreement@3)

MicroTask [Like]

Scene

block 1
min 1

7

 Order Scenes

[Order]
(SortByLiking)

MicroTask [Like]

Scene

block 2
min 2
Cons.

[Class=E]

[Class=B OR M]

(P2)
5

3

Position Scenes

[Classify]
(Static Agreement@3)

MicroTask [Classify]

Scene

block 1
min 1

 Spoiler Scenes

[Like]
(Static Agreement@3)

MicroTask [Like]

Scene

block 1
min 1

7

 Order Scenes

[Order]
(SortByLiking)

MicroTask [Like]

Scene

block 2
min 2

[Class=E]

[Class=B OR M]

(P1)
5

3

Fig. 16. Flow variants for the Positioning scenario.

Find Actors

[Tag]

MicroTask [Tag]

Scene

block 1
min 1

5 Find Actors

[Tag]
(Static Agreement@3)

MicroTask [Tag]

Scene

block 1
min 1

5

Find Actors

[Tag]

MicroTask [Tag]

Scene

block 1
min 1

Validate Actors

[Like]

MicroTask [Like]

Scene+Actor

block All
min 1

5 Find Actors

[Tag]
(Static Agreement@3)

MicroTask [Tag]

Scene

block 1
min 1

Validate Actors

[Like]

MicroTask [Like]

Scene+Actor

block All
min 1

5

Find Actors

[Tag]

MicroTask [Tag]

Scene

block 1
min 1

 Validate Actors

[Like]
(Majority Voting@2)

MicroTask [Like]

Scene+Actor

block All
min 1

5 3

(A1) (A2)

(A3) (A4)

(A5) (A6)

Find Actors

[Tag]
(Static Agreement@3)

MicroTask [Tag]

Scene

block 1
min 1

 Validate Actors

[Like]
 (Majority Voting@2)

MicroTask [Like]

Scene+Actor

block All
min 1

5 3

count(Actor.Like)<=1

Fig. 17. Flow variants for the Actor scenario.

Order Scene: task type is Order, while microtask type is set as Like. Each microtask comprises
two scenes of the same class. Using a SortByLiking pattern, we ask performers to select (Like)
which scene comes first in the movie script. A rank aggregation pattern calculates the resulting
total order upon task completion.

Spoiler Scene: Task and microtask type both set as Like. A StaticAgreement pattern with
threshold 3 (2 classes, maximum 5 executions) defines the consensus requirements. Each
microtask evaluates 1 scene.

We experiment with two workflow configurations. The first (P1) defines a batch data flow
between the Position Scene and Order Scene tasks, while the second configuration (P2)
defines the same flow as stream. In both variants, the data flow between Position Scene
and Spoiler Scenes is defined as stream. The P2 configuration features a dynamical task
planning strategy for the the Order Scenes task, where the construction of the scene pairs
to be compared in is performed every time a new object is made available by the Position
Scenes task. A conservation policy in the Order Scenes data manipulator ensures that all the
new scenes are combined with the one previously received.

Scenario 2: Actors. In the second scenario, we model a create/decide workflow pattern
by asking the crowd to identify the actors that take part in the movie scenes; in Find Actors,
performers indicate actors, in Validate Actor they confirm them. Tasks are designed as follows:

Find Actors: Task and microtask types are set as Tag. Each microtask evaluates one scene;

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 467

each scene is evaluated five times. Depending on the configuration, either no consensus pattern
(A1, A3, A5) or a StaticAgreement pattern with threshold three (A2, A4, A6) is employed.

Validate Actors: the task is preceded by a data manipulator function that transforms the
input Scene object and associated tags into a set of tuples (Scene,Actor), which compose
an object list subject to evaluation. In all configurations, microtasks are triggered if at least
one object is available in the buffer. Note that each generated microtask features a different
number of objects, according to the number of actors tagged in the corresponding scene.
Configurations A5 and A6 features an additional MajorityVoting pattern to establish the
final actor validation. We tested this scenario with five workflow configurations, shown in
Figure 17, and designed as follows:

• Configuration A1 performs 5 executions and for each scene collects all the actors tagged
at least once;

• Configuration A2 performs 5 executions and for each scene collects all the actors tagged
at least three times (StaticAgreement@3);

