
Journal of Web Engineering, Vol. 14, No.3&4 (2015) 301-324 

© Rinton Press 
 

A NOVEL ONTOLOGY EVOLUTION METHODOLOGY 

ALI RAHNAMA    AHMAD ABDOLLAHZADEH BARFOROUSH 

 
Computer Engineering and IT department, Amirkabir University of Technology 

424 Hafez Ave., Tehran, Iran 

{arahnama, ahmad}@aut.ac.ir 

 
Received November 11, 2013 

Revised December 1, 2014 

 

In recent years, ontology engineering has received a great amount of attention and has advanced greatly. 

Today, ontologies are finding their role in knowledge and information systems. To keep up with the 

dynamic aspect of knowledge, the need for ontology evolution systems has emerged. Such systems help 

facilitate the management of changes on the ontology in a systematic way. To define a systematic way of 

facilitating management of changes, a process model is needed. Therefore in this paper, we present our 

novel ontology evolution process model which uses ontology change rules to achieve this goal. These 

change rules are defined via the SWRL rule representation language. This new approach to ontology 

evolution helps the ontology evolution process by preserving the consistency of the ontology throughout 

the ontology evolution process. To classify ontology changes, we will also present our novel taxonomy of 

ontology changes. To test the feasibility of our presented process model, we have implemented the 

OntoEvol system. It is also presented in this paper. 

Key words: Ontology Evolution, Ontology Maintenance, Ontology Changes, Knowledge 

Management 

Communicated by: D. Schwabe & R. Mizoguchi 

 

 

1 Introduction  

Over the past years, ontology engineering has received a great amount of attention and has advanced 

greatly. Today, ontologies are finding their role in knowledge and information systems. With the 

application of these ontologies in such systems and the fact that knowledge is not static, the need of 

keeping the ontology up to date has emerged. To keep up with this dynamic aspect of domain 

knowledge, the need for ontology evolution systems has emerged. Such systems help facilitate the 

management of changes on the ontology in a systematic way. Ontology Evolution is the timely 

adaptation of an ontology to changed business requirements, to trends in ontology instances and 

patterns of usage of the ontology-based application, and the consistent management/propagation of 

changes to dependent elements [1].  

The distinction between the concepts ontology management, ontology modification, ontology 

evolution, and ontology versioning should be clarified, which are presented in [2] as:  

• Ontology management is the whole set of methods and techniques that is necessary to 

efficiently use multiple variants of ontologies from possibly different sources for different 



 

 

302    A Novel Ontology Evolution Methodology 

 

tasks. Therefore, an ontology management system should be a framework for creating, 

modifying, versioning, querying, and storing ontologies. It should allow an application to 

work with an ontology without worrying about how the ontology is stored and accessed, 

how queries are processed, etc. 

• Ontology modification is accommodated when an ontology management system allows 

changes to the ontology that is in the use, without considering the consistency. 

• Ontology evolution is accommodated when an ontology management system facilitates the 

modification of an ontology by preserving its consistency. 

• Ontology versioning is accommodated when an ontology system management allows 

handling of ontology changes by creating and managing different versions of it. 

So as stated above, ontology evolution is the activity of facilitating the modification of an 

ontology by preserving its consistency [3]. To better clarify this definition, we define ontology 

evolution as follows: 

Definition (ontology evolution): 

Given the ontology O and the set of ontology change operations Op ≡ 

{Op1,Op2,⋯,Opx}. ontology evolution is the application of change operations 

Op1,Op2,⋯,Opx  to ontology O  O′  for which the resulting  O′ is a consistent 

ontology. 

In other words, ontology evolution is the process of applying a set of changes on an ontology and 

creating a new version of the ontology which is consistent. In this process, one of the hardest tasks is 

insuring that the evolved ontology is consistent. For this reason, we decided to find a process that 

applies the changes on the ontology, but doesn‘t need to check for its consistency. Our proposed 

ontology evolution process model facilitates this exact goal by only implementing safe ontology 

changes to the initial ontology, so that the resulting ontology will not become inconsistent, therefore 

the check is not needed. Therefore, to help facilitate ontology evolution, we present our novel ontology 

evolution process model which uses ontology change rules. These change rules are defined via the 

SWRL rule representation language. This new approach to ontology evolution helps the ontology 

evolution process by preserving the consistency of the ontology throughout the ontology evolution 

process. The reason for this is that only changes that preserve the consistency are performed on the 

ontology. Therefore, the consistency of the ontology is preserved. Also, our approach to ontology 

evolution can help the ontology engineer by presenting an analysis of the type of changes that are to be 

performed on the ontology beforehand, so that the ontology engineer can be sure that the intended 

changes are being performed. We will present an example of it in section 4.  In this paper, we will also 

present the OntoEvol system which is used to test the feasibility of our approach. The reason for this is 

that in order to show the feasibility of our proposed process model, we need 1) a change taxonomy (to 

know what kind of changes may occur and control the requested changes), 2) SWRL rules (to provide 

a means of defining the relations between different changes), and 3) the OntoEvol system (to perform 

all the phases in the process model and provide the results.). The remainder of this paper is as follows: 

First, we will present related work and research done in the ontology evolution field. Second, we will 

present our approach and process model to ontology evolution. Third, we will present our taxonomy of 



 

 

A. Rahnama and A. A. Barforoush   303 

ontology changes which facilitates the classification of ontology changes. Fourth, we will present our 

SWRL rules. Fifth, the OntoEvol system is presented. Sixth, we present our results and define future 

work. 

2 Related Work  

The ontology evolution field of research has been an active field over the past decade.  Many 

researches have discussed the characteristics of an ontology evolution process [1], [4] and several 

ontology evolution approaches have been proposed in literature [2], [3], [5], [6].  

The first and most referenced work in this field is the work of Stojanovic [2]. Stojanovic 

presented a six phase process for performing ontology evolution. It is presented in figure 1. Stojanovic 

defined ontology evolution as ―Ontology Evolution is the timely adaptation of an ontology to the 

arisen changes and the consistent propagation of these changes to dependent artifacts‖.  

 

Figure 1  Six phase ontology evolution process presented by Stojanovic 

Also, Flouris et. al. [7] define ontology evolution as ―the process of modifying an ontology in 

response to a certain change in the domain or its conceptualization‖. They also differentiate it from 

ontology versioning as, ―ontology evolution is restricted to the process of modifying an ontology while 

maintaining its validity, whereas ontology versioning deals with the process of managing different 

versions of an evolving ontology, maintaining interoperability between versions, and providing 

transparent access to each version as required by the accessing element (data, service, application or 

other ontology)‖. In this paper, we are loyal to Stojanovic‘s view of ontology evolution. 

