
Journal of Web Engineering, Vol. 14, No. 1&2 (2015) 080–116
c© Rinton Press

TYPE-AHEAD EXPLORATORY SEARCH THROUGH

TYPO AND WORD ORDER TOLERANT AUTOCOMPLETION

PAVLOS FAFALIOS and YANNIS TZITZIKAS

Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), and

Computer Science Department, University of Crete, GREECE
{fafalios,tzitzik}@ics.forth.gr

Received November 8, 2013
Revised September 15, 2014

There is an increasing interest on recommending to the user instantly (during typing
characters) queries and query results. This is evidenced by the emergence of several

systems that offer such functionalities, e.g. Google Instant Search for Web searching or
Facebook Search for social searching. In this paper we consider showing more rich rec-
ommendations that show several other kinds of supplementary information that provide

the user with a better overview of the search space. This supplementary information can
be the result of various tasks (e.g. textual clustering or entity mining of the top search
results), may have very large size and may cost a lot to be derived. The instant presen-
tation of these recommendations (as the user types a query letter-by-letter) helps the

user (a) to quickly discover what is popular among other users, (b) to decide fast which
(of the suggested) query completions to use, and (c) to decide what hits of the returned
answer to inspect. In this paper we focus on making this feasible (scalable) and flexible.
Regarding scalability we elaborate on an approach based on precomputed information

and we comparatively evaluate various trie-based index structures for making real-time
interaction feasible, even if the size of the available memory space is limited. Specifically,
we show how with modest hardware (like this of a mobile device) one can provide instant

access to large amounts of data. Moreover, we propose and experimentally evaluate an
incremental procedure for updating the index. For improving the throughput that can
be served we analyze and experimentally evaluate various policies for caching subtries.
With regard to flexibility, in order to reduce user’s effort and to increase the exploitation

of the precomputed information, we elaborate on how the recommendations can tolerate
different word orders and spelling errors, assuming the proposed trie-based index struc-
tures. The experimental results revealed that such functionality significantly increases
the number of recommendations especially for queries that contain several words. Fi-

nally, we propose an algorithm for computing the top-K suggestions that exploits the
ranking information in order to reduce the trie traversals. An experimental evaluation
proves that the proposed algorithm highly improves the retrieval time.

Keywords: type-ahead search, instant search, exploratory search, autocompletion, query
suggestions, caching

Communicated by: D. Schwabe & F. Vitali

1 Introduction

There is an increasing interest on recommending to the user instantly (after each keystroke)

queries and query results. This is evidenced by the emergence of several systems that offer such

functionalities. Indicative examples include Google Instant Search for plain Web searching,

Facebook Search which shows the more relative friends, pages, etc. as the user types in a

80

P. Fafalios and Y. Tzitzikas 81

query letter by letter, and IMDBa Search which shows the more relevant movies, actors, etc.

together with a photo. These instant recommendations, apart from enabling the user to see

what is popular among other users, they allow the user to stop typing if the desired results

have already been recommended. If on the other hand the sought results are not there, the

user can continue typing or change what he has typed so far (reformulations of prior queries

are very common in Web searching [1]). In general, we can say that the user adapts his query

on the fly until the results match what he wants. Such services save users time and effort also

because people type slowly but read quickly, implying that the user can scan a results page

while he types. For example, according to Google, Instant Search can save 2-5 seconds per

searchb. Moreover, the emergence of smart phones and tablets enforces the need to reduce the

typing effort since typing in the virtual keyboard of a smart phone or tablet is much more

laborious than typing in a common keyboard.

Apart from showing on-the-fly only the first page of results of the guessed query (as

in Instant Search), [2] has proposed showing more rich recommendations that show several

other kinds of supplementary information that provide the user with a better overview of the

search space (that work introduced the term IOS standing for Instant Overview Search). This

supplementary information can be the result of various tasks, e.g. textual clustering [3] or

entity mining [4] of the top search results. Note that this information may have very large

size and/or may cost a lot to be derived. For example, according to [4], performing entity

mining in the contents of the top-50 results (i.e. web pages) that are returned by submitting

a query to a web search engine requires more that one minute and large amount of main

memory. From the technical point of view, [2] showed that with partitioned trie-based indexes

we can achieve instant responses even if the precomputed information is too large to fit in

main memory. Furthermore, [5] demonstrates various novel applications of instant overview

search that exploit and recommend different kinds of supplementary information. Figure 1

summarizes the key points of the proposed approach. The figure shows the possible steps of

a (meta) search process. If the user’s intention (which is described by some query terms) has

been indexed with the proposed structure, then all steps which are enclosed by the dashed

line (which may cost many seconds) can be bypassed according to the IOS approach; they are

just loaded from the index.

query
Compute (retrieve)

top-K results

results

Compute

supplementary

information

Linked Data

(LOD)

Entity Mining

Metadata-based

groupings

Textual

ClusteringQuery

refinements

Create

groups/facets/…

and HTML

representation

all
data

all
data

…

Fig. 1. The procedure of a (meta) search process and the benefits of IOS.

ahttp://www.imdb.com/
bhttp://www.google.com/insidesearch/features/instant/about.html

82 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

Regarding the value of the supplementary (overview) information to users in web searching,

user studies [6] have shown that categorizing the search results improves the search speed and

increases the accuracy of the selected results. Moreover, the user study in [7] showed that

categories are successfully used as part of users’ search habits. Specifically, users are able to

access results that locate far in the rank order list and formulate simpler queries in order to

find the needed results. In addition, the categories are beneficial when more than one result is

needed like in an exploratory or undirected search task. Finally, according to [8] and [9], recall-

oriented information can play an important role not only in understanding an information

space, but also in helping users to select promising sub-topics for further exploration.

However, the instant provision of such services for large number of queries, big amounts

of precomputed information and large number of concurrent users is challenging, especially

in case we want to offer these services in a device with modest hardware (e.g. a smart phone

or a tablet). In this paper we continue the line of research started with [2] and make the

following contributions:

(a) We propose and evaluate various schemes for caching subtries (for Instant Overview

Search) that exploit the available memory and, apart from speeding up these services,

they increase the throughput that can be served.

(b) We show how the recommendation service can tolerate different word orders, spelling

errors or both, assuming the proposed index structures (for reducing user’s effort and

increasing the exploitation of the precomputed information). Specifically, we analyze in

detail several approaches and we reveal the limits for supporting these functionalities.

(c) We propose and evaluate an algorithm for retrieving the top-K suggestions that exploits

the ranking information.

(d) We describe and evaluate an incremental update procedure of the index structures.

The motivation for focusing on scalability is obvious (without tackling this issue it is

not feasible to provide such services in real applications), while the motivation for enhancing

flexibility, and how it assists decision making, can be made evident from the following example.

Example 1: Consider a user that wants to write an article about the consequences (mainly

the economic) of the earthquake that hit Haiti in 2010. For this reason he starts typing letter

by letter the query Haiti earthquake economic consequences. With each keystroke, a

list of suggestions appears instantly, which represents what is popular for the current input.

Furthermore, for the top suggestion, the user is able to view the top hits and a clustering

of the search space. After having typed the string Haeti e (notice that the word Haiti

was misspelled), the user gets the suggestions Haiti education, Haiti economy, Haiti

earthquake, Haiti earthquake effects, Embassy of Haiti, and environment of Haiti.

Note that all these suggestions do not contain the user’s input word Haeti, but the “similar”

word Haiti. Furthermore the last two suggestions contain the word Haiti and a word that

starts with “e” (Embassy and environment) in different word order than that of user’s in-

put. The user apprehends that the suggestion Haiti earthquake effects satisfies his search

need. Thus, by pressing the down arrow key he navigates and selects the particular suggestion.

At that time, the top hits of the selected suggestion and a clustering of the results appear

instantly (note that user has not submitted the query). Afterwards, the user notices that

there is a cluster with label economic(9), which actually contains 9 web pages that describe

the economic damage of the earthquake in Haiti. The user clicks that label and instantly the

P. Fafalios and Y. Tzitzikas 83

results of this cluster appear on his screen. All these results are very likely relevant to his

information need. Furthermore, the user notices that there are many other interesting cluster

labels, such us health(8), nature(12) and pictures(6). So, he decides to include some pictures in

his article and to write one more paragraph for the health problems that Haitian people faced

because of the earthquake. Figure 2 depicts a screenshot of the aforementioned example. ⋄

Fig. 2. An indicative screenshot of IOS.

In general we can say that the instant presentation of such recommendations helps the

user to quickly discover what is popular among other users (since the suggestions are based

on log analysis), to decide fast which of the suggested query completions to use, and what

hits of the returned answer to inspect. It is widely accepted that human decision making is

a complex process [10] and this is true also in the context of information searching. In this

context, i.e. during the search process, the user has to make two main kinds of decisions: the

first concerns what query or queries to submit, the second is about what hits of the answer

to inspect. We further analyze this process and discuss the impact of our work on decision

making in Section 2.1.

The rest of this paper is organized as follows. Section 2 discusses decision making in the

context of searching and related work. Section 3 introduces the trie-based index structures

and details the main steps of trie construction and of an incremental method for refreshing

them. Section 4 introduces the caching mechanism. Section 5 focuses on making word-order

independent and typo-tolerant search feasible also over the proposed trie-based index struc-

tures. Section 6 discusses how to rank the (approximate) recommendations and proposes an

algorithm for efficiently computing the top-K recommendations. Section 7 reports compara-

tive experimental results for evaluating the index structures, the index update procedure and

the caching schemes, demonstrating the feasibility of the flexibility features (and for quan-

tifying their benefits in decision making), and finally for illustrating the effectiveness of the

proposed top-K algorithm. Finally, Section 8 concludes and identifies issues that are worth

further research. Extra material regarding benefits and speedup is given in the Appendix.

Various running prototypes that we have developed are available to use through http:

//www.ics.forth.gr/isl/ios.

84 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

2 Motivation and Related Work

In Section 2.1 we discuss the motivation from a decision making point of view, while in Section

2.2 we discuss related works from a technical point of view.

2.1 Human Decision Making during Web Searching

Human decision-making is defined as a cognitive process in which a preferred option or a

course of action is chosen from among a set of alternatives based on certain information or

considerations. In our context and during the search process, we can say that the user has

to make two main kinds of decisions: what query or queries to submit, and what hit(s) of the

returned answers to inspect.

With regard to what query to use, we should stress that there are several possible queries

for expressing the same information need. This means that the user has to decide which one

to type. The recommended query completions assist the user to complete what he has typed

based on the popularity of the queries that other users have submitted in the past, and also

enable him to identify possible misspellings. Furthermore, the supplementary information

that is delivered instantly at each keystroke (corresponding either to a character or to an

arrow button for shifting up and down in the list of suggested query completions) allows the

user to predict the consequences of each choice and thus helps him to make a more “justified”

and informed decision.

Concerning the second kind of decisions, i.e. what hits to inspect, the supplementary

(overview) information can greatly assist him in locating hits that would be very difficult and

laborious to find (i.e. those that are not in the first page of results). For instance, in the case

of textual clustering of the top results [3], this can be achieved by clicking the label of a cluster

that corresponds to a set of results that contain this label. Note also that users tend to look

only the first page of results [11] not only because it is more time consuming and laborious to

click, get and inspect the subsequent pages, but also because they feel that the hits in the first

page are more reliable. As a consequence, users can be easily biased and they are vulnerable to

web spamming as well as to the various search optimization techniques. We should also note

that although search engines are programmed to rank web sites based on their popularity [12]

and relevancy [13], empirical studies indicate various political, economic and social biases in

the information they provide [14, 15]. Our thesis is that the provision of overview information

alleviates also this problem since the users have the ability to see an interesting cluster label

and by clicking on that label to end up to hits that could be low ranked (i.e. not in the

first pages of results), practically to hits they would never inspect. Furthermore, the instant

provision of supplementary information can assist the user in refining, or just differentiating,

his information need. This can be realized either by focusing at a particular set of results (e.g.

by clicking on a cluster name) or by starting the formulation of a new query. For instance, in

our previous example (Example 1), although the user initially wanted to search for economic

effects, the appearance of the supplementary information made him realize that there are also

health effects and decide that he would like to get information about them.

Finally, we could say that in contrast to the typical recommender systems in which the

available choices are usually less than millions (e.g. in the domain of movies, hotels, books,

products), in the context of web searching the choices are billions. Moreover there are no

fixed features (e.g. as in products), their number can be large and they are not homogeneous

in an open environment like the Web (meaning that approaches like [16] cannot be applied).

