
Journal of Web Engineering, Vol. 14, No. 5&6 (2015) 474–502
c© Rinton Press

WEB BROWSING AUTOMATION FOR APPLICATIONS QUALITY CONTROL

BONI GARCÍA
Universidad Politécnica de Madrid

Avda. Complutense 30, 28040 Madrid, Spain
bgarcia@dit.upm.es

JUAN CARLOS DUEÑAS

Universidad Politécnica de Madrid

Avda. Complutense 30, 28040 Madrid, Spain
jcduenas@dit.upm.es

Received May 15, 2014

Revised April 17, 2015

Context: Quality control comprises the set of activities aimed to evaluate that software
meets its specification and delivers the functionality expected by the consumers. These

activities are often removed in the development process and, as a result, the final soft-

ware product usually lacks quality.
Objective: We propose a set of techniques to automate the quality control for web

applications from the client-side, guiding the process by functional and non-functional
requirements (performance, security, compatibility, usability and accessibility).

Method: The first step to achieve automation is to define the structure of the web nav-

igation. Existing software artifacts in the phase of analysis and design are reused. Then,
the independent paths of navigation are found, and each path is traversed automatically

using real browsers while different kinds of assessments are carried out.

Results: The processes and methods proposed in this paper have been implemented by
means of a reference architecture and open source tools. A laboratory experiment and

an industrial case study have been performed in order to validate the proposal.

Conclusion: The definition of navigation paths is a rich approach to model web ap-
plications. Grey-box (black-box and white-box) methods have been proved to be very

valuable for web assessment. The Chinese Postman Problem (CPP) is an optimal way

to find the independent paths in a web navigation modeled as a directed graph.

Keywords: Automated Software Testing, Web Applications, Web Navigation, Functional

Assessment, Non-Functional Assessment, Graph Theory.

Communicated by: M. Gaedke & O. Diaz

1 Introduction

Web applications market is shaped by a fierce global competition, with three main drivers:

quality, cost, and time to market [1]. The reduction or elimination of quality control processes

is a common practice in order to minimize costs and time to market, but this fact has a direct

impact on the final software quality. The automation of quality control activities helps to

improve the overall quality of software while reducing development time and costs [2][3].

According to the ISO-9126 standard, quality in use is the one perceived by the users who

operate an application. This type of quality is determined by its external quality (properties

474



B. Garćıa and J. C. Dueñas 475

of the system during its execution) and internal quality (static system properties) [4]. Hence,

quality in use of web applications is perceived from their client side.

In this paper, we propose a set of techniques to automate the quality control for web

applications in the client-side. This goal can be divided into the following specific objectives:

i) To propose a methodology for the automation of software quality control. ii) To propose

specific processes to automate the testing and analysis of web applications. iii) To validate

the feasibility of the approach.

The remainder of this paper is structured as follows. Section 2 presents a summary of

the background for our work. Section 3 gives an overview on related research. Section 4

shows the methodology, which is further enriched by the processes to assess web applications

in section 5. Section 6 presents the reference architecture and its implementation. Section 7

describes the validation of the work by means of an industrial case study. Finally, in section

8 we discuss the findings and conclusions of this piece of research.

2 Background

Software quality is a key concept in software engineering since it determines the degree in

which a system meets its requirements and meets the expectations of its customers and/or

users [5]. Quality control (also known as assessment or Verification and Validation, V&V) is

the set of activities designed to assess a software system in order to ensure its quality [6].

Therefore, the quality control processes warranties the fulfillment of the application re-

quirements of applications while reducing the number of defects [7]. The two core activities in

quality control are testing and analysis. On one hand, testing is a dynamic method, i.e., it as-

sesses the responses of a running system. On the other hand, analysis is static, i.e., it assesses

the software artifacts (source code, models, and so on) without its execution. Static analysis

and testing are often confused and both are mistakenly grouped under the term testing [8].

The evaluation of the quality of a software system is closely linked to the definition of

its functional and non-functional requirements. Functional requirements are actions that

the product must do to be useful to users. These requirements arise from the work that

stakeholders need to do. Non-functional requirements (also known as quality attributes) are

properties that the product must have. In other words, the functional requirements define

what the system should do while non-functional requirements define how the system should

behave.

2.1 Automated Assessment

Dustin et al. define Automated Software Testing (AST) as the “Application and implemen-

tation of software technology throughout the entire Software Testing Lifecycle (STL) with the

goal to improve efficiencies and effectiveness” [2]. The goal of 100% testing automation

described by Bertolino in [9] is still far away, but as described below, there are significant

advances in several areas.

2.1.1 Test Cases Generation

Model-Based Testing (MBT) proposes the derivation of test cases from a model that describes

some (at least partial) aspects of the System Under Test (SUT) [10]. MBT is a form of

black-box testing because tests are generated from a model which is derived from the system



476 Web Browsing Automation for Applications Quality Control

requirements. In contrast to usual black-box testing in which tests are written manually based

on the specification, an MBT approach uses a model of the expected SUT behavior to capture

the requirements [11].

Closely related to MBT, specification-based test cases generation techniques rely on formal

specifications written in languages such as SDL [12], or Z [13]. When the specification is com-

posed by a set of constraints, it is called a “contract”, which usually includes pre-conditions,

post-conditions, and invariants of system execution. The OCL (Object Constraint Language)

is a language for defining constraints in UML models [14], and JML (Java Modeling Language)

combines the design by contract approach [15] and the model-based specification approach of

the Larch family [16].

The Record&Playback (R&P) approach is carried out firstly recording linear scripts corre-

sponding to actions performed in the system (record stage). This script can be parameterized

and automation is obtained by repeating the recorded script and exercising the system (play-

back stage) [17].

Golden software defines a correct version of a software artifact [18][19]. Golden software

has been employed in software testing to derivate test cases by comparison of a software

component with respect to its golden version. For example, in [20] those golden test cases are

used to compare others test cases in order to make a test suite selection/reduction, or even

to generate differential unit tests which are a hybrid of unit and system tests. Computational

intelligence techniques have also been used in the area: Pedrycz and Vukovich presented in

[21] a fuzzy approach to cause-effect software modeling as a basis for designing test cases

in black-box testing, and Last and Friedman demonstrate the potential use of data mining

algorithms for automated induction of functional requirements [22].

2.1.2 Test Data Generation

Test data is required as the input for executing a test case. The selection of test data is a very

important activity because it is one of the key factors that affect the quality of testing process.

The Automated Test Data Generation (ATDG) general problem is formally unsolvable [23],

but research in this field is active.

Data generation for equivalence class partitioning (partition testing) was defined by Myers

[24] in 1978 as “a technique that partitions the input domain of a program into a finite number

of classes (sets), it then identifies a minimal set of well selected test cases to represent these

classes. There are two types of input equivalence classes, valid and invalid”. The equivalence

partitioning testing theory ensures that only one test case of each partition is needed to

evaluate the behavior of the program for the related partition. Close to that, boundary value

analysis is a method which examines the boundaries of the input equivalence classes. Adrion

et al. define it as “a selection technique in which test data are chosen to lie along boundaries

of the input domain (or output range) classes, data structures, procedure parameters” [25].

Cause-effect graphing is another technique that can be defined as either test case gener-

ation or test case selection [15], besides test data generation. Its aim is to select the correct

inputs to cover an entire effect set, and as such it deals with selection of test data. Cause-

effect graphing exercises the different combinations of inputs from the equivalence classes. A

different approach is found in random data generation, which consists of generating inputs at

random until a useful input is found [26].