 

Another process model that has been presented is Zablith‘s approach [5], which also uses 

Stojanovic‘s view and uses background knowledge to help analyze the ontological changes phase and 

therefore needs less user input in the ontology evolution process. Zablith has also implemented his 

process model as a plugin in the NeOn toolkit by the name of Evolva [8],[9]. 

 

Figure 2  Five phase ontology evolution process presented by Zablith 

Also in the NeOn project [3], a process model for ontology evolution which consists of four 

phases has also been presented. It can be seen in Figure 3. As it can be seen, NeOn project‘s view is 

from a very broad and general perspective. The reason for that is that they planned to use this process 

model as part of the NeOn toolkit therefore, it had to be very general so that the developers using the 

toolkit would not be restrained.  



 

 

304    A Novel Ontology Evolution Methodology 

 

 

Figure 3  Four phase ontology evolution process presented by the NeOn Project 

Another process model that has been proposed is the work of Djedidi [10]. A seven phase 

ontology evolution process model is presented which can be seen in figure 4. A pattern based 

consistency resolution approach from both local and global perspectives is followed.  

 

Figure 4  Seven phase ontology evolution process presented by Djedidi 

Jaziri in [11] proposes an approach of ontology evolution which facilitates a versioning 

management process, based on three phases: evolution changes, ontology coherence and versioning 

management. In it, the first two phases contain two subtasks each: change identification and change 

representation; and change propagation and coherence analysis respectively. It can be seen in Figure 5. 

It lets the ontology become inconsistent and then tries to resolve the inconsistencies in the ontology 

coherence phase. This is done via corrective operations.  

 

Figure 5  Three phase ontology evolution process presented by Jaziri 

Other related work on ontology evolution related fields, mainly maintenance and management 

are as follows: capturing change requirements [12]–[14]; belief change based approaches [15]; change 

detection and version logging [16]–[20]; learning based approaches [21], [22]; automatic ontology 

evolution [5], [52]; formal change specification [1], [4], [16], [23];  change implementation [2], [15], 

[24], [25]; consistency maintenance [2], [16], [26]–[28]; ontology versioning [4], [11], [17], [29]; 

change impact analysis and resolution; and pattern based approaches [6], [30]–[35].  

In table 1, we have reviewed the proposed process models and their supporting tasks. In table 1, 

the following definitions have been assumed: 1)change detection and identification is the process of 

collecting and identifying  changes to be performed on the ontology (requested changes), 2)change 

representation is the process of  specifying and standardizing the requested changes into a format 

appropriate for use in the ontology evolution process, 3)change analysis is the process of analyzing the 

changes in order to better understand their semantic intentions (this has been achieved differently in 

each of the process models mentioned, but all of them provided some sort of analysis on the changes.), 



 

 

A. Rahnama and A. A. Barforoush   305 

4)change resolution is the process of deciding which of the requested changes are to be performed on 

the ontology, 5)change implementation is the process of actually performing the requested changes on 

the ontology, 6)change propagation is the process of accessing the effects, side effects, and their scope 

caused by performing  the changes on the ontology, 7)change validation and verification are the 

process of determining whether the changes performed were valid and were they performed correctly,  

8)change recommendation is the process of suggesting to the user, changes that will improve the 

quality of the ontology (by implementing good practices and ontology design patterns),  9)change and 

ontology versioning is the process of keeping track of changes done to the ontology and managing the 

different versions created in the process. As it can be seen, the main differences between our approach 

and the others is that 1)there is no need for change validation because the consistency is preserved in 

our process(shown with ‗-‗), 2)there is no need for change verification, because we assume that the 

user requests correct changes(shown with ‗-‗), 3)there is no need for change propagations, because we 

in our change resolution phase, evaluate all changes with respect to the ontology change rules 

therefore, restricting their side effects, and 4)we have added a recommendation phase to the process to 

help facilitate better use and implementation of ontology design and implementation strategies. 

 

Table 1  Comparison of ontology evolution process models 

Change tasks Stojanovich 
NeOn 

project 
Djedidi Zablith Jaziri 

Our 

approach 

Change detection and  

identification 
× × × × × × 

Change representation ×  ×  × × 

Change analysis × × × × × × 

Change resolution × × × ×  × 

Change implementation × × × ×  × 

Change propagation ×  × × × - 

Change validation and 

verification 
× × × ×  - 

Change 

recommendation 
     × 

Change and ontology  

versioning 
    ×  

 

The analysis of the related works showed that, there is still a need for a process model which 

can assist and guide the evolution process while preserving the consistency of the ontology being 

changed. For this reason, we decided to present our novel process model which can help achieve the 

mentioned goal. We will present our approach in section 3. Also, to help facilitate such a process 

model, we will present our taxonomy of ontology changes and our ontology change rules in sections 

3.1 and 3.2 respectively. The OntoEvol system, which implements our process model, is also presented 

in section 3.3. And finally in Section 4, we will present and discuss the results of our test case and 

define future work to be done. 



 

 

306    A Novel Ontology Evolution Methodology 

 

3 A New Approach to Ontology Evolution 

After reviewing the different process models presented in section 2, we define our novel process model 

for ontology evolution. It has been created with all the process models mentioned in mind, so that it 

can perform like them without losing any main functionality. It consists of six phases: 1)The change 

request phase, in which the changes that are to be done on the ontology are received and collected. 

2)The change identification phase, in which the change requests are analyzed to determine their types 

with respect to our presented taxonomy of ontology changes(presented in section 3.1). 3)The change 

analysis phase, in which the identified changes are analyzed furthermore to if possible convert them 

into their equivalent higher level changes with the help of our presented SWRL rules (presented in 

section 3.2). 4)The change resolution phase in which we decide which of the changes are to be 

performed so that the consistency of the resulting ontology is preserved. 5)The change implementation 

phase in which the approved changes are performed on the ontology. 6)The change recommendation 

phase in which the updated ontology is evaluated for common pitfalls [36], anti-patterns [37], and 

compliance with ontology design patterns [38]. If there are no problems the updated ontology is 

released for use. If any problems are found, they are reported to the user as change recommendations 

for which the user can define new change request with respect to them. Our proposed ontology 

evolution process model can be seen in figure 6. We will discuss them further in section 3.3.   

