
Journal of Web Engineering, Vol. 14, No. 1&2 (2015) 063–079

© Rinton Press

MULTILEVEL ANALYSIS

FOR AGENT-BASED SERVICE COMPOSITIONa

ARIF BRAMANTORO

College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
Riyadh, Saudi Arabia

arifbramantoro@ccis.imamu.edu.sa

AHLEM BEN HASSINE

National School of Computer Science (ENSI), Tunis University
Tunisia

ahlembh@gmail.com

SHIGEO MATSUBARA

Department of Social Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

matsubara@i.kyoto-u.ac.jp

TORU ISHIDA

Department of Social Informatics, Kyoto University

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
ishida@i.kyoto-u.ac.jp

Received January 22, 2014

Revised September 5, 2014

Agent-based Web service composition has become one of the most challenging research
issues. Many composition techniques and formalizations have been proposed, but they

are neither mature nor flexible. They assume that each sub-task is an atomic process,
hence it cannot be decomposed based on user requirements. Moreover, those techniques
and formalizations are not suitable for dynamic environments such as the language service
domain. Language service requires a flexible formalization to accommodate the user’s

language skills in conjunction with QoS. The key contributions of this paper are (i) a
complete formalization that ideally reflects the nature of real applications and permits
extension of the original abstract workflow (in case of failure); (ii) a novel agent-based

protocol able to find satisfying solutions for this problem in real time to allow restriction
and/or relaxation within the original workflow; (iii) a hybrid architecture of service-
oriented computing and multi-agent systems for implementing Abstract Web service,
Information analysis, and User agents. Experiments are presented to find solutions that

can be executed within a feasible time and space.

Keywords: Web service composition, constraint optimization, multi-agent

Communicated by: D. Schwabe & O. Pastora

aSome parts of this work were done while the two authors were at Kyoto University and National Institute of
Information and Communications Technology (NICT), Kyoto, Japan.

63

64 Multilevel Analysis for Agent-Based Service Composition

1 Introduction

Web service composition has become a complicated task due to the wide proliferation of the

World Wide Web (WWW) and the consequent emergence of a large number of functionally

equivalent Web services. Thus, determining and using an appropriate Web service is very

hard, especially when dealing with composite Web services to suit a user’s preferences and

skills. Solving this problem involves features from the service provider such as service profile

description and quality of service (QoS), as well as certain features related to the user, such

as user’s preferences and skills.

Current techniques in Web service composition (i) deal only with the agglomeration of

abstract Web services (i.e. finding the best abstract workflow) despite the growing number

of functionally equivalent Web services making the composition of concrete Web services an

NP-hard task as is detailed in [1]; (ii) try to find the first feasible solution, even though better

ones can be found as shown in [2]; (iii) do not deal with many crucial and natural features of

Web services, such as the dynamic and distributed environment of Web service information

during the composition and execution processes as evidenced in [3]; (iv) are not focused on

the user’s interaction with the services, which involves human skills and preferences as is

elucidated in [4, 5].

Our main objective is to build an agent-based system to streamline the generation of

a multilevel workflow according to some analyzed criteria. Previous formalizations of Web

service composition assume, however, that each subtask is an atomic process and cannot be

analyzed for decomposition. We found these shortcomings when we tried to implement the

formalizations in a sophisticated domain such as the language service. For example, assume

that we have an abstract workflow (built manually or taken from a workflow repository that

stores the best practices) including translation service. This workflow cannot be directly

concretized when dealing with the Indonesian-Japanese pair of languages, so the translation

task should be decomposed into two sub-tasks, such as translating from Indonesian to English

and then translating from English to Japanese. In this paper, we propose:

• A multilevel analysis formalization that enables decomposition (to handle failure) of

tasks/subtasks using workflow control constructs to guarantee interoperability among

selected services.

• A user-centered, agent-based protocol able to find optimal solutions to a Web service

composition problem in real time, while allowing restriction and/or relaxation within

original workflow.

• An architecture that incorporates service-oriented computing and multi-agent system

enabling the implementation of abstract Web service agents, information analysis agents

and a user agent.

The rest of this paper is organized as follows. Section 2 provides related work. Section

3 presents a multilevel analysis for service composition. Section 4 describes the formaliza-

tion into the user-centered environment of the language service domain. Section 5 describes

the proposed architecture and algorithm for service composition. Section 6 discusses our

experiments and their results, and Section 7 concludes the paper.

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 65

2 Related Work

Web service composition has attracted the interest of many researchers. The most recent

comparative study on existing techniques in Web service composition is presented by Mah-

boobeh and Davis [6]. Although there is no performance evaluation of techniques in their

study, it is interesting to note that the authors assign the techniques into two categories,

optimization-based and automatic negotiation-based. We prefer not to get involved in the

debate of this categorization. We believe that the agent architecture makes it possible to

combine optimization-based and automatic negotiation-based techniques. Hence, we focus

our literature review on the adoption of multilevel analysis, user preference, and agent archi-

tecture to solve the problem of Web service composition.