B. Garćıa and J. C. Dueñas 477

The path-oriented data generation technique first transforms source code of the program

under test to a Control Flow Graph (CFG), i.e. a directed graph that represents its control

structure. Then, the CFG is used to determine the paths to cover and test data for these paths

are generated [24]. Constraint-based data generation is based on the path-oriented techniques

but uses algebraic constraints to describe the input variables which describe the conditions

necessary for the traversal of a given path. Constraint satisfaction problems are in general

NP-complete [27]. Dynamic Domain Reduction (DDR) is a test data generation technique

developed by DeMillo and Offutt that was originally employed as part of constraint-based

testing [28].

The Goal-Oriented Approach, developed by Korel [29], explores a set of data generation

techniques whose aim is to find input test data for a certain program path. Test data is selected

from the available pool of candidate test data to execute the selected goal. Metaheuristic

search techniques have also been used to find data at a reasonable computational cost [30].

2.1.3 Automated Test Oracles

A test oracle is a reliable source of expected outputs. The oracle problem is one of the biggest

challenges in software testing: How do we know that the software did what it was supposed to

do when we ran a given test case? [31].

Generally, expected outputs are manually generated based on specifications or developers

knowledge on system behavior [32]. These manual oracles are expensive and unreliable, but

complete automated test oracles can be expensive and sometimes impossible to provide [33].

The most important challenge to develop a complete automated test oracle is the expected

output generation. In order to provide a reliable oracle, it is suggested that there should be

a simulated model behaving like the SUT and automatically generate expected outputs for

every possible inputs specified in the specification. The survey on automated test oracles

carried out by Shahamiri on [33] describes the following methods:

• N-Version diverse systems and M-Model program (M-mp) testing. A gold version of the

SUT is used to automate the oracle [34].

• Decision tables. It is a requirements representation model used wherever there are

many conditions affecting responses. Di Lucca et al. applied decision tables in unit and

integration web testing for both client and server pages in [35].

• Info Fuzzy Network (IFN) regression tester. This approach uses artificial intelligence

methods for simulating the SUT behavior using it as test oracle [21].

• AI planner test oracle. It is applied as automated GUI (Graphic User Interface) test

oracle in [36], modeling the internal behavior of GUI using a representation of GUI

elements and actions.

• Artificial Neural Network (ANN) based test oracle. It requires generating a neural

network that simulates the software behavior by means of Input/Output (I/O) pairs as

training patterns. Since ANNs can memorize or learn from I/O pairs, it is possible to

apply them as test oracles [36].



478 Web Browsing Automation for Applications Quality Control

• I/O analysis-based automatic expected output generator. This method changes the

input values and executing the program while observing the outputs [37].

2.1.4 Automated Software Testing Frameworks

While automatic generation of tests is still a young field, the practice of automating testing

activities has gained attraction in last years. AST frameworks comprise abstract concepts,

processes, procedures and environments in which automated tests are designed, created and

implemented. These frameworks provide tools to address test planning, test design, test

construction, test execution, test results verification, and test reporting [38].

According to the Automated Testing Institute (ATI), there are three generations of AST

frameworks [3]. The 1st generation primarily comprises the linear approach to automated

test development. This approach typically yields a one-dimensional set of automated tests in

which each automated test is treated simply as an extension of its manual counterpart. This

approach is driven by the use of the R&P. The 2nd generation is comprised by two kinds of

frameworks: the data-driven (where data for scripts are stored in a database or a file external

to the script) and functional decomposition ones (process of producing user-defined functions

in such a way that automated test scripts can be constructed to achieve a testing objective by

combining these existing components. The 3rd generation includes model-based frameworks,

able to create and execute tests in a semi-intelligent manner; but the automation they provide

is far from complete.

2.2 Web Testing

Web-based applications testing (or simply web testing) shares the same objectives of tradi-

tional application testing, i.e. to ensure quality and finding defects in the required function-

ality and services [39]. However, compared with traditional software, the definition of the

testing levels must be adapted for web applications [40]:

• Unit web testing. There are different types of units that can be identified in a web

application: such as web pages, scripting modules, forms, applets, servlets, or other

web objects. Anyway, the basic unit that can be actually perceived and then tested is

a web page.

• Integration web testing. It considers a set of related web pages in order to assess how

they work together, and to identify failures due to their coupling. The web application

functional requirements can drive the process of page integration testing. The knowledge

of both the structure (white-box testing) and the behavior of the web application (black-

box testing) have to be considered.

• System web testing: Black-box (functional) testing techniques are usually employed to

accomplish system testing over the externally visible behavior of the application.

According to Di Lucca and Fasolino, the non-functional requirements are as important as

functional requirements for web applications, and therefore they should be taken into account

for system testing. Among them, performance, scalability, compatibility, accessibility, usabil-

ity, and security [41] are key for web applications. The following list presents a description of

the assessment activities that can be executed for these quality attributes:



B. Garćıa and J. C. Dueñas 479

• Performance: Verification of the specified system performances, such as response time

or service availability. It is evaluated by simulating many concurrent users accessing

over a defined time interval.

• Security: Verification of the effectiveness of the web defenses against undesired access

of unauthorized users or improper uses.

• Compatibility: Detection of defects due to the usage of different web server platforms

or client browsers.

• Usability: Verification of whether or not an application is easy to use.

• Accessibility: Verification that access to the content of the application is allowed even

in presence of reduced hardware/software configurations on the client side, or by users

with disabilities.

3 Related Work

Since 2008, in the Real-Time Systems and Telematic Services Architecture (a research group of

Universidad Politécnica de Madrid, Spain) we have been investigating, defining and applying

a range of techniques for the automated assessment of web applications. Our goal is to

improve the quality of the web application and expose possible failures, that is, deviations of

the application from the intended behavior. This article is the culmination of our previous

work in this field. Based on the test case generation proposed on [42][43] and the functional

testing approach presented in [44], this piece of research presents a proposal to evaluate

the overall quality of a web application based on the automatic traversal of its navigation.

Static analysis and dynamic testing is carried out in order to evaluate functional and also

non-functional requirements.

Previous efforts has been done by researchers and practitioners on automated assessment

of web applications based in the navigation. The idea of using a graph to represent static web

sites was initially proposed by Ricca and Tonella [45], obtaining navigation paths by means

of the node reduction algorithm [46]. Based on this method, they created the tools ReWeb

and TestWeb to support analysis and testing of web applications [47]. ReWeb downloads and

analyzes web pages with the purpose of building an UML model. TestWeb generates and

executes a set of test cases for a web application whose model was computed by ReWeb.

In this paper, we also use graphs to represent web navigation. Nevertheless, our proposal

to model navigation as a set of states and transitions instead of web pages and links supposes

a broader point of view, very convenient for asynchronous web systems. In addition, as

discussed in section 4.2.4, we proved that node reduction algorithm can be enhanced using

other mechanism available in the graph theory literature, i.e. the Chinese Postman Problem.

Benedikt et al. initiated the idea of “action sequences” in a patented tool called VeriWeb

[48]. VeriWeb implements a web crawler that can navigate automatically through dynamic

components of web sites, including form submissions and execution of client-side scripts.

Starting from a pre-defined URL, this work uses a non-deterministic algorithm that explores

execution paths in the state space reachable from that starting page. VeriWeb’s testing is

based on graphs where nodes are web pages and edges are explicit HTML links.