P. Fafalios and Y. Tzitzikas 85

2.2 Related Work

2.2.1 Search-as-you-Type

A Search-as-you-Type (also referred as Type-Ahead Search) system computes answers to

keyword queries as the user types in keywords letter by letter. Specifically, at each keystroke

of the user the browser sends (in AJAX style) the current string to the server, which in

turn computes and returns to the browser a list of suggestions and the top hits of the top-

suggested query. There are several works describing letter-by-letter searching for various kinds

of sources, e.g. for relational databases [17, 18, 19] or documents [20, 21, 22].

Bast and Weber [20] study the problem of type-ahead search in documents and present

a new indexing data structure (named HYB) which uses no more space than a compressed

inverted index, and which can respond to autocompletion queries (as the user types in a query

letter by letter) within a small fraction of a second. Ji et al. [17] formalize the problem of

interactive fuzzy search on a relational table and propose various incremental search algorithms

using previously precomputed and cached results in order to achieve an interactive speed. In

particular, they use a trie to index the words in the relational table. Each leaf node of the trie

has an inverted list of IDs of records that contain the corresponding word, with additional

information such as the attribute in which the keyword appears and its position. Li et al.

[21] study the problem of type-ahead search in XML data. Specifically, they use a trie to

index the words of the XML data, and for each word they index not only the content nodes

containing the word, but also those nodes whose descendants contain the word. Li et al.

[18] study the problem of type-ahead search in relational tables and propose efficient index

structures and algorithms for finding relevant answers on-the-fly by joining tuples in the

database. They devise a partition-based method to improve query performance by grouping

relevant tuples and pruning irrelevant tuples efficiently, and they also develop a technique

to answer a query efficiently by predicting highly relevant complete queries. Wu et al. [19]

propose a new search paradigm, called Seaform, to enable search-as-you-type in form-based

interfaces. Seaform allows a user to specify keywords in multiple input boxes on a form and

get the results instantly. Besides returning the matched records, Seaform also provide the

matched attribute values as well. It incorporates trie-based index structures with inverted

lists on the leaf nodes (together with two mapping tables) and search algorithms to support

type-ahead search in multiple attributes. Li et al. [22] study how to answer top-k queries in

type-ahead search, i.e. how to efficiently find the top-k best answers as a user types in a query

letter by letter. In particular, their key question is how to access inverted lists on trie leaf

nodes efficiently in order to answer top-k queries. In addition, they extend their techniques to

support fuzzy type-ahead search which allows minor errors between the query keywords and

the answers. Finally, Bast and Celikik [23] present new algorithms and index data structures

for fuzzy type-ahead search that is robust against errors both on the side of the query and on

the side of the documents. Specifically, they propose fuzzy inverted lists which correspond to

a set of words and comprise the list of postings for that set of words.

However, the aforementioned works study the problem of finding and presenting instantly

the documents/data that match some keywords (thus, their main competitor is the classical

inverted index). On the contrary, we study the problem of finding and presenting instantly

any related precomputed information regarding some keywords. Note that this information

may have very large size and/or may cost a lot to be derived. Thus, to achieve very low

86 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

response times and to avoid overloading the system, we index the corresponding information

only for the (frequent) queries for which we want to offer type-ahead search, i.e. we do not

index the underlying collection. The above approaches can be exploited in our problem only

in case there is no suggestion for the query that the user is typing and in case we want to

retrieve and present only the documents/data that match the query.

2.2.2 Caching

CompleteSearch [24], which uses HYB [20], caches the results of the query a user is typing

excluding the last keyword. Ji et al. [17] also use cached results of earlier queries in order

to achieve an interactive speed. Specifically, the idea is to cache only part of the results of

a query. For subsequent queries, unfinished computation will be resumed if the previously

cached results are not sufficient. Li et al. [21] cache the top-n nodes whose descendants

contain a query’s keyword. For each keyword, this approach first locates the corresponding

node of the trie and then retrieves the top-n cached relevant elements. Li et al. [18] cache

the trie vertices whose neighbors contain the keywords (as prefixes) and their corresponding

Steiner trees. Seaform [19] caches the previous queries and their results, and when a query is

submitted, the system first checks the cache to see whether the query can be answered from

the cached results. Finally, Bast and Celikik [23] also use previously cached results in case an

old query is a prefix of a newly typed query (while the user types the query letter by letter).

However, the aforementioned works cache previously computed results. On the contrary,

we propose and evaluate various schemes for caching subtries (i.e. part of the index). We

have not managed to find any work on type-ahead search that exploits the available main

memory in order to cache a part of the index.

In addition, this problem resembles caching in web search engines. Specifically, a large

body of work has been devoted to results caching and posting lists caching. Markatos [25]

introduced caching query results as a means to reduce the response time of a search engine.

Saraiva et al. [26] propose a dynamic caching system for caching query results and posting

lists. Long and Suel [27] recommend a caching architecture that includes an intermediate

level with on-disk caching of the intersections of the posting lists of frequently occurring pairs

of terms. Fagni et al. [28] employ a hybrid results caching scheme where the available cache

space is split into a static and a dynamic segment in order to capture both recent and frequent

queries. Baeza-Yates et al. [29] explore the impact of results caching and posting lists caching

in web search engines and show that posting lists caching offers higher hit ratios than results

caching. Lempel and Moran [30] propose a cache replacement policy based on the probability

of a result page being requested. Skobeltsyn et al. [31] propose an architecture that combines

results caching with index pruning to reduce query processing load, while Gan and Suel [32]

study weighted results caching techniques which consider both the frequency of the queries

and their estimated execution costs. Finally, more recent works focus on the freshness of the

cached results [33, 34].

Our case differs from the classic caching problem in the sense that we must offer much

faster response time (of a few milliseconds) in order to present instantly the results and

the supplementary information as the user types a query letter-by-letter (the query is not

submitted). Furthermore, in our case we handle bigger amounts of information (e.g. the

result of clustering or entity mining, images, etc.).

P. Fafalios and Y. Tzitzikas 87

2.2.3 Typo-Tolerant and Word-Order Independent Query Suggestions

Ji et al. [17] study the problem of fuzzy type-ahead search, i.e. how to find records that include

words similar to the keywords in the query even if they do not match exactly. Specifically,

they have developed a caching-based algorithm for incrementally computing active nodes for

a keyword as the user types it letter by letter. The leaf descendants of the active nodes are

considered predicted keywords of the prefix. The idea is to use prefix-filtering: when a user

types in one more letter, the previously computed active nodes can be used to compute the

new active nodes. In case of queries with multiple words, they compute the active nodes of

each word. However,this work indexes all the words of a relational table and finds the records

that approximately match some query words. On the contrary, we index the frequent queries

(that may have many words) and we find a set of queries that approximately match the input

query (and for the top ranked query, we display the overview information). Nevertheless,

we adopt a similar approach (i.e. we detect the active nodes) and we extend it in order to

support both word-order independent and typo-tolerant query suggestions.

Chaudhuri and Kaushik [35] and Duan and Hsu [36] study the problem of online (while

the user types a query letter by letter) spelling correction for query completions and both

propose a trie-based approach. Chaudhuri and Kaushik [35] capture input typing errors via

edit distance and propose two edit-tolerant autocompletion algorithms. The first is based

on the state-of-the-art q-gram based edit distance matching algorithms and the second is a

trie-based algorithm. We extend the trie-based algorithm in order to also support word-order

independent typo-tolerant autocompletion. For example, if the user has typed in the partial

query “marilin mon” and the index contains the query “monroe marilyn”, the aforementioned

work cannot suggest this query because the word order is different. Duan and Hsu [36] capture

input typing errors via a n-gram transformation model and also adapt the A∗ search algorithm

with various pruning heuristics to dynamically expand the search space efficiency. However,

as [35], this work cannot catch differences in the word order.

Li et al. [22] study the problem of fuzzy type-ahead search and use edit distance to

measure the similarity between strings. They normalize the edit distance based on the query-

word length in order to allow more errors for longer query keywords. However, as the work

by Ji et al. [17], this approach indexes all the distinct words of the underlying collection and

finds the records that approximately match some query words. On the contrary, we index the

frequent queries and we find a set of queries that approximately match the input query.

Bast and Celikik [23] present new algorithms for fuzzy type-ahead search that is robust

against errors both on the side of the query and on the side of the documents. As [17] and

[22], this approach indexes the underlying collection and finds the records that approximately

match some query words. However, it can also suggest full queries that approximately match

the query that user is typing (based on the similar words that lie in the collection).

Finally, Hsu and Ottaviano [37] present three different compressed trie-based data struc-

tures that support efficient top-K completion queries and briefly discuss how their proposed

approach can support fuzzy completions (however they do not test their assumptions).

To the best of our knowledge, our work is the first that elaborates on word-order indepen-

dent suggestions. Note also that the above works consider that the index is not partitioned

and also fits in main memory (only [23] proposes approaches in which the index may reside

on disk). On the contrary, we elaborate also on partitioned trie-based indexes which are not

88 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

in main memory, so we have to load the corresponding part of the index (i.e. subtrie) at real-

time. In that case the instant behavior is more challenging. In addition, in each keystroke we

have to locate and display bigger amounts of information.

2.2.4 Top-K Suggestions

Chaudhuri and Kaushik [35] shortly present how to extend the proposed algorithms in order

to return only the top-K suggestions by exploiting a precomputed static score. In addition,

Duan and Hsu [36] and Hsu and Ottaviano [37] apply a variation of the A∗ search algorithm

where each node in the trie is further annotated with the best score of all descendant queries.

We propose and experimentally evaluate a similar in spirit algorithm (appropriate for

the proposed trie-based index structures) which however is based on a specific probabilistic

ranking scheme. We also discuss how this algorithm can be adapted for supporting typo-

tolerant and word-order independent top-K suggestions. A distinctive characteristic of the

underlying ranking scheme is that the score of a node in the trie (that corresponds to a

query suggestion q) is by construction bigger than the score of all its descendant nodes (i.e.

suggestions that start with q), and expresses the probability that the user will select the

corresponding suggestion after having typed a particular character sequence. This makes

the evaluation of the top-K suggestions faster since we avoid traversing subtrees of big size.

On the contrary, in [36] and [37] the underlying ranking scheme is not explicitly mentioned,

meaning that (in some ranking schemes) a query q that is prefix of another query q′ may has

lower score than q′, because for instance q′ has more submissions than q. For example, for

the partial query “lio”, Google (for the time being) suggests “lionel messi” higher than

“lion”, although “lion” is prefix of “lionel messi”. Consequently, by annotating each

node in the trie with the best score of all descendant queries, we may eventually do not avoid

traversing a big subtree. Thus, the underlying ranking scheme is very important in a top-K

algorithm.

3 Trie-based Index Structures for Instant Overview Search

To tackle the requirements of IOS, we propose the adoption of trie-based index structures

because they allow fast lookup with cost analogous to the length of the string that we search.

Specifically, for each frequent query stored in the query log, we extend its node in the trie

with two additional strings (as Figure 3 depicts). The first string contains the first page of

results of the query, i.e. an HTML string containing for each hit its title, snippet and URL.

The second string contains the supplementary information that we want to offer, for example

the result of clustering or entity mining, etc. Note that we prefer to store both strings in

HTML format in order to save time while presenting the results to the user (no need for any

post-processing).

root

c a p

j

a m

o b

m a p

cap

jam

job

map

cap
<results>

<clusters>

Fig. 3. Extending the query trie by two additional strings.

P. Fafalios and Y. Tzitzikas 89

Obviously, such enrichment significantly increases the size of the trie since for each query

we have to save two additional long strings. Indicatively, for each logged query of n characters,

the trie keeps a node of about n = 16 bytes. However, the string that represents, for example,

the cluster label tree (the result of clustering) can be more than 30,000 bytes and the string

that represents the first page of results about 40,000 bytes in common real settings (including

the characters of the HTML code for both strings). Below we propose methods and index

structures for managing this increased amount of data.

3.1 Trie Partitioning

The first idea is to adopt the trie partitioning method proposed in [38], i.e. to partition the

enriched trie to a number of subtries based on the first character(s) of the queries. According

to that method, only one “subtrie” of much smaller size is loaded in main memory for serving

one request; the subtrie containing the queries whose starting characters are those that the

user has typed so far. In particular, if Q is the set of all distinct queries in the log, let QT be

the full trie over Q and QSubtries = {qst1, . . . , qstN} be the partition of QT to N subtries

according to [38] which is based on the first k characters. Each subtrie qsti contains a set

of queries queries(qsti) whose starting characters belong to a specified set of characters. For

example, if we assume that the query log contains queries starting with latin characters only

and we decide to partition the trie based on the first character (k = 1), then we can divide a

trie into two subtries: one containing all query strings q where q[0] ∈ {a, b, . . . ,m} and another

containing all q where q[0] ∈ {n, o, . . . , z}. Note also that for k ≥ 2, the distribution of queries

to subtries is very smooth, close to the ideal (for more information about this approach the

reader can refer to the corresponding paper [38]).