 

Figure 6  Our ontology evolution process model 

 

3.1    Taxonomy of Ontology Changes 

We, in our research, have investigated different literature and have created a taxonomy for ontology 

change [39]. We believe, to help facilitate better evolution and maintenance of ontologies, a taxonomy 

of changes is needed. With the existence of such a taxonomy, the set of activities and work tasks of the 

ontology evolution process can be defined more precisely. In this section, we will present our 

taxonomy of ontology changes. This taxonomy will be used in phase two (change identification) of our 

process model. 



 

 

A. Rahnama and A. A. Barforoush   307 

In the past, very little work has been performed on creating a list of ontology changes. Flouris 

[24] defines ontology changes as ―the problem of deciding the modifications to perform upon an 

ontology in response to a certain need for change as well as the implementation of these modifications 

and the management of their effects in depending data, services, applications, agents or other 

elements‖.  

 

Different researchers have tried to classify ontological changes from different aspects 

throughout the past. The main classifications defined in literature, deal with KAON [2], [40], [41] and 

OWL languages [4]. The ontology of KAON changes, classifies KAON changes through three levels 

of abstraction [2]: 

 

• Elementary changes , applying modifications to one single ontology entity 

• Composite changes, applying modifications to the direct neighborhood of an ontology 

entity 

• Complex changes, applying modifications to an arbitrary subset of ontology entities  

 

Also, two change types are considered in [2]:  

• Additive changes, adding new entities to an ontology without changing the existing ones 

• Subtractive changes, removing an entity 

It being a complete and minimal set of changes, the mentioned change ontology does not 

include entity modifications. We believe that, there is a need of considering ―modificative‖ changes, 

because that in most conditions renaming a concept does not cause any structural inconsistencies and 

are less costly than two consecutive subtractive and additive operations. In [4], the modificative 

ontology change operation is considered, but they did not investigate them with respect to the three 

levels of abstraction mentioned. In it, they have only classified them into basic and complex changes. 

So to help create a more general taxonomy, we in our research have combined both views in creating 

our taxonomy of ontology changes. We have also added some of the complex ontology evolution 

subtasks mentioned in [15], [24]. So, in our proposed taxonomy of ontology changes, we classify 

changes from both aspects. Also, we have classified the changes based on the elements that they 

change in the ontology (e.g. concept, taxonomic relations, non-taxonomic relations, axiom, and omain 

elements). We have discussed this classification of ontological elements in [42]. Our taxonomy of 

ontology changes can be seen in figures 7 – 8
a
.  

As it can be seen, in the presented figures the relations between low level change operations 

(e.g. add,…) and higher level change operations (e.g. merge, alignment,…) are presented. It should be 

noted that, we have considered some ontology change operations equal from an ontology evolution 

                                                 
a
 Due to limited publication space, an extended version of this paper with more detailed figures of  the 

taxonomy of ontology changes can be accessed at : http://ceit.aut.ac.ir/~87231904/papers/ontoevol-

extended.pdf 

http://ceit.aut.ac.ir/~87231904/papers/ontoevol-extended.pdf
http://ceit.aut.ac.ir/~87231904/papers/ontoevol-extended.pdf


 

 

308    A Novel Ontology Evolution Methodology 

 

point of view. For example, the operations alignmentation and matching have been considered the 

same because both of them from an ontology evolution point of view perform the same operations; 

they both create relations, relating similar concepts between two ontologies. Such equal operations 

have been shown in the figures with an ―or” between the equal concepts (e.g. alignmentation or 

matching). In the following sections, we will define these ontology change operations in more detail. 

 

 

Figure 7  Our taxonomy of ontology changes - top levels 



 

 

A. Rahnama and A. A. Barforoush   309 

 

Figure 8  Our taxonomy of ontology changes - elementary changes section 

 

3.2 Ontology Evolution Rules 

 

In order to better understand and use the different change types discussed in section 3.1, we use the 

SWRL (Semantic Web Rule Language) standard [43] for defining the relations between the different 

levels of changes (elementary, composite, and complex changes). A SWRL rule consists of two parts:  

1) Antecedent or Body 

2) Consequent or Head 

The Antecedent consists of a set of atoms (an atom is an expression featuring a set of arguments) that 

have to be true be able to substitute it with the Consequent section of the rule. An example of such a 

rule defining the uncle relation can be seen as the following: 

 



 

 

310    A Novel Ontology Evolution Methodology 

 

 
 

For our ontology changes, for example we define ―joinConcepts‖ as: 

addConcept(?c3,?o), addSibling (?c1,?c3), addSibling (?c2,?c3) -> joinConcept(?c1,?c2,?c3) 

which means that a concept join operation for two concepts c1 and c2 is defined as creating a new 

concept c3 in ontology o and adding the two concepts c1 and c2 as its siblings. It should be stated here 

that, for simplicity and limited publication space, we have excluded the primitive element definitions 

from the left hand side of the SWRL rules e.g. concept(?c3),ontology(?o),… used in defining 

joinConcepts. 

 

As another example, we define ―conceptMerge‖ as follows: 

addAllSiblingsOf(?c2,?c1),removeConcept(?c2) -> mergeConcepts(?c1,?c2) 

which means that a concept merge operation for two elements c1 and c2 is defined as adding all the 

siblings of concept c2 to concept c1 and then removing the useless concept c2 from the ontology.  

 

As it can be seen in the examples presented, there is a delicate difference between the concept 

join and merge operations. In the former, a new concept is added to the ontology while in the latter, a 

concept is removed from the ontology. This slight difference is very important in ontology evolution 

because, if we would want to create an ontology which can be safely roll backed to an earlier version, 

we would only allow concept joins and not concept merges (because in the merge process, we remove 

and loose concepts which we can‘t rollback). 