The initial work on Web service composition is performed by Zeng and others [2] who used

integer programming to compose services. Their proposed functions for five QoS attributes

are our main reference in calculating QoS attributes from network domain, although there

are domain-specific attributes that we have to deal with. Their approach on two service

selections, local optimization and global composition, is similar to our multilevel analysis

of service composition. However, we prefer to use optimization techniques in all level of

composition because we need to get the best candidates at each level.

A similar model of multilevel service composition is proposed in [7]. The model is different

from our framework, since they propose four levels in multilevel composition (syntactic, static

semantic, dynamic semantic, and qualitative composability), not the levels determined by

the workflow abstraction as is commonly encountered in real applications. In addition, an

automatic composition technique to solve the model remains undefined as future work.

Canfora and others [1] propose a flexible binding in service composition when there is a gap

between the initial QoS estimation and the run time realization. An aggregation technique

during composition was clearly presented along with two case studies of travel planner and

image processing. A genetic algorithm is used to solve the composition problem. It differs

from our work which uses constraint optimization because of its flexibility in defining user

requirements.

The authors in [3] accommodate user’s QoS requirements written in extended WS-Policy

[8]. They propose an interesting approach to matching user requirement and provider ca-

pability that uses not only syntactical QoS attributes but also semantic reasoning through

QoS ontology. However, their model uses UDDI [9], an almost-extinct service directory, so is

difficult to implement.

A recent work is done by Mobedpour among others [5] in the context of centering user

support in the composition. They provide a complete mechanism to assist users in formulating

their QoS needs by presenting a query formulation and user interface design. By using their

user interface design, we can focus on the internal process of QoS calculation. Our work might

be seen as complementary to their work in that it accommodates more user aspects of QoS

and supports composite services.

The use of the constraint optimization problem in composing Web services was initially

proposed in [4]. However, they avoided discussion of QoS and decomposition of abstract work-

flow, both are required in modern service composition. The attempt to implement this work in

a dynamic environment, such as the language service domain, always failed to accommodate

user requirements analyzed and decomposed in multilevel way. Hence, the fundamental exten-

66 Multilevel Analysis for Agent-Based Service Composition

Table 1. Comparison with existing techniques.

Customized attributes Interaction Composite service Multi-agent
[2] None Weak Support None
[7] None Support Support None
[1] Support Weak Support None
[3] Support Support None None
[5] Support Support None None
[4] None None Support Support
Ours Support Support Support Support

sion includes further decomposition of subtasks based on service workflow control constructs

for guaranteeing interoperability among selected services dealing with a dynamic environment.

Table 1 compares the most important composition techniques covered in our literature

review and our proposed platform in terms of how well the approaches accommodate QoS

attribute-driven customization for each service domain, degree of interaction between users

and services, the availability of multi-user support in the same composition, support of com-

posite services, and whether the approach supports autonomous agents during service com-

position.

3 Multilevel Formalization

A constraint-based formalization of the Web service composition problem has already been

proposed [4, 10]. This formalization assumes, however, that each subtask is an atomic process

and hence cannot be analyzed for decomposition. Nevertheless, in real cases some required

services might be unavailable. Such cases require greater formalization flexibility.

In this section, we present a more generic, flexible formalization of the multilevel analysis

for the Web service composition problem. In this new formalization, each subtask t1 is

represented as a multilevel constraint optimization problem (COP [11]) by a sequence of

COPs, P1
1,P1

2,. . .,P1
α−1,P1

α, . . ., where P1
1 initially involves only one variable, with its domain,

its set of related constraints, and its objective function. Each P1
α is derived from relaxation

and/or restriction of the previous problem, i.e., P1
α−1.

The use of a multilevel COP to analyze each subtask allows us to represent a component

service within composition. Hence, each subtask is represented by a single variable as an

atomic process, or by a set of variables linked together, a composite process. Four types of

control constructs are used: Sequence, Concurrent, Choice, and Loop. A Loop is represented

by a set of sequences with a specific number of iterations. A Concurrent control construct is

represented by a set of sequences with universal constraints among them.

A Web service composition problem is defined by a set of multilevel COPs, {P1,. . .,Pn},

where n is the number of initial subtasks {t1,. . .,tn} involved in the user’s query. Each Pi is

represented by a sequence of COPs (Xi, Di, Ci, f (sl|={Xi})), as follows:

• Xi={xi
1,xi

2,. . .} is the set of possible abstract Web services able to solve ti. Initially

Xi={xi
1}. Each xi

k is represented by (xi
k.in, xi

k.out), standing for sets of inputs/outputs

of the concrete Web services.

• Di={Di
1,Di

2,. . .} is the set of domains for each xi
k. Initially Di={Di

1}. Each Di
k rep-

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 67

resents possible concrete Web services, whose service profile descriptions semantically

match the subtask specification [12]. The input of the Web service (resp. the output

of the subtask) is semantically included in the input of the subtask (resp. output of

the Web service). For each concrete Web service skj ∈ Di
k, we assign both a weight to

express the degree of user preference, wskj
∈ [0, 1], and the validity time vskj

of the

information maintained by skj . The information from user is uncertain, so we assign

accuracy probability pkj to each bit of received information and required time eskj
to

execute skj .