• Configuration A3 adds the validation task to A1; the validation asks one performer to
accept or reject the list of actors selected in the previous step;

• Configuration A4 adds a validation task to A3, performed as in A3;

• Configuration A5 is similar to A3, but the validation task is performed 3 times and a
MajorityVoting@2 is applied for deciding whether to accept or not the object;

• Configuration A6 extends A5 by adding a StaticAgreement@3 on FindActors a feedback
stream flow, originating from the Validate Actors task and directed to the Find Actors
task, which notifies the latter about actors that were wrongly tagged in a scene (i.e., for
which agreement on acceptance was not reached). Misjudged scenes are then re-planned
for evaluation; for each scene, the whole process is configured to repeat until validation
succeeds, or at most 4 re-evaluations are performed.

Position Scenes (payed $0.01) Order Scene (payed $0.01) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

P1 20 147 123 16 9.19 17 252 157 14 18.00 342 3.99$ 26
P2 20 152 182 12 12.67 17 230 318 17 13.53 349 3.82$ 26

Fig. 18. Scenario 1 (Positioning): number of evaluated objects, microtask executions, elapsed

execution time, performers, and executions per performer (for each task and for each scenario
configuration).

Find Actors (payed $0.03) Validate Actors (payed $0.02) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

A1 20 100 120 18 5.56 – – – – – 120 3.00$ 18
A2 20 100 128 10 10.00 – – – – – 128 3.00$ 10
A3 20 100 123 14 7.15 20 21 154 10 2.10 159 3.42$ 20
A4 20 100 132 10 10.00 41 19 157 9 2.10 164 3.38$ 16
A5 20 100 126 13 7.69 69 60 242 17 3.53 257 4.20$ 24
A6 66 336 778 56 6.00 311 201 821 50 4.02 855 14.10$ 84

Fig. 19. Scenario 2 (Actor): number of evaluated objects, microtask executions, elapsed execution
time, performers, and executions per performer (for each task and for each scenario configuration).

468 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

6.2.1 Results

We tested the performance of the described scenarios in a set of experiments performed on
Amazon Mechanical Turk during the last week of September 2013. Figure 18 and Figure 19
summarise the experiment statistics for the two scenarios, 1700 HITS for a total cost of 39$.

Streaming Vs. Batch (Scenario 1: Positioning). In the first scenario we tested the
impact on the application performance of the adoption of a stream data flow in a crowd
workflow.

Time. Figure 20(b) shows the temporal distribution of closed objects for the P1 and P2
configurations. As expected, a stream flow (P2) allows for almost synchronous activation of
the subsequent task in the flow, while batch scenario (P1) shows a strict sequential triggering
of the second task. However, the overall duration of the workflow is not significantly affected
by the change. While the first task of the flow behaves similarly in the two configurations,
the second task runs significantly quicker in the batch flow, thus recovering the delay due to
the sequential execution.

Quality. Figure 21 shows the precision of the classification results of task Position Scenes.
Figure 22 shows a measure of the quality of the obtained orders of scenes, i.e., Spearman’s
rank correlation coefficient of the resulting ranks from the Order Scenes task against the real
order of scenes. Both figures show that the attained quality was not significantly influenced
by the different task activation modes.

Actor
Validate

A3
Actor
Validate

A4
Actor
Validate

A5

Actor
Validate

A6

a) Elapsed Time (Mins)

#C
lo

se
d

O
bj

ec
ts

0
10
20
30
40
50
60

5 30 60 90120 160

5 30 60 90120 160 5 60 120 180240 60 300 540 780

Position
Order

P1
Position
Order

P2

b) Elapsed Time (Mins)

#C
lo

se
d

O
bj

ec
ts

1
10
20
30
40
50
60
70
80

5 60 120 180 240 300 0 5000 10000 15000 20000

Fig. 20. Temporal distributions of closed objects.

In summary, we didn’t note a different behaviour due to streaming. One possible reason
is that in the batch configuration the entire set of assignments are posted at once on AMT,
thus becoming more prominent in terms of number of available executions (and thus being
preferred by performers, as widely studied [10]), while in a stream execution a small number
of assignments is posted on AMT at every closing event of objects from the previous tasks.