 

The mentioned SWRL rules can be seen as follows in Tables 2-4
b
: 

 
Table 2  Some of the SWRL definitions of elementary ontology changes used in the taxonomy of ontology 

changes 

Change Operation SWRL Rule 

Add Concept addConcept(?c,?o) 

Equivalence Change equivalentConcepts(?c1,?c2) 

Modify Concept modifyConcept(?c1,?c2) 

Sibling Change addSibling(?c2,?c1) 

Remove Concept removeConcept(?c) 

Add Relation addRelation(?r,?c) 

                                                 
b
 Due to limited publication space, an extended version of this paper with more detailed  SWRL 

definition tables of  the ontology changes can be accessed at : 

http://ceit.aut.ac.ir/~87231904/papers/ontoevol-extended.pdf 

http://ceit.aut.ac.ir/~87231904/papers/ontoevol-extended.pdf


 

 

A. Rahnama and A. A. Barforoush   311 

Table 3  Some of the SWRL definitions of composite ontology changes used in the taxonomy of ontology changes 

Change Operation SWRL Rule 

Concept Join 
addConcept(?c3,?o)^addSibling(?c1,?c3)^addSibling(?c2,?c3)=>joinConce

pts(?c1,?c2,?c3) 

Axiom Join 
addAxiom(?a,?o), modifyAxiom(?a,?a1), modifyAxiom(?a,?a2), 

removeAxiom(?a1,?o), removeAxiom(?a2,?o) -> joinAxioms(?a1,?a2) 

Concept Merge addAllSiblingsOf(?c2,?c1)^removeConcept(?c2)=>mergeConcepts(?c1,?c2) 

Concept Split 

addSibling(?c11,?c3)^addSibling(?c12,?c3)^addSomeSiblingsOf(?c1,?c11)^

addOtherSiblingsOf(?c1,?c12)^addConcept(?c11,?o)^addConcept(?c12,?o)^

removeConcept(?c1)=>splitConcept(?c1,?c3) 

Relation Split 
addRelation(?r12,?c)^addRelation(?r11,?c)^removeRelation(?r1,?c)=>split

Relation(?r1,?r11,?r12) 

 

Table 4  Some of the SWRL definitions of complex ontology changes used in the taxonomy of ontology changes 

Change Operation SWRL Rule 

Concept Alignment equivalentConcepts(?co1,?co2)=>ConceptAlignment(?o1,?o2) 

Concept Articulation 
ConceptAlignment(?o1,?o2),ConceptAlignment(?o2,?o3)=>ConceptArtic

ulation(?o1,?o3) 

Relation Articulation 
RelationAlignment(?r1,?r),RelationAlignment(?r,?r3)=>RelationArticulat

ion(?r1,?r3) 

Concept Integration 
ConceptAlignment(?o1,?o2),mergeConcepts(?co1,?co2),moveConceptGr

oup(?co1,?co2),removeConcept(?co2,?o2)=>ConceptIntegration(?o1,?o2) 

Concept Pruning removeConcept(?c,?o)=>ConceptPruning(?c,?o) 

Relation Pruning removeRelation(?r,?c)=>RelationPruning(?r,?c) 

Axiom Pruning removeAxiom(?a,?o)=>AxiomPruning(?a,?o) 

Concept Translation modifyConcept(?c1,?c2)=>ConceptTranslation(?c1,?c2) 

 

The following variables have been used in Tables 2-4 : 

• ?c,?r,?a,?d,?o represent any concept, relation, axiom, domain, ontology respectively. 

• ?ci represents any concept, where ci is the concept that changes and there are more than one 

concept in the rule and i can be any natural positive non-zero number. 

• ?cij represents any concept, where ci is the concept that is split and the resulting concept are cij 

and cij+1. i and j can be any natural positive non-zero number.  

• ?ri represents any relation, where ri is the relation that changes and there are more than one 

relation in the rule and i can be any natural positive non-zero number. 

• ?rij represents any relation, where ri is the relation that is split and the resulting relation are rij 

and rij+1. i and j can be any natural positive non-zero number. 



 

 

312    A Novel Ontology Evolution Methodology 

 

• ?ai represent any axiom, where ai is the axiom that changes and there are more than one 

axioms in the rule and i can be any natural positive non-zero number. 

• ?aij represents any axiom, where ai is the axiom that is split and the resulting axioms are aij 

and aij+1. i and j can be any natural positive non-zero number. 

• ?di represents any domain, where di is the domain that changes and there are more than one 

domain in the rule and i can be any natural positive non-zero number. 

• ?dij represents any domain, where di is the domain that is split and the resulting domain are dij 

and dij+1. i and j can be any natural positive non-zero number. 

• ?oi represents any ontology, where oi is the ontology that changes and there are more than one 

ontology in the rule and i can be any natural positive non-zero number. 

• ?oij represents any ontology, where oi is the ontology that is split and the resulting ontology 

are oij and oij+1. i and j can be any natural positive non-zero number. 

• ?coi,?roi,?aoi,?doi represent any concept, relation, axiom, domain of an ontology o 

respectively and i can be any natural positive non-zero number. 

Table 5  Formal context representation of composite change operations 

 



 

 

A. Rahnama and A. A. Barforoush   313 

Table 6  Formal context representation of complex change operations 

 

By defining the change operation, the relation between the low level changes and higher level 

changes can be seen clearly. It should also be noted here that, in some of the complex changes because 

the SWRL language did not contain the ―forAll‖ or ―someOf‖ expressions, they are not shown in the 

rules. For example, in concept pruning the ―someOf‖ relation is needed to define that some of the 

concepts are being removed. Also, in concept translation the ―forAll‖ relation is needed to show that 

in translation of an ontology, all concepts have to be modified to the destination language. We have 

fixed this lack of expressiveness in our implementation of OntoEvol. It should be noted that, there is a 

hidden semantic hierarchical relation between the three types of changes (elementary, composite, and 

complex changes). Which is, some elementary change types are used to define composite changes and 

some elementary and composite changes are used to define complex changes. In other words, 

elementary changes are primitive elements in defining composite changes and both of them are 

primitive elements in defining the complex relations. For example in defining the ―moveConceptUp‖ 

composite change, we have included the ―siblingRelation‖, ―removeRelation‖, and ―modifyRelation‖ 

elementary changes. This relation helps us in clustering the elementary changes into higher composite 

and complex changes. These relations can be better seen in tables 5 and 6. 

3.2.1 Ontology Change Operations and FCA 

In this section, in order to better clarify the relations between the different ontology change operations 

and better analysis of the relations, we use FCA representation techniques [44] to represent the 



 

 

314    A Novel Ontology Evolution Methodology 

 

ontology change operations. Formal Concept Analysis (FCA) is a formal method for data analysis and 

knowledge representation. FCA can help to identify binary relationships between the data. The 

relationship is used to form a formal context according to a formal concept lattice. The formal context 

tables for composite and complex changes can be seen in tables 5 and 6 respectively. Also, the formal 

context table and the formal concept lattice of each are presented in figures 9 and 10 respectively. 