• We define two types of constraints: intra-problem constraints and inter-problem con-

straints. A constraint is considered to be an intra-problem constraint if and only if all

variables involved in the constraint belong to the same problem Pi. Otherwise, the

constraint is taken to be an inter-problem constraint. In the following, Ci refers to the

set of intra-problem constraints related to Pi, while C refers to the set of inter-problem

constraints. Both types of constraints is defined by C={CS ∪ CH}(resp. Ci={Ci
S ∪

Ci
H}).

– CS={CuserQuality, CQoS}, where CuserQuality represents the soft constraints re-

lated to the information from the user that influence QoS such as user preference

for particular dictionary service based on her language skill; and CQoS represents

constraints related to QoS attributes both from network service domain, such as

cost, execution time and reliability; and other service domains such as fluency and

adequacy in language service domain. For each soft constraint cl ∈ CS , we assign

a penalty, ρcl
∈ [0, 1] reflecting the degree of unsatisfiability of cl.

– CH={CcontrolConstructs, CpreCondition, Cuser}, where CcontrolConstructs represents

the hard constraints related to the defined control constructs, CpreCondition rep-

resents the preconditions of each concrete Web service, and Cuser represents the

set of hard constraints imposed by the user. For each hard constraint cf ∈ CH we

assign a weight=1. Only Cuser can be transformed into soft constraints and so can

be relaxed upon request when no solution is found.

• f (sl|={Xi}) is the objective function to optimize while projecting the solution to set Xi,

i.e., sl is a solution of the problem defined by instantiating of all variables of the problem.

In the following, we present one possible way to compute optimal assignment sl∗. For

simplicity, we introduce f (sl), same function applicable to f (sl|={Xi}). Hence, as indicated in

Eq. 1, f (sl) is defined as the summation of the user preferences Preference(sl), QoS attributes

QoS(sl), time availability availableTime(sl), and penalty ψ(sl) for all concrete Web services

involved in solution sl.

f(sl) = α ∗ Preference(sl) + β ∗QoS(sl)+
γ ∗ availableT ime(sl)− δ ∗ ψ(sl)

(1)

with α, β, γ, and δ ∈ [0, 1] as adjustable weights that depend on the service domain. For

example, if the user request deals with planning a trip overseas, the weight associated with the

user’s preferences (i.e. α) should be greater than that associated with the QoS (i.e. β) because

68 Multilevel Analysis for Agent-Based Service Composition

a user may prefer a service with less service quality. However, in the case of text translation

the weights associated with the QoS and Web service availability, should dominate.

Solving a multilevel analysis for a Web service composition problem consists of finding the

best assignment of variables sl∗ such that all hard constraints are satisfied while optimizing

the following function:

sl∗ = arg max
sl∈Solution

f(sl) (2)

such that

Preference(sl) =
∑

skj∈sl

wskj
(3)

QoS(sl) =
∑

skj∈sl networkAttributes(skj)+∑
skj∈sl otherAttributes(skj)

(4)

availableT ime(sl) = min
skj∈sl

(pkjvskj
− eskj

) (5)

ψ(sl) =
∑

ck∈CS

ρCk
(6)

In addition to a series of concrete Web services in the solution, we use "," to indicate

sequential execution and "‖" to indicate concurrent execution. An example of an obtained

solution is sl={s1i,{s2j‖s3k},s4h,. . .,snm}.

Note that this formalization allows us to render a multilevel analysis of the Web service

composition problem more flexibly while attempting to generate a possible simple abstract

workflow for each subtask detected as insoluble. Especially when the underlying required

abstract workflow is complicated, this generation cannot be completed without the help of the

user. Therefore, we propose to integrate user interaction into the generation of an appropriate

abstract workflow for each subtask, when needed.

4 User-centered Composition

Language services are found on all levels of human-language-related applications and business

processes developed with Web services technology. They have a great potential for being run

jointly. There have been many efforts in aiming at finding the best combination of language

services delivered to not only linguistic community but also end users such as in [13]. Each

language service is wrapped by using a WSDL-based standard interface of natural language

processing bundled with other descriptions such as QoS attributes, user access, and penalties.

A unique characteristic of the language service is the complexity of user preferences [14].

The attributes of the user determines the language service quality. Assume that there is

a Japanese user who wants to use dictionary service. Since there are two dictionary ser-

vices available, English-to-English and English-to-Japanese dictionary service, the compo-

sition should consider the QoS-related state of the user. User’s mother tongue and other

language capability given by the language certificate are used as QoS-related information

from the user. This information can be easily acquired in the language service since all users

are registered. This characteristic of language service is clearly shown in Fig. 1.

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 69

������������	�

���

������������

����������

����������������

��������	����	����

��������������

��������	����	����

Fig. 1. The sophisticated user preference.

Another characteristic of the language service is multiuser composition. More than one

user can utilize the same service at the same time such as a multilingual chat serviceb. Since

we need to accommodate interaction between all users and the services, we combine all nec-

essary information from services and users related to the services. In assessing the quality of

a translation service, for example, we combine the language skills of each user and the trans-

lation accuracy into single QoS attribute used to compose services. We call this attribute the

quality of message (QoM) attribute as described in Fig. 2.