480 Web Browsing Automation for Applications Quality Control

We share the idea of setting a starting URL to automate web navigation while error

checking is performed. Nevertheless we do not use a web crawler due to the fact we think that

each state should be known beforehand in order to evaluate whether or not the navigation

is performed as supposed. Instead, in section 4.2 we propose several ways to define the

navigation structure (UML, R&P, and XML) previous to the automated path traversal.

WebVCR [49] and WebMacros [50] were pioneer systems for web navigation sequences

automation using the R&P approach. Both systems were able to record a reduced set of

events (clicks and filling in form fields) on a reduced set of elements (anchors and form-

related elements). In the execution phase they relied on HTTP clients that lacked the ability

to execute scripting code or to support AJAX (Asynchronous JavaScript And XML) requests.

In our approach R&P navigation models are also supported, but we use real browsers instead

of headless HTTP clients in order to overcome the limitation of these kind of clients.

4 Methodology

The methodology presented in this paper is focused on the automated evaluation of the

functional behavior of web applications. Moreover, we are going to assess the SUT response

in terms of the considered most significant non-functional requirements for web applications,

i.e. performance, security, compatibility, usability, and accessibility [41]. To carry out this

process, the assessment is done by the automated traversal of the navigation using a real

browser.

4.1 Foundations

Nowadays web applications are more and more complex, dynamic, and asynchronous. We con-

sider necessary to redefine the traditional web navigation as a traversal of web pages through

links. We propose a broader concept of navigation based on web states and transitions. A web

state Si is a functional unit that represents each of the intermediate points in the navigation

of a web application W.

W = {S1, S2, ..., Sn} (1)

Each web state Si is composed by a set of elements eij that can be accessed with the API

Document Object Model (DOM) defined by the World Wide Web Consortium (W3C). These

elements are the input and output units for the end users. HTML form fields are common

examples of input units (text fields, radio buttons, checkboxes, and so on). Output elements

can be plain text, images, multimedia and others.

Si = {ei1 , ei2 , ..., eim} (2)

States are connected by means of transitions. A transition is composed by a sequence of

atomic actions α performed on the elements eaj of a state Sa. As a result of the execution of

these actions, the web state switches from Sa to Sb. Atomic actions are based on the DOM

eventsa. Some examples are: click, dblclick, mouseover, keypress, etc.

Tab =
{
α(eax

), α(eay
), ..., α(eay

)
}
|Sa −→ Sb (3)

ahttp://www.w3.org/TR/DOM-Level-2-Events/events.html



B. Garćıa and J. C. Dueñas 481

The definition of a web application with these concepts enriches the classical notion of

web navigation through web pages and links. A web state is a broader concept than a web

page, because in its definition it fits complex forms of navigation, such as multiple frames or

iframes inside a web state. Furthermore, the concept of web transition is broader than web

link. For example, a transition can occur when the user performs a mouse over an item and

then click on any of the displayed options.

Following these guidelines, it is possible to define the navigation of a web application using

the URL which identifies the initial state, and the transitions applied, as the remaining states

are determined by the execution of transitions. This is particularly valuable for the definition

of asynchronous AJAX web applications, in which not every request to the server causes a

change of URL, but these requests indeed change the state of the application.

Once defined the navigation of a web application, we need to establish evaluation mech-

anisms through dynamic testing and static analysis (quality control, i.e. V&V). Thus, it is

necessary to define control and observation points. On the one hand, a control point is how

the test asks the element eaj
to do the action α. On the other hand an observation point

is how the SUT’s behavior is found out during the result verification phase. Control points

are specific in the testing domain since they exercise the SUT dynamically, while observa-

tion points are applicable to testing and analysis. As a result of these assessment activities,

verdicts are issued. These verdicts are aggregated as a quality control report.

In order to formalize all the concepts presented in this section, we present the metamodel

illustrated in figure 1. This metamodel represents web applications as an aggregation of web

states and transitions. Quality control (V&V) is also present in the metamodel, composed by

(dynamic) testing and (static) analysis activities.

4.2 Navigation Modeling

We pursue the goal of automation, so the elaboration or creation of the navigation models

should not represent a large effort in the development. Thus, we identify navigation informa-

tion from models that have been created through the application life cycle, and in some cases

we need additional models.

4.2.1 Unified Modeling Language Diagrams

If available, the UML diagrams used to describe system requirements are a good source to

find navigation information. We use the following:

• Use case diagrams offer a perspective of the functional requirements of the application

interaction with the actors.

• Activity diagrams show details of each use case. These diagrams describe the flow

within a use case. Therefore, activity diagrams for web applications describe the navi-

gation structure. Each activity in this diagram is mapped as a web state Si as defined

in equation 1.

• User interface diagrams are needed to represent the data handled by the web appli-

cation. Each field defined in this diagram is mapped as a web element eij as defined in

equation 2.



482 Web Browsing Automation for Applications Quality Control

Fig. 1. Web Application and Quality Control Metamodel

Some considerations should be taken into account by testers in order to link these diagrams

to the execution of the web application. First, the start node of each activity diagram is the

initial URL for that flow. Second, each text description in the links between activities (label

known as guard) describes the web transition as depicted in equation 3. We propose the

following notation to define these labels:

[element1, action1, < key1 >; ...; elementn, actionn, < keyn >] (4)

Each group elementi,actioni,<keyi> is an atomic action and it is separated from the next

one using a semicolon. Each elementi is a text label to locate the target HTML element in the

web state. Each actioni is a DOM event (click, dblclick, and so on). Finally, each <keyi> is

only present when a keyboard event (keypress, keydown, or keyup) is defined, and it represents

the triggering character.

In order to locate web elements, we translate each elementi label to HTML tags using

XPath. XPath queries are able to locate any element in an HTML document. Nevertheless,

these queries can be complex depending on the DOM structure of the page. For the sake of

simplicity, other alternatives are provided to locate elements. In addition to XPath, HTML

attributes are used to locate web elements. Thus, first we look for the attribute id. If it is

not present, then we look for the attribute name. This process is repeated iteratively with

the attributes title, value, and finally alt. If the element is not found neither with XPath nor

with HTML attributes, the element is searched by looking for the raw text description. The

pseudocode which implements this algorithm is presented in listing 1.



B. Garćıa and J. C. Dueñas 483

Fig. 2. Example of Navigation Modeling with UML Diagrams

Listing 1: Elements Location Algorithm

Function LookForElement ( e l ement i )
found = nothing
For Each frame/ i f rame ( i f any )

For Each HTML element
I f e l ement i i s XPath

found = Execute e l ement i as XPath expr e s s i on
Else

found = Look For e l ement i at id /name/ t i t l e / value / a l t
I f Not found

found = Look For e l ement i as t ex t
End I f

End I f
End For

End For
Return found

End Function

Figure 2 shows an example of the modeling of a navigation using UML as described in

this section. First, the use case defines the high-level functional requirement, in this case, a

login. Then the activity diagram defines the flow composed by two web states connected by

a transition. This transition may end in another state (if the login is correct), otherwise the

ending state is the same as the starting one (login not correct). The transition is composed

by two atomic actions: mouseover on an element, and click on another element. Finally, the

user interface diagrams describe the data of the two web states (LoginPage and HomePage).



484 Web Browsing Automation for Applications Quality Control

4.2.2 Record and Playback

The second mechanism we propose to model the web navigation is the R&P approach. It is a

useful way to represent the structure of a web application by recording interactions with the

application through a browser once the application is running. Obviously this mechanism is

used in a later phase of development lifecycle.

During the recording stage, the user interacts with the system manually via the user

interface while a testing tool records the interactions. During the playback stage, that tool

interacts with the system via the user interface to replay the original session. This approach is

very useful to automate the navigation, since a recorded script contains itself the navigation,

the data introduced, and the expected outcomes.