 

Figure 9  Formal concept lattice representation of composite change operations 

 

As it can be seen, the formal concept lattice shows the relations between the higher and lower 

level change operations even more clearly. The intention of this section was to illustrate and elaborate 

the relations between the higher and lower level change operations. These relations will be used in the 

change analysis phase of the evolution process model presented in section 3.3. To help facilitate better 

understanding of the changes that are taking place in the evolution process. For example, when we see 

a sequence of addConcept and addSibling operations, we can deduce that it is the joinConcepts 

operation. In other words, the evolution that is happening is the joining of two or more concepts. The 

essence of knowing the higher level operations is that, it helps the ontologist determine possible errors 

or mistakes made in user ontology evolution. For example, if after a joinConcept evolution operation 

we see orphan nodes, we are sure that something has gone wrong. For another example, when we see 

that the complex conceptTranslation operation is being performed and at the end, some of the concepts 

have not been translated, then we can inform the user that he/she may have forgotten those unchanged 

concepts therefore providing better management of the ontology evolution process. In the next section, 

we will present our ontology evolution system (OntoEvol) which uses the above mentioned rules, 

taxonomy, and proposed process model to help facilitate ontology evolution. 

 



 

 

A. Rahnama and A. A. Barforoush   315 

 

 

Figure 10  Formal concept lattice representation of complex change operations 

 

3.3 OntoEvol – An Ontology Evolution System 

Our OntoEvol system facilitates the ontology evolution process with the help of ontology change rules. 

These change rules are defined via the SWRL rule representation language which was presented in 

section 3.2. This new approach to ontology evolution helps the ontology evolution process by 

preserving the consistency of the ontology throughout the ontology evolution process. The reason for 

this is that, only changes that preserve the consistency are performed on the ontology (change 

resolution phase). Therefore, the consistency of the ontology is preserved. In this section, we will 

present our OntoEvol system which implements our process model and uses our presented taxonomy 

and change operation rules. The overall architecture of the OntoEvol system can be seen in figure 11. 

In the following subsections, we will present each of our ontology process phases as they are 

implemented. 



 

 

316    A Novel Ontology Evolution Methodology 

 

 

Figure 11  Overall architecture of the OntoEvol system 

 

3.3.1       Change Collection Phase 

In this phase, requested changes from different sources are gathered. We have provided interfaces for 

both user and online resources. User changes are the main changes that are to be performed. The 

online resources are used to provide suggestions to the user in case of conflict. For querying the online 

resources, the SPARQL query language and its associated endpoints are used. Some of these endpoints 

are Yago2 [45], [46], Wikipedia [47], DBpedia [48], etc. A complete list of such endpoints can be seen 

in [49]. These query results will be presented to the user as recommendations in the change 

recommendation phase which we will discuss later on. All inputs are stored in triple format. 

3.3.2 Change Identification Phase 

In this phase, the user change requests are evaluated and classified with respect to our presented 

taxonomy of ontology changes presented in section 3.1. This is done to ensure that no unidentified 

changes are injected into the ontologies. This prevents the ontology from going into an inconsistent 

state therefore needing repair.  

3.3.3 Change Analysis Phase 

In this phase, the changes are analyzed further to specify if it is possible to convert them into their 

equivalent higher level changes with the help of our presented SWRL rules which were presented in 

section 3.2. The reason for this is that, it helps us better understand what the user is planning to 



 

 

A. Rahnama and A. A. Barforoush   317 

perform on the ontology. Also, if the ontology changes do not represent a higher level change, the 

closest higher level change is recommended to the user and the additional changes that have to be 

performed are presented to the user to be accepted. This helps greatly in keeping the ontology 

consistent. The reason for this is that if a group of changes do not match a higher level change, it 

shows that there are some changes missing or forgotten by the user. Therefore, if those missing 

changes are appended to the initial changes then the higher level change is completed. These missing 

changes can be recommended to the user in the change recommendation phase. In this phase, the 

changes from the online resources mentioned in section 3.3.1 can be used to provide further 

recommendations to the user.  

3.3.4 Change Resolution Phase 

In this phase, we decide which of the proposed change operations from previous phase are to be 

performed. The reason for this is that, in some cases, the changes to be done can be reduced by 

combining them into higher level changes. This increase in granularity provides better understanding 

and maintenance during the ontology evolution process. Also, this helps in finding the mistakes the 

user may have done. The changes to be performed may be approved by the user. For example, a user 

may have forgotten to add one of the subClassOf relations in a concept join operation, which results in 

an inconsistent ontology, by checking them with the SWRL rules then such a mistake can be resolved 

and the ontology is consistent again. In other words, in this phase, we choose the set of changes to be 

performed that preserve consistency. Therefore at the end of this phase, one specific list of changes to 

be performed is created for implementation in the next phase. 

3.3.5 Change Implementation Phase 

In this phase, we perform the changes on the ontology. For accomplishing this task, we find the 

equivalents of each change with its respective OWL axioms and add them to the updated ontology. 

This is done by a simple matching table which matches the ontology change requests to their OWL 

equivalents.   

3.3.6 Change Recommendation Phase 

In this phase, the updated ontology is evaluated for common pitfalls [36], [50], anti-patterns [37], and 

compliance with ontology design patterns [34], [38]. If any issues are found, they are reported to the 

user as recommendations to decide on what to do with them. If the user decides to apply them to the 

ontology, he/she can create a new set of ontology changes to be applied to the ontology and sends 

them to the change collection phase. Also, a list of similar concepts and relations collected in the 

Change collection phase are presented to the user so that they can choose to add those relations to the 

new ontology. 

4 Evaluation and Future Work 

For testing our process model and the OntoEvol system, we performed the following tasks: 



 

 

318    A Novel Ontology Evolution Methodology 

 

1. We used an initial university ontology, which we created by hand as the input ontology to be 

evolved. 

2. To create user changes, we created a questionnaire about what students believe a university is 

and handed those questionnaire to over 100 computer science and computer engineering 

undergraduate students which had passed software engineering and data modeling courses to 

fill out. 

3. The questionnaires were read and the information to be added to the ontology was extracted 

by hand in form of triples. These additions were used as user ontology change requests. The 

reason for this was, since our OntoEvol system was in its early steps and the user input 

interface had not been completed, we could not receive user changes in an interactive fashion.  

4. The initial ontology and the user changes were given to the system as input and the resulting 

ontology was created in the implementation phase.  