QoM (A, X1,B) =

Accuracy(A.writingSkill(X1.sourceLanguage))

X1.accuracy Accuracy(B.readingSkill(X1.targetLanguage))

A

XXXXXXXXXXXXXXXXX

User A
Translation Service X2 User B

Translation Service X1

ra

Fig. 2. Multiuser support in QoS calculation.

The last characteristic in the language service is multilevel analysis during composition.

This is shown by the possibility of tailoring some atomic language services represented in an

abstract workflow as illustrated in Fig. 3. One of the tailored language service workflows is

the back translation service; it is used to check the quality of the machine translation service.

This service can be decomposed into a community based translation service whenever the user

finds that the quality of each atomic service in the back translation service is not enough.

However, since service availability may not support all user decompositions, this service is

decomposed again into a multi-hop translation service; the setting of a pivot language yields

a new translation service between two languages that was previously unavailable.

A language service composition problem is defined by a set of multilevel COPs, P1,. . .,P6.

Each Pi is a sequence of Pi
1,Pi

2,. . ., where initially each Pi
1 is defined by (Xi, Di, Ci, f (sl|=Xi))

as shown in Table 2 (note that the Di entries are based on available services as August 2014).

Due to the space limits, we start the formalization from level 2 as shown in Fig. 3 (b). No

intra-problem constraints exist for all the above problems and for all Xi, i ∈ [1, 6], f (sl|={Xi})

as defined in Eq. 1. Some inter-problem constraints are defined as follows (note that QoS

values and dimensions can be normalized [15]):

• Soft constraints c1: Latency(X5
1) ≤ 0.7 with ρc1

=0.6; c2: Cost(X2
1) + Cost(X4

1) ≤ y

with ρc2
=0.3; c3: QoM (A, X5

1,B) ≥ 0.4;

• Hard constraints c3: X1
1.originalSentence 6= null; c4: X2

1.morphemes = X1
1.morphemes;

bhttp://langrid.org/playground/chat/ChattingMain.html

70 Multilevel Analysis for Agent-Based Service Composition

X2

Machine

Translation

en-id

…

…

X1

Morphological

Analysis

X2

Technical Term

Extraction

X3

Bilingual

Dictionary

X4

Term

Replacement

X6

Term

Replacement

X5

Machine

Translation

ja-id

CSequence

CJoin

CLoop

P2
1

x2
1

x1
1

x3
1

P2
2

x2
2

x1
2

x3
2

P2
3

x2
3

x1
3

x3
3

P2
4

x2
4

x1
4

x3
4

P2
6

x2
6

x1
6

x3
6

P3
2

...

x2
2

x1
2

x3
2

P2
5

x2
5

x1
5

x3
5

...

...

...

...

...

...

P1
1

x2
1

x1
1

x3
2

P1
2

x2
2

x1
2

x3
2

...

...

X1

Machine

Translation

ja-id

X2

Machine

Translation

id-ja

level 1: back translation

service

level 2: Japanese-Indonesian

community based translation service

…

level 3: multi-hop translation services

of Japanese-English-Indonesian

X1

Machine

Translation

ja-en

P3
1

...

x2
1

x1
1

x3
1

(a) (b) (c)

Fig. 3. Constraint graph of the abstract workflow of the language service composition.

c5: X3
1.technicalTerms=X2

1.technicalTerms;

cLoop: X3
1.technicalTerms 6= null;

The above workflow is the generic, abstract one used for language services. Suppose

that a user wants to translate a sentence including some technical terms from Japanese to

Indonesian which is currently not available unless a multi-hop translation service with English

as the pivot language is used (see Fig. 3 (c)). Subtask X5 cannot be fulfilled. We have to

enable the composition process to add x1
3 to X1 and x2

3 to X5 as shown in Table 3 with their

domain and related intra-problem constraints. We try to solve the two subtasks by using

two variables, if possible; otherwise another variable is added and the same process continued

until it becomes possible to solve ti or to its insolubility is confirmed.

5 Architecture and Algorithm

In this section, we provide an architecture that accommodates the use of multi-agents, and an

algorithm that is implemented inside the architecture to allow the agents to solve the problem

of Web services composition.

5.1 Multi-agent based architecture

We propose a hybrid architecture of multi-agents and services to solve the problem of

multilevel analysis of service composition. This multi-agent architecture provides enough

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 71

Table 2. The set of variables and their domains defined for each Pi.