In this approach, a web state Si as defined in equation 2 is composed by all the elements

eij involved in the recording until a transition is detected. A transition, as defined in equation

2 is the set of atomic actions.

As discussed in section 6, the implementation of the R&P approach we select is based

on Selenium IDEb . This tool is a plugin that provides record, edit, debug, and playback

capabilities to a Firefox browser. Selenium IDE recordings are stored as HTML pages, in

which interactions with the web application are stored in a table. Each row in this table (<tr

>...</tr >) corresponds to a Selenium command (syntax command-target-value).

Listing 2 shows the equivalent navigation example described in section 4.2.1 (see figure

2), this time recorded with Selenium IDE and therefore stored as a HTML page.

Listing 2: Example of Navigation Modeling with the R&P approach

<?xml ve r s i o n=” 1 .0 ” encoding=”UTF−8”?>
< !DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0 S t r i c t //EN”
” http ://www. w3 . org /TR/xhtml1/DTD/xhtml1−s t r i c t . dtd”>
<html xmlns=” http ://www. w3 . org /1999/ xhtml” xml : lang=”en” lang=”en”>
<head prof i le=” http :// selenium−i d e . openqa . org / p r o f i l e s / t e s t−case ”>
<meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=UTF−8” />
<l ink rel=” selenium . base ” href=” http :// l o c a l h o s t :8080/ ” />
<t i t l e> l o g i n</ t i t l e>
</head>
<body>
<table cellpadding=”1” cellspacing=”1” border=”1”>
<thead>
<tr><td rowspan=”1” colspan=”3”> l o g i n</td></ tr>
</thead><tbody>
<tr>

<td>open</td>
<td>/Sample/</td>
<td></td>

</ tr>
<tr>

<td>type</td>
<td>id=user</td>
<td>Administrator</td>

bhttp://seleniumhq.org/projects/ide/



B. Garćıa and J. C. Dueñas 485

</ tr>
<tr>

<td>type</td>
<td>id=password</td>
<td>admin</td>

</ tr>
<tr>

<td>clickAndWait</td>
<td>id=frmDatos 0</td>
<td></td>

</ tr>
<tr>

<td>ver i f yText</td>
<td>id=input−t ex t</td>
<td>Welcome .</td>

</ tr>
</tbody></ table>
</body>
</html>

4.2.3 XML for Modeling the Navigation

Halfway between the UML models and R&P, we propose a syntax-neutral way of modeling

the navigation using a specific XML notation. We propose this specific format with the aim

of combining the benefits of previous models. On the one hand, this XML notation allows to

define the complete navigation structure (like UML) and not just a single path (like R&P).

On the other hand, with the XML notation we are able to define test oracles (like R&P).

An XML Schema Definition (XSD) defines this format, following the metamodel depicted

in figure 1. The initial state is always unique, since it identifies the entry point of the

navigation. It is a mandatory XML attribute (base). In addition, there is a finite number of

web states connected by transitions, as depicted in figure 3, which represents the XSD type

for a web site.

Each web state Si (see figure 4) is appointed with a unique identifier. Each state contain

a set of elements eij that can be split into two categories: data fields and oracles. On the one

hand, a data field contains:

• Locator : data field identifier. The function LookForElement described in listing 1 of

section 4.2.1 is also used to find each locator defined using this XML syntax.

• Ref : optional reference to link transition (attribute id in transitions).

• Type: data type, corresponding to the HTML input types, i.e. text, password, checkbox,

radio, submit, reset, file, hidden, image, button.

• Required : boolean value than indicates whether the data field is mandatory.

• Stereotype: category of the data field: string, integer, email, date, name, surname, or

address.



486 Web Browsing Automation for Applications Quality Control

Fig. 3. XSD Graphic Representation for a Web Application

Fig. 4. XSD Graphic Representation for a Web State

• Value: collection of values for the data field.

On the other hand, each oracle (assertion) contains the following information:

• Locator : web element identifier. The function LookForElement is also used with this

identifier.

• Ref : optional reference to link transition (attribute id in transitions).

• Type: comparison carried out in the oracle. It could be: text (assertion that compares

if the text of the element identified by locator is exactly equal to oracle value), notText

(the opposite of text), textPresent (assertion for a text contained in the in the element

identified by locator), textNotPresent (the opposite of textPresent), value (assertion

for the attribute value in the element identified by locator), notValue (the opposite of

value).

• Value: Collection of values for the oracle.

Finally, each web transition (see figure 5) is composed by an attribute called from (which

is the identifier of the source web state) and a collection of atomic actions and web targets

(attribute to). Similarly to notation used in equation 4, the action attribute is composed by:

• Target : Unique identifier (id field) of the destination web state.



B. Garćıa and J. C. Dueñas 487

Fig. 5. XSD Graphic Representation for a Web Transition

• Event : Literal that describes the DOM event (click, dbclick, mouseover, keydown, and

so on).

• Key : Optional field with the character that triggers the keyboard event (keypress, key-

down, or keyup).

Finally, each transition Tab switches the navigation from a source state Sa to a target state

Sb. This destination is defined in the attribute to, which has the following properties:

• State: Target state identification (id).

• Id : Optional identification for the transition, used for conditional data fields and oracles

tagged with the attribute ref.

• Weight : Numeric field that provides the capability to assign a priority to transitions.

The maximum value for this field is 10, and by default each transition is assigned a

weight of 5. For example, if two different transitions connect the same origin and

destination state, one of them can be marked with a higher priority over the other one

by establishing a higher weight. This figure will be used later in the algorithm used to

split the navigation into independent paths.

Listing 3 shows an equivalent navigation example to the described in section 4.2.1 (see

figure 2) and section 4.2.2 (see listing 2), but in this case using the custom XML notation

proposed in this section.

Listing 3: Example of Navigation Modeling with the XML Notation

<?xml version=” 1 .0 ” encoding=”ISO−8859−1” ?>
<webs i te xmlns=” h t t p : //www. d i t .upm. es / atp ”

xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t anc e ”
xs i : s chemaLocat ion=” ht t p : //www. d i t .upm. es / atp
h t t p : // a t e s t i n g p . s o u r c e f o r g e . net / atp . xsd”
base=” ht t p : // l o c a l h o s t : 8 0 8 0 /Sample/”>
<home id=” l o g i n ”>
<data l o c a t o r=” user ” r e f=” c o r r e c t ”>
<value>Administrator</ value>



488 Web Browsing Automation for Applications Quality Control

</ data>
<data l o c a t o r=”password” r e f=” c o r r e c t ”>
<value>admin</ value>

</ data>
<data l o c a t o r=”username” r e f=” i n c o r r e c t ”>
<value>bad−l o g i n</ value>

</ data>
<data l o c a t o r=”password” r e f=” i n c o r r e c t ”>
<value>bad−password</ value>

</ data>
</home>
<t r a n s i t i o n from=” l o g i n ”>
<ac t i on t a r g e t=” frmDatos 0 ” event=” c l i c k ” />
<to s t a t e=” i n i t ” id=” c o r r e c t ” />
<to s t a t e=” l o g i n ” id=” i n c o r r e c t ” />

</ t r a n s i t i o n>
<s t a t e id=” i n i t ”>
<a s s e r t l o c a t o r=” input−t ex t ” type=” text ” r e f=” c o r r e c t ”>
<value>Welcome .</ value>

</ a s s e r t>
</ s t a t e>

</ webs i te>

4.2.4 Finding the Paths

Given a navigation structure based on its states and transitions, we need to find different

navigation paths. This problem leads to graph theory. In this particular case we use weighted

multidigraphs, i.e. directed graphs (or digraphs, whose edges have orientation) in which a

number is assigned to each edge (weight) and it is allowed having multiple edges (two or more

edges that are incident to the same two vertices) and/or loops (edge that connects a vertex

to itself) [51]. Web states are modeled as vertices and transitions correspond to edges in the

multidigraph.

