
Journal of Web Engineering, Vol. 13, No.5&6 (2014) 378-404
© Rinton Press

GATHERING WEB PAGES OF ENTITIES WITH HIGH PRECISION

BYUNG-WON ON

Department of Statistics and Computer Science, Kunsan National University

558, Daehak-ro, Gunsan-si, Jeollabuk-do 573-701, Republic of Korea

bwon@kunsan.ac.kr

MUHAMMD OMAR GYU SANG CHOI*

Department of Information and Communication Engineering, Yeungnam University

280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea

m.omar.nazeer@gmail.com castchoi@ynu.ac.kr

JUNBEOM KWON

Department of Software Science, Dankook University

152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Republic of Korea

32091933@dankook.ac.kr

Received June 4, 2014

Revised September 2, 2014

A search engine like Yahoo looks for entities such as specific people, places, or things on web pages with
search queries. Depending on the granularity of query keywords and performance of a search engine, the
retrieved web pages may be in very large number having lots of irrelevant web pages and may be also not
in proper order. It's infeasible to manually decide the relevance of each web page due to the large number
of retrieved web pages. Another challenge is to develop a language independent relevance classification
of search results provided by a search engine. To improve the quality of a search engine it is desirable to
automatically evaluate the results of a search engine and decide the relevance of retrieved web pages with
the user query and the intended entity, the query is all about. A step towards this improvement is to prune
irrelevant web pages out by understanding the needs of a user in order to discover knowledge of entities
in a particular domain. We propose a novel method to improve the precision of a search engine which is
language independent and also free from search engine query logs and user clicks through data (widely
used in recent times). We devise language independent novel features to build support vector machine
relevance classification model using which we can automatically classify whether a web page retrieved
by a search engine is relevant or not to the desired entity.

Key words: Precision, Support Vector Machines, Supervised Learning, Query Expansion
Communicated by: D. Schwabe & M. Bielikova
* Corresponding Author

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 379

1 Introduction

The section begins with the motivation behind our work with an example and then defines the
problem by introducing some notations, definitions and relevant figures supporting our intuition and
in the end summaries our contributions.

1.1 Motivation

The world-wide web commonly known as the web is a network of documents, some of which are
hyperlinked with each other via Internet. The web documents or pages may contain text, images,
videos, and other multimedia. Since 1989, the web has gradually become the centre of information
source around the world. We can imagine that without relying on the web each individual does
nothing in his or her daily life. In particular, Wardrip-Fruin and Montfort mentioned in their book [15]
that the web was developed to be a pool of human knowledge and human culture, which would allow
collaborators in remote sites to share their ideas and all aspects of a common project.

Recently, regardless of human users or software agents, it has been in the limelight to discover
knowledge of an entity from web pages. However, it is a non-trivial task because there are a huge
large number of web pages on the web. It is recently known that Google has about 98 petabytes of
web sites indexed by it. In general, to gain knowledge of an entity of interest, we usually use query
keywords describing the entity well in order to search web pages related to the entity using a search
engine like Yahoo, Google or Bing. However, some of retrieved web pages may be irrelevant with the
target entity. In this sense, the web contains worthless information about the entity as well. Therefore,
it is considerably significant to filter irrelevant web pages out so as to discover knowledge of the
entity. In addition, note that a large number of web pages are retrieved from a search engine. This is
too large to manually decide the relevance of web pages in real time.

We can evaluate a search engine in terms of effectiveness (ability to find right information) and
efficiency (how quickly information is found). To measure the effectiveness of a search engine in a
specific application is very valuable [3]. For a given query, and a specific definition of relevance, we
can more precisely define effectiveness as a measure of how well the ranking produced by the search
engine corresponds to a ranking based on user relevance judgments. Efficiency is defined in terms of
the time and space requirements for the algorithm that produces the ranking. There is no reliable
technique that significantly improves effectiveness that cannot be incorporated into a search engine
due to efficiency considerations and this may change in the future as suggested in [3].

The problem that we have addressed in this paper is a step towards discovering the knowledge of
an entity efficiently but yet effectively. We tackle the problem of automatically determining whether
or not each web page retrieved by a search engine is relevant with a target entity. This problem is also
known as the automatic evaluation of search engine results. To demonstrate the need for a solution to
this problem, let us present a real example drawn from the Google search engine.

Example 1. Figure 1 is a screen-shot image of top-10 web pages retrieved by Google using a query
“troy.” The search result is a mixture of web pages related to movies, historical and modern cities, a
state university, and private companies. If the target entity is a troy movie starring by Brad Pitt, the
web pages indicating the university, cities, and companies are irrelevant ones. In general, despite
using appropriate queries, it is not true that every retrieved web page is relevant with the target entity.

380 Gathering Web Pages of Entities with High Precision

In addition, the number of the search result is very large. As shown in Figure 1, Google shows about
216 million web pages. Thus, it is infeasible to manually decide if each web page retrieved is relevant
or not. Moreover majority of search engine users see only first page of search result i.e. he or she may
see only top twenty pages ordered and retrieved by the search engine. The order of retrieved lists of
URLs provided by a search engine is not perfect in general due to different reasons, e.g. may be
incorrect use of query keywords etc.

Figure 1 An example of web pages retrieved by Google using a query “troy”

The two most common effectiveness measures are recall and precision, introduced in the
Cranfield’s studies as mentioned in [11], to summarize and compare search results. Intuitively, recall
measures how well the search engine is doing at finding all the relevant documents for a query, and

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 381

precision measures how well it is doing at rejecting non-relevant documents. Our focus is in
improving the precision of the search provided by a search engine. The definition of these measures
assumes that, for a given query, there is a set of documents that is retrieved and a set that is not
retrieved (the rest of the documents). If, in addition, relevance is assumed to be binary, then we can
define precision and recall as follows:

where X is the relevant set of documents determined by either human annotators or machines [3] and
Y is the set of retrieved documents for the query. The benefit of manual evaluation is the accuracy
with respect to user's expectation. However, labelling web pages with (ir)relevance is subjective and
time-consuming. On the other hand, automatic evaluation is simply applied even if the web pages are
altered. In addition, instead of human users, machines can deal with the large amount of web pages on
the web [8]. In particular, note that most of automatic evaluations are based on the process of mining
click-through data in query logs of search engines. In Section 2, we will discuss the details of existing
methods for evaluating search engine results. However, most of automatic approaches to evaluate
search engine results no longer work unless search engines provide well-defined query logs or users
clicks-through data. In this work we propose an automatic evaluation without relying on search
engines' query logs and users’ click-through data.

In other words, recall is the proportion of relevant documents that are retrieved, and precision is
the proportion of retrieved documents that are relevant. We can also view the search results as the
output of a binary classifier [3], as we deal in this paper. When a document is retrieved, it is the same
as making a prediction that the document is relevant. From this perspective, there are two types of
errors that can be made in prediction (or retrieval). These errors are called false positives (an
irrelevant document is retrieved) and false negatives (a relevant document is not retrieved). Recall is
related to one type of error (the false negatives), but precision is not related directly to the other type
of error. Instead, another measure known as fallout, which is the proportion of non-relevant
documents that are retrieved, is related to the false positive errors. A natural question is why we use
precision if fallout and recall1 are enough to evaluate search results. The answer given in [3] is very
simple, “precision is more meaningful to the user of a search engine” as precision has larger value as
compared to fallout. Fallout will always have very small value due to large number of irrelevant
documents provided by the search engine. For example precision of 0.7 means 70% of the retrieved
documents are relevant.