P1
1={P1

2} x1
1: morphological analysis;

x1
1.in={language, text};

x1
1.out={analyzeReturn};

D1
1={Chasen, Juman, Mecab, TreeTagger,...}

P1
1={P2

2} x2
1: technical term extraction service;

x2
1.in={morphemes};

x2
1.out={technicalTerms};

D2
1={CaboCha}

P1
1={P3

2} x3
1: bilingual dictionary service;

x3
1.in={headLang, targetLang, headWord, matchingMethod};

x3
1.out={searchReturn};

D3
1={Lextron-dict-public, Life Science Dictionary, Glossary on

Natural Disasters, Wikipedia,... }
P1

1={P4
2} x4

1: term replacement service;
x4

1.in={originalSentence, technicalTermsTranslated, technical-
TermsIntermediateCode};
x4

1.out={intermediateCodeSentence};
D4

1={TermReplacementService,...}
P1

1={P5
2} x5

1: machine translation service;
x5

1.in={sourceLang, targetLang, source};
x5

1.out={translateReturn};
D5

1={Google translate, Parsit, Translution, Toshiba,
YakushiteNet, J-server, Web-Transer,...}

P1
1={P6

2} x6
1: term replacement service;

x6
1.in={intermediateCodeSentenceTranslated, technicalTermsIn-

termediateCode, technicalTermsTranslated};
x6

1.out={originalSentenceTranslated};
D6

1={TermReplacementService}

autonomy for service users and providers in decomposing Web services without neglecting the

interaction between user and services. Service-oriented architecture lacks this capability and,

so forces service users and providers to decide the decomposition manually.

The hybrid architecture consists of three kinds of agents, Abstract Web service agents,

one or more Information analysis agents, and a User agent. The Abstract Web service agents

have to detect the global termination when either a solution is found or an inconsistency

exists during the composition process. These agents also store already processed services and

workflows in a service repository in order to enable further offline processing. The User agent

is required to create Abstract Web service agents and the Information analysis agents and,

most importantly, to inform the user of the result.

Information analysis agents process the language services provided by service providers.

In this paper, we use the language services provided by the Language Grid, a project that

is collecting and sharing 142 atomic language services from different institutions world widec.

The Language Grid project eases the effort needed to use a lot of language services without

chttp://langrid.org/service_manager/language-services

72 Multilevel Analysis for Agent-Based Service Composition

Table 3. Variables of the decomposed workflow.

P5
2={P1

3} x1
3: machine translation service of Japanese-English;

x1
3.in={Japanese, English, source};

x1
3.out={translateReturn};

D1
3={Google translate(Kyoto), J-Server(NICT),

YakushiteNet,...}
P5

2={P2
3} x2

3: machine translation service of English-Indonesian;
x2

3.in={English, Indonesian, source}; x2
3.out={translateReturn};

D2
3= {Google translate (Bangkok)};

intra-problem CSequence: x2
3.in ⊆ x1

3.out and CLoop: x2
k 6= x2

k−2
,

∀ k

dealing with a specific service level agreement (SLA) [16] for each service provider. These

atomic language services are further combined as composite services by utilizing a particular

workflow.

Another task of Information analysis agents is to receive a request from other agents

for analyzing information such as the maximum time needed to run particular Web service,

its validity, and quality of service. These agents analyze the information received from a

service provider by using some information analysis tools wrapped as services in our project,

a credibility analysis provided by WISDOM [17] and information relation analysis provided

by Torishiki-kai [18]. The proposed architecture of these agents described in Fig. 4 is inspired

from Singh and Huhns’s book [19].

Service

Repository

Language
Service

Providers

Service

Requestor

User

Agent

request

Abstract

Web service

Agents

Information-

analyzing

Agents Information
Analysis
Service

Providers

Fig. 4. A hybrid service composition architecture.

5.2 Global dynamic algorithm

Each agent has static and dynamic knowledge, a local behavior, a set of acquaintances and

a mailbox. Each agent Ai is responsible for a multilevel COP and has its own local knowledge

(static and dynamic) and a reasoning engine. The local goal of each agent is to solve its local

problem (initially includes only one variable) while optimizing the objective function. The

negotiation process consists of two main overlapping steps:

• Solve each local multilevel COP Pi (Xi, Di, Ci, f (sl|={Xi})) in order to find the local set

of best solutions, while enforcing local bidirectional arc-consistency [20] between each

pair of connected agents.

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 73

• Propagate consistency throughout the network until the best subset of global solutions

is found.

Each agent Ai begins solving its local problem Pi, which initially includes only one variable

Xi={xi
1}. It first reduces its set of concrete Web services Di by eliminating all non-viable

values according to its unary constraints (Algorithm 1, line 1). If Di
1 becomes empty, then the

user is asked to relax some of her constraints that directly or indirectly involve xi
1 (Algorithm 1,

line 3). We propose to relax user’s hard constraint in case of failure before proceeding to local

decomposition in an attempt to reduce the total cost. If no possible constraint can be relaxed

for Xi, then the agent Ai proceeds by decomposing subtask Xi={xi
1} into two sub-subtasks

Xi={xi
1, xi

2}. A new variable is added to the local problem Pi (Algorithm 1, line 5). The

domains of the two variables are updated to include not only functionally equivalent Web

services that exactly match semantically with the subtask description, but also all concrete

Web services whose descriptions are semantically included in the subtask description. Also, a

new Sequence intra-problem constraint is added. Ai tries to find consistent bindings for these

two variables while optimizing the local objective function f (sl|={Xi}). If no sub-solution can

be found, a third variable, xi
3, is added to Xi and the same process reiterated until a solution

is found or the insolubility of underlying subtask Xi is determined.