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 469

PBeginning P Middle P End

P1 0.50 1 0.11
P2 0.50 0.80 0.33

Fig. 21. Scenario 1 (Positioning): Precision of the
Position Scenes classification task.

Spearman Beginning Spearman Middle

P1 0.500 0.543
P2 0.900 0.517

Fig. 22. Scenario 1 (Positioning): Spearman’s
rank correlation for the Order Scenes order task.

Precision Recall F-Score

A1 0.79 0.98 0.85
A2 1 0.87 0.91
A3 0.92 0.97 0.93
A4 0.99 0.90 0.93
A5 0.95 1 0.97
A6 0.89 0.96 0.90

Fig. 23. Scenario 2 (Actor): Precision, Recall, and F-score of the six tested configurations.

Intra-Task Consensus Vs. Workflow Decision (Scenario 2: Actors) The second
scenario aimed at verifying the impact that different intra-task and workflow patterns pro-
duced on the quality, execution time, and cost. We focused in particular on different validation
techniques.

Time. Figure 20(a) and (c) shows the temporal distribution of closed object for configurations
A3-A6. Configurations A1 and A2 are not reported because they are composed of one
single task and thus their temporal distribution is not comparable. The temporal behaviour
of the first and second tasks in the flow are rather similar (in the sense that the second one
immediately follows the other). Validation is more delayed in A5 due to the MajorityVoting
pattern that postpones object close events. Configuration A6 (Figure 20(c)) is significantly
slower due to the feedback loop, which also generates a much higher cost of the campaign,
as reported in Figure 18. Indeed, due to the feedback, many tasks are executed several times
before converging to validated results.

Quality. Figure 23 reports the precision, recall and F-Score figures of the six configurations.
The adoption of increasingly refined validation-based solutions (configurations A3-A4-A5)
provides better results with respect to the baseline configuration A1, and also to the intra-
task agreement based solution A2; validations do not have a negative impact in terms of
execution times and costs. On the other hand, the complexity of of case A6, with the
introduction of feedback, proved to be counter-productive, because the validation logic harmed
the performance, both in monetary (much higher cost) and qualitative (lower results quality)
senses, bringing as well overhead in terms of execution time.

In summary, the above tests show an advantage of concentrating design efforts in defining
better workflows, instead of just optimising intra-task validation mechanisms (based e.g. on
majority or agreement), although overly complex configurations should be avoided.

6.3 Experiment With Community Allocation Patterns

The flexibility of our approach allows to cover dynamic planning of tasks also across different
communities of experts. This means to switch the focus from cross-platform crowdsourcing
to community-based crowdsourcing applications, In a separate experiment, we focused on
community allocation patterns through a scenario concerned with image classification. The
dataset consists of images about professors of our department retrieved through the Google
Image API. In the crowdsourcing campaign we asked the performers to specify whether each
image represents the professor himself, some relevant people or places, other related materials

470 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

(papers, slides, graphs or technical materials), or it is not relevant at all. The experimental
settings are thoroughly described in [8]: we selected 16 professors within two research groups
in our department (DB and AI groups) and we downloaded the top 50 images returned
by the Google Image API for each query; each microtask consisted of evaluating 5 images
regarding a professor. Results are considered accepted (and thus the corresponding object is
closed) when some agreement level on the class of the image is reached among performers.
We defined 3 types of communities as: the research group of the professor (e.g., Databases);
the research area containing the group (e.g., Computer Science); and the whole department
(which accounts for more than 600 people in different areas).

We devised two experiments addressing the Expertise Level community allocation pat-
tern. In the first one, named inside-out, we started with invitations to experts, e.g. people
the same groups as the professor (DB and AI), and then expanded invitations to Computer
Science, then to the whole Department, and finally to open social networks (Alumni and
PhDs communities on Facebook and Linkedin). In the second one, named outside-in, we
started with the Department members, then restricting to Computer Scientists, and finally
to the group’s members. Our assumption is that researchers that work closer to the person
mentioned in the query know him better and are more able to recognise relevant images.