1.2 Problem Definition

Our problem is: Given a web page, the goal is to automatically determine if it is relevant with a target
entity or not. On the web we have large number of web pages in different languages. We need a
scalable solution that is also independent of web page contents or independent of a particular

1 Since the solution set to a particular domain is unknown, we cannot measure Recall values of our proposed
models. On the other hand, Precision values can be measurable with the help of human experts. For example, the
human experts can determine whether or not a retrieved web page is relevant with a target entity.

382 Gathering Web Pages of Entities with High Precision

language. We present a supervised classification model called relevance classification model, built on
a labelled training set (labelled by us). The training set used for building the relevance classifier
consists of novel language independent features.

Table 1 Basic Terms/symbols and notations used throughout the paper

Term Definitions and Examples

Page (p)
It’s a web page retrieved by a search engine using query q. It’s represented by lower case p.
We use the word page and web page interchangeably in the paper according to the context and
clarity.

Query (q)
Keywords used by a user (in an unstructured format). A query is formed from attribute values
of an entity. For example q1:<Yoyogi restaurant Asian> and q2:<Yoyogi restaurant> are two
queries. It’s represented by small case q.

Template (t)
It’s a query template t, formed from combination of attributes of an entity. For example t1 and
t2 are two query templates related with queries q1 and q2 where t1:<Name Cuisine> and
t2:<Name>. In our intuition we can extract or form queries and templates from a page relevant
to an entity using the words present in the page. We use the words template and query template
interchangeably in the paper. The term template extraction is simply template formation using
the words in page.

Entity (e)
In our context an entity e, means a specific object e.g., a particular restaurant or a particular
smartphone. We assume the same type of entities follows a common relational schema
R(a1,a2,...,an). Attributes {a1,a2,...,an} are properties which describe the entity. The ID or key
attributes of an entity are properties which can uniquely identify an entity. The ID of a
restaurant is the restaurant's name if all the restaurants in a relation/table have different names
otherwise we need other attribute(s) may be in combination with name. In real world we may
encounter entities which don’t have unique ID’s. So searching such entities will be ambiguous,
a real challenge for search engines. We have used nine attributes for the restaurant entity in our
example, namely the attributes are restaurant name, street, city, zip code, phone number,
special dish, cuisine, category, and neighborhood. In addition, in the smartphone domain, the
attributes are maker, Petname, os, lcd, ap, memory, lte, battery capacity, and weight.

Domain
The word domain is actually a set of all related entities. More specifically the generic word
Restaurants is a domain and a specific restaurant say Yoyogi restaurant is an entity. We collect
entities from a common domain in a single relation or table. Each row will be an entity and
columns of the table are descriptive attributes/properties of an entity. For our experiments, we
made use of two different data sets – (1) restaurants in Singapore and (2) smartphones

Precision
Precision (also called positive predictive value) is the fraction of retrieved instances (say web
pages) that are relevant. We can represent precision of a template, entity, query and a page by
P(t), P(e), P(q) and P(p), respectively.

Precision

Probability

We define precision in terms of probability and so it is called precision probability and we
derive probabilistic inference equations/models that derive probability estimates for precision
of each different type of construct say query, template, page and entity. Precision Probability
of a template, entity, query and page is represented by PP(t), PP(e), PP(q), and PP(p),
respectively.

Table 1 is about some notations and definitions used throughout the paper. In our consideration
an entity e, is a specific object about which a web surfer wants to search through a search engine
using some query q. As a result search engine (say Yahoo) provides ranked results in terms of ordered
pages. Very often, retrieved web pages are very large in number and may be ranked incorrectly due to
many reasons. In our context the term domain is actually a set of all related entities. More specifically
the generic term restaurant is a domain and a specific restaurant say Yoyogi restaurant is an entity.
Similar entities (e.g. all the restaurants) belong to a domain (Restaurants). Let’s introduce four

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 383

important constructs namely queries, templates, web pages and entities. A query q is a user query and
it is formed from the keywords used by a user (in an unstructured format). More concretely, in our
experiment the query is formed from descriptive features or attribute values of an entity. For example
q1: <Yoyogi restaurant Asian> and q2: <Yoyogi restaurant> are two queries. These queries q1 or q2
may be used by a user of a search engine to search for Yoyogi restaurant which is an Asian cuisine in
Singapore. Whereas, a template t is a query template, formed from combination of attributes of an
entity. For example t1: <Name Cuisine> and t2: <Name> are two query templates related with queries
q1 and q2. In this example the attribute “Name” has associated value “Yoyogi restaurant” and the
attribute “Cuisine” has associated value “Asian” for the entity Yoyogi restaurant.

In our intuition these four constructs (templates, queries, pages, and entities) are related to each
other. We assume that the three constructs template, query, and entity are linked to each other through
a relevant page. More specifically, a page p has a central place in the relationship, as shown in Figure
2. A page is related to an entity e.g. home page of “Yoyogi restaurant” and that page has descriptive
words about it. In our intuition we can extract or form queries and templates from a page relevant to
an entity using the words present in the page. We use the words template or query template
interchangeably in the paper. The term template extraction is simply template formation using the
words in the page. In short using a search engine say Yahoo we can retrieve that page using a query
consisting of some keywords present in the page. Using the intuition of Figure 2, we construct a
heterogeneous graph as shown in Figure 4, where a page plays a central role with its related
constructs namely query, template and entity.

Figure 2 Four constructs - pages, queries, templates and entities are related with each other where a page plays
central role in this relationship

1.3 Contribution

Our proposed methodology in simple words is described here in the following lines and Figure 3
about system architecture in Section 4 clarifies the description. More formal and step by step
technical discussion about our methodology is discussed in Section 4 and experimental results are
discussed in Section 5. Given a domain say Restaurants as shown in Table 2, we first select one entity
at random, and then generate all possible queries by combining attribute values of the entity. For
instance, suppose that an entity named “Yoyogi restaurant” from the restaurant domain is chosen at
random from Table 2. By utilizing Table 3, we can generate different queries to the “Yoyogi
restaurant” entity as <Yoyogi restaurant>, <33 mohamad sultan road>, <Asian>, <Yoyogi restaurant

384 Gathering Web Pages of Entities with High Precision

33 mohamad sultan road>, <Yoyogi restaurant Asian>, <33 mohamad sultan road Asian> and
<Yoyogi restaurant 33 mohamad sultan road Japanese>. And the corresponding query templates to
these queries are <Name>, <Street>, <Cuisine>, <Name Street>, <Name Cuisine>, <Street Cuisine>
and <Name Street Speciality> respectively. Then, using a search engine such as Yahoo, web pages
are retrieved by using each query q related with entity e. From the search results, top-k pages are
chosen related with each query of each entity. Now each query (e.g., <Yoyogi restaurant Asian>) has
the corresponding template (e.g.,<Name Cuisine>) and top-k web pages. As we all know that these
top-k web pages may contain irrelevant web pages about the “Yoyogi restaurant” entity. We
evaluated the search results in person. Therefore we utilizes the idea that, let human experts who
posted the query decide whether each of the top-k web pages is relevant or not. The entity (e.g.,
Yoyogi restaurant) and its relevant web pages are put to a label set. The label 1 means relevant and -1
means irrelevant page to a particular entity (i.e., a restaurant) and relevant query to the entity. Above
process is repeated for a small subset of entities randomly chosen from a specific domain say
Restaurants. Finally, we will have a labelled set of top-k pages related with each query in the chosen
subset. From this label, we can form a heterogeneous graph consisting of four different types of nodes
(see Figures 2 and 4) - Query (e.g., <Yoyogi restaurant Asian>), Template (e.g., <Name Cuisine>),
Page (e.g., Top-k web pages retrieved from a search engine using the query <Yoyogi restaurant
Asian>) and Entity (e.g., the “Yoyogi restaurant”). As an example, in Figure 4, q1 and q2 stands for
queries and assume that q1 and q2 are <Yoyogi restaurant Asian> and <Yoyogi restaurant>
respectively. Also t1 and t2 means the templates of q1 and q2 respectively. Specifically t1 and t2 are
<Name Cuisine> and <Name>. The four web pages are p1, p2, p3 and p4. In the graph Figure 4, t1 and
q1 are linked to three pages p1, p2 and p3. This indicates that the three web pages p1, p2and p3 are
retrieved using the query q1. And it's obvious that query q1 is extracted from template t1 by assigning
attribute values to the template members, Name and Cuisine. Similarly, p3 and p4 are retrieved by q2
and hence q2 is connected to p3 and p4 in the graph. Now it's obvious that query q2 is associated with
the template, t2 (<Name>). Thus, t2 is also linked to p3 and p4. Finally, using labels of human experts
from the label set we can manually connect relevant pages to the entities in the graph. An entity e1 is
linked to p2 and p3 because those web pages are turned out to be relevant with e1, while p1 is irrelevant
with e1. Utilizing this heterogeneous graph, the precision probability value of each template node can
be estimated based on a random walk model (by using Algorithm 1, Section 4.2.1), and then we can
find top-k relevant pages to each top query template (using Algorithm 2, Section 4.2.2). Then we can
find discriminative feature for our learning model. In Section 4.3, we discuss the details of the
features proposed in this paper. Using Support Vector Machines (SVM), we learn a relevance model
to automatically classify whether or not a web page p is relevant with an entity e in the testing set.