Ai ranks Di according to user information, i.e., wsij
, QoS, and the availability of infor-

mation. If the local problem includes only one variable, then Ai selects the best k viable

candidates, CandidateXi . Otherwise, Ai tries first to generate k local best sub-solutions (Al-

gorithm 1, lines 10 to 14), then determines the set of CandidateXi , which includes the values

taken by the first and last variables in the generated local abstract workflow. Ai commu-

nicates its set of selected concrete Web services to its directly linked lower priority agents

together with the minimum time for which the information about these concrete Web service

candidates remains valid (Algorithm 1, line 24). Each agent Ai receiving a message to pro-

cess concrete Web services CandidateXj from the agent Aj proceeds by first enforcing lazy

arc-consistency on its CandidateXi (Algorithm 2, lines 1 to 5). For each Web service sik ∈

CandidateXi , Ai seeks, for the first compatible Web service sjl ∈ CandidateXj that satis-

fies CH and minimizes the penalty ψ(sl) for all violated CS . Each sik that has no support in

CandidateXj , is temporarily discarded from CandidateXi and rechecked whenever any modifi-

cation is performed on the set of received candidates. Once all received concrete Web services

are checked, and all of them are discarded, Ai selects the next set of best k candidates from

Di, if possible. Otherwise, a backtrack message is sent to the "nearest" parent to ask for more

concrete Web services (Algorithm 2, line 7). The order of the asked parents is maintained in

order to ensure the completeness of this protocol.

If not all concrete Web services are discarded from CandidateXi , the agent enforces lazy

arc-consistency on the received candidates CandidateXj . For each received sjl, that was

unchecked in the previous step, Ai seeks, for the "first" support in Di. This step (i) allows

us to detect inconsistent concrete Web services (that cannot belong to any solution), in order

to eliminate them from the domain and consequently reduce the size of the problem; and (ii)

aims mainly to reduce both the number of backtracks and messages. Note that if any sjl ∈

CandidateXj is detected as inconsistent, then the parent Aj should be informed to remove

sjl from its domain (Algorithm 2, line 24), since sjl cannot be involved in any solution.

Finally, after performing bidirectional arc-consistency on both sets of candidates (local and

74 Multilevel Analysis for Agent-Based Service Composition

Algorithm 1 Begin message in each agent Ai.

BeginWith:j

1: Filter updated Di such that all local hard intra-agent constraints are satisfied;
2: if ∃ Di

k ∈ Di, k≤j such that Di
k=∅ then

3: Request a relaxation of hard constraints to user;
4: if No more constraints to relax then

5: Add xi
j+1 to Xi; Update Di and Ci; BeginWith:(j+1);

6: end if

7: end if

8: Rank all Di
k ∈ Di according to (wsij

+pij*vsij
- esij

);
9: if ‖Xi‖ > 1 then

10: Generate k possible sub-solutions;
11: if no possible sub-solutions then

12: Add xi
j+1 to Xi; Update Di and Ci; BeginWith:(j+1);

13: else

14: CandidateXi ← {Candidatexi
1

∪ Candidatexi
h
} for the best k candidates;

15: end if

16: else

17: CandidateXi ← {∀ xi
k, k≤j | "best" k candidates};

18: end if

19: if any information is required for any concrete Web service sil then

20: send(Information analysis, self, RequestInformationFor :sil);
21: end if

22: availableTimeAi ← minsil∈CandidateXj
(psilvsil

-esil
);

23: for all Aj ∈ ChildrenAi do

24: send(Aj , self, process:CandidateXi within:availableTimeAi);
25: end for

received), Ai generates its set of sub-solutions and sends it with its (new) set of candidates

to all ChildrenAi (Algorithm 2, line 29).

Any agent receiving a backtrack message looks first for new, possible candidates. If the

local problem involves more than one variable and no more sub-solutions can be locally found,

then the agent tries to relax and/or restrict its local workflow by removing and/or adding

new variables to increase sub-solutions size. User can join this step to help generate a new

local abstract workflow.

We note that performing only bidirectional lazy arc-consistency on the set of concrete

Web services and the received services is not sufficient to ensure resolution of the problem.

Therefore, each agent Ai receiving a message to process alterations first updates its set of

candidates according to the new candidates. If CandidateXi 6= ∅, then Ai detects the set

of shared abstract Web services among its higher priority agents and checks these services’

consistency. This latter step allows us to enforce consistency among the paths of linked

abstract Web services, known as path consistency. If any conflict occurs, and no consistency

is detected between at least two sets of candidates, then a backtrack message is sent to the

"nearest" parent for propagation to the concerned agent maintaining the shared variable source

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 75

Algorithm 2 Process messege within each agent Ai.

process:CandidateXj within:t

1: for all sil ∈ CandidateXi do

2: if ∃ sjk ∈ CandidateXi such that sil compatible with sjk then

3: CandidateXi ← CandidateXi/sil; update availableTimeAi ;
add(checkedValue[Xj], sil);

4: end if

5: end for

6: if CandidateXi

= ∅ then

7: if Possible backtrack then

8: send Backtrack message to ParentsAi to ask for more candidates;
9: else

10: Request user for a relaxation of hard constraints related in/directly to Xi;
11: if No more constraints to relax then

