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Due to the rapid increase of available web services over the Internet, service-oriented
architecture has been regarded as one of the most promising web technologies. Moreover,
enterprises are able to employ outsourcing software to build and publish their business

applications as services, the latter can be accessible via the Web by other people or
organizations. While there are a large number of web services available, often no single
web service can satisfy a concrete user request, so one has to “compose” multiple basic
services to fulfill a complex requirement. Web service composition enables dynamic and

seamless integration of business applications on the Web. The traditional composition
methods select the “best” composite service through defining a simple weight-additive
method based on a utility function. But a service has multiple dimensions of non-
functional properties, so how to assign weight for each QoS dimension is a non-trivial
issue. In this article, we propose algorithms to compose skyline or top-k composite
services for a given user request automatically. Experimental results show that our
approach can find all skyline or a set of top-k composite services effectively and efficiently.
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1 Introduction

Web services are an emerging and promising technology in distribution applications. A service,

identified by a URI in the Internet, is a software module whose interface and bindings are able

to be defined, described, and discovered by XML artifacts [1], supporting direct interactions

with other applications using XML-based messages via suitable Internet protocols. In this
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new computing paradigm, the functional granularity of services should be constrained from a

reusability point of view [2]. Thus, multiple services need to be composed into a new value-

added one, resulting in a composite service, to fulfill complex user requirements. Nowadays,

this can be implemented in a quite flexible and efficient way through WS-BPEL [3], which

has been approved as OASIS standard in 2007, or WS-CDL [4].

Naturally, the dynamicity and flexibility of services bring forth both opportunity and

challenge to service composition, as we discuss below.

• Opportunity: The functional requirement of a user request may sometimes be so

complex that none of existing services can fulfill it alone. With the help of service

composition, a composite service can be constructed and invocated on-demand, which

can fully exploit the power of web service technologies.

• Challenge: To construct such a composite service, not only functional but also non-

functional requirement of user’s request should be satisfied.

Web service composition is a methodology for building value-added applications by ag-

gregating together several existing web services according to dynamic business requirements.

As the web is populated with a large number of web services, multiple service providers often

compete to offer the same functionality with different quality of services (e.g., response time,

throughput, and price). Traditionally, if there are multiple services satisfying both functional

and non-functional user requirement, a service is selected according to its value of some utility

function. However, how to design or define the utility function to ensure its fairness to all the

candidate services is a challenging issue. To the best of our knowledge, most utility functions

[5, 6, 7, 8] use a simple weight-additive method to calculate a single numerical value and use

this value as a guideline to select a service for invocation. The fairness of those methods is

determined by the weight of each dimension of QoS attributes, but such weight is hard to

be assigned objectively. Indeed, ensuring the fairness by means of a simple weigh-additive

method in service composition is almost impossible. In order to overcome the shortcoming of

simple weight-additive methods, skyline-based [9] methods can be utilized instead of assigning

the weight to each QoS attribute dimension.

In this paper, we propose an efficient approach to automatically constructing composite

services on-demand. The approach first obtains and recommends all skyline composite services

to a user, and let the user select one to invoke according to his preferences. As the scale

of skyline may get out of control, we also present a top-k dominating query technique as a

replacement strategy when the skyline technique is unapplicable. The top-k dominating query

can return k objects which dominate the highest number of objects in a dataset. Moreover, in

order to control the scale of skyline candidate solutions, we further use cluster-based grouping

method to reduce the skyline results. Its efficiency is demonstrated by extensive experiments

on three comprehensive data sets.

The rest of the article is organized as follows. Section 2 gives some preliminaries to be

used throughout the remainder of the paper. Section 3 present a motivating example. Section

4 presents an automatic composition framework and associated algorithms. The details of our

experiments are given in section 5. Section 6 discusses some related works. Finally, section 7

concludes the paper and sheds light on future research.
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2 Preliminaries

In this section, we briefly introduce the notion of skyline query first, and then address how

to apply it in our approach.

Given a set of points in a d-dimensional space, a skyline query selects those points that

are not dominated by any other point. A point x is said to dominate another point y, if x

is better than or equal to y in all dimensions and strictly better in at least one dimension.