In this paper, our contributions are as follows:

 To gain knowledge of entities on a domain, our approach automatically decides whether or not
each web page is relevant based on a learning model.

 We define precision in terms of probability and propose precision probability models for
different constructs involved in the search process namely entity, query, query template and web
page.

 We devise language independent discriminative features. Based on these language independent
features, our relevance classification model is able to classify non-English web pages as well.

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 385

The remainder of the paper is organized as follows. In Section 2, we discuss existing search
engine evaluation methods. Next, in Section 3 we discuss and derive our precision probability
equations. Then we discuss relevance classification process in Section 4. Experimental results are
discussed in Section 5. Finally, we conclude our work in Section 6.

2 Related Work

Evaluating search engines is one of key challenges in information retrieval. At present, most
evaluation methods are based on the study of Cranfield's as mentioned in [11]. Croft et al., dealt with
how to evaluate search engines and in their book [3], the evaluation of search engines is the
“optimization” between effectiveness and efficiency. According to [3], effectiveness is a measure of
how right information is found and efficiency is how quickly this is done. To optimize performance in
terms of both effectiveness and efficiency, the best values for these parameters are determined using
training data and a cost function. In particular, the cost function is a quantitative measure for the
ranking algorithm that maximizes the effectiveness using the training data. In the book, the authors
mainly discuss different “evaluation measures” for effectiveness - e.g., precision, mean average
precision, interpolation, discounted cumulative gain, binary preference, and so on. Li et al. [8],
showed three different types of relevance scoring methods such as vector space model, Okapi
similarity measurement, and cover density ranking in order to automatically evaluate six major search
engines' query results based on a large number of sample queries. Then, they proposed a three-level
scoring method based on two steps. In the first step, given a query q with n terms and a web page x,

A(q, x) is calculated by , where (1) k is the weight for longer sub phrases
and (2) ti is # of occurrence of the sub phrases of length i. In the second step, A(q, x) is converted to a
three-level similarity score in terms of a certain threshold value θ. This is, (1) sim(q, x) = 2 if A(q, x)
≥ θ (2) sim(q, x) = 1 if θ> A(q, x) ≥ αθ (3) sim(q, x) = 0 if A(q, x) < αθ. In the equations, α is in the
range [0, 1], representing partial relevance. Recent studies [4, 5, 7, 9] on automatic evaluation of
search results are based on query logs of search engines and user click through data of past users.
Dupret et al. [4], evaluated the performance of search engines based on the click through data of past
users. Further, their basic idea is based on the probability that a web page is relevant to a set of
queries. For this, they proposed a generative model to predict user clicks on document snippets based
on user sessions recorded in query logs. Hosseini and Abolhassani [5] presented a query-URL co-
clustering for a web site. For example, all queries and clicked URLs corresponding to a particular web
site are collected from a query log. Then, the queries and URLs are formulated as a bipartite graph.
Using a clustering method, the queries and URLs are clustered. Finally, using information entropy,
the clusters of queries and URLs are used for evaluating link structure and information architecture.
Liu et. al. [9], selected the topics and automatically annotated answers based on the analysis of users'
query log and click-through data. In addition, Joachims [7] proposed a ranking algorithm for re-
ranking search results using user clicks. Similarly, Zhuang and Cucerzan [18] developed Q-Rank to
build query context from query logs and hence rank search results based on the query context. Taneva
et. al. [14], proposed a image search framework in which the extended queries to an entity retrieve
different candidate images from image search engines, and then better rankings of images are
determined using weighted voting methods. Their voting approaches are similar to our features.
However, they focused on the ranking problem and precision probabilities are not considered unlike
our solution. In our methodology we redefine precision in terms of probabilities and call it precision

386 Gathering Web Pages of Entities with High Precision

probabilities. The approach proposed in this paper to improve the precision of a search engine results
is novel and new. We observed that our proposed precision probability equation (19) (discussed in
Section 3) is similar to PageRank algorithm in Google [2]. The Google search engine has two
important features [2] that help it produce high precision results. In [2] intuition of PageRank
algorithm is also discussed. First, PageRank makes use of the link structure of the Web to calculate a
quality ranking for each web page. This ranking is called PageRank. Second, Google utilizes link to
improve search results. PageRank can be thought of as a model of user behaviour. The probability
that the random surfer visits a page is its PageRank. And, the damping factor d (mostly used d = 0.85
in their experiments) is the probability at each page the “random surfer” will get bored and request
another random page. The graph structure of the web used by PageRank consists of pages linked by
hyperlinks. In our approach our graph is heterogeneous and bases on four related constructs pages,
entities, queries and templates. But our precision probability equation (19) drawn from the graph is
similar to PageRank and it is discussed in detail in the next Section 3.

3 Precision Probabilities Modelling

The section begins with introducing statistical preliminaries, useful for deriving our probabilistic
inference modelling equations. Here we redefine the precision in probabilistic sense and define
precision probabilities of different constructs namely pages, entities, queries and templates.

3.1 Graph Formulation and Statistical Preliminaries

As discussed before, we have four distinct types of constructs - pages, queries, templates and entities.
In this section we have developed probabilistic sense of precision (we call this precision as precision
probability) for all these four constructs based on their interrelationship. According to our intuition
these constructs are related or linked to each other where a page plays central role in this relationship
as shown in Figure 2.We can think of a graph like Figure 2 and suppose that these four constructs
represented by P, Q, T and E are the nodes of the graph. In Figure 4 this graph is explained by a toy
example. In this graph the page set P is set of all the web pages (relevant or not) retrieved by queries
in Query set Q. E is set of entities (of a particular domain) relevant to pages in page set P, the queries
(in Q) are all about. For example a query q in Q retrieves a page p in P, hence in this sense q is related
or liked to p by the relation “retrieved.” We say that a page p is retrieved from query q. Similarly
since template t can be extracted from p (as discussed before), there is also relation between p and t
namely “extracted.” That is a template t which is extracted from a page p. More specifically for
clarity purpose, suppose q is <Bombay grill Indian> and t is <Name Cuisine>. By seeing t and q we
can say that here entity e is a restaurant and name of the restaurant is “bombay grill,” this restaurant is
of Indian cuisine category. It is obvious that p is retrieved by q, and both q and t occur in p. So we can
say that due to presence of query words in page p the page is retrieved from query q using a search
engine. We can form or extract template t from the page p, as a query q is combination of attribute
values in the page and template t is combination of attribute names, the attribute values are associated
with. In this sense a template is implicitly present in the page and we can extract it from the page
contents. For example, if both query q1 and template t2 co-occurs in a page p1, we can represent this as
p1 = (q1, t2).

