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How to prevent the fault propagation problems in Web Service has become an important issue. The recent
research works mostly take some fault tolerance method in service based system. These methods detect or
diagnose faults in the composition process, find the failure service, take tolerance action and recover the
system. However, in the service oriented architecture, one service is shared by different service based
systems. The fault tolerance method only considers from the view of one service user, and tolerance action
not considering the whole network would change its load and even the global redistribution of loads over
all of the services, trigger a cascade of overload, and result in service network paralysis. The research of
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cascading failure in Complex Network provides a set of models to help study the above problems.
Consequently, this paper proposes a new approach to deal with the fault propagation for Web Service from
the view point of the whole service network, which could analyze its resistance influenced by the size of
network, different types of attacks and load allocation strategies and prevent the disasters from happening.
Firstly, it constructs a Web Service Complex Network (WSCN) composed of single service and their
functional similarity. Then it models fault propagation based on WSCN, and simulates the propagation
process by analyzing WSCN performance under small attack, large attack, random attack and calculated
attack. When fault happens in WSCN, our method uses weight-based and spare-load-based load allocation
methods of failed service to compare their influences on the whole network. The experimental results show
that when fault happens in WSCN, the network has better resistance for small scale failure than big scale
one, and resists stronger for random attack than deliberate one; when the service failure happens, the
remaining space based load allocation strategy on it has higher robustness than weight based one. The
simulation of fault propagation for Web Service could set example for preventing and reducing
probabilities of collapse in the service network.
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1 Introduction

With the increasing development of network applications, the information processing mode changes
from centralized to distributed treatment gradually and Web Service emerges™. Web Service has the
characteristics!! of Encapsulation, loose coupling, self-describing, interoperability and universality,
and therefore it is applied in all kinds of aspects more and more. As Web services are often long
running and cross administrative boundaries, service based system may encounter various faults during
the execution. When fault happened in the system, the failed service would be replaced by another one.
These repairing actions would change the balance of flows, leads to a global redistribution of loads
over all of the services, and even trigger a cascade of overload failures such as paralysis of the power
system which was happened in USA in 2003%".. How to replace and distribute the load of the failed
service and prevent the fault propagation happening in service becomes an important issue.

However, the recent research works focus on fault tolerance of service based system including fault
diagnosis®®%?% and recovery®. Yan et al ™ propose a model-based approach to diagnose the faults in
a Web service-composed business process. Zhu et al ¥ propose an execution flow model for service
composition, and search the fault transmission flow path consisted by all potential faults. Based on the
execution result, the original failure along the path is checked and identified by analyzing the status of
every relate service. Friedrich et al [ envision a different approach to exception handling in service-
based system. In his approach, it exploits the causes of the process faults and derives the repair
strategies from the structure of process. Liu et al ” propose a framework for fault-tolerant
composition of transactional Web services.

The above research works only resolve faults problems in service based system from the view of service
user. They detect or diagnose faults in the composition process, find the failure service, and take
tolerance method to recover the system. But they neglect the fault propagation caused by the continuous
influence of the replacing action®® in Web Service. For example, some of the replacing mechanisms take
QoS into consideration, and select the service of highest QoS as the replacing service™*¥l. If more and
more repairing actions choose this service at the same time, its load will be increased and then easily
failed. This situation may lead to cascading failure of the replacing service and other related services,
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and even cause the collapse in the service network. On one hand, we need tolerance method to resolve
the existing faults for Web Service. On the other hand, we need effective method to prevent faults and
fault propagation. Consequently, it is important to consider cascading failures on Web Service in order
to better understand and control various cascading-failure-induced disasters. The research of cascading
failure in Complex Network™ ! provides a set of models to help study the above problems, such as the
sand-pile model™, the global load based cascading model GLBCM), and the fiber bundle model
FBMM],

In this paper, by referring the cascading models in Complex Network, we proposed a Complex
Network approach for prevention of fault propagation in Web Service. Firstly, we constructed a Web
Service Complex Network (WSCN for short) by setting Web Service as node and their relations as arc
and defines service cascading failure model similar in Complex Network. Secondly, we analyzed the
resistance of WSCN influenced by the size of network, different types of attacks and load allocation
strategies. We simulated dynamic evolving process of WSCN when cascading failure was happening,
and designed small attack, large attack, random attack and calculated attack on the network to compare
the network performance under different attacks. Thirdly, we replaced the failed service node by its
brother nodes in WSCN and used weight-based and spare-load-based load distribution method on it
separately to analyze their different influence. The approach proposed in this paper dealt with the
failed service by distributing its load to its related services based on WSCN, and it help us to solve the
fault in service based system from the view of a whole network and prevent the happening of
cascading failure. The result of experiments showed that the simulation could set example for
preventing and reducing probabilities of collapse in the service network.