Intuitively, a skyline query selects the “best” or most “interesting” objects with respect to all

the dimensions. In this section, we define and exploit dominance relations between services

based on their QoS attributes, which is used to identify and prune services that are dominated

by other services in the same class.

Definition 1 (Dominance) Consider a service class S, and two services x, y(∈ S) which are

characterized by a set Q of QoS attributes. We term x dominates y, denoted as x ≻ y, iff x

is as good as or better than y in all parameters in Q and better in at least one parameter in

Q, i.e., ∀k ∈ [1, |Q|] : qk(x) ≤ qk(y) and ∃k ∈ [1, |Q|] : qk(x) < qk(y).

Corollary 1 (Transitivity) If a service x dominates another service y and y dominates z,

then x dominates z. That is, if x ≻ y and y ≻ z, then x ≻ z.

This corollary is obvious, so the proof is omitted. However, it is very powerful for pruning

the search space.

Definition 2 (Skyline Services) The skyline services of a service class S, denoted by SLs,

comprise those services in S that are not dominated by any other service, i.e.,SLs = {x ∈

S|¬∃y ∈ S : y ≻ x}.

Definition 3 (Dominating Score) Given a service x ∈ S, ϕ(x) denotes the dominating score

of the service x, i.e.,

ϕ(x) = |{y|x ≻ y, x, y ∈ S}| (1)

In order to retrieve the top-k dominating services, we only need to obtain k services whose

dominating score are large than those of the remaining services. The detail is shown as follows:

Corollary 2 Given two services x and y, if x dominates y, then the dominating score of x

is larger that that of y. That is:

x ≻ y =⇒ ϕ(x) > ϕ(y) (2)

Proof : According to Corollary 1, x will dominate any service which is dominated by y if

x dominates y. In other words, the dominating score of x is at least larger than or equal to

that of y plus one, since x dominates y meanwhile. Hence, ϕ(x) > ϕ(y) .

Figure 1 shows an example of skyline and Top-k services for a given service class (e.g.,

hotel). Each service is described by two QoS parameters (e.g., price and distance). Thus, the

services are represented as points in the 2-dimensional space, with the coordinates of each

point corresponding to the values of the service in these two parameters. As shown in Figure

1, the skyline query may return p1, p2 and p5, because these are not dominated by any other

services. On the other hand, the other points are not contained in the skyline, because they

are dominated by the at least one of the skyline point(s). A key advantage of skyline query is

that it does not require the use of a specific ranking function; its results only depend on the

intrinsic characteristics of the data. However, the shortcoming of skyline query is that the
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Fig. 1. An Example of Skyline and Top-k Services

size of skyline can not be controlled by the user and it can be as large as the data size in the

worst case [10, 11, 12, 13]

Consequently the skyline services provide different trade-offs between the QoS parame-

ters, hence are incomparable to each other when there is no pre-specified preference scheme

regarding the relative importance of these parameters. Accordingly to the top-k dominating

query returns k points with the highest score. For example, the top-2 dominating query on

the data of Figure 1 retrieves p2 (with ϕ(p2) = 4) and p3 (with ϕ(p3) = 3). The results may

indicate that user may consider price and distance as selection factors. We can see that the

biggest advantage of top-k is that the output size can be easy to control when comparing to

skyline.

2.1 Automatic Composition

Before defining automatic composition, we first present the definition of a web service si.

Definition 4 (Service) A service si is a 3-tuple si = (Ii, Oi, Qi) where Ii is a set of input

parameters, Oi is a set of output parameters, and Qi is a set of QoS parameters.

Note that, the above service definition applies to not only atomic services but also com-

posite ones because both expose only their interface to users. Due to the limited capability of

a single service, often a number of services need to work together to satisfy a user’s request.

Formally, we define automatic composition as follows:

Definition 5 (Automatic Composition) Given a request rk = (Ik, Ok), the process of auto-

matic composition is to repeat condition (b) holds or no more services available in the registry.

(a). Ik
⋃
O1

⋃
O2...

⋃
Oi ⊇ Ii+1

(b). Ik
⋃
O1

⋃
O2...