The selected coverage for the traversal of the equivalent multidigraph is all-paths, and

concretely the all-transition coverage [11]. This criterion establishes that each edge (web

transition) is traversed at least once (100% of transition coverage). This condition implies

that each state is visited at least once too. An additional condition is to try to traverse all

the paths in a single execution; while this could render useless the approach for some complex

web applications in which long periods of time and external interactions must elapse to get

a result (for example, granting an external permission to create a new user), this fits to the

currently usual web applications where most of interactions can be performed in a single or

small set of sessions.

Therefore, given a multidigraph, it is necessary to be able to select the different paths

within it, so we need an algorithm to break the multidigraph into non-hamiltonian paths (a

hamiltonian path visits each node exactly once) [52]. After literature review, the choice of

candidates was limited to: i) Node reduction algorithm [46] and ii) Chinese Postman Problem

(CPP) [53].

The node reduction algorithm finds out the path between two nodes, typically the entry



B. Garćıa and J. C. Dueñas 489

Fig. 6. Node Reduction vs. CPP Costs

and exit nodes by reducing the rest of the graph connecting these nodes. CPP is the problem

of finding a shortest circuit that visits every edge of a graph at least once. Both node reduction

and CPP fit with the objective of complete edge coverage, but they have a constraint that

cannot be ensured for any multidigraph modeling web navigation: the input digraphs must

be strongly connected. Therefore, in order to use node reduction or CPP in this approach,

the input multidigraph should be converted to strongly connected digraph.

A digraph is strongly connected if every vertex is reachable from every other vertex. To

increase connectivity, the graph theory offers several alternatives [51]: i) Reversing arcs; ii)

Deorienting arcs; iii) Adding arcs. In this paper, we propose a simple but effective to create

strongly digraphs for web navigations: adding virtual links which connects leaf nodes to the

start node in the navigation. The added virtual links is later translated as a new path (the

additive operator in the graph algebra) when reducing the graph into its independent paths.

In order to choose between node reduction and CPP we carried out a laboratory experi-

ment. Random multidigraphs have been created using an incremental number of links from

1 to 50. For each multidigraph both algorithms were executed, comparing its cost (i.e. the

number of visited links to traverse the graph). The experiment was carried out in a PC Intel

Core2 Quad (2.66 GHz) with 4 GB of RAM memory. This experiment has been repeated 100

times. Finally, we draw the mean of the cost with respect to the number of links in figure 6.

In view of the results, we can draw a significant conclusion: CPP offered better behavior

than node reduction in terms of cost. For that reason, we use the CPP algorithm created by

Thimbleby [53] to find out the set of independent paths within a multidigraph representing a

web application navigation.

5 Automated Assessment

So far we have described a method to model web navigation and a way to find its independent

paths. While traveling along these paths, testing and static analysis should be carried out in

each page in order to assess the selected quality attributes. In testing terms, the model of a

web application using a multidigraph corresponds to the system testing level. The evaluation

of each independent path can be considered as integration testing, and the assessment of



490 Web Browsing Automation for Applications Quality Control

Fig. 7. Assessment Levels

each single page is the lowest level, i.e. unit testing. This approach is illustrated in figure

7. In this section we detail the processes related to automated functional and non-functional

assessment.

5.1 Functional Evaluation

We propose an automated assessment process divided into four steps, as follows:

1. Pre-automation. Definition of the navigation structure using any of the proposed mech-

anisms (UML, R&P or XML).

2. Configuration. Test case generation settings are established. We need to set which real

browser is going to be used. In addition, a test data dictionary can be also provided.

This dictionary contains a collection of data that can be used as input for test cases.

3. Test case generation. In this step test cases and test data (input and output) are derived

using the artifacts involved in the two previous stages. Test data are going to be stored

by means of decision tables.

4. Post-automation. After the automated test case generation, additional test input data

and expected outcomes can be manually added in the decision tables.

This process is illustrated in figure 8. Test case generation implies a set of activities carried

out by different modules, namely:

Test logic generation. This module takes as input the model from the pre-automation

stage. This model (UML, R&P or XML) is converted to a strongly connected multidigraph as

depicted in section 4.2.4. Then CPP is executed to find the navigation paths. This behavior

is implemented in the component called White-Box Parser.

Test data generation. This module extracts test data and expected outcome from the

input model (Black-Box Parser component). XML and R&P models can include test data and

expected outcome. Regarding test data (input), the parser extracts the value, data type, and

stereotype. When the value is not provided (e.g. in UML models), the data type/stereotype is

used to incorporate test data based on the test data dictionary provided in the configuration

phase. The component called randomizer generates a random pointer to select a specific value

of test data within the dictionary using its category (type/stereotype). Therefore, the data

required for the test cases consist of the aggregation of three different sources: i) Data from



B. Garćıa and J. C. Dueñas 491

the XML and R&P models; ii) Randomly generated data from a test data dictionary; iii)

Optionally, additional data can be included manually as new rows in the decision table in the

post-automation phase.

Test oracle generation. This module collects data from the response of the SUT and

extracts the following information: i) Navigation state; ii) Actual data returned by the appli-

cation. This information is used to perform two kinds of assessment:

• White-box assessment. It is made by evaluating the expected state. As depicted in

equation 2, we consider a web state as the aggregation of web elements. Therefore,

the expected state is a set of web elements as defined in the navigation model (UML,

XML, or R&P). In order to verify this assertion, all the expected web elements must be

present in the current web state.

• Black-box assessment. This module gives verdicts by comparing expected with actual

data. The expected data come from the black-box parser of the test data module.

Additional expected data can be added in the post-automation stage by adding new

rows in the decision table (see table 1).

Verdicts from white and black-box oracles feed the test report. The browser component is

responsible for orchestrating the automation. This entity takes as input the test data and the

information about the paths, i.e. the set of states to be traversed and the transitions between

these states. Thus, the browser is in charge of performing the navigation using a real browser

by exercising the client-side of the web application under test using the path information and

test data. As a result, the web under test returns the real value of the navigation in terms of

functionality (output data) and structure (navigation states).

Test data (input and output) are stored in decision tables as depicted in table 1. Each

input (in elementi) and output element (out elementj) is located in each web state using the

LookForElement algorithm described in listing 1 (section 4.2.1).

Table 1. Decision Table Structure

Test data (input) Expected outcome (output)
in element1 ... in elementn out element1 ... out elementm
data1 1 ... data1 n outcoume1 1 ... outcome1 m

data2 1 ... data2 n outcoume2 1 ... outcome2 m

... ... ... ... ... ...

5.2 Non-Functional Evaluation

Regarding performance testing, our approach consist on a load injector that simulates con-

current users navigating the SUT. In the meantime, measures of response time, throughput

and bitrate values are taken. These measures are compared against pre-defined thresholds (in

milliseconds, samples/second, and KB/second) to identify potential errors. These values are

established in the configuration stage defined in the previous section.

The automated assessment of the security is done by means of a black-box web scanner.