 

Table 7  number of elementary requested changes 

 

Elementary Change Number of requested changes 

Add Concept 240 

Disjointness Change - 

Equivalence Change - 

Modify Concept 30 

Parent Change 3 

Sibling Change 119 

Remove Concept 557 

Add Relation 198 

Domain or Parent Change 3 

Equivalence Change - 

Inverse Change - 

Modify Relation 629 

Remove Relation 260 

Add Restriction - 

Modify Restriction - 

Remove Restriction - 

Scope or Sibling Change 119 

Type Change - 

Add Axiom 7 

Modify Axiom 1 

Remove Axiom 2 

Add Domain - 

Modify Domain - 

Remove Domain - 



 

 

A. Rahnama and A. A. Barforoush   319 

For our test case, in the change collection phase, we applied the 2100 changes created to our 

initial university ontology which came from the users‘ change requests regarding the university 

ontology mentioned above. In the change identification phase, they were compared with our change 

types and were filtered into three sets of changes: 1)538 additive changes 2)848 subtractive changes 

3)660 modificative changes. Also, 54 changes were removed due to being duplicates. Then, they were 

compared in relation with the type of ontological element they effected (concept, relation (taxonomic 

and non-taxonomic), axioms, and domain elements) resulting in 827 concept (240 additive and 557 

subtractive, and 30 modificative concept changes), 1209 relation (122 taxonomic (53 additive and 60 

subtractive relation changes) and 1087 non-taxonomic relation (198 additive, 260 subtractive, and 629 

modificative relation changes) changes), 10 axiom (7 additive, 2 subtractive, and 1 modificative axiom 

changes) and 0 domain changes. The reason that there were no domain changes was that, the focus of 

the ontology evolution was on the university domain therefore, there were no domain related changes. 

And, at last they were sorted in relation to the ontology changes taxonomy elements (shown in Table 

7). 

After evaluating the elementary changes mentioned in table 7, in the change analysis phase, the 

changes were evaluated with respect to the SWRL change rules. From the 30 composite and complex 

changes, with the elementary changes requested, only 16 rules were candidate rules (the other rules 

could not be chosen because, one or more of the atoms in the left hand side or antecedent were not 

available). From those candidate rules, the changes were classified into the 14 composite and complex 

changes which can be seen in table 8. 

 

 

Table 8  number of composite and complex requested changes  

 

Composite/Complex Changes Number of requested changes 

Concept Join 38 

Axiom Join - 

Concept Merge 2 

Relation Merge 62 

Concept Group Move 16 

Concept Move Up  17 

Concept Move Down 30 

Concept Split 41 

Relation Split 68 

Axiom Split 2 

Concept Pruning* 512 

Relation Pruning 5 

Axiom Pruning - 

Concept Translation 30 

Relation Translation* 561 

Axiom Translation 1 

 



 

 

320    A Novel Ontology Evolution Methodology 

 

Also, the rules used for matching the two complex changes concept pruning and relation 

translation (shown with a *) were very sensitive (by sensitive we mean that, the shortest possible 

match was accepted) therefore, in the concept pruning rule, every removeConcept that didn‘t match the 

other  rules was accepted as a concept pruning, amounting in 512 concept prunings. The same is for 

relation translation. Therefore, those two amounts can be reduced if a greedier heuristic is chosen. We 

didn‘t investigate using the longest possible match, but we intend to perform this in the future. 

The following 3 addAxiom and 6 addSibling changes were not matched: 

• addAxiom(Professor―teach‖course@Department) 

• addAxiom(Student―eat‖lunch@Cafeteria) 

• addAxiom(GradStudent―publish‖ConferencePaper@Conference) 

• addSibling (PhdStudent, GradStudent) 

• addSibiling(Pizza, Food) 

• addSibiling(Hamburger, Sandwich) 

• addSibiling(ATM, Bank) 

• addSibiling(ConferencePaper, Publications) 

• addSibiling(GradCourse, Course) 

 

In the changes above, we have used the format Professor―teach‖course@Department 

(representing Subject1―Relation‖Object@Subject2) to represent the axiomatic fact ―A Professor 

teaches a Course at the Department‖. When taking a closer look at why they had not been matched, we 

saw that all these changes were leaf nodes in our ontology therefore they did not have the appropriate 

atoms needed for a complete composite or complex change rule. One of the main points of ontology 

evolution errors is at the leaf nodes in an ontology. These leaf nodes have the potential to be entered 

and later forgotten to be populated in the future. This would cause the ontology knowledge to be sparse 

in some parts and crowded in other sections, therefore causing inconsistent coverage of the domain. It 

should be noted here, the fact that they were not matched is not a bad thing. It only shows that these 

changes did not constitute a higher level change and they are elementary changes, but it helps the 

ontology engineer to notice those changes and act accordingly to populate those sections.    

From the results achieved, in the change resolution phase all the changes in table 8 were implemented 

into the ontology and only the 9 unmatched changes were not implemented (change implementation 

phase). They could have been implemented, but we wanted to make sure that they were not mistakenly 

entered into the ontology or if the user could complete them so that they matched a higher level 

change. In the change recommendation phase, those changes were reported to the user for 

conformation to be added.  

By looking at table 8, an ontology engineer can clearly see what has been going on in the 

ontology evolution process. It can be seen in figure 12 that, the main changes performed on the 

ontology were relation translation (40.5%), concept pruning (37%), relation split (4.9%), and relation 

merge (4.5%). This interprets that, the users were mainly involved with removing concepts and 

renaming and fixing relations used in the ontology. If the main purpose of the evolution was not the 

mentioned, the ontology engineer can carefully evaluate the requested changes the users performed in 

order to find the reason of the mistakes. This can be very helpful in situations where the users have an 

interactive ontology editor (e.g. Protégé ontology editor) which, the users can use a mouse and drag 



 

 

A. Rahnama and A. A. Barforoush   321 

and drop concepts. In such cases, some users may accidentally drag a concept under another concept 

therefore, changing a great amount of underlying subclass relations (ConceptGroupMove), so if the 

ontology engineer sees a spike in ConceptGroupMove changes, but he is anticipating a spike in 

ConceptJoin changes, he can detect there has been a mistake. 