⋃
Oi+1 ⊇ Ok

(3)

The goal of automatic composition is thus to find a set of services that can work together

to meet user requests. The structure of a composite service can be represented by a DAG

(Directed Acyclic Graph). Note that, this is a simple approach because we do not consider

any QoS of the component services when we compose a composite service. Next, we present

the definition of a QoS-Aware automatic composition.
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Definition 6 (QoS-Aware Automatic Composition) Given a request rk = (Ik, Ok, Q
c

k
), the

process of QoS-aware automatic composition is to find a service si such that

(a). Ik
⋃
O1

⋃
O2...

⋃
Oi ⊇ Ii+1

(b). Ik
⋃
O1

⋃
O2...

⋃
Oi+1 ⊇ Ok

(c). ∀k ∈ [1, |Q|], Qcs

k
≤ Qc

k
, and utilitycs is optimal.

(4)

Here, Qcs

k
and Qc

k
indicate the kth QoS parameter value and user’s constraints on the kth

QoS parameter of the composite service cs, respectively. utilitycs represents the utility value

of the composite service cs.

2.2 Problem Statement

Traditionally, QoS-driven service composition is an optimization problem, where the user

defines an abstract process that is specified as a collection of generic service tasks [5, 8], and

the selection of the services is conducted by executing a given task of the process specification.

This approach however does not take into account the other tasks involved in the composite

service. In contrast, our QoS-aware automatic composition aims to construct a composite

service according to user’s input and desired output parameters over a group of component

services without pre-formatting an abstract process.

More specifically, QoS-Aware automatic composition is a constraint optimization problem

which aims at finding the composition that maximizes (or alternatively, minimizes) the overall

QoS values, thereby satisfying all the global QoS constraints. In the rest of this article, we

present a QoS-aware automatic composition approach to constructing all skyline composite

services as candidate solutions.

Definition 7 (Skyline/Top-k-based Automatic Composition) Skyline/Top-k-based automatic

composition is QoS-aware through enumerating and comparing all possible combinations of

candidate composite services, as opposed to just finding a composite service whose QoS value

is the “ optimal”. All skyline or a set of Top-k composite services are returned as candidates

per any given user request.

In the following section, we address this problem by considering dominance relations when

selecting and recommending skyline composite services as candidate solutions.

3 Motivating Example

As a motivating example, consider a scenario where a recommender system recommends

translation services to users. Suppose six translation services are available, and their basic

information is shown in Table 1. The “Input” and “output” columns describe the functionality

of services. The “Price” and “Time” columns describe the quality of services. Now, consider

the following two requests:

• Find a service that can translate a text from English to Chinese and its response time

should be less than 500ms.

• Find a service that can translate a text from German to Japanese and its response time

should be less than 1500ms.

For the first request, the recommender system can make a recommendation at once: both

s1 and s2 provide translation function from English to Chinese, but only s1 can return the

translation result within 500ms, so it should be recommended.
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Table 1. Translation Services

Name Input Output Price Time

s1 English Chinese 10 300
s2 English Chinese 2 800
s3 German English 5 200
s4 German English 3 300
s5 English Japanese 10 600
s6 English Japanese 15 500

For the second request, a service needs to take German as input and return Japanese.

Unfortunately, none of the services can fulfill the request alone. It should however be noticed

that s3 and s4 can translate German into English while s5 and s6 can translate English into

Japanese. Therefore, we can select one service from {s3, s4} and another from {s5, s6}, and

compose them into a composite service to fulfill the required functionality. We have four

possible combinations, (s3 + s5), (s3 + s6), (s4 + s5), and (s4 + s6), and their QoS (“Price”

and “Time”) values are (15, 800), (20, 700), (13, 900), and (18, 800), respectively. We can

observe that the QoS value of (s3 + s5) is better than (s4 + s6) since the price of (s3 + s5) is

lower than that of (s4 + s6) and the response time of (s3 + s5) is less than that of (s4 + s6).

However, the other composition solutions can not dominate each other. Therefore, we have

to return all remaining combination solutions (s3 + s5), (s3 + s6), and (s4 + s5) to the user,

which constitute a set of skyline composite services.