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 387

We can model the co-occurrence of a template t and a query q in a page p of page set P as

 P = {p | p = (q, t), q Q, t T, q and t co-occurs in a domain D} (1)

If we know all the relevant pages in P related with all the entities in E we can represent this
relation in a set L where L = {(e, p)| p is related with e}. Here p is connected to e in terms of relevant
relationship.

Let It denote the set of pages that any query q and a template t instantiates.

 It = {p | p P, p=(*, t)} (2)

Iq is a set of pages that a query q and any template instantiates.

 Iq = {p | p P, p=(q,*)} (3)

Further let PR stands for a set of all pages relevant with any entity in the set of entities and we
define it as;

 PR = {p | p is a relevant page with entity ei E} (4)

Now let’s generalize precision for templates in the probabilistic sense and we represent this by
PP(t). In the information retrieval community, precision is defined as . To generalize the
notion of such a precision to the precision probability of a query template t, let’s rewrite it in a
statistical way as

In probabilistic sense we can rewrite precision of template t, P(t) as precision probability of t,
PP(t);

In (5), since the numerator is the count of , it represents the probability, when we draw a

random page p, that p It and p PR both hold, i.e., . Similarly, the

denominator represents probability Pr(p It). By the definition of conditional probability

, (6) is converted into (7). As a result, we obtain the probabilistic precision of t as

the conditional probability of p PR given p It. This is the likelihood that p is relevant, given that it
is instantiated by t. Since the precision probabilities of queries and entities are quite similar, we omit
the derivations here.

For pages p P, we can also rewrite precision of page p, as precision probability

of p as, PP(p) = Pr(x PR|x Ip). Further, since Ip is simply {p}, set of pages itself, the condition p

Ip means x = p, which thus simplifies the expression to just Pr(p PR). In words, the precision of p

388 Gathering Web Pages of Entities with High Precision

measures how likely p is relevant. We can thus generalise precision probability of a page, PP(p) as
follows:

 PP(p) = Pr(p PR) (8)

3.2 Probabilistic Inference Modelling

The probabilistic inference model derives probability estimation of a node (or a construct) in terms of
its related nodes (or constructs), through their semantic relevance. Let’s redefine precision
probabilities of all the nodes (or constructs) in terms of our intuition see Figure 2. In the following
lines PP(t) is precision probability of a template, PP(q) is precision probability of a query, PP(e) is
precision probability of an entity and PP(p) is precision probability of a page. As these constructs are
modelled by a graph we are using the words constructs or nodes interchangeable. So we can say that
PP(t) is a precision probability of a template node in place of precision probability of a template, but
these are similar in concept. Let’s derive precision probability of a template node PP(t) as follows.

In (10), we expand it to the joint distributions with every pi P. (11) restricts pi to only those

instantiated by t, or pi It, which are the neighbors of t. By the Bayes' theorem, (12) rewrites using

Pr(xy|z) = Pr(x|yz)Pr(y|z). In (13), since pi It is conditionally independent of p PR, given p = pi, we

can remove p It. As the first term equals and the second term PP(t), (14) completes the
rewriting. We can derive PP(t) and PP(e) quite similarly. In summary the precision probabilities are as
below:

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 389

Since the neighbors of page p are queries, templates, and entities as in Figure 2, the precision
probability equation can be formed by combining Eq. (15), (16) and (17).

These equations can also be represented as a matrix equation as follows:

 PP(i+1)= αAPP(i) + (1- α)y (19)

where i, A, and y denote the number of iterations, a transition matrix, and a personalized vector,
where entity components have 1/|E| and 0 otherwise, respectively. In addition, PP(0) is an initial
precision vector, where all entries have 1/|V| (where V stands for the number of nodes in the graph).
Interestingly note that our precision equation is similar to Google PageRank 2 [2]. Due to this
similarity for our experiments, we set 0.85 to α in our experiment (as in [2] they used 0.85 for
damping factor d). This precision probabilistic equation (19) is utilized in Algorithms 1 and 2,
proposed in this paper. We will further discuss this equation (19) in our experimental result section as
well.

2 In the end, our proposed precision probability equation can be induced to Eq. 19. And it seems to be similar to
PageRank. The equation in Eq. 19 is based on a random walk model on a heterogeneous graph with four
different types of nodes. PageRank is the same except that it works on a hyperlink graph with homogeneous
nodes like web pages. Interestingly, in our method, the precision probability values of each node are similar in
only odd iterations and those of each node are similar in only even iterations (See Table 5). This is because both
query and (query) template nodes always exist on a heterogeneous graph. This result is different from that of
PageRank.

390 Gathering Web Pages of Entities with High Precision

4 Relevance Classification

Figure 3 System Architecture

Figure 3 about system architecture describes our approach. Let’s dive into the detail and summarize
the steps. For a specific domain (say collection of restaurants or smartphones) we prepared and
utilized data sets for different purposes and the preparation of these sets is discussed in detail in the
next subsection called Data sets. We use one label set in forming the graph G0, utilized in Algorithm 1.
Other label set is utilized in page relevance classification and is discussed in Section 4.4. We have
proposed sampling algorithm (Algorithm 1 in Section 4.2.1) which outputs top-k (in our experiment
k=50) query templates (related to entities of a specific domain say restaurants). These templates are
ranked by precision probabilities proposed in this paper and discussed above in Section 3. In
Algorithm 1 we proposed a sampling approach to calculate the precision probabilities in an efficient
way. Then we generate queries from each top query template provided by Algorithm 1 and collect
top-50 pages ranked by Yahoo search engine. Next, we select top-40 pages in each entity using our
precision voting algorithm (See Algorithm 2 in Section 4.2.2). Then we extract novel features (See
Section 4.3) and build classifier in Section 4.4 based on the data set prepared from those features.
Following subsections explains our approach in a step by step manner.

4.1 Preparation of Data sets

In this section we discuss about the data sets used in our experiments.

4.1.1 Collection of High Frequency Pages using Exhaustive Query Generation

In this subsection we discuss the process of collecting high frequency pages using Yahoo search
engine by generating queries from exhaustive combination of attribute values of an entity. Let’s select
twenty restaurants from http://www.hungrygowhere.com. Table 2 shows the list of these chosen
restaurants at random. These twenty restaurants are actually twenty entities belonging to the domain
Restaurants. In Table 2 we can see different types of Cuisines. For example, “daidomon” is a
Japanese Cuisine and “sushi jiro” is an Asian Cuisine. For Muslims, a halal Cuisine “Olive” is also in

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 391

the list. Furthermore, we manually collected information regarding twenty popular smartphones on
the web.3

We describe each entity by nine attributes. As shown in Table 3, the attributes are restaurant’s
name, street, city, zip code, phone number, special dish, cuisine, category, and neighbourhood in the
restaurant domain. On the other hand, those in the smartphone domain are maker, petname, os, lcd, ap,
memory, lte, battery capacity, and weight. From the attribute values, we can generate all possible
queries. Since we have nine attribute values, we can create 29-1=511 possible queries for a single
entity. For example, based on Table 3, we can generate queries <Yoyogi restaurant>, <33 mohamad
sultan road>, <Yoyogi restaurant 6887-4669>, <Yoyogi restaurant Asian river valley>, etc. We can
also have the query templates corresponding to the queries, e.g., <Name>, <Street>, <Name phone>,
<Name Cuisine Neighbourhood>, etc. For each restaurant entity in Table 3, top-50 web pages per
query are downloaded using Yahoo Search Engine. Next, unique web pages are collected in a table,
and then sorted by the frequency of web pages. Let’s explain the process by an example. Suppose two
queries q1 and q2 and three web pages p1, p2 and p3. Further assume that using Yahoo Search Engine
pages p1 and p2 are retrieved by query q1, while p2 and p3 are retrieved by q2. In this case, the
frequencies of p1, p2 and p3 are 1, 2, and 1, respectively. After the frequencies of web pages are
counted, top-40 web pages with the highest frequencies per restaurant (amongst the 20 chosen
restaurants) are selected. Finally, we have obtained 800 high frequency web pages of the twenty
entities from the restaurant domain.