This component looks for scripts and forms where it can inject data for each of the states

within the navigation paths, observing its response in order to find vulnerabilities. These



492 Web Browsing Automation for Applications Quality Control

Fig. 8. Automated Functional Assessment Process



B. Garćıa and J. C. Dueñas 493

attacks correspond to known security problems. The vulnerabilities detected in our approach

are:

• Cross-site scripting (XSS) vulnerabilities. This vulnerability occurs when an attacker

submits malicious data to the SUT.

• Injection vulnerabilities. This includes data injection, command injection, resource

injection, and SQL injection.

• Unvalidated input. It includes tainted data and forms, improper use of hidden fields, use

of unvalidated data in array index, in function call, in a format string, in loop condition,

in memory allocation and array allocation.

Regarding compatibility, we carry out static analysis of the source code of the different

states of the web application to check that HTML and CSS code complies to standards, so

they can be displayed properly in the main browsers.

The evaluation of usability and accessibility are difficult to perform automatically, since

these kinds of assessment usually involve manual or user testing to identify defects of potential

problems. To accomplish this automated assessment we use guideline inspectors. This kind

of evaluation is based on the comparison of a set of rules (best practices, patterns, bad smells,

and fault description) with the HTML/CSS source code of each web state in the navigation.

We are going to perform automated analysis according to the Web Content Accessibility

Guidelines (WCAG) 2.0 level AA, by checking:

• Text alternatives. Text alternatives should be provided for any non-text content (images,

audio, video).

• Readability. Text content should be readable and understandable (e.g. presence of label

tag to describe forms elements, content should be easy to distinguish, etc).

• Navigability: Ways to help users to navigate should be provided, find contents, and

determine where they are (titles, headings, etc).

6 Architecture and Implementation

The framework which implements this proposal has been named Automatic Testing Platform

(ATP)c and has been released as open-source under the terms of Apache license 2.0. Following

the proposed processes to describe navigation, ATP accepts three kinds of inputs:

• UML diagrams. These models are created using Enterprise Architectd. XMI (XML

Metadata Interchange) is the format in which the models are exported.

• Recordings of interactions with the SUT. These recordings are made with the tool called

Selenium IDE, and stored as HTML files.

• XML navigation models, based on the proposed XSD schema.

chttp://atestingp.sourceforge.net/
dhttp://www.sparxsystems.com.au/



494 Web Browsing Automation for Applications Quality Control

Fig. 9. ATP Architecture

Fig. 10. Decision Table in Excel Example

The test case generation strategy is divided into three stages (see figure 9). First, we pro-

ceed to analyze the information input by an entity called collector. This component extracts

relevant information that is serialized to the transformer, which prepares the information in

the form of a key-value map that is interpreted by the entity called writer, who is in charge

of generating the test cases. The aggregation of these three entities (collector, processor and

writer) is called generator [42][43]. In ATP, there are registered generators for each of the

considered factors, i.e. functionality [44], performance, security, compatibility, usability, and

accessibility.

ATP has been developed using Java. Test cases are derived using JUnite. An Antf script

is also generated to execute these test cases. The decision table with the test data and

expected outcomes are stored using Excel sheets, so an Excel file represents each path in the

navigation and each sheet in the file corresponds to each web state in the path. The first

row in each sheet contains labels to locate the web elements, which is translated using the

LookForElement algorithm described in listing 1. An empty column separates the test data

(input) of the expected outcome (output). In the UML example depicted in figure 2, two

Excel files are generated since there are two independent paths: i) LoginPage → HomePage;

ii) LoginPage → LoginPage. Regarding the first path, the generated Excel file is as illustrated

in figure 10.

ATP provides a default test data dictionary. This dictionary is implemented using an-

other Excel spreadsheet. This document contains test data categorized using the stereotypes

(strings, first names, last names, addresses, dates, and email providers) as depicted in section

4.2.3. These categories are organized as independent sheets in the dictionary.

ehttp://www.junit.org/
fhttp://ant.apache.org/



B. Garćıa and J. C. Dueñas 495

All of the automatically generated artifacts by ATP are encapsulated as a Java Eclipseg

project. As illustrated in figure 11, to implement ATP we selected several off-the-shelf open

source tools:

• Selenium RCh. It provides a way to perform automated navigation of the web states

and transitions in a real browser (Chrome, Firefox, and Explorer are supported).

• JMeteri. It provides a load injector to carry out performance testing.

• Wapitij. Web scanner to audit the web security.

• JTidyk. Static analyzer of HTML code.

• CSSValidatorl. Static analyzer of CSS code.

• WebSATm. Static analyzer of usability HTML code.

• A-Checkern. Static analyzer of accessibility HTML code.

• JUNGo. Library to work with graphs, used internally to model navigation.

• FreeMarkerp. Templates library to generate the source code for the test cases.

• JExcelAPIq. Library to read, write, and modify Excel spreadsheets.

• JDOMr. Library for manipulating XML data from Java.

• Jerseys. Library for accessing web services from Java.

ATP aggregates test and analysis verdicts as an HTML report (see an example in figure

12). This report contains the found defects grouped as functional, performance, security,

compatibility, usability and accessibility. In addition, other useful information is compiled

by ATP: error description, snapshot of each of the traversed web state, performance charts,

HTTP response codes, static source code (HTML/CSS), number of received bytes, and re-

sponse time.

ghttp://www.eclipse.org/
hhttp://seleniumhq.org/
i http://jakarta.apache.org/jmeter/
jhttp://wapiti.sourceforge.net/
khttp://jtidy.sourceforge.net/
l http://jigsaw.w3.org/css-validator/
mhttp://zing.ncsl.nist.gov/WebTools/WebSAT/overview.html
nhttp://achecker.ca/checker/index.php
ohttp://jung.sourceforge.net/
phttp://freemarker.sourceforge.net/
qhttp://jexcelapi.sourceforge.net/
rhttp://www.jdom.org/
shttp://jersey.java.net/



496 Web Browsing Automation for Applications Quality Control

Fig. 11. ATP Implementation

Fig. 12. ATP Report



B. Garćıa and J. C. Dueñas 497

7 Validation

In order to carry out the validation of our approach, an industrial case study has been per-

formed. The Research Questions (RQ) that drove this case study were the following:

• RQ1: Does the SUT accomplish its functional requirements?

• RQ2: Does the SUT have an acceptable behavior in terms of non-functional require-

ments?

• RQ3: Is ATP able to reveal defects?

• RQ4: What are the advantages and disadvantages of different types of input (UML,

XML, and R&P) to ATP?

• RQ5: Does ATP provide any advantages in testing and analysis (defects revealed, re-

duction of efforts, and so on)?

The selected SUT is an electronic invoice web management system created by Universidad

Politécnica de Madrid in the context of an innovation project. This web has been developed

using Java technology with Spring Framework in the server-side and XHTML, CSS, and

JavaScript in the client-side. The presentation layer is based on Apache Struts and JSPs.

Web services have been performed using Apache CXF. Security management is used by Spring

Security. The databases used are MySQL and Oracle, accessed by means of Hibernate with

C3P0. The application server is JBoss. As a result, the SUT has more than 27.000 lines of

code, and during its development lifecycle manual testing was performed during 1 month by

1 tester. In this process 7 defects were found.

In order to perform the case study, first we need the input models. ATP must use one of

the three types of entries (XML, XMI, or R&P). In order to perform a complete case study,

the three kinds of input were used. ATP completed the assessment of the SUT in 1 day.