4 Constructing Skyline Composite Services

4.1 Overview

Figure 2 gives an overview of the automatic composition framework which involves four types

of entities: Service, Service Registry, Customer, and Composer. A service publishes its basic

information (e.g., input parameters, output parameters, and QoS parameters) in the Service

Registry when it is ready for usage (Step (1)). The automatic composition begins when a user

sends to the Composer a request that contains required functionality and personal preferences

(Step (2)). After receiving the request, the Composer makes use of the search ability of

Service Registry to find out all the possible candidates that can fulfill the user’s requirements.

A composition will be activated if no single service can fulfill the user’s requirements. In this

case, several services will be selected and composed as a temporary composite service and

recommended to the user as a candidate if the composite service is not dominated by any

other composite service (Step (3)). The user selects and invokes a composite service from the

set of candidate composite services (Step (4)).

As shown in Figure 2, three components work together to realize automatic service com-

position. In particular, the WSDL parser is responsible for parsing service description files

and automatically obtaining the input and output parameters of services; the Service Com-

poser constructs candidate composite services by specifying which and how services can be

composed to fulfill user requirements; Specially, the Service Selector takes charge of a set of

candidate composite services by selecting one of them to invoke according to user preferences.

The detailed functions of these components are to be discussed in the following sections.
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Fig. 2. Architecture of QoS-Aware Automatic Composition

Table 2. A Set of Services

Name Input Output QoS Name Input Output QoS

s1 a,b,c d 9, 1 s6 l,j d 5, 7
s2 a,b e,f 1, 2 s7 h d 2, 3
s3 c,e h 2, 4 s8 g h 5, 2
s4 c,f g 5, 6 s9 c d 11, 2
s5 k h 6, 8 s10 b e 2, 1

We first introduce the data structure which will be used in our algorithms. As shown

in Table 2, each component service has a set of input and output parameters, respectively.

Meanwhile, it also has a vector of QoS attributes. For example, service s1 has a set of

input parameters a, b, and c, output parameter d, along with two QoS dimensions: 9 and 1.

Moreover, all component services are indexed according to their input parameters, as shown

in Table 3.

4.2 Constructing Skyline Composite Services

Because our goal is to construct all skyline composite services as candidate solutions, we first

prune all non-skyline component services which are of the same functionality, so as to keep

the set of candidate component services of each functionality as small as possible. In this way,

we can speed up the skyline-based automatic composition process effectively.

Lemma 1 Suppose CS = {s1, s2, ..., sn} is one of the skyline candidate solutions for a given

request, i.e., CS is a composite service that satisfies all the specified constraints and is not

dominated by any other candidate solution. Then, each constituent service si of CS belongs

to skyline of the corresponding class, i.e.∀si ∈ CS : si ∈ SLsi where SLi denotes the skyline

service class of si.

The above lemma has been proven in [13, 12], so it is omitted here. In the next section,

we will exploit this lemma for pruning the search space.

We solve the problem of constructing skyline composite services in two steps. First, we

construct an enabled list that consists of a sequence of services which may be composed

into a composite service (i.e., they can be activated), and filter other services which can’t
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Table 3. Input Parameter Indexed Table

Input Services Input Services

a s1 s2 k s5
b s1 s2 s10 l s6
c s1 s3 s4 s9 j s6
d s3 h s7
e s4 g s8

Algorithm 1: Constructing Composite Services

input : R:User’s Request
output: PSC:Providing Skyline Services

1 begin

2 si ← R (si.input = #, si.output = R.input);
3 so ← R (so.input = R.output, so.output = #);
4 asList← asList ∪ si;
5 foreach p ∈ si.output do
6 PSC(p)← si;
7 end

99 while maxKeys < asList.size do

10 maxKeys← asList.size;
11 δ ← Ω(PSC.keys);
12 foreach s in δ do

13 foreach p in s.output do
14 PSC(p)← updatingPSC(p, s, PSC);
15 end

16 asList← asList ∪ s;

17 end

18 end

19 if so ∈ asList then
20 resultList← PSC(so.output);
21 foreach element in resultList do
22 Print : element;
23 end

24 else

25 return : no result;
26 end

27 end
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be activated by the request. In the second step, we select a service in a stepwise fashion by

constructing skyline composite services repeatedly and iteratively.