Since users seldom change their initial queries [39], dividing the trie in this way implies

that once the appropriate subtrie has been loaded (during the initial user’s keystrokes), the

system can compute the completions of the subsequent requests using the same subtrie.

3.2 Indexes to External Random Access Files

Now suppose the case where we do not have enough main memory to load the enriched trie

(or subtrie). In such case we can save the results of the preprocessing steps (e.g. first hits and

cluster label tree) in one or more different files. Consequently, for each query entry the trie

has to keep only three numbers: (a) one for the file, (b) one for the bytes to skip and (c) one

for the bytes to read. Obviously, one should use random access files for having fast access to

the precomputed information. This approach greatly reduces the size of the trie, however we

have to perform additional disk accesses for reading the pointing file, but only for that query

whose supplementary information has to be displayed to the user’s screen.

3.3 Combining Trie Partitioning and Indexes to External Files

We can further reduce the size of the trie that is loaded in the main memory by combining the

last two approaches (trie partitioning and trie with indexes to external files). Such approach

requires very small amount of main memory, however it requires more time for loading the

appropriate subtrie in the main memory and reading the data from the pointing file.

To clarify the pros and cons of the above choices, [2] comparatively evaluated the following

approaches (depicted in Figure 4):

90 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

(a) (SET) Single Enriched Trie. Here each node of the query trie is extended with two

strings: one for the first page of results and one for the supplementary information (e.g.

results clustering). The entire enriched trie is kept in main memory (Figure 4a).

(b) (STIE) Single Trie with Indices to External files. Here each node of the query

trie is enriched with pointers to external random access files, where a pointer consists of

three numbers: file number, bytes to skip, bytes to read (Figure 4b). The single (query)

trie is kept in main memory

(c) (PET) Partitioned Enriched Trie. Here the enriched trie, i.e. the one described in

(a), is partitioned to several subtries, each stored in a separate file. The subtrie that is

needed in order to serve a request is loaded in main memory at request time.

(d) (PTIE) Partitioned Trie with Indices to External files. Here the (query) trie

is partitioned but each subtrie is enriched with pointers to external random access files

(Figure 4d). Here also the subtrie is loaded in main memory at request time.

A synopsis of the experimental results is given in Section 7.1 (for reasons of self-containedness).

c a p

m a p

a m

o b
jroot

(a) SET

c a p

m a p

a m

o b
j

c a p

m a p

a m

o b
jroot

c a p

m a p

a m

o b
j

(b) STIE (c) PET (d) PTIE

Always in main memory In main memory based on requests and space

Fig. 4. Trie-based index structures for Instant Overview Search.

3.4 Index Construction and Update

For the construction of the trie (or subtries), the main tasks are (a) the analysis of the query

log, (b) the execution of each distinct query in order to get the first page of results and the

supplementary information (e.g. by batch query processing [40]), and (c) the creation of the

trie file (or of the subtries). We precompute and store also the score of each distinct query,

which is used by the autocompletion algorithm. Specifically, we use the method proposed

in [38] that takes into account the frequency of the query and the frequencies of the queries

that have this as prefix (the reader can find more information about the particular scoring

function in Section 6). One can easily see that the time required by these tasks depends on

the particular algorithms that are employed (for query evaluation, clustering, etc).

Note however that the index should be updated periodically, based on the contents of the

constantly changing query log and the new fresh results of the underlying web search engine.

One policy is to update the index daily. Since the construction of the trie from scratch is a time

consuming task [2], it is worth providing an incremental method. We propose the following

incremental update procedure: for each distinct query of the new query log we check if it

exists in the index. If so, we just update i) its results, ii) its supplementary information, iii)

its date and iv) its score. Since the proposed scoring method takes into account the frequency

P. Fafalios and Y. Tzitzikas 91

of the query and the frequencies of the queries that have this as prefix, we must update also

the scores of its ancestor queries (since the score of a node in the trie is always bigger than

the scores of its descendant nodes). If the query does not exist in the index we add it with

all its data and update the scores of its ancestor queries.

The procedure is almost the same in case of STIE. While adding a new query in the index,

we could either store its results and its supplementary information in a new random access file

or append them in an existing one. Moreover, for updating the results and the supplementary

information of an existing query, it is better to add the new data in a new random access file

or append them at the end of an existing one and then update in the trie its file number,

its bytes to skip and its bytes to read (otherwise we have to change the values of these three

numbers for all the queries that follow that query in the external file).

In case we adopt a partitioned index structure (PET or PTIE) the update is a bit more

complex. If the query exists in a subtrie, we have to detect the corresponding subtrie, load

it and then follow the same procedure as in SET and STIE. If it does not exist, we check

if a subtrie of its top-k characters exists (where k is the number of the first characters that

determine trie partitioning [38]). If so, we add it in that (existing) subtrie, otherwise we add

it in the subtrie with the smaller size (i.e. the subtrie that contains the fewer queries).

The major problem while updating each one of the four indexing approaches is that the

size of the trie (or of a subtrie) may grow very much. In that case and in all approaches we

can keep stable the size of the (sub)trie by removing the “old” queries according to a date

threshold. This can be done by performing a trie traversal and removing those queries that

are chronologically before the date threshold. Moreover, for each query that we remove, we

have to update the scores of its ancestor queries. Alternatively, we can change the indexing

approach to one with lower memory requirements. For example, if the size of SET has grown

very much, we can adopt STIE, PET or PTIE. Respectively, in case of STIE and PET we

can adopt PTIE. Furthermore, in case of PET and PTIE, we can split the one “big” subtrie

to two different subtries or increase the number of the first characters that determine trie

partitioning (i.e. the value of k).

Finally, the incremental update can be performed much faster if in each query submission

the system stores the results and the supplementary information. This allows the system

to use these results (although they are not the most “fresh”) during the update of the trie,

saving thereby considerable time.

In Section 7.1 we report indicative experimental results regarding the aforementioned

incremental update procedure.

4 Throughput and Caching

Consider a scenario where a large number of users start typing queries at the same time. A

rising question is how each index structure (either SET, STIE, PET or PTIE) reacts and in

what cases the system will get overloaded. In the SET and STIE approaches, the trie is loaded

only once at system’s start-up and therefore, the number of the requests that the system can

serve depends only on the server’s request/session capacity. Note that in the STIE approach

the usage of random access files limits its effect on main memory (there is only a small effect

of buffer cache interaction). However, PET and PTIE require loading multiple subtries, i.e.

the appropriate subtrie for each user’s keystroke, and this could overload the system since

92 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

multiple subtries will have to be hosted at main memory. This is true especially for PET

whose average subtrie size is bigger than that of PTIE (because the subtries of PET contain

the supplementary information, while those of PTIE do not).

The main question is how to exploit the available main memory in order to serve concur-

rently several users as fast as possible without overloading the system. Is it better to load

in memory the appropriate subtrie at request time and remove it afterwards, or is it better

to keep it in memory for a period of time? One general method to alleviate the throughput

problem is to adopt a caching mechanism. Thereby, if the requests of two or more users

require loading the same subtrie, the loading will be done only once. Obviously, the system

has to look the cache before loading a subtrie.

4.1 Caching Schemes

One approach is to adopt a dynamic caching scheme, i.e. to start from an empty cache and

put in it each requested subtrie. If a new subtrie has to be loaded and the cache is full, the

system replaces an existing cached subtrie (e.g. the less frequent one that is not in use by

a session) with the new one. It could also refresh the cache by removing the old subtries,

i.e. the subtries that are not in use for a specific time threshold. In such a dynamic caching

mechanism, the cache size can be set to be equal to the maximum number of loadable subtries

that can fit in main memory at a given time. In a static approach, we could keep in cache the

more frequently used subtries based on a past log analysis. Figure 5 shows the distribution

of the top-20 first two characters in queries stored in a real query log of 1 million queries

(submitted to Altavistac web search engine in 2003). We observe that the prefix “ho” is

the most frequent prefix appearing in 2,69% of all queries. Moreover, the top-20 prefixes of

size 2 appear in the 30% of all queries and this means that if we keep cached these subtries

we expect a cache hit ratio of about 30%. Taking into account the above facts, we could

keep always in memory the subtries of the most frequent first two characters. In an hybrid

caching mechanism, we combine dynamic and static approach. In this way, we keep always

in memory the subtries of the most frequent queries (static part) and keep an amount of

memory for loading the subtries that are not in the cache (dynamic part). For example, if

the available memory capacity can host MC subtries, we can split it into two parts: a static

(with size S) and a dynamic (with size D = MC − S).

0,0

1,0

2,0

3,0

h
o co m
a fr ca re ch in b
r

se p
r d
i

st b
a

m
o fa te p
a

d
e

p
o

fr
e

q
u

e
n

cy
 %

Most frequent prefixes of size two

Fig. 5. Distributing queries by first two characters.

Algorithm 1 describes the above hybrid caching mechanism. StaticMap is a map for

the static part of the cache and keeps information for each cached subtrie (e.g. frequency,

last used time, subtrie’s file, etc), while DynMap is the corresponding map for the dynamic

chttp://en.wikipedia.org/wiki/AltaVista

P. Fafalios and Y. Tzitzikas 93

part. We observe that in case we have a request for a subtrie that lies in the static part

(line 3), the system can instantly retrieve the required data, otherwise it must check the

dynamic part (line 5). In the dynamic part, if we have a request for a subtrie that is not

in the cache (line 10) and the cache is full (line 15), we find (line 16) and remove (lines

18, 19) the less frequent subtrie that is not in use according to a time threshold TT , and

then load the new subtrie (lines 20, 21). The function refreshLastUsedTime(Trie subtrie) sets

the last used time of the corresponding subtrie to the current requested time, the function

refreshFrequency(Trie subtrie) increases the frequency of the specific subtrie by one unit, and

the function getWorst(TT) finds the less frequent subtrie that is not in use according to the

time threshold TT . Finally, in case the dynamic cache is full and there is not a subtrie that is

not in use (line 23), the system cannot serve instantly the user and thus the user must submit

the query.

Algorithm 1 A hybrid caching mechanism.

Input: Current query q
Output: A subtrie’s node which contains the required data
1: st← subtrie(q) //for the current query q, find the corresponding subtrie

2: S= StaticMap.size()
3: if StaticMap.contains(st) then
4: return StaticMap.getNode(st,q)
5: else //the requested subtrie is not in the static part

6: if DynMap.contains(st) then
7: refreshLastUsedTime(st)
8: refreshFrequency(st)
9: return DynMap.getNode(st,q)

10: else //the requested subtrie is not in the dynamic part

11: if DynMap.size() < MC − S then
12: load(st, frequency=1)
13: DynMap.add(st)
14: return DynMap.getNode(st,q)
15: else //dynamic cache is full, remove the less frequent subtrie that is not in use

16: s← DynMap.getWorst(TT)
17: if s then
18: unload(s)
19: DynMap.remove(s)
20: load(st, frequency=1)
21: DynMap.add(st)
22: return DynMap.getNode(st,q)
23: else //the system cannot serve instantly the user, user has to submit a full query

24: print Memory is full and in use! Please submit the query!
25: return NULL
26: end if
27: end if
28: end if
29: end if

94 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

The problem of deciding how to partition the available memory in a static and a dynamic

part depends on the characteristics of the expected workload and the intended behavior of

the system. In general we could say that it is a good choice to have a dynamic part in order

to offer fast responses for recent and frequent queries and adapt to emerging temporal trends

(e.g. breaking news about an earthquake will cause a significant number of new queries on

the subject). In [25, 41, 42], the authors illustrate that the majority of the repeated queries

are referenced again within short time intervals, i.e. queries have significant temporal locality.

Nevertheless, there remains an important portion of queries that are repeated within relatively

longer time intervals. Lempel and Moran [30] observed that query popularity follows an

inverse power-law distribution and that the most popular queries submitted to search engines

do not change very frequently. This is a strong rationale for introducing a static part. But

which is the better way to partition the memory? Markatos [25] mentions that although

dynamic caching (most recently accessed queries) can use large caches more effectively, static

caching (caching of the most popular queries) can perform better for (very) small caches.

Furthermore, the experiments in [28] illustrate that for all the replacement policies, the best

way to partition the memory is to give more space to the static part. Specifically, giving 60%

to 80% of the memory to the static part, we can achieve the highest hit ratio.