Table 2 Twenty entities from two domains

Restaurant Domain Smartphone Domain

ID Name Cuisine ID Name Maker

1 Highlander coffee bar WESTERN 1 Iphone3g APPLE

2 Daidomon JAPANESE 2 Iphone4 16g APPLE

3 Shri anandhem restaurant ASIAN 3 Venue DELL

4 Sushi jiro ASIAN 4 Take2 KTTECH

5 Swensen’s cafe restaurant
junction 8

WESTERN 5 Love shake KTTECH

6 The arena WESTERN 6 Desire hd HTC

7 Jia thai thomson plaza THAI 7 VEGA X PANTECH

8 Yoyogi restaurant ASIAN 8 Vega no.5 PANTECH

9 Tandoori restaurant ASIAN 9 Take janus KTTECH

10 Aburiyatei ASIAN 10 Optimus g LG

11 Food haven the restaurant CHINESE 11 Lollipop LG

12 Big bites INDIAN 12 Wine LG

13 Sawasdee thai food THAI 13 Prada 3.0 LG

14 Tasty thai hut ASIAN 14 Atrix MOTOROLA

3 For this, some experts in LG Electronics helped to collect the smartphone data set used in our experiment.

392 Gathering Web Pages of Entities with High Precision

15 Ras the essence of india INDIAN 15 Nexus one HTC

16 Tatsuya JAPANESE 16 Galaxy note SAMSUNG

17 Phin’s steakhouse liang seah WESTERN 17 Galaxy s3 SAMSUNG

18 Olive HALAL 18 Galaxy note II SAMSUNG

19 Andhra curry ASIAN 19 Nori SAMSUNG

20 Sakura international buffet
restaurant

JAPANESE 20 Armani SAMSUNG

We have prepared such kind of high frequency table twice one with twenty entities as
discussed above and other with 100 entities using the same process and same URL
http://www.hungrygowhere.com. In summary we will have 800 and 4000 high frequency web pages
for twenty and hundred entities respectively. Note that entities are chosen at random from the
http://www.hungrygowhere.com. These two sets of entities are from the same domain “Restaurants”
and disjoint with each other. The table of 800 high frequency web pages related with 20 entities is
used in Section 5. And the table of 4000 high frequency web pages related with 100 entities is used in
Algorithm 1 and also in Algorithm 2 (how? It is discussed in the subsections of Algorithm 1 and 2 in
Sections 4.2.1 and 4.2.2.). In the same way, we have collected 800 high frequency web pages of the
twenty entities from the smartphone domain.

Table 3 Examples of entities described with nine attributes

Restaurant Domain Smartphone Domain

Attribute Attribute Value Attribute Attribute Value

Name Yoyogi restaurant Maker Apple

Street 33 mohamad sultan road Petname IPHONE3G

City Singapore OS iOS

Zip code LCD 3.5 320 480

Phone 6887-4669 AP S5PC100 600MHz

Specialty Japanese Memory 16G

Cuisine Asian LTE No

Category Restaurant BatteryCapacity 1220

Neighbourhood River valley Weight 135

4.1.2 Preparation of Label Set, Training Set and Test Sets

We need a labelled data set to train and test our page relevance classification model. We have used
Support Vector Machines [13] as a binary relevance classification model. Figure 3 illustrates the

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 393

system architecture of our model. Given a domain of interest say Restaurants, we randomly select a
set of restaurants (say 20 entities) and their relevant web pages (say 800 pages) using the process
discussed above in Section 4.1.1. We form a table called Label set with the meta information of entity
name, applied query and relevant template, page URL, page title, page text contents (after removing
high frequency stop words) and a label column having 1 or -1, indicating that page is relevant to the
entity or not. Page relevance is judged by human annotators4. From the label set we have extracted six
features (discussed in Section 4.3) and prepared a feature set consisting of all these six features. With
the combination of label set and feature set, we have generated a labelled training set of features
having information about each entity in terms of six features (we proposed) with the relevance label
(1 or -1) whether or not a page is relevant to an entity. Then using this training set we train and test
the relevance classifier using Support Vector Machine model, and this process is discussed in Section
5. Given a testing set consisting of a set of entities we will repeat the same process to build the table
of high frequency web pages for each entity as discussed in Section 4.1.1. This is, we will generate
top-k queries which correspond to top-k query templates with the highest precision probabilities
discussed in Section 3. Then, top-k web pages are retrieved using a common search engine (e.g.,
Yahoo) with a query. In the end our trained relevance classification model will decide whether each
retrieved web page is relevant with a desired entity or not (See Figure 3).

4.2 Proposed Algorithm

In this paper we have proposed two algorithms that are discussed in this section.

4.2.1 Algorithm 1: Sampling Algorithm

In Section 3 we define probability inference models to measure precision probabilities of nodes from
a graph similar to Figure 4 based on the intuition of Figure 2. However, in our models, computing
precision probabilities is expensive if the number of entities is very large. Thus efficient inference has
to be performed. To achieve this we have proposed a sampling algorithm based on probability
inference models discussed in Section 3.

Algorithm 1: Sampling

4 This is a labour-intensive task which should be done for different types of entities.

394 Gathering Web Pages of Entities with High Precision

As mentioned before we prepared a table of 4000 high frequency web pages related with hundred
restaurant entities. These hundred restaurants are chosen at random from the
http://www.hungrygowhere.com. Given a set of entities, we first create an initial graph G0 from a
subset of entities. The intuition behind creating the initial graph is to avoid from the generation 2m-1
queries initially for each entity where m is number of attributes in our experiment (we use nine
attributes to describe an entities say a restaurant as discussed in Section 4.1.1). To create the graph G0,
we select a small set of entities (say twenty entities and we call it a sample) at random from the entity
set (or domain, this is the same set from which 100 entities are chosen). Then, manually find relevant
pages to each entity (e) and label them as 1 or -1 (indicating relevant page to entity or not) and form
“s” number of queries and collect in set Qs. The queries are formed manually from the pages using
keyword matching approach. Finally, we create G0 (similar to Figure 4) with corresponding queries,
templates, pages, and entities using label set based on the intuition discussed in Figure 2. In
Algorithm 1, starting with G0 we extend it automatically using Jaccard similarity between a page and
an entity, then we compute precision probabilities of nodes using random walks. Through manual

inspection, we find that = 0.1 is the best threshold value for Jaccard similarity between p and e. If
page’s similarity (using Jaccard similarity) with entity is greater than 0.1, then the page p is linked to
the entity e in the graph. We measure precision probabilities of nodes in the graph by means of Eq.
(19). Finally, we prune out nodes with lower precision probability nodes, and then conduct the same
process for a next entity in the sample. Finally, Algorithm 1 will output top-k important query
templates and their precision probabilities. For our experiment we use k=50.