The rest of this paper is organized as follows: Section 2 describes the complex network model based on
services’ invocable relations. Section 3 discuses the cascading failure model. Section 4 shows the
experiment results on networks of different size. Section 5 discusses the results of the experiments.
Conclusions and Future Works are given in Section 6.

2 Web Service Complex Network Model

Through investigating the existing research work on complex network for preventing fault propagation
in Web Service, we decided to construct a complex network module by using invocable relations
between web services firstly. The invocable relation is determined by matching the input and output
attributes of web services and the complex network model would be set up based on the invocable
relations. Web services are taken as nodes, and nodes which satisfy invocable relation are linked
together in the complex network model.

Definition 1 (Web Service) Web Service S is an atomic service and only has one operation. It is
defined as a tuple S<ID, Porttype, Operation, Message, QoS, Description>, ID is the identification of
S; Porttype is the protocol and data format definitions of special port type; Operation<in, out> is the
description of operation provided by S, which includes a pair of input and output; Message is the type
definition of communication data; QoS represents the quality of S; Description represents the
functionalities realized by S.
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Definition 2 (Invocable Relation) Assuming that Web Service S; has operation;<in;, out;>, S, has
operation,<in,, out,>, if S;. out; N S,.in,# ¢ there is invocable relation between S; and S, and

invocable degree between S;and S, is defined as:

ODegree = [Sout, I S,in,|
|S,in,|

Definition 3 (Web Service Complex Network) The model of Web Service Complex Network (WSCN
for short) can be presented by a set V of nodes and a set E of edges, connected together as a graph
denoted G = (V;E), each edge e €E is the invocable relation connected to one pair of web services, one
at each end.

Definition 4 (QoS on Edge) Assuming that S;, S, in WSCN, there is invocable relation between S, and
S,, QoS of S;and S, are QoS; and QoS, respectively. The edge between S; and S, is edge;,, and its QoS
is QoS, +Qos,

2

3 Fault Propagation on WSCN

In this section, we model the dynamic process of fault propagation in Web Service. Assuming that
there are N services in WSCN, we define the Maximum-load Capacity and remaining capacity of Web
Service S;.

Definition 5 (Maximum-load Capacity of S;) Let Maximum-load Capacity C; of S; be proportional
to L (L is the degree of S;): Ci= « L;, where « is the tolerance parameter.

Definition 6 (Remaining Capacity of S;) Let Maximum-load Capacity of S; be C;, and the present
load of S; be N;, the Remaining Capacity R; of S;satisfies: Rj= C; - N;.

When Web Service S; fails to work, S; would be removed from the network and its load would be
redistributed over the rest of the network according to the invocable relations between services. The
redistribution of load may cause the failure of other services, and lead to cascading failure finally. If
the remaining services’ load is less than their capacity, the cascade ends and the network return to a
new balanced state. Let Web Service S; be any node in WSCN, and its present load is L;. Let set
{parent,, parenty, =+-+-* , parent,} be Father Nodes of S;, every service in set {parent;, parent,, =+=+-+ ,
parent,,} has connected with S;, and the weight of these arcs are {pweight;, pweight,, «-+-- , pweight,}
respectively. Let set {childy, child,, +---* , child,} be Child Nodes of S;, S; has connected with every
service in set {child,, child,, «----- , childy}, and the weight of these arcs are {cweight;, cweighty, =+---+
, cweight,} respectively. In-degree and Out-degree of S; are expressed as IDeg; and ODeg;.

According to the composition rules in services, if one service fails to work, it needs to find others
having similar functions to replace it. In WSCN, as the services connect with each other by invocable
relations, one service may provide similar functions with children of its farther nodes or farther of its
child nodes. Consequently, if S; fails to work, its load would be distributed to child nodes of {parent;,
parent,, ++--+* , parent,,,} and father nodes of {childy, childy, =+---* , child} shown in figure 2. The load
distributed to child nodes of {parent,, parent,, =+---+ , parent,} is:
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AL =L IDeg; .
P IDeg, +ODeg,
The load distributed to father nodes of {child,, child,, <+---- , child,} is:
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Figure 2 All of the nodes distributed loads of Service i.