All invitations (except for the social networks in the first experiment) were automatically
sent via email. The communities were not overlapping: every performer received only one
invitation. The members of the Department, of Computer Science area, and of the DB Group
were randomly split into two sets. Invitations have been implemented as a set of dynamic,
cross-community interoperability steps, with task granularity and with continuous switch-
overs starting one working day after a community was idle (stopped to produce results). A
rule invites the performers of a broader community when the current crowd ceases to produce
answers, for instance after one hour of idle time, i.e. when the last execution occurred more
than one hour ago in the smaller community (DB-Group). A rule focuses on re-planning
the crowdsourcing task on a specific object when the performers of a community are in
disagreement, e.g., if there are votes on every category of the classify operation.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 500	 1000	 1500	 2000	 2500	 3000	

Pr
ec
is
io
n	

#Evalua0ons	

research	 group	

research	 area	

department	

social	 network	

total	

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

1	

0	 100	 200	 300	 400	 500	 600	 700	 800	

Pr
ec
is
io
n	

#Closed	 Objects	

precision	 (main	 experiment)	

precision	 (reverse	 invita<ons)	

(a) (b)
Fig. 24. Precision of evaluations by community (a) and comparison of the precision for the inside-
out and outside-in approaches (b).

Figure 24 (a) shows the precision of evaluations by community and Figure 24(b) shows the
final precision on closed objects. Figure 24(b) compares also the precisions of the inside-out
and outside-in experiments, and shows that former performs better than the latter in terms of
quality of results. This is quite evident in the initial phases (when the first half of the objects
close), as the performance of experts (research group) is much higher than performance of
the people of the rest of department.

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 471

7 Conclusions

In this paper, we presented a comprehensive approach to the modeling, design, and pattern-
based specification of crowd-based workflows. We discussed how crowd-based tasks communi-
cate by means of stream-based or batch data flows, and we defined the concepts of loose and
tight coupling. We also discussed known patterns that are used to create crowd-based com-
putations either within a task (in order to solve a complex task by using simple operations)
or between tasks (in order to decompose a cognitively complex task into a progression of
simple tasks, possibly with retroactions). We showed how the workflow model is translated to
executable specifications which are based upon control data, reactive rules, and event-based
notifications.

Part of these concepts has been implemented in the CrowdSearcher framework that sup-
ports declarative style for defining crowdsourcing applications and provides runtime environ-
ment for transparently deploying crowd-based applications over several social networks and
crowdsourcing platforms.

A set of experiments demonstrate the viability of the approach and show how the different
choices in workfllow design may impact on the cost, time and quality of crowd-based activities.

As future work, we plan to broaden our research to studying patterns not only focusing
on the crowdsourcing. We will analyze patterns for engaging social networks users in content
production and enrichment campaigns, as well as in brand awareness and information diffu-
sion. A typical use case scenario is defining games or challenges and trying different methods
for keeping the users involved in time. We will also address the problem of monitoring the exe-
cution of a crowdsourcing task, by providing advanced dashboards where to compare different
task configurations and to see how the crowd reacts to different solicitation events.

References

1. S. Abiteboul and V. Vianu. Collaborative data-driven workflows: think global, act local. In
Proceedings of the 32nd symposium on Principles of database systems, pages 91–102, New York,
NY, USA, États-Unis, 2013. ACM.

2. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a survey of
the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions
on, 17(6):734–749, 2005.

3. S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The jabberwocky programming environment
for structured social computing. In UIST ’11, pages 53–64. ACM, 2011.

4. O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance evaluation. SIGIR Forum,
42(2):9–15, Nov. 2008.

5. M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger, D. Crowell,
and K. Panovich. Soylent: a word processor with a crowd inside. In Proceedings of the 23nd annual
ACM symposium on User interface software and technology, UIST ’10, pages 313–322, New York,
NY, USA, 2010. ACM.

6. B. Bislimovska, A. Bozzon, M. Brambilla, and P. Fraternali. Graph-based search over web appli-
cation model repositories. In S. Auer, O. Dı́az, and G. Papadopoulos, editors, Web Engineering,
volume 6757 of Lecture Notes in Computer Science, pages 90–104. Springer Berlin Heidelberg,
2011.

7. B. Bislimovska, A. Bozzon, M. Brambilla, and P. Fraternali. Textual and content-based search in
repositories of web application models. ACM Trans. Web, 8(2):11:1–11:47, Mar. 2014.