In summary two inputs of algorithm 1 are a manually prepared graph G0, similar to Figure 4
(discussed above) and manually prepared set of selected queries Qs. The set Qs is Algorithm 1, returns
top-k (in our experiment k is 50) query templates with their associated precision probabilities. The
ranking (top-k) is based on precision probabilities of template nodes. To expand the initial graph G0
used in Algorithm 1, we use hundred entities and their corresponding high frequency table of 4000
pages, already discussed before.

Algorithm 2: Precision probability voting algorithm

4.2.2 Algorithm 2: Precision Probability Voting Algorithm

The output of Algorithm 1 i.e. top-k templates (where k=50 in our experiment) along with their
precision probabilities is used by Algorithm 2 as an input to calculate top 40 relevant pages associated

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 395

with an entity e. In Algorithm 2, for a top template, we can generate or form its associated query q by
assigning values to attribute(s) in the template. And use this query in Yahoo search engine to find top-
50 web pages ranked by Yahoo. Then we accumulate precision probability score, where page p is
retrieved from Yahoo search engine using query q associated with a top template and e is the
associated entity with the query.

4.3 Feature Selection

We use public search API of Yahoo [17] to download web pages. We extract only text data of each
web page, and then stop words are removed in terms of the list of stop words listed in [6]. We have
proposed six discriminative features F1, F2, F3, F4, F5 and F6 using the data of 800 web pages
relevant to twenty restaurant entities (and 800 web pages relevant with twenty smartphone entities),
as discussed in Section 4.1.1. The five novel features F1...F5 are web page contents independent
features and hence are called non-content features. F6 is web page content dependent feature.
Similarity in features F1, F2 and F6 is measured by Jaccard similarity measure using open source tool
SecondString [12], where all space-delimited words from text strings are treated as tokens. Let’s
define our proposed features as follows:

 F1: Similarity score between page title and entity name

 F2: Similarity score between URL terms and entity name

 F3: Rank voting score measured by , where t: a template, PP(t):
precision probability of template t, k: top-k pages, and rt(p): rank of page p retrieved from
the Yahoo search engine

 F4: Precision voting score in terms of Algorithm 2

 F5: Normalized page frequency. This is same as the precision voting Algorithm 2 except that
weight w(p)=1

 F6: Similarity score between page content and entity attribute values

In particular, note that we can categorize these features to three groups. The first group contains
F1 and F2 which are collected by additional information i.e. web page title and URL. Calculations of
F1 and F2 are similar to the approach used in [16] and in calculating F3 our intuition is based on the
approach of [14]. In the second group, features F3, F4, and F5 are generated based on precision
probability and precision probability voting algorithm. The last group includes feature F6 and is a
web page contents dependent feature.

4.4 Relevance Classification Model

Our goal in the paper is that we want to classify a web page (retrieved using Yahoo search engine)
whether or not it is relevant to an entity. Note that in our intuition (and its quite natural) a query is
formed by using attribute values of an entity, about which a user wants to search through a search
engine. We use Yahoo search engine in our experiments. In our empirical study in Section 5.2.3, we
build two SVM based relevance classification models by using all the six features F1, ..., F6 and by
using only the non-content features F1, ..., F5. Classification results in Table 7 show that classifier
built on all the six features (including web page content feature F6) is only better than 1.24% on

396 Gathering Web Pages of Entities with High Precision

average accuracy as compared to the classifier built using only non-content features F1, ..., F5. This
observation makes our non-content features novel and also makes our proposed relevance
classification model language-independent.

5 Experimental Validations

The section is about performing the experiments using the proposed precision probability models,
prepared data sets, proposed Algorithms 1 and 2, and the relevance classification based on novel
features.

5.1 Set-up

Let’s summarise our experimental setup by mentioning the data set, implementation details and the
research questions in which we are interested.

5.1.1 Data set

In our experiment we use the table of 800 high frequency pages related to twenty restaurants and
those related to twenty smartphones gathered on the web, discussed and prepared in Section 4.1.1. In
Table 3 we have examples of both restaurant and smartphone entity described with nine attributes and
their particular values. To experiment our classification problem, we randomly selected twenty
restaurants in http://www.hungrygowhere.com and twenty smartphones among 127 ones that we
manually gathered on the web. Table [3] shows the list of the chosen entities.

5.1.2 Implementation

All the experimentations were performed on 4x2.6 GHz Opteron processors with 32GB of RAM. We
implemented Algorithm 1 and Algorithm 2 using Java programming language. For each query, web
pages were downloaded using public search API of Yahoo [17]. Through HTML parsers, only text
data of web pages were extracted, and then stop words were removed in terms of the list of stop
words in [6]. To compute the similarity score between the text content of a web page and attribute
values of a restaurant (or a smartphone), we used the open source tool, SecondString [12], where all
space-delimited words from text strings are treated as tokens. In our manual inspection, we also
decided the best threshold value for Jaccard similarity (for our experiments). In addition, to
compute the precision probabilities of query templates, we implemented the data structure and source
codes for our precision probability equations based on Java template codes of [1]. The precision
probability computation is stopped when = 0.0000001 (means the difference between previous
precision probability vector and current one). For our classification experiment, we used Support
Vector Machines (SVM) [13].

5.1.3 Summary of Set-up

Based on this set-up, we seek to answer the following questions:

 Q1: In Section 3, we proposed precision probability equations. To show the correctness of
the equations, we will analyze the outcome of precision probabilities using a toy example
(Figure 4) in Section 5.2.1.

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 397

 Q2: What are top-10 templates that are discovered by Algorithm 2? We will empirically
study the top-10 templates with the highest precision probabilities in Section 5.2.2.

 Q3: To figure out how many web pages are actually relevant, we will survey if each web
page is relevant with a target entity or not. Then, we measure the average precision score at
real top-k relevant web pages. Finally, we will see the reason why some web pages are
irrelevant in Section 5.2.3.

 Q4: To evaluate our classification model, we will deal with the results of SVM based on
different types of features, and then find the most discriminative feature in our model. For
the details, see Section 5.2.4.

5.2 Results

5.2.1 Correctness of Precision Probability

To verify our probabilistic inference models, we show the results of our model with a toy example.
Figure 4 depicts a simple graph, where q1 (<Yoyogi restaurant Asian>) and q2 (<Yoyogi restaurant>)
are queries; t1 (<Name Cuisine>) and t2 (<Name>) are templates; p1, ..., p4 are web pages; and e1 is an
entity “Yoyogi restaurant.” In this graph, nodes are linked one another because of three different
types of relationships, shown in Figure 2.

Figure 4 A toy example graph

Table 4 The transition matrix (A) of the graph in Figure 4

 t1 t2 q1 q2 p1 p2 p3 p4 e1

t1 0 0 0 0 1/3 1/3 1/3 0 0

t2 0 0 0 0 0 0 1/2 1/2 0

398 Gathering Web Pages of Entities with High Precision

q1 0 0 0 0 1/3 1/3 1/3 0 0

q2 0 0 0 0 0 0 1/2 1/2 0

p1 1/2 0 1/2 0 0 0 0 0 0

p2 1/3 0 1/3 0 0 0 0 0 1/3

p3 1/5 1/5 1/5 1/5 0 0 0 0 1/5

p4 0 1/2 0 1/2 0 0 0 0 0

e1 0 0 0 0 0 1/2 1/2 0 0

Table 5 Precision probabilities of nodes of the graph in Figure 4

 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

t1 0 0 0.1284 0.0193 0.1149 0.0336 0.1003 0.0436

t2 0 0 0.0723 0.0108 0.0799 0.0212 0.0769 0.0296

q1 0 0 0.1284 0.0193 0.1149 0.0336 0.1003 0.0436

q2 0 0 0.0723 0.0108 0.0799 0.0212 0.0769 0.0296

p1 0 0 0 0.1092 0.0164 0.0977 0.0286 0.0853

p2 0 0.2833 0.0425 0.1699 0.0616 0.1433 0.0739 0.1302

p3 0 0.17 0.0255 0.1265 0.0406 0.1131 0.515 0.1043

p4 0 0 0 0.0614 0.0092 0.0679 0.018 0.0654

e1 1 0.15 0.3427 0.1789 0.276 0.1935 0.259 0.2033

First, a search engine retrieves p1, p2 and p3 using q1. Second, t1 can be extracted from p1, p2, and