12: Inform user of inconsistency of the problem; Exit;
13: end if

14: end if

15: end if

16: for all sjh ∈ CandidateXj do

17: if ¬(sjh ∈ checkedValue) then

18: if ∃ sim ∈ Di such that sim is compatible with sjh then

19: add(inconsistentValue, sjh);
20: end if

21: end if

22: end for

23: if inconsistentValue 6= ∅ then

24: send(Aj , self, removeFromYourDomain:inconsistentValue);
25: end if

26: Generate subSolutionAi ;
27: Rank subSolutionAi according to f (solution);
28: for all Aj ∈ ChildrenAi do

29: send(Aj , self, process:CandidateXi and:subSolutionAi within:availableTimeAj);
30: end for

of conflict. If the set of received candidates is consistent, Ai updates its set of sub-solutions,

i.e., subSolutionAi=⊲⊳subSolutionAi ∪j∈P arentsAi subSolutionAj . The obtained subSolutionAi

is then ranked again according to f (subSolutionAi) (Eq. 1), and finally sent to ChildrenAi with

the corresponding set of maxTime values, i.e., estimations of the maximum time intervals for

the validity of subSolutionAi and the (new) set of CandidateAi .

Termination should be detected locally (one or several times) by each agent and globally

by all agents in progressive manner. Local termination can be detected when either of the

following applies:

• There is no concrete Web service for the sub-subtask xi
k such that

xi
k−1

.output=xi
k.input, AND there is no concrete Web service for sub-subtask xi

k such

76 Multilevel Analysis for Agent-Based Service Composition

Table 4. Experimental results obtained.

CPU Time
(in Sec)

Number of
Checks

Number of
Messages

Inconsistency
(in %)

10/0.40 4.29 1527.67 192.21 40
20/0.30 8.58 7504.68 386.18 60
30/0.25 4.32 9409.36 279.99 70
40/0.25 4.51 6941.07 211.09 30
50/0.20 10.67 21693.05 347.20 50

that xi
k+1

.input=xi
k.output.

• xi
k.output is semantically equivalent to xi

h.input for any h<k, i.e., for any previous sub-

subtask.

For the first case, local termination is detected whenever no possible path can be found for

at least one extremity of the sequential local abstract workflow. In contrast, termination in

the second case is related to detecting an infinite Loop process. For the global termination, the

stable state (i.e., the state where a solution is found or the problem is declared inconsistent)

is progressively detected by all the Abstract Web service agents.

6 Experimental Evaluation

Our aim was to evaluate the performance of the proposed approach in the case when the

number of existing Web services was increased. We tested our approach in two ways. First, we

developed an agent-based test scenario by using Actalk under the Smalltalk-80 environment.

Second, we conducted an experiment on a service-oriented platform to evaluate the service

response time given different levels of composition and QoS values.

In the first experiment, we used the following parameters: n agents, d concrete Web

services per agent, p percentage of possible basic constraints, q percentage of allowed pairs of

concrete Web services per constraint, pInfo probability of requesting an additional information

for sij , and wsij
weights for the soft constraints expressing user’s preferences. We generated

instances with n=10 agents, d={10; 20; 30; 40; 50}, and pInfo=0.20. We set p=0.15 for the

basic/user hard constraints and p=0.15 for the soft constraints, q={0.4; 0.3; 0.25; 0.2} to deal

with the hardest problems (i.e., problems belonging to the phase transition), and wsij
∈ [0,

1]. For each pair d/q, 10 instances were generated and each was executed 30 times. Table 4

shows the averages of the obtained results in terms of three criteria: the CPU time in seconds,

the number of checked constraints, and the number of exchanged messages.

In terms of CPU time, our approach was able to solve the composition problem for typical

cases (10/0.40 and 20/0.30) in a short time, with the minimum number of constraint checks

and exchanged messages. For the case of 40/0.25, however, we noticed that our approach

required less CPU time and fewer constraint checks and exchanged messages than for the

case of 20/0.30. This is explained by the fact that the 20/0.30 case had a higher percentage

of inconsistent problems than the 40/0.25 case. To prove the inconsistency of the problem,

the approach requires an exhaustive search to check all possible values for all variables. The

same applied to the 50/0.20 case, in which the proposed method performed an exhaustive

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 77

search to prove the insolubility of the underlying instance 60% of the time. Hence, we can

say that the proposed protocol in agent-based system is scalable.

In the second experiment, we examined four scenarios with two levels of composition

together with their corresponding QoS values. We chose two levels for evaluation efficiency.

The first level of composition follows the number of users in each scenario. The scenarios are

two service instances for two users, six service instances for three users, 12 service instances

for four users and so forth. Detailed evaluation results are shown in Fig. 5.