Moreover, ATP found 2184 defects in the SUT. Table 2 summarizes these results. In this

table, the defects found are structured as follows:

• Functional. In this category ATP founds two types of defects: i) Warnings. Broken

links detected in each of the web states during the path traversal. ii) Errors: Navigation

errors, i.e. unexpected states in the navigation.

• Performance. Concurrent exercise of the SUT can also detect navigation errors. Perfor-

mance warnings are reported when the measured values for response time, throughput

and bitrate are out of range.

• Security: Following the OWASP (Open Web Application Security Project) rating method-

ology, ATP classifies security risks into three categories (low, medium, and high), de-

pending on the severity of the detected vulnerability.

• Compatibility. ATP classifies compatibility issues in two groups: i) Warnings: potential

compatibility problems. For example empty tags, deprecated attributes, etc. ii) Errors:

parse errors in HTML or CSS. For example not allowed tags, bad values in attributes,

etc.



498 Web Browsing Automation for Applications Quality Control

• Usability. Each defect for this quality attribute is categorized as a warning. Examples

of this kind of evaluation are blinking texts, absence of head tag information, etc.

• Accessibility. Divided into three categories: i) Likely: Problems identified as probable

barriers, but require a human to make a decision. For example, readability issues.

ii) Potential: These problems also require a human that can make a judgment. For

example, format or color issues. iii) Errors: Known problems as accessibility barrier,

for example, not providing text alternatives for any non-text content.

Table 2. Case Study Results

Functionality Performance Security Compatibility Usability Accessibility
Test Case Warning Error Warning Error Low Medium High Warning Error Warning Likely Potential Error

login 0 0 3 2 43 0 0 65 40 150 42 87 20
new company 0 0 2 1 29 0 0 74 40 130 29 60 14
edit company 2 0 1 1 35 0 0 112 60 184 27 54 13

new admin 1 0 1 1 29 0 0 69 40 130 29 60 14
edit admin 1 0 1 1 35 0 0 117 60 181 27 54 13

TOTAL 4 0 8 6 171 0 0 437 240 775 154 315 74

In light of these results we can draw certain conclusions in order to answer the research

questions. Regarding RQ1 (Does the SUT accomplish its functional requirements? ) we con-

clude that the system has been well implemented since no navigation problem has been

detected. The only functionality defects found were warnings caused by broken links.

Let’s move now to RQ2 (Does the SUT have an acceptable behavior in terms of non-

functional requirements? ). Regarding performance, warnings and errors were detected. This

means that some expected figures on response time, throughput and bitrate are out of range.

In addition, navigation errors are detected when performing concurrent requests to the server.

Regarding security, only low security errors were detected. Regarding compatibility, usability,

and accessibility, many defects were detected. All in all, we conclude that the system has

an acceptable behavior in terms of security, but it can be improved in terms of performance,

compatibility, usability and accessibility.

The answer to RQ3 (Is ATP able to reveal defects in web applications? ) is straightforward:

it does. ATP has proved to be an effective tool to find warning, errors, and potential problems.

In addition, it is fully automated and data-driven, so it can be a useful framework for web

developers and testers.

As for RQ4 (What are the advantages and disadvantages of different types of input (UML,

XML, and R&P) to ATP? ) we found these conclusions:

• UML: Pros: i) Analysis/design models are reused for assessment. ii) Every possible

path is depicted in the models. Cons: i) It is not possible to attach test data nor oracle

in the models. ii) Post-automation step is mandatory to establish expected outcomes.

• XML: Pros: i) Every possible path can be depicted using XML files. ii) Data and oracles

can be attached to XML files. Cons: i) The XML files must be coded and maintained

by hand.

• R&P: Pros: i) The creation of the scripts is done using Selenium IDE against the real

application. ii) Data and oracles can be attached to HTML scripts. Cons: i) Each



B. Garćıa and J. C. Dueñas 499

recording is linear, therefore there is always a single path in each HTML script. ii)

Error paths should be defined in different scripts. iii) ATP uses a subset of Selenium

commands, so the recorded script should be done using only that subset.

Finally, for RQ5 (Does ATP provide any advantages in testing and analysis (defects re-

vealed, reduction of efforts, and so on)? ), we conclude that ATP does help to perform quality

control and find defects in a short amount of time, reducing efforts. The main advantage

of the presented approach is that it is based on the navigation of web applications in which

each state is a point of observation reached via the previous states and transitions. In the

traditional testing/analysis approach, a tester would need to do this browsing manually. This

fact involves performing the same actions in a mechanical way again and again. Furthermore,

in the case study we are able to compare the figures of the effort in testing with the results

of assessing this application with ATP. The effort is much lower by using ATP (1 day vs.

1 month). In addition, the number of defects found by ATP is significantly higher, and the

kind of assessment is much more complete (functionality, performance, security, compatibility,

usability and accessibility vs. only functionality).

8 Conclusions

This paper proposes a set of mechanisms to automate quality control of web applications from

the client side. The first conclusion has to do with the possibility of assessment automation.

To automate the evaluation of quality attributes at least the expected results of execution

are required. In this paper, the automation of tests and analysis have been made on the

basis of a pre-defined navigation structure. To define the navigation structure we used three

types of methods: UML (use case diagrams, activity diagrams, and user interface diagrams);

recordings of interaction with the web application (R&P), and XML files created with a

specific notation.

A valuable contribution of this work is the definition of a web navigation using states

and transitions instead of the traditional way of web pages and links. Using this approach,

modern asynchronous web applications can be modeled easily since it is not necessary to rely

on HTTP request and responses to change the functional state of a web application. Another

important conclusion of this paper is the value of grey-box (mixture of black-box and white-

box) methods to assess web applications. On the one hand, the structure of the SUT should

be known beforehand the V&V activities, i.e. the navigation structure (white-box). On the

other hand, it is also important to know the behavior of the expected outcome, i.e. the output

data (black-box). In this paper we have implemented this mechanism using simple scalable

decision tables implemented by common spreadsheets.

Regarding the work on digraphs, we conclude that the most suitable algorithm to find the

independent paths in a multidigraph is CPP. To fit the algorithm to the specific features of

the web navigation, the input digraph must be converted into a strongly connected digraph

by adding arcs from the leaves nodes to the root. Another important consideration is that it

is difficult to get assessment completely automated. In this work we had the aim of assessing

functional requirements and the most significant non-functional requirements for web appli-

cations. We conclude that following the methodology and processes depicted in this paper a

reasonable reduction of effort in the development can be achieved.



500 Web Browsing Automation for Applications Quality Control

Finally, we conclude that the developed framework in this research (ATP) can be a valuable

tool for web developers and testers. It can be seen as the aggregation of the three kinds of

AST frameworks defined by ATI: 1st generation (linear scripts based on R&P); 2nd generation

(data-driven approach that stores test data and expected outcomes in spreadsheets); 3rd

generation (model-based approaches that use the navigation structure of the SUT to drive

the assessment).

References

1. S.A. Becker and A. Berkemeyer. Rapid application design and testing of web usability. MultiMedia,
IEEE, 9(4):38 – 46, oct-dec 2002.

2. E. Dustin, T. Garrett, and B. Gauf. Implementing Automated Software Testing: How to Save
Time and Lower Costs While Raising Quality. Prentice Hall, 2009.

3. Automated Testing Institute. Test Automation Body of Knowledge (TABOK). Automated Testing
Institute, 2011.

4. ISO. Software engineering – Product quality – Part 1: Quality model. Technical Report ISO/IEC
9126-1, International Organization for Standardization, 2001.

5. The Institute of Electrical and Eletronics Engineers. Ieee standard glossary of software engineering
terminology. IEEE Standard, September 1990.