8. A. Bozzon, M. Brambilla, and S. Ceri. Answering search queries with crowdsearcher. In 21st Int.l
Conf. on World Wide Web 2012, WWW ’12, pages 1009–1018. ACM, 2012.

9. A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri. Reactive crowdsourcing. In 22nd World Wide
Web Conf., WWW ’13, pages 153–164, 2013.

472 Designing Complex Crowdsourcing Applications Covering Multiple Platforms and Tasks

10. A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio. Pattern-based specification of
crowdsourcing applications. In Web Engineering, 14th International Conference, ICWE 2014,
Toulouse, France, July 1-4, 2014. Proceedings, pages 218–235, 2014.

11. A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci. Choosing the right crowd: expert
finding in social networks. In 16th International Conference on Extending Database Technology,
EDBT ’13, pages 637–648, New York, NY, USA, 2013. ACM.

12. A. Bozzon, I. Catallo, E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasacchi. A framework
for crowdsourced multimedia processing and querying. In Proceedings of the First International
Workshop on Crowdsourcing Web Search, Lyon, France, April 17, 2012, pages 42–47, 2012.

13. M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio. Community-based crowdsourcing. In
C. Chung, A. Z. Broder, K. Shim, and T. Suel, editors, SOCM Workshop, 23rd International
World Wide Web Conference, WWW ’14, Seoul, April 7-11, 2014, Companion Volume, pages
891–896. ACM, 2014.

14. S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for top-k and group-by queries.
In Proceedings of the 16th International Conference on Database Theory, ICDT ’13, pages 225–236,
New York, NY, USA, 2013. ACM.

15. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 39(1):1–38, 1977.

16. D. E. Difallah, G. Demartini, and P. Cudré-Mauroux. Pick-a-crowd: tell me what you like, and
i’ll tell you what to do. In 22nd international conference on World Wide Web, WWW ’13, pages
367–374, 2013.

17. A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing systems on the world-wide web.
Commun. ACM, 54(4):86–96, Apr. 2011.

18. A. E. Elo. The rating of chessplayers, past and present. Arco Pub., New York, 1978.
19. M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries

with crowdsourcing. In ACM SIGMOD 2011, pages 61–72. ACM, 2011.
20. P. Fraternali, M. Tagliasacchi, D. Martinenghi, A. Bozzon, I. Catallo, E. Ciceri, F. Nucci, V. Croce,

I. S. Altingovde, W. Siberski, F. Giunchiglia, W. Nejdl, M. Larson, E. Izquierdo, P. Daras,
O. Chrons, R. Traphoener, B. Decker, J. Lomas, P. Aichroth, J. Novak, G. Sillaume, F. S. Figueroa,
and C. Salas-Parra. The cubrik project: Human-enhanced time-aware multimedia search. In
Proceedings of the 21st International Conference Companion on World Wide Web, WWW ’12
Companion, pages 259–262, New York, NY, USA, 2012. ACM.

21. C. Grady and M. Lease. Crowdsourcing document relevance assessment with mechanical turk.
In Proceedings of the NAACL HLT 2010 Workshop, CSLDAMT ’10, pages 172–179, Stroudsburg,
PA, USA, 2010. Association for Computational Linguistics.

22. W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, Inc., New York, NY, USA,
1992.

23. S. Kochhar, S. Mazzocchi, and P. Paritosh. The anatomy of a large-scale human computation
engine. In HCOMP ’10, pages 10–17. ACM, 2010.

24. E. Law and L. von Ahn. Human Computation. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2011.

25. C. H. Lin, Mausam, and D. S. Weld. Crowdsourcing control: Moving beyond multiple choice. In
UAI, pages 491–500, 2012.

26. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit: tools for iterative tasks on
mechanical turk. In HCOMP ’09, pages 29–30. ACM, 2009.

27. G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Exploring iterative and parallel human
computation processes. In Proceedings of the ACM SIGKDD Workshop on Human Computation,
HCOMP ’10, pages 68–76, New York, NY, USA, 2010. ACM.

28. A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-powered sorts and joins. Proc.
VLDB Endow., 5(1):13–24, Sept. 2011.

29. A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced databases: Query processing with
people. In CIDR 2011, pages 211–214. www.cidrdb.org, Jan. 2011.