4

8

12

16

20

24

28

32

36

40

44

48
52

56
60

64
68
72

0

50

100

150

200

250

300

350

2
6

12
20

30
42

Elapsed time (ms) Response time (ms)

Fig. 5. Two level service composition evaluation

As can be inferred from the evaluation result, the response time required to run our

framework generally depends both on the number of service instances on the levels of the

composition (two in this example). However, performance depends strongly on the number

of service instances in the second level of composition. This can be explained by the fact

that our approach calculates QoS values of each service in the decomposed workflow. In the

first level composition, we obtain QoS values from the decomposed workflow and use them

to find the most optimal combination of services to be delivered to users. The optimization

process requires significantly more time when calculating QoS values. The evaluation result

shows the advantage of our framework in that it allows the decomposition to be processed

offline. Therefore, the response time to process our framework can be shortened significantly

by reducing the number of service instances in the decomposed workflow. This can be done

when one or more workflows have been decomposed before and stored in service repository.

78 Multilevel Analysis for Agent-Based Service Composition

7 Conclusion

We adopted agent-based constraint optimization as it is a promising technique for solving the

problem of composing Web services which exist in multilevel and user-centered environment

such as language services. This technique allows us to represent any atomic subtask included

in the original abstract workflow as a component process whenever this subtask cannot be

concretized. An interactive agent-based protocol was introduced to offset the deficiencies

of existing techniques (they deal with only concrete Web service composition) in that it

exploits and extends (if possible) their abstract workflows in order to identify satisfactory

executable workflows according to predefined optimality criteria. The developed negotiation

protocol solves the problems of interoperability among Web services while complying with

most natural features of realistic problems such as the dynamism of the environment during

the composition and execution processes. In addition, this protocol allows the user to interfere

in order to enhance the search for a solution by relaxing her constraints and/or assisting in

the generation of the local abstract workflow.

A hybrid multi-agent and service-oriented architecture was implemented to enable au-

tomation of the decomposition process and only user-constraint relaxation is left as a manual

process. Experiments showed that the proposed architecture is able to solve problems and find

solutions within a feasible time, while performing the minimum number of required constraint

checks and reducing the number of exchanged messages as much as possible.

Acknowledgements

The work is partially supported by a Grant-in-Aid for Scientific Research (S) (24220002,

2012-2016) from Japan Society for the Promotion of Science (JSPS)

References

1. G. Canfora et al. (2008), A framework for QoS-aware binding and re-binding of composite web
services, J. Systems and Software, Vol.81, No.10, pp. 1754-1769.

2. L. Zeng et al. (2004), QoS-aware middleware for web services composition, IEEE Trans. on
Software Engineering, Vol.30, No.5, pp. 311-327.

3. S. Chaari et al. (2008), Enhancing web service selection by QoS-based ontology and WS-policy,
ACM symposium on Applied computing, pp. 2426-2431.

4. A. Ben Hassine et al. (2006), A constraint-based approach to horizontal web service composition,
International Conference on Semantic Web, pp. 130-143.

5. D. Mobedpour and C. Ding (2013), User-centered design of a QoS-based web service selection
system, Service Oriented Computing and Applications, Vol.7, No.2, pp. 117-127.

6. M. Mahboobeh and J.G. Davis (2014), Service selection in web service composition: a compar-
ative review of existing approaches, Web Services Foundations, Springer New York, 321-346.

7. B. Medjahed et al. (2014), On the composability of semantic Web services, Web Services Foun-
dations, Springer, pp. 137-160.

8. S. Bajaj et al. (2006), Web services policy framework (WS-Policy), http://www-
128.ibm.com/developerworks/library/specification/ws-polfram/.

9. UDDI Spec Technical Committee (2003), UDDI version 3.0.2,
http://uddi.org/pubs/uddi_v3.htm.

10. A.B. Hassine et al. (2007), Dynamic horizontal composition for semantic Web services: an
investigation of real use, International Conference on Semantic Web, pp. 7-8.

11. R. Dechter (2003), Constraint processing, Morgan Kaufmann, pp. 1098-1106.

A. Bramantoro, A.B. Hassine, S. Matsubara, and T. Ishida 79

12. M. Paolucci et al. (2002), Semantic matching of Web services capabilities, International Con-
ference on Semantic Web, pp. 333-347.

13. T. Ishida (2011), The language grid, Springer.
14. A. Bramantoro and T. Ishida (2009), User-centered QoS in combining Web services for inter-

active domain, International Conference on Semantics, Knowledge and Grid, pp. 41-48.
15. N.B. Mabrouk et al. (2009), QoS-aware service composition in dynamic service oriented envi-

ronments, Middleware 2009, Springer, pp. 123-142.
16. D. Verma (1999), Supporting service level agreements on IP networks, Macmillan Technical

Publishing.
17. T. Kawada et al. (2011), Web information analysis for open-domain decision support: system

design and user evaluation, Joint WICOW/AIRWeb Workshop on Web Quality, pp. 13-18.
18. K. Torisawa et al. (2010), Organizing the Web’s information explosion to discover unknown

unknowns, New Generation Computing, Vol.28, No.3, pp. 217-236.
19. M.P. Singh and M.N. Huhns (2005), Service-oriented computing, John Wiley & Sons.
20. A.K. Mackworth (1977), Consistency in networks of relations, Artificial intelligence, Vol.8,

No.1, pp. 99-118.