6. J. Tian. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement.
Wiley-IEEE Computer Society Press, 1 edition, 2005.

7. I. Sommerville. Software Engineering 9. Pearson Education, 2011.
8. A. Abran, P. Bourque, R. Dupuis, J.W. Moore, and L.L. Tripp. Guide to the Software Engineering

Body of Knowledge - SWEBOK. IEEE Press, Piscataway, NJ, USA, 2004 version edition, 2004.
9. A. Bertolino. Software testing research: Achievements, challenges, dreams. In 2007 Future of

Software Engineering, FOSE ’07, pages 85–103, Washington, DC, USA, 2007. IEEE Computer
Society.

10. P. Baker, Z.R. Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and C. Williams. Model-Driven
Testing: Using the UML Testing Profile. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2007.

11. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

12. ITU-T. ITU-T Rec. Z.100 – Formal description techniques (FDT) – Specification and Description
Language (SDL), 2002.

13. J.M. Spivey. Specifying a real-time kernel. IEEE Softw., 7(5):21–28, September 1990.
14. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with UML. Addison-

Wesley, 1999.
15. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, October 1992.
16. J.V. Guttag, J.J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing. Larch: Languages

and tools for formal specification. Springer-Verlag, 1993.
17. A. Sirotkin. Web application testing with selenium. Linux J., 2010(192), April 2010.
18. J. Su and P.R. Ritter. Experience in testing the motif interface. IEEE Softw., 8(2):26–33, March

1991.
19. P.A. Vogel. An integrated general purpose automated test environment. In Proceedings of the

1993 ACM SIGSOFT international symposium on Software testing and analysis, ISSTA ’93, pages
61–69, New York, NY, USA, 1993. ACM.

20. S. Elbaum, C.H. Nee, M.B. Dwyer, and M. Jorde. Carving and replaying differential unit test
cases from system test cases. IEEE Transactions on Software Engineering, 35(1):29–45, 2009.

21. M. Last. Multi-objective classification with info-fuzzy networks. In ECML, pages 239–249, 2004.
22. N. Tracey, J. Clark, and K. Mander. Automated program flaw finding using simulated annealing.

In Proceedings of the 1998 ACM SIGSOFT international symposium on Software testing and



B. Garćıa and J. C. Dueñas 501

analysis, ISSTA ’98, pages 73–81, New York, NY, USA, 1998. ACM.
23. J. Offutt. Automatically Generating Test Data for Web Applications. 5th Annual Google Test

Automation Conference (GTAC), 2010.
24. G.J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY, USA, 1979.
25. W.R. Adrion, M.A. Branstad, and J.C. Cherniavsky. Validation, verification, and testing of com-

puter software. ACM Comput. Surv., 14(2):159–192, June 1982.
26. W. Duran, J and S.C. Ntafos. An evaluation of random testing. IEEE Trans. Softw. Eng.,

10(4):438–444, July 1984.
27. P. McMinn. Search-based software test data generation: a survey: Research articles. Softw. Test.

Verif. Reliab., 14(2):105–156, June 2004.
28. R.A. DeMillo and A.J. Offutt. Constraint-based automatic test data generation. IEEE Trans.

Softw. Eng., 17(9):900–910, September 1991.
29. B. Korel. Dynamic method of software test data generation. Softw. Test., Verif. Reliab., 2(4):203–

213, 1992.
30. M. Harman. The current state and future of search based software engineering. In 2007 Future of

Software Engineering, FOSE ’07, pages 342–357, Washington, DC, USA, 2007. IEEE Computer
Society.

31. J.A. Whittaker. Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test
Design. Addison-Wesley Professional, 1st edition, 2009.

32. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press, New
York, NY, USA, 1 edition, 2008.

33. S.R. Shahamiri, W.M. Kadir, and S.Z. Mohd-Hashim. A comparative study on automated software
test oracle methods. In Proceedings of the 2009 Fourth International Conference on Software
Engineering Advances, ICSEA ’09, pages 140–145, Washington, DC, USA, 2009. IEEE Computer
Society.

34. L.I. Manolache and D.G. Kourie. Software testing using model programs. Softw. Pract. Exper.,
31(13):1211–1236, October 2001.

35. G.A. Di Lucca, A.R. Fasolino, F. Faralli, and U. Carlini. Testing web applications. In ICSM,
pages 310–319, 2002.

36. M. Vanmali, M. Last, and A. Kandel. Using a neural network in the software testing process. Int.
J. Intell. Syst., 17(1):45–62, 2002.

37. M.S. Phadke. Planning efficient software tests. CrossTalk - Journal of Defense Software Engi-
neering, 10(10):11–15, October 1997.

38. D.J. Mosley and B. Posey. Just Enough Software Test Automation. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2002.

39. E. Mendes and N. Mosley. Web Engineering. Springer, 2010.
40. G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, editors. Web Engineering: Modelling and Imple-

menting Web Applications. Springer, 2008.
41. G.A. Di Lucca and A.R. Fasolino. Testing web-based applications: The state of the art and future

trends. Inf. Softw. Technol., 48(12):1172–1186, December 2006.
42. B. Garćıa, J.C. Dueñas, and H.A. Parada. Automatic functional and structural test case generation

for web applications based on agile frameworks. In 5th International Workshop on Automated
Specification and Verification of Web Systems (WWV 2009), pages 99–114, Hagenberg, Austria,
July 2009.

43. B. Garćıa, J.C. Dueñas, and H.A. Parada. Functional testing based on web navigation with
contracts. In IADIS International Conference (WWW/INTERNET), pages 168–173, Rome, Italy,
November 2009.

44. B. Garćıa and J.C. Dueñas. Automated functional testing based on the navigation of web applica-
tions. In 7th International Workshop on Automated Specification and Verification of Web Systems
(WWV 2011), pages 49–65, Reykjavik, Iceland, June 2011.

45. F. Ricca and P. Tonella. Web site analysis: structure and evolution. In Software Maintenance,
2000. Proceedings. International Conference on, pages 76–86, 2000.



502 Web Browsing Automation for Applications Quality Control

46. F. Ricca and P. Tonella. Analysis and testing of web applications. In Proceedings of the 23rd
International Conference on Software Engineering, ICSE ’01, pages 25–34, Washington, DC, USA,
2001. IEEE Computer Society.

47. F. Ricca and P. Tonella. Detecting anomaly and failure in web applications. MultiMedia, IEEE,
13(2):44–51, April 2006.

48. M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Automatically testing dynamic web sites. In
In Proceedings of 11th International World Wide Web Conference, WWW 2002, 2002.

49. V. Anupam, J. Freire, B. Kumar, and D. Lieuwen. Automating web navigation with the webvcr.
Comput. Netw., 33(1-6):503–517, June 2000.

50. A. Safonov, J. Konstan, and J. Carlis. Beyond hard-to-reach pages: Interactive, parametric web
macros. In In Proceedings of of the 7th Conference on Human Factors & the Web, 2001.

51. J. Bang-Jensen and G.Z. Gutin. Digraphs: Theory, Algorithms and Applications. Springer Pub-
lishing Company, Incorporated, 2nd edition, 2008.

52. B. Hasling, H. Goetz, and K. Beetz. Model based testing of system requirements using uml use
case models. Software Testing, Verification, and Validation, 2008 1st International Conference
on, pages 367–376, April 2008.

53. H. Thimbleby. The directed chinese postman problem. In journal of Software - Practice and
Experience, 33:2003, 2003.