p3. Finally, both p2 and p3 are determined to be relevant with e1 if and .
Given the graph, we expect that t1 should be more highly ranked than t2. This is because t1 is
connected to more relevant web pages, comparing to t2 in the graph. For each node (e.g., t1), our
proposed model will compute the precision probability of t1 with which random surfers start at t1,
visiting neighbour nodes, and finally arrives at e1 in the graph. As we already from Eq. (19) that our
precision probability equation is PP(i+1)= αAPP(i) + (1- α)y, where i is the number of iterations and
α=0.85 in our experiment. As mentioned before, since our precision probability equation is similar to
PageRank of Google [2], we use α=0.85 as used in [2] for damping factor. A is the transition matrix
of the graph in Table [4]. And “y” is a personalized vector using which random surfers jump to other
entity nodes if a node at which the surfers visit is a dangling node. In the y vector, every entity
component has 1/|E|, where |E| is the number of entities, otherwise it is 0. In addition, PP(0) is an
initial precision vector, where all entries have 1/(# of nodes). Table 5 shows the precision probability
of each node in every iteration. The iteration is stopped when η =.0000001. In Table 5, we can clearly
take a look at the fact that t1 has higher precision probability than that of t2, as expected.

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 399

5.2.2 Top-10 Templates

Table 6 Top-10 query templates in terms of our precision probability inference model.
Restaurant Domain Smartphone Domain

Rank Template Precision
Probability

Rank Template Precision
Probability

1 <Name Phone Specialty
Cuisine>

0.0054 1 <Maker> 0.1595

2 <Name Phone Cuisine> 0.0054 2 <Maker OS> 0.11
3 <Name City> 0.0048 3 <Maker Petname> 0.0443
4 <Name> 0.0048 4 <Maker Petname OS> 0.0101
5 <Name Specialty> 0.0048 5 <Maker Petname OS LTE> 0.0083
6 <Name City Specialty> 0.0048 6 <Maker Petname LTE> 0.0073
7 <Name Phone> 0.0044 7 <Maker LCD

BatteryCapacity>
0.0042

8 <Name Phone Specialty> 0.0044 8 <Maker Petname OS
Weight>

0.0032

9 <Name City Cuisine> 0.0037 9 <Maker Petname OS LTE
Weight>

0.003

10 <Name City Specialty
Cuisine>

0.0036 10 <Maker Petname LTE
Weight>

0.0026

As shown in Table 6, we obtained 10 query templates with the highest precision probabilities based
on Algorithm 1. At first, we noticed the top-1 query template <Name Phone Specialty Cuisine>. This
top query template consists of multiple attributes rather than single attribute. This is why search
engines tend to retrieve a few web pages containing multiple attributes at the same time by precision
definition. If a web page includes multiple attribute values, it will be likely to be a relevant page. On
the other hand, the <Name> template is also ranked highly in the top-10 template list. In general, it
has been known that using only name query will cause false positive examples commonly. That is, if
there are two restaurants such as highlander coffee bar at both Bishan and Stamford Road, web pages
related to the two entities will be retrieved by the name query. However, according to our observation,
“Name” is still a good indicator for deciding whether or not a given web page is relevant with a
desired entity. For instance, in Table 2, if terms “highlander”, “coffee”, and “bar” frequently appear
within a web page, we can strongly conjecture that the web page may be relevant with the highlander
coffee bar entity. Thus we conclude that the Name attribute describes entities better than the other
attributes. At least, as a single-attribute query, the Name attribute is better than Cuisine and
Neighbourhood. Independently, we also performed a user study to see which queries retrieve more
relevant web pages. Then, we observed that <Name>, <Name Phone>, <Name City> tend to show
good search results. Such templates are highly ranked in Table 6 as well. In the smartphone domain,
<Maker>, <Maker OS>, and <Maker Petname> are highly ranked among 512 query templates.
Compared to many restaurants in Singapore, there are a relatively small number of smartphones
around the world and major ones may be made by a few global IT companies like Apple, Samsung,
Motorola, etc. If we use keywords such as <Samsung>, <Galaxy S5>, or <Samsung Galaxy S5>, we
will be able to get relevant web pages with an entity Galaxy S5 at most. Each maker (either Samsung
or Apple) is likely to have different Operating Systems and Petname (e.g., Apple-iPhone-iOS vs.
Samsung-Galaxy-Android). On the other hand, both Apple and Samsung tend to have similar values

400 Gathering Web Pages of Entities with High Precision

of LCD, weight, LTE, memory size, etc. Thus maker, os, and Petname are better than the others to
obtain relevant web pages and Table 6 supports that maker, os, and Petname are more highly ranked
than lcd, lte, weight, and so on. In particular, note there are not top-10 queries including Battery
Capacity, AP, and Memory.

According to the results in Table 6, the “precision probability” values will be the best way to
predict good query templates for different domains.

5.2.3 Empirical Study on Relevant Web Pages

(a) Precisions of each individual entity (b) Average precisions of all entities

Figure 5 Precisions of top-k web pages

Prior to applying our learning model, we first survey the relevance of eight hundred web pages of the
twenty entities in Table 2. We manually decided that each web page is relevant or not. Figure 5(a) and
(b) show average precisions of individual entity and of all entities, respectively. In Figure 5(a), the
horizontal axis indicates entity ID and the vertical axis means average precision values measured by

. In the figure, regardless of top-k values, the average precision of
each individual entity is totally different. The “daidomon” Japanese restaurant (ID = 2 in Table 2) has
high precision values whereas precisions of the “jia thai” restaurant (ID = 7 in Table 2) at top-k are
poor. This is because of the different reasons for each entity. By and large, we found six main reasons.
First, some web pages were not found even if the pages had been indexed by Yahoo Search Engine in
previous time. Second, there exist different restaurants with same name spellings on the web. For
example, there are at least two swensen restaurants at different locations. Third, the main topic of
some web page is not a target entity but other entity. For instance, a blog web page reviews a
“yumeya” Japanese restaurant, comparing to the special dishes of the “yoyogi restaurant.” In this case,
the web page includes a little information of “yoyogi restaurant” but it mainly talked about the
“yumeya” restaurant. Next, some entities are ambiguous e.g., “Sawasdee” is a person name as well.
Fifth, attribute values of some entities are not accurate. For example, in Table 2, “olive” should be
replaced by “fig and olive.” Finally, in case of some small restaurants which are not popular (e.g., “jia
Thai”), there are only a few web pages on the web. This is because of a little information on the web.

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 401

Overall, as shown in Figure 5 (b), the average precision of all entities is 0.65 at top-5 and 0.5 at top-
40 pages. In summary, because of ambiguity and less information about entities on the web, the
average precisions of manually finding relevant web pages are in between 0.5 and 0.65.

5.2.4 Classification

Through the process discussed in Section 4.1, we have eight hundred labelled pages. Using the label
set, we deal with a binary classification problem. We assign 1 to one class if a web page p is relevant
(52% in the label set), and -1 otherwise (48% in the label set). For evaluating our learning model, we
divided the label set to four runs, each of which has six hundred web pages in a train set and two
hundred web pages in a test set (This is Cross-Validation for avoiding overfitting as to our SVM
model). Then, we applied the test sets to SVM as a classifier. Table 7 shows the results of SVM based
on different feature sets that we propose.