In Section 7.2, we experimentally evaluate various caching policies for our setting in order

to reveal the most appropriate for our case.

5 On “Flexible” Recommendations

Even if we use a very large query log, our index may not contain queries that start with

a particular user’s input string. In that case, the system cannot suggest any queries and

overview information. However, our index may contain a query that is very close to what the

user has typed. For instance, a query in the index may contain all the words of user’s input

in different order, or the user may have typed a word with typo(s). It would be nice if in

such cases the system could avoid returning an empty list of suggestions. Below in Section

5.1 we discuss how we can tolerate different word orders, in Section 5.2 we elaborate on typo-

tolerant search, while in Section 5.3 we detail how we can efficiently exploit both of the above

functionalities. Note that we target on offering these functionalities assuming the proposed

index structures and without building new indexes.

5.1 On Relaxing the Word Order

Consider a user that starts typing avensis toyota. Suppose that the query trie (or subtrie)

contains the query toyota avensis but not the query avensis toyota. After having typed

avensis, no toyota is suggested however the user types “t” hoping that toyota will be

suggested. Suppose that the trie does not contain any completion for avensis t, so the

system cannot offer any suggestion.

To tackle this problem the system can also load the suggestions starting from “t”. More-

over, the system can exploit the fact that the user has already typed avensis. For this reason,

instead of suggesting the top rating completions for the prefix “t”, it should search the trie

for finding (and ranking) all completions that start from “t” and include the word avensis

as second or third (and so on) word. This requires traversing the (sub)trie after “t” (which

in any case is traversed for ranking the possible query suggestions) and keeping (scoring with

a non zero value) only those completions that contain avensis. This may yield suggestions

P. Fafalios and Y. Tzitzikas 95

like toyota avensis, technical characteristics avensis, test drive avensis, etc. If

the user does not select any of the above and instead types “i” this process will be repeated

leading to suggestions like tires avensis, etc. Below we discuss the most common case of

two-word queries and then approaches for offering this functionality in case of queries with

more than two words.

Two-Word Queries. For two-word queries (which is the majority of queries in web search

engines) the system can check both orders (at the time the user starts typing the second word).

During looking up the permuted query, the system exploits the knowledge of the first word

to restrict the possible suggestions. Finally the system ranks the suggestions yielded by each

word order and derives a single list of recommended query suggestions. Regarding efficiency,

if the two permutations belong to the same trie, then only one more subtrie traversal is needed

(in order to collect the suggestions that start with the second word). Furthermore, the system

has to perform |Qw| string comparisons (where Qw is the set of queries that start with the

character sequence w), in order to check if the queries that start with the second word (or

part of word if user has not finished typing) contain the first word. The cost for checking

if a string is contained in an other string has complexity O(n), where n is the length of the

biggest string (Boyer-Moore string search algorithm [43]). However, if the two permutations

do not belong to the same subtrie (in case of PET and PTIE), the system has to load the

new required subtrie which costs a bit more if the particular subtrie is not in the cache (in

case we adopt a caching mechanism).

Queries with Many Words. The case of queries with more than two words is more

expensive since a m-words query has m! possible permutations. However we should note

that long queries are not frequent. Nevertheless, a system can adopt one of the following

approaches:

(a) (ALL PERMUT) Check all possible m! permutations (where m is the number of words

of user’s input string). This approach is very expensive (especially for queries with many

words), as it requires m! trie traversals.

(b) (WORD CONTAIN) Check for queries that start from a word of user’s input string and

contain at least one of the remaining words. The more of the remaining words the query

contains, the higher rank it receives. In this approach, a query in the index does not have to

contain all the words of user’s input in order to be added in suggestions list, limiting thereby

the probability of returning an empty list. For a m-word query, this approach has to perform

m trie traversals and
∑m

i=1 |Qi|(m−1) string comparisons, where Qi is the set of queries that

start with the i-th word of the query. Algorithm 2 describes this approach. For each word of

user’s input string (line 3), we find all the queries of the log that start with this word (line

5). Then for each query (line 6), we check if it contains one or more of input’s words (lines 8,

9). The more of the remaining words the query contains, the higher rank it receives (line 10).

Note that this rank is not the final rank of the suggestion. It actually represents the number

of words in query that are contained in each suggestion and can be taken into account in the

final ranking of both normal and different word-order suggestions. Finally, if it contains at

least one word, we add this query to the list of suggestions (lines 11, 12).

Table 1 summarizes the two approaches. The second approach requires few trie traversals

(proportional to the number of query’s distinct words), however it has to perform many string

comparisons. Nevertheless, it limits the probability of returning an empty list of suggestions

96 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

Algorithm 2 Finding suggestions without considering the word order.

Input: Current user’s input q, the query log trie
Output: A list of suggestions each accompanied by its score which is actually the number of

words in q that are contained in each suggestion.
1: words← getWords(q) //for the current input q, find and return its distinct words

2: suggestions←new list()
3: for all word in words do
4: trie.descendTo(word) //trie traversal

5: queries← trie.findDescendantQueries() //get queries starting with word

6: for all query in queries do
7: score = 0; //initialization of suggestion’s score

8: for all cur word in words− {word} do
9: if query.contains(cur word) then

10: score++
11: end if
12: end for
13: if score > 0 then //the query contains at least one of input’s words

14: suggestions.add(query, score)
15: end if
16: end for
17: end for
18: return suggestions

(a suggestion does not have to contain all the words of user’s input). In addition, in both

approaches and in case we adopt PET or PTIE, the system has to load up to m distinct

subtries (one subtrie for each distinct word of user’s input) and the user must type at least k

letters of the last word in order to check also for queries that start with this word (where k

is the number of the first characters that determine trie partitioning).

Incremental Suggestions. Note that while the user is typing a word, if the new input is

part of the old input, i.e. user has not changed what he has already typed (which is the

common case), then the new suggestions are subset of the previous suggestions. For example,

if the user has typed toy and for this input he gets the suggestions toyota, toyota avensis,

toyota corolla, toys and toy story, then by pressing “o” he gets the suggestions toyota,

toyota avensis and toyota corolla which are a subset of the previous set of suggestions.

Table 1. Synopsis of the implementation approaches of word-order independent suggestions.

Cost and Functionality ALL PERMUT WORD CONTAIN

Num of (sub)trie traversals m! m

Num of string comparisons ∅
∑m

i=1
|Qi|(m− 1)

Max number of subtrie loadings (for PTIE) m m

Suggestion must contains all the words of user’s input YES NO

Note: m is the number of words of user’s input and Qi is the set of queries that start with the i-th
word of the query.

P. Fafalios and Y. Tzitzikas 97

Thereby, once the system has retrieved a list of suggestions for a particular word and user has

not changed what he has already typed, we can avoid trie traversals and consequently subtrie

loadings in case of PET and PTIE. This is also important in word-order independent search for

queries with more than one word, in particular for the second approach (WORD CONTAIN). For

example, if user has typed toyota and for this input he gets the suggestions toyota, toyota

avensis and toyota corolla then by continue typing toyota av, we can first filter the

existing suggestions by removing those that do not contain av, and then traverse the trie for

getting the new suggestions that start with av and contain toyota. Once we have retrieved the

new suggestions and user continues typing the second word, we just filter the new suggestions

according to what user is typing, i.e. there is no need for new trie traversals. Consequently,

in this case the costs in Table 1 do not represent the costs of one user’s keystroke, but the

total costs of the whole query (e.g. user copies and pastes his query). However, if user types

his query too fast or changes his initial input (by pressing the backspace button or using the

mouse), we cannot exploit the incremental suggestions.

Synopsis. Relaxing the word order of the suggestion system offers two benefits, one for the

user’s side and one for the server’s side. Obviously, user’s satisfaction grows since the system

returns suggestions that it would not find without this functionality. On the other hand,

the system does not need to index queries that contain exactly the same words, reducing

in this way the size of the trie. However, if we cannot exploit the incremental approach, it

increases system’s response time since the system has to perform more trie traversals, many

string comparisons and maybe to load and access other subtries (in case of PET and PTIE). In

Section 7.3 we report experimental results that demonstrate the feasibility of this functionality

regarding the proposed index structures.

5.2 Typo-Tolerant Search

Now we describe approaches for offering typo-tolerant query suggestions and the challenges

that arise by adopting them in the proposed trie-based indexes.

Motivation. Consider a user typing a query who is not sure for the spelling of a word,

e.g. he types merilyn, but actually he would like to type marilyn. Suppose that the query

trie (or subtrie) contains the queries marilyn, marilyn monroe and marilyn manson, but

not the query merilyn. The user (after having typed the first 2 characters) will never get

the suggestion marilyn and consequently the other two suggestions marilyn monroe and

marilyn manson. Note that according to Cucerzan and Brill [44], more than 10% of search

engines queries are misspelled. This is even more severe for tail queries of which more than

20% are misspelled [45]. Typos occur for a variety of reasons. For example, when typing

quickly, users may add or drop letters unintentionally. Moreover, accidentally hitting an

adjacent key on the keyboard, also known as the fat-finger syndrome, is common especially

on mobile devices with small virtual keyboards.

Implementation Approaches. (a) (DETECT ALL) One approach is to load also the sug-

gestions that their beginning substring is “similar” to the query that the user is typing. For

example, the system can compute the Edit (Levenshtein) distance [46] between user input and

the beginning substring of each full query in the logd. If this number is lower than a threshold,

dNote that the complexity of a common edit distance algorithm, e.g. a dynamic programming algorithm, is
O(nm), where n and m are the strings length (in our case m is the length of the user query and n is the sum

98 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

the system can add the corresponding queries to the list of suggestions and rank them as if

no edit distance was employed. Specifically, in each user’s keystroke we can detect the active

nodes of the trie. A node is considered active if the edit distance between its corresponding

string and user’s input is lower than a threshold. For example, in the trie of Figure 6, for

the user input meri and edit distance = 1, the active nodes are the nodes that correspond to

the character sequences ceri and mari. Thereby, the system can suggest the queries cerise,

cerium, maria, and marilyn. For choosing the right edit distance threshold, we can take

into account the length of user’s current input. For instance, we can allow one edit operation

(insertion, deletion or substitution) per three characters, i.e. threshold = input length/3.

Moreover, we start searching for similar queries when user has typed at least the third char-

acter (it has no sense to find typos if user has typed too few characters).

root

c

a
p

j
a

m

y

m a
p

e r

r

i

es

u m

r

e r k

o ng

a

r l
i

ny

Fig. 6. Trie’s active nodes for input meri and edit distance = 1.

(b) (IGNORE FIRST) Another approach is to ignore possible typo in the first character of user

query. Note that if we want to find suggestions including typo in the first character, the

system has to compute the edit distance between the user input and the beginning substring

of many queries in the log (in order to find the active nodes). Specifically, in the worst case

the system has to visit the nodes that their corresponding string has maximum length equal

to the input length plus the edit distance threshold. For example, for the input “meri” and in

case we allow one edit operation per three characters the system has to check the nodes with

maximum string length equal to five characters (i.e. the nodes of level ≤ 5). However, this

costs a lot and is proportional to the total number of distinct queries that lie in the index. If

we would like to handle this efficiently we would have to create a character-based suffix tree

of all queries in the log but that would increase the space requirements. Furthermore, in case

of PET and PTIE, the system has to load and access all the subtries, overloading thereby the

system.

Thus, one method to reduce this cost is to find the active nodes only for the part of the

trie that contains queries starting with the letter that the user input starts (e.g. if user has

typed merilyn, find all similar queries that start with “m”). For SET and STIE, this requires

one more trie traversal of the part of the trie that its queries start with a specific character

(in order to detect the active nodes), and the computation of the edit distance between the

corresponding string of each node and user’s current input. This costs about |Nc|(
n+edt

2)n,

where n is the length of the user input string, edt is the edit distance threshold for the current

of the lengths of all queries in the query log).

P. Fafalios and Y. Tzitzikas 99

Table 2. Synopsis of the implementation approaches of typo-tolerant suggestions.

Cost DETECT ALL IGNORE FIRST

Num of (sub)trie traversals
Traverses a part of the
trie (of level ≤ n+ edt)

Traverses a part of the trie
(of level ≤ n+ edt, starting

with input’s first char)

Num of edit distance computations |N |(n+edt
2

)n |Nc|(
n+edt

2
)n

Max number of subtrie loadings
(for PET and PTIE)

All the subtries Depends on k

Note: k is the number of the first characters that determine trie partitioning, n is the length of user’s
input string, edt is the edit distance threshold for the current input length, N is the set of all nodes
of the trie with level ≤ n + edt, and Nc is the set of all nodes of the trie with level ≤ n + edt that
their corresponding string starts with input’s first character.

input length, and Nc is the set of all nodes of the trie with level less than or equal to n+ edt

that their corresponding string starts with input’s first character. In PET and PTIE and for

k > 1 (where k is the number of the first characters that determine trie partitioning), the

system may need to access more subtries. For example, for input “merilyn” and k = 2, the

system has to access the subtries that correspond to the character sequences “ma”, “mb”,

“mc”, etc. Thus, in this case we must check only the subtries that lie in the cache.