As shown in figure 3, if parent; is one element in set {parent;, parenty, -=--* , parent,,}, the load
distributed to all of child nodes of parent; is:

pweight;

ALy =AL ——— 1
>, pweight,

P

pweighty,

parent; parenty,

ofe |

Figure 3 Some nodes distributed load of Service i

When load distributed to child nodes of {parent;, parent,, +---+- , parent,,} and father nodes of {child,,
child,, «++-- , child,}, we consider two different distribution strategies:

(1) Load distribution based on weight
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If parent; is one element in set {parent;, parent,, «---- , parenty}, let {pj., pj, ==+ , Piny(n=1) be the
child nodes of parent;. The weight of arcs connected from every node in set {pj;, pjs, === , Pin} tO
parent; are pwji, PWp, ****** , PwWjn. If S; fails to work, the load distributed to node pjr (1< n' < n) is:

pW .
AL =AL, ——"—

in .
n n
21 ijn'

(2) Load distribution based on remaining capacity

If parent; is one element in set {parent;, parent,, «---- , parenty}, let {pj., pj, === , Piny(n=1) be the
child nodes of parent;. The remaining capacity of every node in set {pj1, pji, ****** , Pin} t0 parent; are
PUj1, PUjz, === , Pujn. If S; fails to work, the load distributed to node pj (1= n' < n) is:
pu. .
ALjn‘ =AL;

i,
n
21 pujn‘
After load distribution, if node pj- is over load, it would be removed from network and a new load
distribution would happen. Other nodes in the network are dealt with the same strategies.

4 Experiments

In order to analyze the resistance of WSCN influenced by the size of network, different types of
attacks and load allocation strategies, we select different numbers of Web Services to construct four
WSCN in different sizes, and simulate the propagation process by analyzing their performance under
small attack, large attack, random attack and calculated attack. We also use weight-based and spare-
load-based load allocation methods of failed service to compare their influences on the whole network.

4.1 Experimental Data

According to the above definitions, WSCN is built by setting Web Service as node, and Invocable
Relation between services as edge. Consequently, WSCN is a directed weighted network, and the
direction is from invoking service to invoked service, and weight is computed by Invocable Degree.
We choose the data set from Web Service Challenge 2009%Y as experiment data. In the process of
constructing WSCN, firstly we parse files of wsdl and wsla and get services information, then
computing the Invocable Degree between services, which could control the scale of the complex
network model. We define I0Degree =0.01 when constructing the complex network module. We
choose data set including 215, 426, 1157 and 2710 services to construct module, analyze their
properties of small world by computing average path length and clustering coefficient, and scale-free
properties by checking degree distribution. The results of computing average path length and clustering
coefficient are shown in the following table.
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Table 1 Attributes of Networks in Different Size

Network size Average Path Length Clustering Coefficient
215 4.357 0.298
426 3.546 0.103
1157 3.139 0.087
2710 3.004 0.088

According to the content in Table 1, all of the four modules have small average path length and big
clustering coefficient, which shows that all of them satisfy the features of small world. In the nodes’
degree distribution of four networks shown in Figure 1, most nodes’ degree are small, while a small
number of nodes’ degree are big, and the degree distribution of four networks meet power-law
distribution. It means that the four modules satisfy the feature of scale-free network. Consequently, the
four different sizes of networks including 215, 426, 1157, and 2710 services are Complex Network.
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Figure 1 Nodes’ degree distribution of four networks

We simulate fault propagation on four networks respectively, and the experiment results are analyzed
from two aspects. One is the influence on the network of different attack types, and the other is the
influence of load allocation strategy in different ways.
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4.2 Influences on Four Networks of Different Attack Types

In order to analyze the influence on WSCN under different attack types, we do the experiment of
different networks composed of 215, 426, 1157 and 2710 nodes under random small-scale attack,
random large-scale attack, deliberate small-scale attack and deliberate large-scale attack. We want to
find the relation between the proportion of failure nodes and the tolerance factor from experiments and
the results of experiment is shown in Figure 4-7. In these figures, the horizontal axis represents the
tolerance factor, and the vertical coordinate represents the proportion of failure nodes. In every figure,
there are four curves representing the relation between proportion of failure nodes and tolerance factor
under four kinds of attack respectively. We would analyze the relations between proportion of failure
nodes and tolerance factor the influence on different size of networks under different types of attacks
in the following paper.