Table 7 Page relevance classification results using SVM
Domain Features Run 1 Run 2 Run 3 Run 4 Average

Restaurant Using All Six features F1-F6 0.6185 0.635 0.605 0.6 0.6146
F1-F5 (using only five non-contents features) 0.5838 0.645 0.625 0.555 0.6022

Smartphone Using All Six features F1-F6 0.805 0.785 0.69 0.69 0.7425
F1-F5 (using only five non-contents features) 0.805 0.785 0.76 0.63 0.745

Table 8 Ranking of non-content features
Restaurant Domain Smartphone Domain

Rank ID Feature Weight Rank ID Feature Weight
1 F5 Page frequency 4.1768 1 F5 Page frequency 5.2174
2 F1 Similarity between page

title and entity
3.397 2 F1 Similarity between page

title and entity
3.6085

3 F4 Precision voting 3.1248 3 F2 Similarity between URL
and entity

2.00004

4 F3 Rank voting 2.1348 4 F4 Precision voting 0.957
5 F2 Similarity between URL

and entity
1.7187 5 F3 Rank voting 0

In our experimental result, we note that our learning model improves about 10% in the restaurant
domain and about 30% in the smartphone domain over random prediction. Since the maximum
average precision is about 0.65 in our survey (see Section 5.2.3), the average precision of SVM (i.e.,
0.62) is almost close to the upper bound in the restaurant domain. In addition, we observed there is no
significant gap between content feature and non-content features in both domains. In other words, our
proposed classification model is not associated with text content features of web pages. As a result,
our model will be able to work in the classification problem with non-English web pages. In Table 8,
we can also see that F55 is the most discriminative feature among non-content features.

In summary, our experimental results show that our approach can be applied to different domains
with high accuracy. Although the “restaurant” domain is considerably different from the

5 Pages are retrieved by top-10 queries in Table 6.

402 Gathering Web Pages of Entities with High Precision

“smartphone” domain, our classification model shows coherent results which are high accuracy,
compared to the result of binary classification at random (0.5). Please note that the average accuracies
of the restaurant and smartphone domains are about 0.62 and 0.74, respectively, and these results are
higher than 0.5. As a result, our classification model will be likely to work effectively regardless of
particular domains.

6 Concluding Remarks and Future Work

In this paper, we focus on the problem of automatically deciding whether or not each web page
retrieved by Yahoo search engine is relevant with an entity. To tackle this problem, we propose a
novel approach for web page relevance classification, and then validate that our classification model
will be likely to work effectively with different domains with high classification accuracy. We trained
relevance classification model using novel features (proposed in this paper) related to an entity. Five
of the features are web page content independent features and one is page content dependent feature.
We build two SVM based relevance classification models by using all the six features and by using
only the five non-content features. Classification results in Table 7 shows that classifier built on all
the six features (including web page content feature) is only better than 1.24% on average accuracy as
compared to the classifier built using only non-content features in the restaurant domain. On the other
hand, the classifier with non-content features is slightly better than the classifier with all features
including the content feature. This observation makes our non-content features novel and makes our
proposed relevance classification model language independent. This observation suggests that our
scheme can be applied on large collection of web pages as it doesn’t use web contents at all. Our
sampling algorithm for selecting top-k query templates makes our method efficient and scalable as we
are utilizing a smaller annotated subset to make initial the graph and then expand the graph and
connect other nodes automatically as discussed in sampling algorithm. The graph structure of the web
in PageRank used by Google, consists of pages linked by hyperlinks. PageRank can be thought of as a
model of user behaviour. In our approach, a graph is also a user model based on search engines. So
our proposed graph is heterogeneous and based on four related constructs pages, entities, queries and
templates. But our precision probability equation (19) drawn from the graph is similar to the
PageRank.

In our future work we want to increase the size of data set for a particular domain and also want
to increase number of domains to test our claims on large scale data. We also like to check the impact
on precision accuracy of SVM by incorporating name entity disambiguation in preparing data sets,
queries and query templates. We also want to compare the accuracy of our efficient sampling
approach in terms of selection of top-k pages classification accuracy with the non-sampling approach.
Since the non-sampling approach is time consuming and to test it we can utilize parallel computing
using Hadoop or GPGPU computing on large scale data set. Another future direction is to investigate
the interestingness of a web page. Given a “relevant” web page, the objective is to compute the
ranking score of the page based on “interestingness” which can be estimated based on the parameters
of informative, interesting remarks, nice images, rating scores, non-duplicate information, and so on.

B.-W. On, M. Omar, G. S. Choi, and J. Kwon 403

Acknowledgement

This paper was supported by research funds of Kunsan National University for the first author and by
the 2013 Yeungnam University Research Grant for the third author.

References

1. R. Sedgewick and K. Wayne (2007), Introduction to programming in Java: An interdisciplinary
approach, Addison-Wesley (New York).

2. S. Brin and L. Page (1998), The anatomy of a large-scale hypertextual web search engine,
Computer Networks and ISDN Systems, Vol.30, pp. 107-117.

3. B. Croft, D. Metzler, and T. Strohman (2009), Search engines: Information retrieval in practice,
Pearson Education.

4. G. Dupret, V. Murdock, and B. Piwowarski (2007), Web search engine evaluation using click
through data and a user model, Proceedings of the World Wide Web Conference.

5. M. Hosseini and H. Abolhassani (2007), Mining search engine query log for evaluating content and
structure of a web site, Proceedings of IEEE/WIC/ACM International Conference on Web
Intelligence.

6. S. Howard, H. Tang, M. Berry, and D. Martin (2009), GTP: General text parser,
http://www.cs.utk.edu/ lsi/.

7. T. Joachims (2002), Optimizing search engines using clickthrough data, Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining.

8. L. Li, Y. Shang, and W. Zhang (2010), Relevance evaluation of search engines’ query results,
Proceedings of the World Wide Web Conference.

9. Y. Liu, Y. Fu, M. Zhang, S. Ma, and L. Ru (2007), Automatic search engine performance
evaluation with click-through data analysis, Proceedings of the World Wide Web Conference.

10. L. Lovasz (1993), Random walks on graphs: A survey, Combinatorics, Vol.2, pp. 1-46.

11. T. Saracevic (1995), Evaluation of evaluation in information retrieval, Proceedings of ACM
Special Interest Group on Information Retrieval.

12. W. Cohen, P. Ravikumar, S. Fienberg, and K. Rivard (2003), SecondString: An open-source Java
based package of approximate string-matching techniques, http://secondstring.sourceforge.net/.

13. T. Joachims (2008), SVM-Light Support Vector Machines, http://svmlight.joachims.org/.

14. B. Taneva, M. Kacimi, and G. Weikum (2010), Gathering and ranking photos of named entities
with high precision, high recall, and diversity, Proceedings of ACM International Conference on
Web Search and Data Mining.

404 Gathering Web Pages of Entities with High Precision

15. N. Wardrip-Fruin and N. Montfort (2003), The new media reader, MIT Press.

16. T. Weninger, F. Fumarola, J. Han, D. Malerba (2010), Mapping web pages to database records via
link paths, Proceedings of ACM Conference on Information and Knowledge Management.

17. Yahoo Developer (2011), Yahoo! Search BOSS API, http://developer.yahoo.com/search/boss/.

18. Z. Zhuang and S. Cucerzan (2006), Re-ranking search results using query logs, Proceedings of
ACM Conference on Information and Knowledge Management.