Table 2 summarizes the approaches for typo-tolerant search. In comparison to the general

approach, ignoring typo in the first character reduces the trie traversals, the edit distance

computations and the maximum number of subtrie loadings (for PET and PTIE). Especially

for PET and PTIE, we must always ignore typo in the first character and traverse only the

subtries that lie in the cache (for k > 1). In Section 7.3 we report indicative results regarding

this functionality.

5.3 Combining Typos and Different Word Orders

Here we elaborate on how we can support both typo-tolerant and word-order independent

suggestions.

Consider a user typing the query monroe merilyn and suppose that our index does not

contain any query that starts with monroe, however it contains the queries marilyn monroe

and marilyn monroe filmography. Unfortunately these queries will not be suggested neither

by typo-tolerant nor by word-order independent search. Below we describe two possible

approaches.

(a) (DETECT ALL) To tackle this problem the system can detect the active nodes of each

word and then restrict the possible suggestions exploiting the knowledge of the remaining

words. Specifically, we can use the incremental approach for catching different word orders.

If the new input is part of the old input and if the user continues typing the same word (i.e.

no space character is detected) then we just update the active nodes of the last word. When

we detect that user is typing a new word, we “lock” the active nodes of the previous words

(i.e. there is no need to update anymore their active nodes) and try to find the active nodes

of only the new word. Furthermore, we filter the suggestions that derive by each active node

to those that contain at least one of the remaining words or one of the corresponding strings

of the active nodes of each remaining word (in order to catch possible typos). In this way we

can capture both different word orders and typos.

100 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

In each keystroke, the computation of the active nodes for a word (or a part of a word

if the user has not finished typing it) costs about |N |(w+edt
2)w, where w is the length of the

word, edt is the edit distance threshold for the current word length, and N is the set of all

nodes of the trie with level less than or equal to w + edt. If the user has changed his initial

input (or he starts typing very fast), then we must find the active nodes of each word (which

costs m|N |(w+edt
2)w, where m is the number of words of user’s input). Furthermore, the

filtering of the suggestions that derive from each active node to those that contain at least

one of the remaining words or one of the corresponding strings of the active nodes of each

remaining word, requires
∑l

i=1 |Ai|(l − 1) string comparisons, where l is the total number of

active nodes and Ai is the set of suggestions that derive from the i-th active node.

(b) (IGNORE FIRST) To improve efficiency, we can ignore typo in the first character, as we

saw at the second approach of typo-tolerant search. Obviously, this approach reduces the trie

traversals, the edit distance computations and the number of subtrie loadings for PET and

PTIE.

6 On Ranking the (Approximate) Recommendations

The ranking of recommendations is important since only a small number of the possible

completions are prompted.

Various ranking methods were introduced and analyzed in [38]. One of the methods that

was proved effective (and has a clear probabilistic interpretation) is described next. Let q q′

denote that q is a prefix of q′. Let qu denote the query the user has typed. We assign a score

to each candidate completion q (where qu q) that reflects the probability that the user will

select q if he has typed qu. The estimation of the probability is based on the log file and it is

defined as:

Score(q) =
DeepFreq(q)

∑
qu q′ DeepFreq(q′)

where DeepFreq(q) = freq(q) +
∑

q q′ freq(q
′), and freq(q) is the frequency of q in the

query log. We have to stress that this ranking does not affect the instant behavior because

we precompute the scores of all queries and we store them in the (sub)tries.

6.1 Exploiting Ranking Information for Efficiently Computing the Top-K Sug-

gestions

We can exploit the ranking information for reducing the (sub)trie traversals. For instance,

suppose that we are interesting in suggesting the top-K (e.g. K = 10) queries. According to

the aforementioned ranking method, if q q′ then Score(q) ≥ Score(q′). Actually the score

of a query suggestion q corresponds to the probability that the user will select q after after

having typed a particular character sequence. In that case, we can keep an array with the K

highest scores of completions encountered so far, and before continuing a trie traversal from

a node n, we check if the score of n is greater than the minimum score stored in the array.

Only in that case it is worth proceeding to the children of n. This is actually an adaptation

of the Threshold Algorithm [47] for our setting. This optimization is especially useful for the

case of word order and typo tolerant recommendations which require making several (sub)trie

traversals.

Algorithm 3 describes the procedure for computing the top-K suggestions. We first descend

P. Fafalios and Y. Tzitzikas 101

to the tree node that corresponds to the input string (line 1) and start traversing the subtree

under that node (line 3). If the score of the current node is lower that the minimum score of

the suggestions in the top-K array (line 4) we ignore the subtree under that node and continue

the (sub)trie traversal (line 5). Note that in each node (even if it does not contain a complete

query) we have stored the maximum score of the suggestions that are under that node. If

the score is bigger than the minimum score (line 6) we check if the node contains a complete

query, i.e it corresponds to a suggestion (line 7). If so, we check if the array with the top-K

suggestions is full (line 8). If not, we just add the corresponding suggestion to the array (line

9), otherwise (line 10) we have to remove the suggestion with the minimum score (line 11),

add the new suggestion (line 12), and finally assign the new minimum score (line 13).

Algorithm 3 Efficiently computing the top-K suggestions.

Input: Current input q, the query log trie, K desired number of suggestions.
Output: The top-K suggestions (topKarray).
1: trie.descendTo(q)
2: minScore = −1
3: for all node in depthFirstTrieTraversal(trie) do //start traversing the descendant nodes

4: if node.getRank < minScore then //the node has lower score than the min score

5: continue //ignore the subtree under node and continue

6: else
7: if node.hasCompleteQuery() then //the node corresponds to a suggestion

8: if topKarray.size() < K then //the top-K array is not full

9: topKarray.add(node.getQuery())
10: else //the top-K array is full

11: topKarray.removeMinSuggestion() //remove suggestion with min score

12: topKarray.add(node.getQuery()) //add the new suggestion

13: minScore = topKarray.getMinScore() //assign the new minimum score

14: end if
15: end if
16: end if
17: end for
18: return topKarray

The procedure is almost the same in case we want to offer word order independent and

typo tolerant suggestions. Regarding the former, we descend to each distinct word of user’s

input string and perform a trie traversal ignoring the subtrees under the nodes with score

lower than the minimum score of the suggestions in the top-K array. Regarding the latter,

we follow exactly the same procedure for each active node.

In case we adopt a partitioned index (PET or PTIE) we can avoid loading a subtrie if we

store (and keep in memory) the maximum score of the suggestions that it contains. Thereby,

we can avoid loading a subtrie with low ranked suggestions. Moreover, in case of word order

independent and typo tolerant suggestions, we can start traversing the subtries with the higher

rank and stop when we have filled the top-K array, saving thereby considerable time.

Supporting a Time Threshold Policy. A search system may also have a “maximum

time” policy for computing the top-K suggestions (e.g. 100 ms). In that case, we have to

start measuring the time when the algorithm starts and return the top-K array if we pass a

102 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

given time threshold. In case we want to stop retrieving suggestions (because we have not

more time), we have two cases: (i) only one subtree traversal remains, (ii) n subtree traversals

remain. In the first case we know which of the top suggestions are surely the top (those with

score greater than the score of the remaining node). In the second case, the top suggestions

are surely the top if their score is greater than the max score of the n remaining nodes.

Thereby we are able to know the percentage of suggestions that are surely the top.

6.2 Ranking of Approximate Recommendations

For ranking the approximate recommendations, one approach is to rank the suggestions that

correspond to different word orders or to similar strings as if they were “normal” suggestions.

An alternative approach is to penalize the “approximate” suggestions, i.e. to promote those

suggestions that correspond exactly to the user’s input string, and penalize the rest taking into

account also their difference to the user’s input string. This can be realized also by a simple

mechanism. For instance, suppose that the system policy is to prompt the top-10 suggestions.

A simple policy is to show the approximate matches always at the last positions of the 10

suggestions, i.e. at the positions 6 to 10. With regard to the ranking of the approximate

recommendations, one approach is to rely solely on their original score. Alternatively we can

reduce their score based on their distance with the user input string, e.g. taking into account

the number of common words, the edit distance, or combinations of these.e

7 Experimental Evaluation

In this section we first summarize the main experimental results (from [2] and [5]) regarding

the proposed index structures (for reasons of self-containedness), we describe criteria that

should be used and in the right order for selecting the most appropriate index, and we re-

port experimental results regarding the update of the index (Section 7.1). Subsequently we

experimentally evaluate the caching schemes described in Section 4.1 for understanding how

they affect the throughput that can be served and the response time (Section 7.2). We also

report indicative results regarding word-order independent and typo-tolerant search, and we

quantify the benefits of this flexibility in terms of how many more suggestions users receive

(Section 7.3). Finally, we experimentally evaluate the proposed top-K algorithm described in

Section 6.1 for efficiently retrieving the top-K suggestions (Section 7.4).

In all experiments we used four query logs of different sizes. One with 100,000 queries,

one with 500,000 queries, one with 1 million queries, and one with 1 million distinct queries.

The first three logs are subsets of a random real query log sample from Altavista web search

engine (of year 2003). The last one is synthetic but it retains the main features of a real query

log. The logs that were used in the experiments are available to downloadf. Table 3 reports

their main features. All experiments were carried out in an ordinary laptop with processor

Intel Core 2 Duo P7370 @ 2.00Ghz CPU, 3GB RAM and running Windows 7 (64 bit). The

implementation of the system was in Java 1.6 (J2EE platform).

eA comparative evaluation of the above ranking choices as well as their personalization are beyond the scope
of this work but certainly important topics for future research.
fhttp://www.ics.forth.gr/~fafalios/iosDatasets.zip

P. Fafalios and Y. Tzitzikas 103

Table 3. The query logs used in the experiments.

Num of queries in the log
Num of
unique
queries

Avg num of
words per query

Num of
distinct words

Avg num of
chars per query

100,000 (Altavista 2003) 72,075 3.1 64,904 21

500,000 (Altavista 2003) 293,156 3.1 153,593 21

1m (Altavista 2003) 513,275 3.1 219,178 21

1m (synthetic) 1m 3.1 369,661 21

7.1 Evaluation of Index Structures

[2] presents the results of a comparative experimental evaluation of the four indexing ap-

proaches (SET, STIE, PET, PTIE) that were described in Section 3. Regarding the size of

the index, SET requires the most space which can be very big for large query logs. The best

approach (regarding only the size of the trie) is PTIE with great difference from the others.

Finally, PET requires less space than STIE only for very large query logs and according to the

way that the index has been partitioned. As regards the average response time, SET approach

is much more efficient than all the other approaches. However, as mentioned above, for large

query logs its size is huge and it does not fit in main memory. For this reason, one may

argue that the best approach is STIE, as it combines low trie size and very fast retrieval time.

Moreover, PTIE is a very good approach as it offers very small trie size and efficient retrieval

time. Finally, PET approach is the worst although its retrieval time is not unacceptable (the

reason is that PET has to load at request time a subtrie of usually big size).

[5] performed a large scale experimental evaluation of PTIE (which is the more scalable

approach) using a very large query log and large amounts of precomputed information. In

particular, it was used a synthetic query log of one million distinct queries and synthetic

precomputed information of one terabyte. It measured the average time for retrieving the

suggestions, the results and the clusters for a random input string without using any cache

scheme. The average retrieval time was about 135 ms, proving that PTIE is efficient even for

very large query logs and precomputed information. At last we should mention that with a

modest personal computer the other indexing approaches cannot be used in such a big number

of queries and precomputed information. PTIE is very scalable because the data that it has

to load at request time has small size, its total cost of main memory is low and depends on

the number of requests, and also it has low response time.

Selecting the Right Index. The main conclusion is that the proposed functionality is

feasible for real time interaction even if both the log file and the preprocessed information

have very large size. The selection of the implementation approach depends on the available

main memory, the size of the log file and the size of the preprocessed information. Below we

describe criteria that should be used and in the right order.

1. If the entire SET fits in memory then this is the faster choice since no loading has to

be done during user’s requests.

2. If SET does not fit in memory then, the next choice to follow is STIE since it offers faster

retrieval time in comparison to PET and PTIE. However note that STIE is feasible only

if the trie of the query log fits in main memory (which is usually the case); if not then

PTIE approach has to be used.