A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio 473

30. P. Minder and A. Bernstein. How to translate a book within an hour: towards general purpose
programmable human computers with crowdlang. In WebScience 2012, pages 209–212, Evanston,
IL, USA, June 2012. ACM.

31. M. Minsky. The society of mind. Simon & Schuster, Inc., New York, NY, USA, 1986.
32. A. Nigam and N. Caswell. Business artifacts: An approach to operational specification. IBM

Systems Journal, 42(3):428–445, 2003.
33. S. Nowak and S. Rüger. How reliable are annotations via crowdsourcing: a study about inter-

annotator agreement for multi-label image annotation. In Proceedings of the international confer-
ence on Multimedia information retrieval, MIR ’10, pages 557–566, New York, NY, USA, 2010.
ACM.

34. O. M. G. (OMG). Business process model and notation (bpmn) version 2.0. Technical report, jan
2011.

35. J. Oosterman, A. Nottamkandath, C. Dijkshoorn, A. Bozzon, G.-J. Houben, and L. Aroyo. Crowd-
sourcing knowledge-intensive tasks in cultural heritage. In Proceedings of the 2014 ACM Confer-
ence on Web Science, WebSci ’14, pages 267–268, New York, NY, USA, 2014. ACM.

36. A. Parameswaran, M. H. Teh, H. Garcia-Molina, and J. Widom. Datasift: An expressive and
accurate crowd-powered search toolkit. In 1st Conf. on Human Computation and Crowdsourcing
(HCOMP), 2013.

37. A. G. Parameswaran and N. Polyzotis. Answering queries using humans, algorithms and databases.
In CIDR 2011, pages 160–166, Asilomar, CA, USA, January 2011.

38. H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Polyzotis, and J. Widom. Deco: A
system for declarative crowdsourcing. PVLDB, 5(12):1990–1993, 2012.

39. V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label? improving data quality and data
mining using multiple, noisy labelers. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’08, pages 614–622, New York, NY,
USA, 2008. ACM.

40. W. M. P. van der Aalst. Business process management demystified: A tutorial on models, systems
and standards for workflow management. Lectures on Concurrency and Petri Nets: Advances in
Petri Nets — LNCS Vol. 3098, pages 1–65, June 2004. InternalNote: Submitted by: hr.

41. P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max algorithms in crowdsourcing
environments. In WWW ’12, pages 989–998, New York, NY, USA, 2012. ACM.

42. J. Wang and A. Kumar. A framework for document-driven workflow systems. In Proceedings
of the 3rd international conference on Business Process Management, BPM’05, pages 285–301,
Berlin, Heidelberg, 2005. Springer-Verlag.

43. J. Yang, C. Hauff, A. Bozzon, and G. Houben. Asking the right question in collaborative q&a
systems. In 25th ACM Conference on Hypertext and Social Media, HT ’14, Santiago, Chile,
September 1-4, 2014, pages 179–189, 2014.

44. J. Yang, K. Tao, A. Bozzon, and G. Houben. Sparrows and owls: Characterisation of expert be-
haviour in stackoverflow. In User Modeling, Adaptation, and Personalization - 22nd International
Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014. Proceedings, pages 266–277, 2014.

	Introduction
	Related Work
	Models and Design of Crowd-based Workflows
	Task Model
	Task Design
	Operation Design
	Object Design
	Performer Selection
	Workplan Design
	Platform Selection
	UI Design

	Crowd Workflow Design
	Control
	Object Control
	Task Control
	Performer Control
	Platform and Community Control
	Workflow Control

	Crowdsourcing Patterns
	Intra-Task Patterns
	Consensus Patterns
	Join Patterns
	Sort Patterns
	Grouping Patterns
	Performer Control Patterns
	Community Allocation Patterns

	Auxiliary Intra-Task Patterns
	Crowd-Flow Patterns
	Auxiliary Crowd-Flow Patterns

	Implementation
	Configuration And Management Interfaces
	Task Execution Framework
	Reactive Environment

	Experience and Evaluation
	Approach in use
	Experiments With Intra-Task and Crowd-Flow Patterns
	Results

	Experiment With Community Allocation Patterns

	Conclusions