To address the first problem, we prune the services by building a list of activated services,

called asList, which contains all activated services as per user input parameters. The aim of

our algorithm is to generate all possible skyline composite services for each output parameter,

and construct for every parameter p an inverted index PSC(p) which is a set of skyline

composite services whose output parameters contain p. Based on PSC, we return all skyline

composite services according to the output parameters of the user request. Algorithm 1

shows the procedure of constructing skyline composite services, where si and so are two

virtual services which are generated according to user request. In particular, si indicates the

virtual input service and so indicates the virtual output service, respectively (Lines 02-03).

Note that asList indicates a set of activated services. Clearly, its initial value is the virtual

input service given in the user request. Our algorithm continues to explore newly activated

services by building a loop, and stops when no new services can be activated (Lines 09-18).

At each iteration, function Ω takes PSC ’s keys as input and returns a set of services (denoted

as δ ) whose input parameters are contained by the keys of PSC(Line 11). For each output

parameter p of service s that is contained by δ and is not visited before, the algorithm first

adds it into PSC and then adds s into asList.

The procedure of updating PSC is shown in Algorithm 2. Here, we use a set skylineSet(p)

to store all skyline composite services whose output parameters contain parameter p. For

each input parameter p′ of service s, we first search its skylineSet(p′) and generate all skyline

composite services whose output can be used to activate the service s (Line 05). As the

parameter p is one of the output parameters of service s, if it does not belong to the keys

of PSC, we can insert skylineSet(s) to PSC directly (Lines 06-07). Otherwise, we need to

compare skylineSet(s) with PSC(p) to see whether they have some element not dominated

by each other, and insert the elements in skylineSet(s) which are not dominated by PSC(p)

and discard the other elements of skylineSet(p) (Line 08-13).

With the help of Algorithms 1 and 2, all skyline composite services can be indexed in

PSC (so.output). Take the set of services in Table 2 as an example. Suppose that we have

a request whose input parameters are a, b, c, and output parameter is d, respectively. We

first generate two virtue services si and so. The service si’s input parameters and output

parameters are #, and a, b, and c, respectively. The service so’s input parameter and output

parameter are d and #, respectively. Then, we can construct a set of skyline composite

services accordingly. We obtain three composite services which are si − s1 − so whose QoS

value is (9, 1), si − s2 − s7 − so whose QoS value is (6, 8), and si − s3 − s10 − s7 − so whose

QoS value is (5, 9).

In view of the complexity of calculating skyline immediate composite services (c.f. Line 05

of Algorithm 2), we next propose a cluster-based grouping method to reduce the complexity

for calculating the skyline composite candidate services.

4.3 Cluster-based Grouping

Clearly, when the set of skyline composite service is obtained, the size of this set matters a lot

in practice. There have been some approaches such as [14] proposed by focusing on smaller

number of representative items. Here, we investigate an approach for web service discovery by
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Algorithm 2: Updating PSC to Building Skyline Composite Services

input : p, s, PSC, asList
output: PSC

1 begin

2 foreach p′ ∈ s.input do
3 skylineSet(p′)← PSC(p′);
4 end

5 skyline(s)←⊲⊳
≻

SkylineSet(p′);

6 if p /∈ PSC.key then

7 insert : PSC(p)← skyline(s);
8 else if ∃t ∈ skyline(s) ≻ PSC(p) then
9 insert : PSC(p)← PSC(p) ∪ skyline(s);

10 else

11 discard : skyline(s);
12 asList← asList ∪ skyline(s);

13 end

14 end

means of clustering the matched services. Our goal is to select a set of representative skyline

services with different trade-offs for the various QoS parameters, and to use this reduced set as

input for our algorithms in order to save the computation time by reducing the (intermediate)

results.

The main idea of our grouping method is to divide the skyline services into k clusters.