104 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

3. Finally, we could say that the more scalable approach is PTIE, since it can be adopted

even if the available main memory has very small size. Furthermore, the experiments

showed that PTIE is very efficient and can be used even with very large query logs.

However, more information has to be loaded to main memory at request time in com-

parison to SET and STIE. This limits the throughput that is feasible to achieve. This

problem can be alleviated by adopting a caching scheme, as we saw in Section 4.

Note that it is always useful to have an efficient method that best utilizes the existing

resources and does not require more hardware. Regarding memory, there is always a hierarchy

of memories,g meaning that we can assume that we have two kinds of memory: one smaller

faster and more expensive, and one bigger but less fast. Approaches that exploit the faster and

smaller memory are always useful. Nevertheless, the proposed functionality can be exploited

also in a distributed system. Specifically, in SET, we can load the enriched trie at each node

and apply a load balancing technique [48, 49, 50], e.g. round robin dispatching of requests.

In STIE, we can distribute not only the trie, but also the random access files at several nodes.

In PET and PTIE, we can load each subtrie in one or more nodes according to the frequency

of use of each subtrie. In that case, the mediator forwards the request to the appropriate

node and applies the round robin dispatch in case there are more than one nodes with the

same subtrie.

Index Update Time. Here we evaluate the proposed index update procedure described

in Section 3.4. For the experiments, we used two real query logs, one with 500,000 queries

and one with 100,000 queries (Table 3 reports their main features). The big log was used for

building the index and the small one for updating it. We measured the index update time of

STIE and PTIE since they are considered the most scalable indexing approaches. Specifically,

we measured the time for a) analyzing the new query log (and computing the scores of the

queries according to the formula described in Section 6), b) loading the existing trie (for

STIE) or the required subtries (for PTIE), c) updating the data of the queries that already

lie in the index, d) adding the new queries with all their data, e) updating the scores of the

ancestor queries (which is required by the scoring formula), and f) saving the new (updated)

trie (or subtries in case of PTIE). For c) and d) we stored the data in new random access files.

Note that we do not measured the time for deriving the top search results and the overview

information because that time highly depends on the particular algorithms that are employed

and the underlying sources (moreover, the system may have stored that information while

evaluating it).

Table 4 reports the results. We notice that analyzing the query log and computing the

scores of the queries is not a time consuming task (about 1.5 second). For updating STIE,

saving the update trie is the most time consuming task (about 43 seconds). This happens

because the size of STIE is very large (specifically, in our setting the updated trie was about

600 mb). For the same reason, loading the existing (large) trie is time consuming (about

28 seconds). Moreover, adding the new queries in the index consumes about 26% of the

overall time, while updating the existing queries and the scores of the ancestors is not time

consuming.

For updating PTIE, loading the subtries is the most time consuming task. This is a

predictable result because for each distinct query in the new query log we have to load its

ghttp://en.wikipedia.org/wiki/Memory_hierarchy

P. Fafalios and Y. Tzitzikas 105

Table 4. The main index update tasks and the time for updating an index of 500,000 queries using
a query log of 100,000 queries.

Task Time in STIE Time in PTIE

Analyze the query log and compute the scores 1,500 ms (1.4%) 1,500 ms (1.4%)

Load the existing trie (STIE) or the required subtries (PTIE) 27,922 ms (25.3%) 58,913 ms (55.5%)

Update the data of the queries that already lie in the index 8,054 ms (7.3%) 4,583 ms (4.3%)

Add the new queries with all their data 28,582 ms (25.9%) 8,351 ms (7.9%)

Update the scores of the ancestor queries 876 ms (0.8%) 154 ms (0.15%)

Save the new (updated) trie (or subtries in case of PTIE) 43,267 ms (39.3%) 32,573 ms (30.7%)

Total time 110,201 ms 106,074 ms

corresponding subtrie (if it is not already in the main memory). Note also that we did not use

any caching scheme. Furthermore, saving the updated subtries consumes about 30% of the

overall time. We notice also that in PTIE, adding the new queries or updating the existing

ones consumes much less time that in STIE. This happens because in PTIE the subtrie that

we update for each distinct query has much smaller size than the single big trie of STIE.

7.2 Evaluation of Caching Schemes

To evaluate the benefits of caching in our setting, we performed a comparative evaluation of

the following choices:

(1) Static cache

(2) Dynamic cache

(3) Hybrid (static: 30%, dynamic: 70%)

(4) Hybrid (static: 50%, dynamic: 50%)

(5) Hybrid (static: 70%, dynamic: 30%)

(6) No cache

We used a synthetic query log of one million distinct queries (see Table 3 for its features).

We created 344 subtries using the PTIE approach with trie partitioning based on the first

two characters and with minimum 1,000 entries per subtrie. In a loop without any “sleep”

period, we run 10,000 random queries selected from the log file. The query rate was about 8

queries per second. We chose to set the memory capacity (MC) to 60 subtries, i.e. 17.44%

of all subtries can fit in main memory at the same time. The time threshold (TT) that a

subtrie is considered in use (and thus it cannot be removed) was set to 10 seconds, i.e. about

10 ∗ 8 = 80 queries have to be served at the same time. As we will see later, the values of

these three factors (query rate, percentage of cached subtries and time threshold) highly affect

the experimental results. As far as the static cache is concerned, we load the more frequent

subtries after a query log analysis.

Served Queries. Figure 7a reports a) the percentage of queries that were served from the

cache without delay (fast response since the request can be served instantly from the cache),

b) the percentage of queries that were served from the cache with delay (in order to remove

the less frequent subtrie and load the requested one), and c) the percentage of queries that

could not be served (because of memory overloading). We see how the results change starting

from a full dynamic cache and resulting in a full static cache. We observe that as the cache

becomes more static, more queries are served fast and less are served with delay. However,

in a full static cache, almost half of the queries cannot be served. On the contrary, this

106 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

0

20

40

60

80

100

DYNAMIC 30% stat.

70% dyn.

50% stat.

50% dyn.

70% stat.

30% dyn.

STATIC

Q
u

e
ri

e
s

(%
)

Cache memory partition policy

FAST WITH DELAY NO SERVE

(a) Served Queries.

0
20
40
60
80

100
120
140

DYNAMIC 30% stat.

70% dyn.

50% stat.

50% dyn.

70% stat.

30% dyn.

STATIC NO CACHEA
v
e

ra
g

e
 R

e
tr

ie
va

l

T
im

e
 (

m
s)

Cache memory partition policy

(b) Average response time.
Fig. 7.

percentage is very low in the other policies (lower than 5%).

Average Response Time. Figure 7b illustrates the average response times for all ap-

proaches. We notice that as the cache becomes more static, the average response time gets

faster, since more queries can be served instantly from the static cache. On the other hand, in

a full static cache there is no space in order to serve the less frequent queries and as a result

the system gets overloaded and many requests cannot be served. In case we do not use any

cache policy, i.e. the system loads the requested subtrie in each user’s request (keystroke)

and removes it when the user has been served, the average response time is slightly higher

than that of a dynamic cache. However, if many users request a subtrie at the same time, the

system can easily get overloaded. Specifically, in our experiments the main memory capacity

is set to 60 subtries, i.e. the system can serve at most 60 queries at the same time. Thus,

since we have 80 queries that have to be served at the same time period, 20 of them will not

be served (25%).

Discussion. We should clarify that the above results concern the case where each user (i.e.

each iteration in the loop) requests only one subtrie, in particular the subtrie that contains

the randomly selected query. The results do not take into account the common case in which

the user continues typing a query and he is served instantly by the same subtrie. For this

reason in realistic workloads the results are expected to be better.

As we mentioned before, beyond the aforementioned experiments, results and conclusions,

we can say that there are three main factors that affect the experimental results:

(1) Number of queries per second (Query Rate).

(2) Time Threshold (TT), the time (seconds) that a subtrie is considered in use and thus

it cannot be removed from the cache.

(3) Percentage of cached subtries (MC / Total number of subtries).

To understand how these factors impact the behavior of the system, we conducted addi-

tional experiments assuming a hybrid caching policy with 70% static and 30% dynamic cache.

Figure 8 illustrates how each of the above factors affects the results keeping constant the other

two factors. We observe that the smaller the query rate is, the less requests cannot be served

(Figure 8a). As far as the time threshold is concerned, we can see that less threshold time

results in less requests that cannot be served (Figure 8b). Finally, for bigger percentage of

cached queries we expect better results. i.e. more fast responses and less requests that cannot

be served (Figure 8c).

Synopsis. Concluding the above results, we could stress that: (i) the best caching policy is

the hybrid with 70% static and 30% dynamic cache, as it combines low percentage of requests

that cannot be served, high percentage of requests that are served fast and low average

P. Fafalios and Y. Tzitzikas 107

0

2

4

6

4 8 16

Q
u

e
ri

e
s

(%
)

Queries per Second

NO SERVE

(a)

0

5

10

15

20

25

5 10 20

Q
u

e
ri

e
s

(%
)

Time Threshold (sec)

NO SERVE

(b)

0

20

40

60

80

8 17 34

Q
u

e
ri

e
s

(%
)

Cached Queries %

NO SERVE FAST

(c)

Fig. 8. (a) How the number of queries per second affects the results, with 10 seconds time
threshold and 17% cached queries. (b) How the time threshold affects the results, with
8 queries per second and 17% cached results. (c) How the percentage of cached queries
affects the results, with 10 seconds time threshold and 8 queries per second.

response time. In particular, regarding the settings of the aforementioned experiment, we

found out that the particular caching scheme offered about 80% better throughput (since less

than 5% of the queries could not be served, contrary to the 25% of no-cache case), and about

25% speedup for queries that lie in the index. (ii) The more percentage of cached subtries

we have (that means more main memory capacity), the better results we expect. (iii) We

cannot know in advance the number of queries per second, however we expect that for small

numbers, the requests that cannot be served are few. (iv) The time threshold that a subtrie

is considered in use is constant and thus we know in advance how this number affects the

behavior of our system.

To sum up we saw that a caching scheme can significantly increase the throughput and

alleviate overloading problems. By partitioning the cache into a static and a dynamic part,

and giving more space to the static part, we can increase the throughput that can be served

and speed up IOS by offering lower response times.

7.3 Evaluation of Word-Order Independent and Typo-Tolerant Search

7.3.1 Retrieval Time

We decided to measure the average retrieval type of STIE and PTIE since they are the most

scalable. Specifically, using a real query log of one million queries (see Table 3 for its main

features), we run 1,000 random queries selected from the log of various number of words

(for evaluating the word-order independent search) and various number of characters (for

evaluating the typo-tolerant search). Furthermore, we consider the worst case in which we

cannot retrieve incremental suggestions, we do not use any caching scheme (for PTIE) and

we do not exploit the top-K algorithm for retrieving the suggestions.

Word-order independent suggestions. Regarding word-order independent suggestions,

we run the experiment for 2-word, 4-word, 8-word and 12-word queries and we measure the

time for retrieving suggestions that start from a word and contain at least one of the remaining

words (approach WORD CONTAIN). For each query we keep only the first two characters from

the last word. Table 6a reports the results. We notice that STIE can efficiently support

this functionality with average retrieval time lower than 60 ms, even for queries with many

108 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

Table 5. Average retrieval time.

Query length STIE PTIE

2-word 29ms 182ms

4-word 37ms 492ms

8-word 48ms 829ms

12-word 58ms 1,054ms

(a) Word-order independent.

Query length DETECT ALL IGNORE FIRST

4-char 96ms 28ms

8-char 142ms 39ms

12-char 225ms 36ms

16-char 305ms 32ms

(b) Typo-tolerant in STIE.

words. PTIE is efficient for 2-word queries (which is the common case) with average retrieval

time about 180 ms, but for queries with many words the time is very high. Consequently,

for queries with more than two words and if the system cannot offer incremental suggestions,

PTIE must search only the subtries that lie in the cache.

Typo-tolerant suggestions. With regard to typo-tolerant suggestions, we run the exper-

iment keeping from each query the first-4, first-8, first-12 and first-16 characters. Table 6b

reports the results of STIE for the common case (approach DETECT ALL), and when ignoring

typo in the first character (approach IGNORE FIRST). We notice that STIE can efficiently

support the DETECT ALL approach if the query does not have too many characters (about less

than 15 chars), and very efficiently when ignoring typo in the first character (with average

retrieval time lower than 40 ms). Since we do not use any caching scheme, we do not report

results of PTIE because PTIE has to load a lot of subtries which is very time consuming. For

this reason, PTIE must offer this functionality only by ignoring typo in the first character.