 

40.51
36.97

4.91 4.48 2.96 2.74 2.17 2.17 1.23 1.16 0.36 0.14 0.14 0.07 0.00 0.00
0.0

12.5

25.0

37.5

50.0

R
elatio

n
 T

ran
slatio

n

C
o
n

cep
t P

ru
n

in
g

R
elatio

n
 S

p
lit

R
elatio

n
 M

erg
e

C
o
n

cep
t S

p
lit

C
o
n

cep
t Jo

in

C
o
n

cep
t M

o
v

e D
o

w
n

C
o
n

cep
t T

ran
slatio

n

C
o
n

cep
t M

o
v

e U
p

C
o
n

cep
t G

ro
u

p
 M

o
v

e

R
elatio

n
 P

ru
n

in
g

C
o
n

cep
t M

erg
e

A
x

io
m

 S
p
lit

A
x

io
m

 T
ran

slatio
n

A
x

io
m

 Jo
in

A
x

io
m

 P
ru

n
in

g

Percent of changes

 
Figure 12  percentage of changes requested 

 

It should be noted here that, our presented methodology has shown better performance than the 

other methodologies mentioned in section 2 by reducing the search domain needed for finding 

mistakes and inconsistencies. This is achieved by analyzing the changes before implementing them in 

the ontology. Therefore, we only need to search the list of proposed changes rather than searching the 

whole resulting ontology. The reason we chose the aforementioned process for testing our system was 

that, we could not located a standard or gold standard ontology which had user changes in it. In other 

words, no set of changes and resulting ontologies were found to be used as a basis for testing our 

results, so we had to create one by the help of the mentioned students. All the ontologies available on 

the Web were final versions and none of them had specifications or details about their changes from 

previous versions. Only a few had very general descriptions of change done, for example in 

DBpedia[48], they stated that from version 3.7 to 3.8, they ―Cleaned up handling of URIs / IRIs‖ 

which didn‘t give us much information on what the exact changes may have been [51]. As future 

work, first we intend to complete and release the OntoEvol system as a plugin in the NeOn framework 

so that it can be used and tested further. Second, we intend to extend our testbed and create a standard 

testbed for ontology evolution.  



 

 

322    A Novel Ontology Evolution Methodology 

 

References 

 

[1] L. Stojanovic, N. Stojanovic, and R. Volz, ―Migrating data-intensive web sites into the semantic 

web,‖ in Proceedings of the 2002 ACM symposium on Applied computing, 2002, pp. 1100–1107. 

[2] L. Stojanovic, ―Methods and tools for ontology evolution,‖ Ph.D. thesis, University of 

Karlsruhe, 2004. 

[3] P. Haase, H. Lewen, R. Studer, D. T. Tran, M. Erdmann, M. d‘ Aquin, and E. Motta, ―The neon 

ontology engineering toolkit,‖ WWW, 2008. 

[4] M. C. A. Klein, ―Change management for distributed ontologies,‖ Ph.D. thesis, Vrije 

Universiteit Amsterdam, 2004. 

[5] F. Zablith, ―Harvesting Online Ontologies for Ontology Evolution,‖ Ph.D. thesis, The Open 

University, UK, 2011. 

[6] R. Djedidi and M. A. Aufaure, ―ONTO-EVOAL an Ontology Evolution Approach Guided by 

Pattern Modeling and Quality Evaluation,‖ in Foundations of Information and Knowledge 

Systems (FoIKS 2010), 2010, pp. 286–305. 

[7] G. Flouris and D. Plexousakis, ―Handling Ontology Change: Survey and Proposal for a Future 

Research Direction,‖ Inst. Comput. Sci. FORTH Greece Tech. Rep. TR-362 FORTH-ICS, 2005. 

[8] F. Zablith, M. Sabou, M. d‘ Aquin, and E. Motta, ―Ontology evolution with Evolva,‖ in The 

Semantic Web: Research and Applications, Springer, 2009, pp. 908–912. 

[9] F. Zablith, ―Evolva: A comprehensive approach to ontology evolution,‖ in The Semantic Web: 

Research and Applications, Springer, 2009, pp. 944–948. 

[10] R. Djedidi and M. A. Aufaure, ―Ontology Evolution: State of the Art and Future Directions,‖ in 

Ontology Theory, Management and Design: Advanced Tools and Models, IGI Global 

Publishing, 2010, pp. 179–207. 

[11] W. Jaziri, ―A methodology for ontology evolution and versioning,‖ in Advances in Semantic 

Processing, 2009. SEMAPRO’09. Third International Conference on, 2009, pp. 15–21. 

[12] P. Cimiano and J. Völker, ―A framework for ontology learning and data-driven change 

discovery,‖ in Natural language processing and information systems: 10th International 

Conference on Applications of Natural Language to Information Systems, NLDB 2005, Alicante, 

Spain, June 15-17, 2005: proceedings, 2005, pp. 227–238. 

[13] L. Stojanovic, N. Stojanovic, J. Gonzalez, and R. Studer, ―OntoManager–a system for the usage-

based ontology management,‖ in On The Move to Meaningful Internet Systems 2003: CoopIS, 

DOA, and ODBASE, Springer, 2003, pp. 858–875. 

[14] S. Bloehdorn, P. Haase, Y. Sure, and J. Voelker, ―Ontology evolution,‖ Semantic Web Technol. 

Trends Res. Ontol.-Based Syst., pp. 51–70, 2006. 

[15] G. Flouris, ―On belief change in ontology evolution,‖ AI Commun., vol. 19, no. 4, pp. 395–397, 

2006. 

[16] P. Plessers, O. De Troyer, and S. Casteleyn, ―Understanding ontology evolution: A change 

detection approach,‖ Web Semant. Sci. Serv. Agents World Wide Web, vol. 5, no. 1, pp. 39–49, 

2007. 

[17] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov, ―Ontology versioning and change 

detection on the web,‖ in Knowledge Engineering and Knowledge Management: Ontologies and 

the Semantic Web, Springer, 2002, pp. 197–212. 

[18] N. F. Noy, S. Kunnatur, M. Klein, and M. A. Musen, ―Tracking changes during ontology 

evolution,‖ in The Semantic Web–ISWC 2004, Springer, 2004, pp. 259–273. 

[19] J. Eder and K. Wiggisser, ―Change detection in ontologies using DAG comparison,‖ in 

Advanced Information Systems Engineering, 2007, pp. 21–35. 



 

 

A. Rahnama and A. A. Barforoush   323 

[20] H.-A. Santoso, S.-C. Haw, and C.-S. Lee, ―Change detection in ontology versioning: a bottom-

up approach by incorporating ontology metadata vocabulary,‖ in Database Theory and 

Application, Bio-Science and Bio-Technology, Springer, 2010, pp. 37–46. 

[21] A. Abdollahzadeh Barforoush and A. Rahnama, ―Ontology Learning: Revisited,‖ J. Web Eng. 

JWE, vol. 11, no. 4, pp. 269–289, Dec. 2012. 

[22] D. Benz, ―Collaborative ontology learning,‖ Master‘s thesis, University of Freiburg, 2007. 

[23] G. Flouris, Z. Huang, J. Z. Pan, D. Plexousakis, and H. Wache, ―Inconsistencies, negations and 

changes in ontologies,‖ in Proceedings of the National Conference on Artificial Intelligence, 

2006, vol. 21, p. 1295. 