When the intermediate clusters are too large, we select one (or several) representative ser-

vice(s) from each cluster. In this way, we select representative services with the best utility

value (some other user preferences can also be applied in our methods, easily). At run-time,

when a service composition request is processed, we start the search from the initial service

classes by considering all services belonging to them. We use the popular k-means clustering

algorithm [15] to build the representative services, as shown in Algorithm 3. The algorithm

takes as input the skyline set SL of class S and returns a representative service set of class

RSL. The size of RSL is equal to k if we select one service from each cluster, or multiples of

k if we select several services from each cluster.

4.4 Constructing Top-k composite services

In this section, we present algorithms to retrieve top-k services, and then conduct extensive

experiments comparing to the skyline-based approach. Identical to the skyline-based method,

we first prune non-top-k component services to keep the set of candidate as small as possible.

Lemma 2 is used to guide our pruning procedure.

Lemma 2 Suppose CS = {s1, s2, ..., sn} be one of the top-k candidate solutions for a given

request, i.e., CS is a composite service that satisfies all the specified constraints and dominates

highest number of other composite services. Then, each constituent service si of CS belongs

to top-k of the corresponding class, i.e., ∀si ∈ CS : si ∈ TKsi where TKi denotes the Top-k

service class of si.
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Algorithm 3: Cluster-based Grouping Method

input : a set of skyline services SL, k
output: a set of representative skyline service RSL

1 begin

2 Cs ← KMeansCluster(SL, k);
3 RSL← ∅;
4 foreach cluster c ∈ Cs do

5 s← maxUtilityService(c);
6 RSL← RSL ∪ s;

7 end

8 end

Proof : Suppose si is a service which is part of the composite service CS and does not

belong to the Top-k of its class Si. Then, according to Definition 3 and Corollary 2, there

exists another service si’ which dominate more other services (at least one more) than si
in all considered QoS parameters. Let CS is a composite service which equal to CS but

without the service si or si’. Then, we assume that the service si and si’ dominate n and

n + 1 other services in the same class Si according to Definition 3 and Corollary 2. Since

the QoS aggregation functionality is monotone (i.e. the higher the values, the better the

quality), if x ≻ y : x, y ∈ Si, then (CS + x) ≻ (CS + y). That is , if x ≻ y, we can conclude

that ϕ(CS + x) > ϕ(CS + y). Therefore, we can easily conclude that the composite service

(CS + s′
i
) dominate more other composite services than (CS + si) does (at least one more),

i.e., ϕ(CS + s′
i
) ≥ ϕ(CS + si) + 1. Hence, it contradicts with the fact that CS is one of the

top-k candidate solutions .

After pruning the candidate component services, we also need to build a list of activated

services, the process of which is also identical to the skyline-based method (c.f., Algorithm

1). The procedure of updating PSC is shown in Algorithm 4. As proposed in Section

2, the top-k based composite services is to retrieve k objects which dominate the highest

number of composite services. In Algorithm 4, Top− kSet(p) is maintained as a set of Top-

k intermediate composite services whose output parameter contain parameter p (Line 03).

To facilitate synchronous traversal join, the component services in a service class are pre-

organized by an R-tree data structure [11] (Line 05). We also use rules presented in Section 2

(see Corollaries 1 and 2) to conduct an in-memory update of top-k composite services (Line

08-09). After performing line 09, for each composite service, we insert or discard intermediate

top-k composite service to the set of PSC accordingly.

5 Experiments

In this section, we evaluate the effectiveness of our method by conducting extensive exper-

iments. Given a service class, the size of the skyline services depends on the distribution

of the QoS values and correlations between the different QoS parameters. Figure 3 shows

three types of two dimensional datasets as an example: 1) the correlated dataset, in which a

service that is good in one dimension is also good in the other dimensions; 2) the independent

dataset, in which the values of the two QoS dimensions are independent of each other; 3)
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Algorithm 4: Updating PSC to Building Top-k Composite Services

input : p, s, PSC, asList
output: PSC

1 begin

2 foreach p′ ∈ s.input do
3 Top− kSet(p′)← PSC(p′);
4 end

5 Top− k(s)← Top− kSet(Max− k(ϕ(p′)));
6 if p /∈ PSC.key then

7 insert : PSC(p)← Top− k(s);
8 else if ∃t ∈ Top− k(s), ϕ(t) > ϕ(PSC(p)) then
9 insert : PSC(p)← PSC(p) ∪ Top− k(s);

10 else

11 discard : Top− k(s);
12 asList← asList ∪ Top− k(s);

13 end

14 end

a) Correlated
(a) Correlated

b) Independent
(b) Independent

c) Anti-Correlated
(c) Anti-Correlated

Fig. 3. Different Skyline Data Types

the anti-correlated dataset, in which there is a clear trade-off between the two dimensions.