Furthermore, if the trie has not been partitioned based on the first character (k > 1), we

must check only the subtries that lie in the cache.

Tolerating both typos and different word orders. In this case we run the experiment

for 2-word, 4-word, 8-word and 12-word queries and we measure the time for a) detecting the

active nodes of each word ignoring typo in the first character, b) retrieving the suggestions of

each active node, and c) filtering the suggestions exploiting the knowledge of the remaining

(active) words. The results revealed that STIE can efficiently support the combination of

both functionalities for queries with no more than 4 words (which is the common case).

Furthermore, PTIE must offer this functionality incrementally or by checking only the subtries

that lie in the cache.

7.3.2 Number of Additional Suggestions

In order to quantify the effect of the offered flexibility, we measure the average number of

additional suggestions we get when we tolerate different word orders and spelling errors.

Specifically, using a real query log of one million queries (see Table 3 for its main features),

we performed the experiments described below.

Word-order independent suggestions. For 1,000 random (distinct) queries in the log

that have two words and each word contains at least four characters, we keep only the first

two characters of the last word and find its suggestions (initially with the same word order

and then without considering the order). For example, for the query marilyn monroe we find

all queries that start with marilyn mo and then the suggestions of the same query without

considering the word order (approach WORD CONTAIN). We do the same for all queries in the

log and we compute the average number of the additional suggestions we get (new − old)

when we tolerate different word orders. We also run the same experiment keeping the first

three and the first four characters of the last word, and using 3-word and 4-word queries.

P. Fafalios and Y. Tzitzikas 109

Table 6. Average number of additional suggestions per query when tolerating different
word orders.

Query length
Having typed the first 2
chars of the last word

Having typed the first 3
chars of the last word

Having typed the first 4
chars of the last word

2-word 23.6 3.5 1.9

3-word 69.3 28.1 22.2

4-word 117.5 58.4 47.8

Table 7. Average number of additional suggestions per query when tolerating spelling
errors.

Approach
Having typed 4

chars (edt dist=1)
Having typed 8

chars (edt dist=2)
Having typed 12
chars (edt dist=4)

Having typed 16
chars (edt dist=5)

DETECT ALL 975 55.8 72 34

IGNORE FIRST 792 52 50 27

Table 6 shows the results. Notice the number of suggestions always increases and for

queries with more than two words, even if we have typed many characters of the last word,

the additional suggestions are significantly more.

Typo-tolerant suggestions. For 1,000 random (distinct) queries in the log that have at

least four characters, we keep only the first four characters and compute its suggestions. For

example, for the query marilyn monroe we find all queries that start with mari. Afterwards,

we find the active nodes of that query (approach DETECT ALL with edit distance threshold

equal to one) and get their corresponding suggestions. Following the same procedure for all

distinct queries in the log, we find the average number of the additional suggestions we get

when we tolerate spelling errors. We run the same experiment keeping the first 8, first 12,

and first 16 characters, and allowing one edit operation per three characters.

Table 7 (first row) reports the average number of additional suggestions in each case.

Note that the results highly depend on the selected edit distance threshold and the distinct

number of queries in the index. We notice that (in our setting) we get much more suggestions

in all cases. We run the same experiments ignoring typo in the first character (approach

INGORE FIRST), e.g. for the query marilyn we found the similar queries that start with “m”.

Table 7 (second row) reports the results. Notice that also here the suggestions are much

more and the difference with the first approach is small. If we also consider that many of the

suggestions may be false (we are not able to know user’s intent), this is a strong rationale for

ignoring typo in the first character.

7.3.3 Conclusion

Undoubtedly, word-order independent and typo-tolerant search increase flexibility (and thus

user’s satisfaction), and the degree of exploitation of the precomputed information. Further-

more, they increase the number of queries for which the system can assist the corresponding

decision making process. However, both functionalities increase system’s response time since

the system has to perform more trie traversals, several string comparisons and maybe (in case

of PET and PTIE) to load and access other subtries. Table 8 illustrates the applicability of

word-order independent search, typo-tolerant search and their combination, over STIE and

PTIE (since these are the most scalable indexes). STIE can efficiently support word order

110 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

Table 8. Efficient support of word-order independent search, typo-tolerant search and their
combination over the proposed index structures.

Functionality Approach STIE PTIE

Word-order indep.

ALL PERMUT X Only for cached subtries

WORD CONTAIN X Only incrementally or for cached subtries

Typo-tolerant
DETECT ALL Only for input length<15 chars X

IGNORE FIRST X Only for k = 1 or cached subtries

Combination
DETECT ALL X X

IGNORE FIRST Only for m ≤ 4 or incrementally
Only incrementally and for k = 1, or for

cached subtries

Note: k is the number of the first characters that determine trie partitioning and m is the number of words of user’s
input.

independent and typo-tolerant search since the whole trie is in main memory. Only in case

of large input strings we must ignore typo in the first character in order to efficiently tolerate

typos. On the other hand, PTIE can efficiently support word-order independent search either

incrementally or for the subtries that lie in the cache, and typo-tolerant search by always

ignoring typo in the first character. For offering the combination of both functionalities, we

must always ignore typo in the first character. In addition, in all approaches we can highly

improve the response time if we adopt the top-K algorithm or a maximum time policy (as

described in Section 6.1). These techniques are beneficial especially for PTIE since it may

need to load and access many subtries.

Finally, these functionalities are worth offering only when there are few or no suggestions

of the current input string, meaning that system’s response time is not affected if there are

many suggestions, since there is no need to search for typos or other word orders.

7.4 Evaluation of the top-K algorithm

Here we evaluate the effectiveness of the top-K algorithm described in Section 6.1. Using

a real query log of one million queries (see Table 3 for its main features) and adopting the

PTIE indexing approach, we measure the average time for retrieving the top-10 suggestions

for various first-2 chars (the time does not include the time for loading the subtrie and the

time for presenting the results to the user). Specifically, we run 1,000 iterations asking for

suggestions starting with “th”, 1,000 iterations asking for suggestions starting with “co”, and

the same for “mo”, “je” and “ct”. Note that each sequence has different number of suggestions

(i.e. queries in the log that start with the corresponding first-2 chars). Table 9 reports the

number of queries starting with each sequence (second line), the average time for retrieving

the top-10 suggestions without adopting the proposed top-K algorithm (third line), and the

average time for retrieving the top-10 suggestions adopting the proposed top-K algorithm

(fourth line).

We notice that the improvement is impressing; three orders of magnitude. Without adopt-

ing the top-K algorithm, the system has to retrieve all the suggestions starting with a partic-

ular character sequence, rank them and return the top-10. Instead, by adopting the proposed

top-K algorithm, we avoid traversing parts of the tree that contain low ranked suggestions.

This can greatly reduce the response time, especially in case of word order independent and

P. Fafalios and Y. Tzitzikas 111

Table 9. The effectiveness of the top-K algorithm.

First-2 chars th co mo je
Queries starting with the first-2 chars 27,186 15,587 11,201 5,992

Retrieving top-10 suggestions without adopting the top-K alg. 1,150 ms 700 ms 300 ms 50 ms

Retrieving top-10 suggestions adopting the top-K alg. < 5ms ≈ 0 ms ≈ 0 ms ≈ 0 ms

typo tolerant suggestions which require to perform many trie traversals and string compar-

isons, and maybe (in case of PET and PTIE) to load and access other subtries.

8 Concluding Remarks

In this paper we elaborated on methods for enabling the instant provision of informative

query recommendations that provide the user with a better overview of the search space. The

supplementary information can be the result of various (time-consuming) tasks, e.g. textual

clustering or entity mining over the contents of the top search results. These methods are

generic in the sense that they are independent of the precomputed information, i.e. indepen-

dent of the ranking, clustering, entity mining, etc. method. It is also important to clarify that

the performance of these methods is independent of the size of the collection; it is affected

only by the size of the query log (in particular by the number of the frequent distinct queries).

These informative recommendations give the users an overview of the information space

and allow them to quickly discover what is popular among other users, to decide fast which

of the suggested query completions to use, and what hits of the returned answer to inspect

(alleviating the users’ bias in the first page of results or the possible biases of the ranking

method of the search system). Essentially, the interactive mechanism that we propose can

assist the user in all steps of the search process. Specifically, in a keystroke basis, the user

is getting information about the available options (recommended query completions), aid for

choosing an option (appearance of supplementary information), aid for acting (no need to

type the entire query so user actions become less laborious), aid for evaluating the choices

(the user can see the number of results, the clusters, the entities, etc.), and aid for changing

his situation (mental state may accompanied by a refined or different information need).

We paid special attention to the perspectives of scalability and flexibility. Regarding

scalability we considered an approach based on precomputed information and we compara-

tively evaluated four trie-based index structures. The experimental results showed that a

partitioned trie-based index structure can efficiently support recommendations for millions

of distinct queries even with modest hardware. Essentially, we showed how one can provide

instant access to large amount of data, utilizing the existing resources and without requiring

more hardware. Then we described criteria that should be used and in the right order for

selecting the most appropriate index according to the available main memory and desired

performance. Since the index should be updated periodically based on the contents of the

constantly changing query log and the new fresh results of the underlying web search system,

we described an incremental approach for updating the index. For improving the throughput

that can be served we analyzed experimentally various policies for caching subtries. According

to our results a hybrid (70% static and 30% dynamic) caching policy seems to be the more

appropriate choice yielding a throughput increment of around 80% and a 25% speedup. For

reducing users effort and increasing the exploitation of the precomputed information, we pro-

112 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

vided algorithms (appropriate for the proposed trie-based index structures) which can tolerate

different word orders and spelling errors. The experimental results, apart from revealing the

limits for supporting these functionalities, showed that they significantly increase the num-

ber of recommendations especially for queries that contain several words (the latter usually

have none or very few suggested completions). Furthermore, we proposed a top-K algorithm

for retrieving the top-K suggestions which exploits the ranking information for reducing the

(sub)trie traversals. The experimental results proved that the proposed algorithm highly im-

proves the average retrieval time. This optimization is especially useful for the case of word

order and typo tolerant recommendations which require making several (sub)trie traversals.

A direction for further research is to study how space-efficient (trie-based) data structures

([51, 37]) can be applied in our problem. Another direction is to analyze how exactly users

exploit the precomputed information that appears instantly. This requires very fast eye-

tracking equipment for measuring how many times (and under what conditions) the user

glances at the displayed precomputed information, and methods appropriate for analyzing

the gathered information. That will also assist deciding where [52, 53] and how [54] it is

worth displaying the recommended information.

Acknowledgements

The authors would like to thank MUMIA COST action (IC1002, 2010-2014) for supporting a

Short-Term Scientific Mission (STSM) of the first author in Vienna (December 2011), giving

them valuable feedback for improving and extending this work.

References

1. F. Silvestri, “Mining query logs: Turning search usage data into knowledge,” Foundations and
Trends in Information Retrieval, vol. 4, no. 12, pp. 1–174, 2010.

2. P. Fafalios and Y. Tzitzikas, “Exploiting available memory and disk for scalable instant overview
search,” in Web Information System Engineering–WISE 2011, pp. 101–115, Springer, 2011.

3. S. Kopidaki, P. Papadakos, and Y. Tzitzikas, “STC+ and NM-STC: Two novel online results clus-
tering methods for web searching,” in WISE ’09: Proceedings of the 10th International Conference
on Web Information Systems Engineering, October 2009.

4. P. Fafalios, I. Kitsos, Y. Marketakis, C. Baldassarre, M. Salampasis, and Y. Tzitzikas, “Web
searching with entity mining at query time,” in Multidisciplinary Information Retrieval, pp. 73–
88, Springer, 2012.

5. P. Fafalios, I. Kitsos, and Y. Tzitzikas, “Scalable, flexible and generic instant overview search,” in
Proceedings of the 21st International Conference on World Wide Web, pp. 333–336, ACM, 2012.

6. M. Käki and A. Aula, “Findex: improving search result use through automatic filtering categories,”
Interacting with Computers, vol. 17, no. 2, pp. 187–206, 2005.

7. M. Käki, “Findex: search result categories help users when document ranking fails,” in Proceedings
of the SIGCHI conference on Human factors in computing systems, pp. 131–140, ACM, 2005.

8. B. Kules, R. Capra, M. Banta, and T. Sierra, “What do exploratory searchers look at in a faceted
search interface?,” in Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries,
pp. 313–322, ACM, 2009.

9. M. Wilson et al., “A longitudinal study of exploratory and keyword search,” in Proceedings of the
8th ACM/IEEE-CS joint conference on Digital libraries, pp. 52–56, ACM, 2008.