For the network of 215 nodes, as shown in Figure 4(a), when the tolerance factor is 1.5, the proportion
of failure nodes is more than 60% in the deliberate large-scale attack and less than 20% in the large-
scale random attack. It shows that the network can overcome the random attack more than the
deliberate one. With the deliberate large-scale attack, whether weight-based or remaining-space-based
distribution is chosen, the proportion of failure nodes is more than 40%. It implies that the deliberate
large-scale attack has a huge influence on the network.
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Figure 4: Proportion of failure nodes as a function of tolerance factor, for a 215-node network and four attack types

For the network of 426 nodes, as shown in Figure 5, the comparison of random small-scale or large-
scale attack curves shows that large-scale attacks have more effect on the network than small-scale
attacks. As shown in Figure 5(a), if the proportion of failure nodes is desired to be less than 10%, the
tolerance factor needs to be at least 1.2 in the random small-scale attack, but the factor must be
increased to 1.4 in the large-scale random attack. The comparison of the deliberate small-scale and
large-scale curves shows that for tolerance factor above 1.4, there will be fewer than 5% failing nodes
under the deliberate small-scale attack. With deliberate large-scale attack, if the failing nodes in the
network are desired at fewer than 20%, the tolerance factor must be chosen above 1.8. From the two
curves shown in Figure 5(a) under the deliberate attack, it can be concluded that with the increasing of
the tolerance factor, the proportion of failure nodes firstly increases, and then decreases after reaching
a critical value. A similar result is seen in Figure 5(b) when considering the remaining space-based
distribution.
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Figure 5: Proportion of failure nodes as a function of tolerance factor, for a 426-node network and four attack types.

In the network of 1157 nodes, as shown in Figure 6(a), with the random small-scale attack, the
proportion of failure nodes is 40% for a tolerance factor of 1.0. The proportion of failure nodes reduces
from 40% to 1% as the tolerance factor is increased from 1.0 to 1.3. If the tolerance factor is bigger
than 1.3, there are almost no failure nodes in the network.
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Figure 6: Proportion of failure nodes as a function of tolerance factor, for a 1157-node network and four attack types.

For the network of 2710 nodes, as shown in Figure 7(b), if the deliberate large-scale attack happens,
the proportion of failure nodes increases gradually with the increasing of tolerance factor from 1.0 to
1.7. When the tolerance factor is 1.0, the proportion of failure nodes is 70%. When the tolerance factor
is 1.7, the proportion of failure nodes is nearly 90%. But the proportion of failure nodes reduces
gradually with the increasing of the tolerance factor from 1.7 to 2.0. When the tolerance factor reaches
2.0, the proportion of failure nodes asymptotically approaches 40% and does not decrease substantially
with further increase of the tolerance factor. Therefore, the whole network would break down with the
deliberate large-scale attack.
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Figure 7: Proportion of failure nodes as a function of tolerance factor, for a 2710-node network and four attack types.

From the above comparisons of different attack type in networks having different size, we could obtain
the following conclusions.

Firstly, the network is affected differently by different types of attacks, and resists random attacks
more than deliberate ones. If deliberate attacks happen in the network, the propagation area is wide. If
the tolerance factor is close to 1, almost all of the nodes in the network would fail.

Secondly, the number of failure nodes has an effect on the network’s behavior. If the number of initial
failure nodes is small, there is only a small effect on the network. Under the same attack conditions, if
more nodes fail initially, the network would face a large area of collapse.

Thirdly, there is critical range [a,b] of tolerance factor for different sizes of network and different types
of attacks. If the tolerance factor is smaller than a, one finds the whole network will collapse. If the
tolerance factor is bigger than a, and smaller than b, the resistance of the network to failure improves
as the tolerance factor increases. If the tolerance factor is larger than b, the number of node failures
does not further decrease substantially.

4.3. Influences of Load Allocation Strategy in Different Ways

In order to analyze the influence on the network in different load allocation strategy, the networks of
215, 426, 1157 and 2710 nodes are researched under the weight-based allocation strategy and the
remaining space-based one. The relation between the proportion of failure nodes and the tolerance
factor is calculated. In Figure 8-11, horizontal axis gives the tolerance factor, and the vertical axis
shows the resulting proportion of failure nodes. The two curves in the figure represent the relation
between the proportion of failure nodes and the tolerance factor under the weight-based allocation
strategy and the remaining space-based one respectively.