The number of skyline services is relatively small in the correlated datasets, large in the

anti-correlated and medium in the independent ones.

We perform experiments on a PC with 2.2GHz Intel Pentium Duo2 CPU, 2048M of RAM

using Microsoft Windows 7 Operating Systems and J2SDK 1.7. To make the experimental

result comparable, our experiments are conducted on a publicly available (free) dataset EEE05

[16]. However, this dataset only contains the WSDL files of services; the QoS information is

not available. In order to test our approach with a larger number of services and different

distributions, we use each WSDL file of EEE05 as a service class and use a publicly available

synthetic generator [17] to obtain three different datasets processing the patterns of Figure

3). Each service’s QoS is represented by a vector of five dimensions.

Figure 4 shows the ratio of skyline data points for the cases of correlated, independent, and

anti-correlated. From Figure 4, we can see that the skyline ratio for the independent and anti-

correlated is increasing along with the number of dimensions increasing. When the dimension

is lower than ten, the skyline ratio increases very slowly. When the number of dimensions

reaches to ten, the skyline ratio of the anti-correlated reaches to about 60 percent. Next, we



S. Wen, Q. Li, L.-W. He, A. Liu, J.-W. Tao, and L.-J. Lv 373

2 4 6 8 10
0

15

30

45

60

S
ky

lin
e 

R
at

io
 (%

)

Dimensions

 Correlated
 Independent
 Anti-Correlated

Fig. 4. Skyline Ratio of Different Data Sets

compare the efficiency of the following two automatic composition methods for constructing

all skyline composite services:

• ExactSkyline: this method uses Algorithms 1 and 2 only (that is, without using the

grouping method) to generate the skyline composite services.

• GroupSkyline: this method uses not only Algorithms 1 and 2 but also adopts the group-

ing method (Algorithm 3) for saving the computation time and reducing the (interme-

diate results). In this method, we assume that the grouping algorithm is activated only

when the intermediate or final results are ten times more than the initial number of

services per class, in which case we set k to be the initial number of services per class.

• Top-k : this method uses Algorithms 1 and 4 to generate the top-k composite services.

Here, we set k to 100, because the initial number of component services is also set to

100, and we use aRtree as in-memory index, so the influence on performance by the

number of k can be omitted [11].

We first investigate the performance of our proposed methods through measuring the av-

erage computation time required by each of the aforementioned three methods. We vary the

number of service candidates from 100 to 1000 services per class. The results of this experi-

ment are shown in Figure 5. Comparing the performance of ExactSkyline, GroupSkyline, and

Top-k methods, we can observe that a significant gain is achieved when the grouping method

is applied. However, as expected, this gain in performance varies for the different datasets,

depending on the size of the skyline services. Moreover, the top-k method always outper-

forms Exactskyline method, and its performance is always between ExactSkyline method and

GroupSkyline method.

In the next set of experiments, we measure the success ratio of the three methods by

varying the number of users’ constraints from 1 to 5, i.e., the percentage of skyline composite

services where a solution is found to satisfy users’ requirements. As shown in Figure 6,

the solutions founded by the ExactSkyline and Top-k can almost satisfy all of the users’

requirements. Particular, the success ratio of these two methods always approach to 100
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(b) Independent
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Fig. 5. Computation Time vs. Number of Services per Class

percent when the number of QoS constraints equals to 1 or 2. Event with the five QoS

constraints, the success ration of those two methods can still be larger than 90 percent.

However, the success ratio of the GroupSkyline method degrades quickly as the number of

QoS constraints increases. The reason for this behavior is that the GroupSkyline method uses

grouping technique to filter skyline services. And the scale of the filtered skyline services may

increase when the number of initial number of services varies from 100 to 1000. Here, we only

consider the dataset of independent, yet the performance of Top-k methods in the other two

datasets is similar, hence is omitted to keep the presentation succinct.