10. S. Teddy, F. Yap, C. Quek, and E. Lai, “A neurocognitive approach to decision making for the
reconstruction of the metabolic insulin profile of a healthy person,” Handbook on Decision Making,
pp. 497–532, 2010.

11. A. Spink, B. Jansen, D. Wolfram, and T. Saracevic, “From e-sex to e-commerce: Web search

P. Fafalios and Y. Tzitzikas 113

changes,” Computer, vol. 35, no. 3, pp. 107–109, 2002.
12. L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: bringing order

to the web.,” 1999.
13. G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,” Information

processing & management, vol. 24, no. 5, pp. 513–523, 1988.
14. E. Segev, Google and the Digital Divide: The Biases of Online Knowledge. Chandos Publishing

(Oxford), 2009.
15. L. Vaughan and M. Thelwall, “Search engine coverage bias: evidence and possible causes,” Infor-

mation Processing & Management, vol. 40, no. 4, pp. 693–707, 2004.
16. D. Bridge and F. Ricci, “Supporting product selection with query editing recommendations,” in

Proceedings of the 2007 ACM conference on Recommender systems, pp. 65–72, ACM, 2007.
17. S. Ji, G. Li, C. Li, and J. Feng, “Efficient interactive fuzzy keyword search,” in Proceedings of

the 18th international conference on World wide web, WWW ’09, (New York, USA), pp. 371–380,
ACM, 2009.

18. G. Li, S. Ji, C. Li, and J. Feng, “Efficient type-ahead search on relational data: a tastier approach,”
in Proceedings of the 35th SIGMOD international conference on Management of data, SIGMOD
’09, (New York, NY, USA), pp. 695–706, ACM, 2009.

19. H. Wu, G. Li, C. Li, and L. Zhou, “Seaform: Search-as-you-type in forms,” in Proceedings of the
36th International Conference on Very Large Data Bases, VLDB ’10, 2010.

20. H. Bast and I. Weber, “Type less, find more: fast autocompletion search with a succinct index,” in
Proceedings of the 29th annual international ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’06, (New York, NY, USA), pp. 364–371, ACM, 2006.

21. G. Li, J. Feng, and L. Zhou, “Interactive search in xml data,” in Proceedings of the 18th interna-
tional conference on World wide web, WWW ’09, (New York, NY, USA), pp. 1063–1064, ACM,
2009.

22. G. Li, J. Wang, C. Li, and J. Feng, “Supporting efficient top-k queries in type-ahead search,”
in Proceedings of the 35th international ACM SIGIR conference on Research and development in
information retrieval, pp. 355–364, ACM, 2012.

23. H. Bast and M. Celikik, “Efficient fuzzy search in large text collections,” ACM Transactions on
Information Systems (TOIS), vol. 31, no. 2, p. 10, 2013.

24. H. Bast and I. Weber, “The completesearch engine: Interactive, efficient, and towards ir& db
integration.,” in CIDR, vol. 7, pp. 88–95, 2007.

25. E. Markatos, “On caching search engine query results,” Computer Communications, vol. 24, no. 2,
pp. 137–143, 2001.

26. P. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. Riberio-Neto, “Rank-
preserving two-level caching for scalable search engines,” in Proceedings of the 24th annual inter-
national ACM SIGIR conference on Research and development in information retrieval, pp. 51–58,
ACM, 2001.

27. X. Long and T. Suel, “Three-level caching for efficient query processing in large web search en-
gines,” World Wide Web, vol. 9, no. 4, pp. 369–395, 2006.

28. T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the performance of web search engines:
Caching and prefetching query results by exploiting historical usage data,” ACM Transactions on
Information Systems (TOIS), vol. 24, no. 1, pp. 51–78, 2006.

29. R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri, “The
impact of caching on search engines,” in Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 183–190, ACM, 2007.

30. R. Lempel and S. Moran, “Predictive caching and prefetching of query results in search engines,”
in Proceedings of the 12th international conference on World Wide Web, pp. 19–28, ACM, 2003.

31. G. Skobeltsyn, F. Junqueira, V. Plachouras, and R. Baeza-Yates, “Resin: a combination of re-
sults caching and index pruning for high-performance web search engines,” in Proceedings of the
31st annual international ACM SIGIR conference on Research and development in information
retrieval, pp. 131–138, ACM, 2008.

114 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

32. Q. Gan and T. Suel, “Improved techniques for result caching in web search engines,” in Proceedings
of the 18th international conference on World wide web, pp. 431–440, ACM, 2009.

33. B. Cambazoglu, F. Junqueira, V. Plachouras, S. Banachowski, B. Cui, S. Lim, and B. Bridge, “A
refreshing perspective of search engine caching,” in Proceedings of the 19th international conference
on World wide web, pp. 181–190, ACM, 2010.

34. R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel, L. Telloli, and H. Zaragoza, “Caching search
engine results over incremental indices,” in Proceeding of the 33rd international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’10, (New York, NY,
USA), pp. 82–89, ACM, 2010.

35. S. Chaudhuri and R. Kaushik, “Extending autocompletion to tolerate errors,” SIGMOD, 2009.
36. H. Duan and B. Hsu, “Online spelling correction for query completion,” WWW, 2011.
37. B.-J. P. Hsu and G. Ottaviano, “Space-efficient data structures for top-k completion,” in Proceed-

ings of the 22nd international conference on World Wide Web, pp. 583–594, International World
Wide Web Conferences Steering Committee, 2013.

38. D. Kastrinakis and Y. Tzitzikas, “Advancing search query autocompletion services with more
and better suggestions,” in Proceedings of the 10th international conference on Web engineering,
pp. 35–49, Springer, 2010.

39. C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis of a very large web search
engine query log,” SIGIR Forum, vol. 33, pp. 6–12, September 1999.

40. S. Ding, J. Attenberg, R. Baeza-Yates, and T. Suel, “Batch query processing for web search
engines,” in Proceedings of the fourth ACM international conference on Web search and data
mining, pp. 137–146, ACM, 2011.

41. Y. Xie and D. O’Hallaron, “Locality in search engine queries and its implications for caching,” in
INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Proceedings. IEEE, vol. 3, 2002.

42. J. Teevan, E. Adar, R. Jones, and M. Potts, “Information re-retrieval: repeat queries in yahoo’s
logs,” in Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 151–158, ACM, 2007.

43. R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of the ACM,
vol. 20, no. 10, pp. 762–772, 1977.

44. S. Cucerzan and E. Brill, “Spelling correction as an iterative process that exploits the collective
knowledge of web users,” in Proceedings of EMNLP, vol. 4, pp. 293–300, 2004.

45. A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, D. Metzler, L. Riedel, and J. Yuan, “Online
expansion of rare queries for sponsored search,” in Proceedings of the 18th international conference
on World wide web, pp. 511–520, ACM, 2009.

46. G. Navarro, “A Guided Tour to Approximate String Matching,” ACM computing surveys (CSUR),
vol. 33, no. 1, pp. 31–88, 2001.

47. R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for middleware,” in Pro-
ceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pp. 102–113, ACM, 2001.

48. V. Cardellini, M. Colajanni, and P. Yu, “Dynamic load balancing on web-server systems,” Internet
Computing, IEEE, vol. 3, no. 3, pp. 28 –39, 1999.

49. V. Ungureanu, B. Melamed, and M. Katehakis, “Effective load balancing for cluster-based servers
employing job preemption,” Performance Evaluation, vol. 65, no. 8, pp. 606–622, 2008.

50. T. Chieu, A. Mohindra, A. Karve, and A. Segal, “Dynamic scaling of web applications in a
virtualized cloud computing environment,” in e-Business Engineering, 2009. ICEBE ’09. IEEE
International Conference on, pp. 281–286, oct. 2009.

51. R. Grossi and G. Ottaviano, “Fast compressed tries through path decompositions,” CoRR,
vol. abs/1111.5220, 2011.

52. R. Moore, E. Churchill, and R. Kantamneni, “Three sequential positions of query repair in inter-
actions with internet search engines,” in Proceedings of the ACM 2011 conference on Computer
supported cooperative work, pp. 415–424, ACM, 2011.

P. Fafalios and Y. Tzitzikas 115

53. G. Buscher, A. Dengel, R. Biedert, and L. V. Elst, “Attentive documents: Eye tracking as implicit
feedback for information retrieval and beyond,” ACM Trans. Interact. Intell. Syst., vol. 1, no. 2,
2012.

54. L. Chen and H. Tsoi, “Users’ decision behavior in recommender interfaces: Impact of layout
design,” RecSys’11 Workshop on Human Decision Making in Recommender Systems, 2011.

55. R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information retrieval, vol. 463. ACM press New
York, 1999.

Appendix A: Benefits for the Server’s Side

Less incoming queries, reduced computational cost per received query. Apart from

the benefit for the users side, our approach is beneficial also for the server. In particular, we

could point that an IOS functionality (a) reduces the number of incoming queries which are

not really useful for the end users, since it assists them in avoiding wrongly typed queries

(user adapts his query on the fly until the results match what he wants), and (b) reduces the

computational cost because the same precomputed information is exploited in several requests

and thus the engine has to evaluate less tasks at run time. The combination of the above

increases the throughput of the server since the number of incoming queries is much smaller

and the response time is much less. This is true even if the user types the right query (for

his information need) from the beginning. For instance, and for the case of clustering, in IOS

for serving one request we have to load (if not already loaded in memory) and show (send via

HTTP) the cluster label tree. Without IOS (e.g. in plain StellaSearch [3]), for serving one

request we have to evaluate the query (either locally or send it to a remote engine), fetch the

top-L snippets, apply the clustering algorithm NM-STC to derive the cluster label tree, and

finally send the outcome over HTTP to the end user. The case is analogous for the other

kinds of precomputed information (e.g. entity mining over the top hits, etc.). In general we

can say that the more expensive the “overview information” is to derive, the more beneficial

for the server side our approach and indexes are.

In the context of real time results clustering, we could also say that the indexes of IOS

can be considered as a form of cache for speeding up StellaSearch. The trie over the

query strings is actually the data structure allowing fast lookups in that cache. Under this

perspective, we can say that in our work we exploit that cache not only after the user query

has been submitted (i.e. after the user has pressed the submit button), but while the user

types his query letter by letter, i.e. during typing. Also note that the size of that cache is

large therefore one part of it is in main memory, the rest in secondary.

Less monetary cost (at meta search level). In a meta-search setting, the engine has to

connect to the underlying search engines in order to get the results of a query. Such services

are not for free and sometimes they are billed according to the number of served queries. An

IOS approach reduces the queries sent to the underlying engines and thus can save money.

Less network connections (at meta search level). If the construction of the “overview

of the results” requires connecting to several external sources (e.g. web pages, LOD SPARQL

endpoints, etc), then an IOS approach reduces the number of connections which are required.

116 Type-Ahead Exploratory Search through Typo and Word Order Tolerant Autocompletion

Appendix B: Expected Speedup

Since past works (i.e. those mentioned in the introduction) have proved that the supplemen-

tary (overview) information is useful for the users during searching, what is worth evaluating

here is the instant behavior, i.e. the speedup that a search system offers to its users by

adopting the proposed functionality.

The speedup that we expect is proportional to the percentage of the incoming queries that

can be served from our index. For example, if for every 1,000 incoming queries, about 200 are

served from IOS (i.e. they are not submitted to the server), then the S = 20% of incoming

queries are served instantly (e.g. in time less than 200ms) and the 80% are served with delay

(the exact delay depends on the underlying search system, the overview information, the

particular algorithms that are employed, etc.). However, the more queries we precompute

the bigger the speedup is. The number of the precomputed queries depends on the system’s

available main and secondary memory. In particular, the only real price to pay is actually

the space required for storing the precomputed information.

In a typical standalone web search engine, if V is the vocabulary of the dataset, then the

size of the inverted file is O(|V|2), i.e. the square of dataset’s distinct words (Heap’s Law [55]).

Considering that about 60% of queries submitted to search engines has up to 2 words [11],

then the maximum number of two-word queries is |V|2, i.e. in the magnitude of the size of

the inverted file. Thus, with a disk space proportional to O(|V|2), we can have precomputed

information for 60% of queries. Moreover, note that contrary to the inverted file whose size

grows according to the size of the collection, our index is affected only by the size of the query

log and in particular by the number of distinct queries.

The required main memory depends on the caching mechanism and the index that we use.

For instance, in PTIE, a subtrie of 1,000 queries has size about 1 MB, i.e. a machine with

1 GB available main memory can keep in memory at the same time about 1,000 subtries of

1,000,000 total distinct queries. Thus, with 100 MB (10%) more main memory, we can have

instant search for 100,000 more incoming queries (10%).