[24] G. Flouris, D. Plexousakis, and G. Antoniou, ―A classification of ontology change,‖ in Poster 

Proceedings of the 3rd Italian Semantic Web Workshop, Semantic Web Applications and 

Perspectives (SWAP-06), 2006. 

[25] L. Stojanovic, A. Maedche, N. Stojanovic, and R. Studer, ―Ontology evolution as 

reconfiguration-design problem solving,‖ in Proceedings of the 2nd international conference on 

Knowledge capture, 2003, pp. 162–171. 

[26] P. Haase and L. Stojanovic, ―Consistent evolution of owl ontologies,‖ presented at the ESWC 

2005, 2005, vol. 3532, pp. 182–197. 

[27] P. Haase and J. Völker, ―Ontology learning and reasoning—dealing with uncertainty and 

inconsistency,‖ Uncertain. Reason. Semantic Web I, pp. 366–384, 2008. 

[28] A. Mikroyannidis and B. Theodoulidis, ―Ontology management and evolution for business 

intelligence,‖ Int. J. Inf. Manag., vol. 30, no. 6, pp. 559–566, 2010. 

[29] M. C. Klein and D. Fensel, ―Ontology versioning on the Semantic Web.,‖ in SWWS, 2001, pp. 

75–91. 

[30] M. Javed, M. Abgaz, and C. Pahl, ―A layered framework for pattern-based ontology evolution,‖ 

presented at the 3rd International Workshop on Ontology-Driven Information System 

Engineering (ODISE), 2011. 

[31] M. Javed, Y. Abgaz, and C. Pahl, ―A pattern-based framework of change operators for ontology 

evolution,‖ in On the Move to Meaningful Internet Systems: OTM 2009 Workshops, 2009, pp. 

544–553. 

[32] A. Auger and C. Barrière, ―Pattern-based approaches to semantic relation extraction: A state-of-

the-art,‖ Terminol. Int. J. Theor. Appl. Issues Spec. Commun., vol. 14, no. 1, pp. 1–19, 2008. 

[33] E. Blomqvist, A. Gangemi, and V. Presutti, ―Experiments on pattern-based ontology design,‖ in 

Proceedings of the fifth international conference on Knowledge capture, 2009, pp. 41–48. 

[34] E. Blomqvist, ―OntoCase - A Pattern-Based Ontology Construction Approach,‖ Move 

Meaningful Internet Syst. 2007 CoopIS DOA ODBASE GADA IS, vol. 4803, pp. 971–988, 2007. 

[35] R. Djedidi, M. A. Aufaure, R. Qi, V. Letort, M. Kang, P. Cournède, P. de Reffye, T. Fourcaud, 

R. Neji, A. Besbes, and others, ―Change Management Patterns (CMP) for Ontology Evolution 

Process,‖ in Proceedings of the 3rd International Workshop on Ontology Dynamics (IWOD 

2009) in ISWC, 2009. 

[36] M. Poveda, M. Suárez-Figueroa, and A. Gomez-Perez, ―Common pitfalls in ontology 

development,‖ in Current Topics in Artificial Intelligence, , CAEPIA 2009 Selected Papers, 

2010, vol. 5988, pp. 91–100. 

[37] C. Roussey, O. Corcho, and L. M. Vilches-Blázquez, ―A catalogue of OWL ontology 

antipatterns,‖ in Proceedings of the fifth international conference on Knowledge capture, 2009, 

pp. 205–206. 

[38] A. Gangemi and V. Presutti, ―Ontology design patterns,‖ Handb. Ontol., pp. 221–243, 2009. 

[39] A. Rahnama and A. Abdollahzadeh Barforoush, ―Taxonomy of Ontology Changes - from an 

Ontology Evolution Perspective,‖ presented at the 19th National CSI Computer Conference, 

Tehran, Iran, 2014, pp. 1138–1143. 



 

 

324    A Novel Ontology Evolution Methodology 

 

[40] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle, C. Schmitz, S. 

Staab, and L. Stojanovic, ―KAON—Towards a large scale semantic web,‖ in E-Commerce and 

Web Technologies, Springer, 2002, pp. 304–313. 

[41] B. Motik and R. Studer, ―KAON2–A Scalable Reasoning Tool for the Semantic Web,‖ in 

Proceedings of the 2nd European Semantic Web Conference (ESWC’05), Heraklion, Greece, 

2005. 

[42] A. Rahnama and A. Abdollahzadeh Barforoush, ―Cognibase: a new representation model to 

support ontology development,‖ in IADIS International Conference Information Systems (IS 

2011), Avila, Spain, 2011. 

[43] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, ―SWRL: A 

semantic web rule language combining OWL and RuleML,‖ W3C Memb. Submiss., vol. 21, p. 

79, 2004. 

[44] B. Ganter, G. Stumme, and R. Wille, Formal Concept Analysis: foundations and applications, 

vol. 3626. springer, 2005. 

[45] F. M. Suchanek, G. Kasneci, and G. Weikum, ―Yago: A large ontology from wikipedia and 

wordnet,‖ Web Semant. Sci. Serv. Agents World Wide Web, vol. 6, no. 3, pp. 203–217, 2008. 

[46] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, ―YAGO2: a spatially and temporally 

enhanced knowledge base from Wikipedia,‖ Artif. Intell., vol. 194, pp. 28–61, 2013. 

[47] ―Wikipedia.‖ [Online]. Available: http://www.wikipedia.org/. [Accessed: 22-Aug-2013]. 

[48] ―DBpedia.‖ [Online]. Available: http://dbpedia.org/About. [Accessed: 22-Aug-2013]. 

[49] ―SparqlEndpoints - W3C Wiki.‖ [Online]. Available: http://www.w3.org/wiki/SparqlEndpoints. 

[Accessed: 22-Aug-2013]. 

[50] ―OOPS! - OntOlogy Pitfall Scanner! - Catalogue,‖ OOPS! - OntOlogy Pitfall Scanner! - 

Catalogue, 2013. [Online]. Available: http://oeg-lia3.dia.fi.upm.es/oops/catalogue.jsp. 

[51] ―DBpedia Changelog.‖ [Online]. Available: http://wiki.dbpedia.org/Changelog. [Accessed: 22-

Aug-2013]. 

[52]    T. M. Akinsola, ―Automated Ontology Evolution,‖ Masters of Science informatics thesis,  

University of Edinburgh, Scotland (2008). 

 

 