For the network of 215 nodes, as shown in Figure 8, for different load allocation strategy curves under
the random small-scale attack, the random large-scale one, the deliberate small-scale one and the
deliberate large-scale one, the curves of the weight-based and the remaining space-based allocation



146 Prevention of Fault Propagation in Web Service: a Complex Network Approach

strategies overlap. There is no obvious difference of failure proportion between the two allocation
strategies for this 215-node network.
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Figure 8 Comparison of the proportion of failing nodes for different load allocation strategies on a network of 215 nodes

In the network of 426 nodes shown in Figure 9, the comparison of curves based on two strategies
shows that the network can usually overcome more failure under the remaining space based allocation
strategy. For the deliberate small-scale attack in Figure 9(c), when the tolerance factor is 1.3, the
weight-based allocation strategy will result in roughly 20% of nodes failing, but the remaining space-
based strategy is about 10 times better. However, when considering all curves in figure 9, the network
of 426 nodes shows only minor differences between the two different load allocation strategies.
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Figure 9 Comparison of the proportion of failing nodes for different load allocation strategies on a network of 426 nodes

For the network of 1157 nodes shown in Figure 10(d), when the deliberate large-scale attack happens,
if the tolerance factor is 1.7, the proportion of failure nodes is 30% with the remaining space based
allocation strategy. But with the weight-based one, the proportion is 70%. It shows that the remaining
space-based allocation strategy can improve the robustness of the network for the failure.
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Figure 10 Comparison of different load allocation strategies on the network of 1157 nodes



148  Prevention of Fault Propagation in Web Service: a Complex Network Approach

For the network of 2710 nodes shown in Figure 11, when the random small-scale attack happens as
shown in Figure 10(a), there is no obvious difference between two load allocation strategies. When the
deliberate large-scale attack happens as shown in Figure (d), there is much difference between the
curves based on the weight and remaining space. When the tolerance factor is 1.85, the remaining
space-based allocation strategy will lead to about 45% of failure nodes, but the weight-based one will
lead to about 85%.
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Figure 11 Comparison of different load allocation strategies on the network of 1157 nodes

From the above comparisons of different attack types in networks having different sizes, we can obtain
the following conclusions.

Firstly, when the failure happens in WSCN, the weight based and remaining space-based allocation

strategies have different affects on the network. The network resists the failure more strongly when
adopting the remaining space-based one.

Secondly, if the network size is small, there are no clear differences between the two allocation
strategies. For networks of 215 or 426 nodes, the dependence of failures on tolerance factor is
essentially the same under all different types of attacks. The reason for this phenomenon is that there is
very little difference between the maximum and minimum value of node’s degree. The node’s initial
load and space is associated with its degree, and the little difference of degree leads to little difference
of remaining space. If the size of the network becomes lager, there would be larger difference between
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maximum and minimum value of node’s degree, and the network’s robustness is much stronger when
incorporating the remaining space-based strategy.

5 Discussions

The results of the experiments had shown that the network has better resistance for small scale failure
than big scale one, and resisted stronger for random attack than deliberate one. If the service got failed,
the remaining space based load allocation strategy on it had higher robustness than weight based one.
From the simulation of the fault propagation model on WSCN, we’d better control the number of failed
services at the same time, avoided the happening of deliberate attack on them, and choose the
remaining space based load allocation strategy for the failed service node in the real environment.

6  Conclusions and Future Work

In this paper, we have proposed a new approach to prevent fault propagation from the view of the
whole network. It put forwards a Web Service Complex Network model based on the composition
relations, presented the dynamic process of its fault propagation, and analyzed its resistance influenced
by different sizes of network, different types of attacks and load allocation strategies by experiments.
The simulation experiment had been done to analyze the robustness of large-scale attacks, small-scale
attacks, random attack and deliberate attack to the model and compare the influences of the weight-
based and remaining-spare-based load allocation strategy to the failed service nodes. The simulation of
fault propagation for Web Service could set example for preventing and reducing probabilities of
collapse in the service network.

As the future work, we will choose open services provided in our university as the nodes in the Web
Service Complex Network, for example, services from teaching management, personnel management,
research project management and finance management systems. We would produce a large amount of
services based on above services by changing parameters of services’ interface, and deploy them on
different servers. We would construct a real Web Service Complex Network based on these services
and implement our approach on the network to conform the effectiveness of our approach.
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