6 Related Work

In this section, we review from the literature some existing works related to our research.

Web service as a key technique for implementing service-oriented architecture (SOA) has

been attached with more and more importance. Earlier works have focused on how to select

the desired service from all functionality-similar services. In [18], a framework to evaluate the

QoS from a vast number of web services is constructed, with an aim to enable quality-driven

web service selection. More recently, web service composition has been studied extensively,

focusing on two general types of composition: manual and automatic. The former manually

defines a process consisting of multiple tasks, and its objective is to bind these tasks to concrete

services while satisfying user QoS constraints. Hence, it is also called QoS-aware service

composition. In [8], the authors consider it as an integer programming (IP) problem in which

the objective function is defined as a linear composition of multiple QoS parameters. In [19],
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the authors also adopt IP but they have a different method to eliminate loop constructs in the

process of composite services. Yu et al. [5] propose two models: a combinatorial model and

a graph model. The combinatorial model considers service composition as a multi-dimension

multiple choice 0-1 knapsack problems. The graph model considers service composition as a

multi-constraint optimal path problem. They propose a polynomial heuristic algorithm for

the combinatorial model and an exponential heuristic algorithm for the graph model. Alrifai

and Riss [6] decompose global QoS constraints into an optimal set of local QoS constraints by

using IP technique. The satisfaction of local constraints guarantees the satisfaction of global

constraints. Through the decomposition of global constraints, it is only necessary to conduct

several local selections simultaneously, which significantly improves the performance of the

composition process.

Automatic service composition, on the other hand, aims at dynamically generating the

composite services. Current approaches for automatic service composition are mainly based on

AI planning [20]. Oh et. al. propose a planning algorithm called WSPR[21]. It is essentially

in accordance to Graph plan [22], but differs in that it adopts a heuristic to minimize the

number of services in a solution while Graph plan aims at minimizing the number of time

steps but not necessarily the number of actions. However, it ignores QoS constraints, so the

composite service sometimes cannot fulfill the user’s QoS requirements. While the authors

of [23] do consider QoS, they only focus on one dimension, which is not applicable to the

ubiquitous QoS model of Web services. Moreover the method presented in [23] is hard to

be extended to multiple QoS dimensions. The authors of [12, 24] propose to employ skyline

and top-k dominating techniques, respectively, so as to tackle the drawback of the traditional

method which requires service users to assign weights to each QoS attribute.

With no exceptions, currently, existing service composition methods can only return one

solution to the user since all QoS-aware composition is to determine which one is the best

based on a utility function and return the optimal to the end customer. However, for a set of

services which has multiple QoS parameters, it is hard to estimate which one is better, since a

service could be better than others in one parameter but worse in another parameter. Skyline

queries, which gather all special data objects that are not dominated by each other in a data
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set, have received significant attention over recent years. The skyline technique provides a

unique perspective on the dominance relationship, and is totally dependent on the intrinsic

characteristics of the data. Based on the skyline technique, our work not only dynamically

generates the process, but also obtains and returns all skyline services as candidate solutions.

Interestingly, the top-k dominating query has also played an increasingly significant role in

contemporary applications such as multi-criteria decision making, data cleaning, and so on

[10, 11].

7 Conclusion

In this paper, we have presented an approach to constructing skyline composite services as

a set of candidate solutions per a user request. By identifying the skyline services in terms

of their QoS values, our method can find all possible skyline solutions for a given request.

In order to address the over size problem of skyline candidate solutions, we have devised a

grouping method to accelerate the computation process and reduce the scale of candidate

solutions. We have also presented the top-k based method which has good performance and

success ratio, as replacement method to the skyline based method, especially for a large date

set. The results of our experimental evaluation indicate a significant gain of this approach.

In our future studies, we plan to devise more sophisticated algorithms to further improve

the efficiency of constructing skyline composite services. In addition, other issues such as

service profiling are also relevant and can be useful to our aim, which will also be investigated

subsequently.
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