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Web service composition has two kinds of uncertain factors, including uncertain invocation results and
uncertain quality of services. These uncertain factors affect success rate of service composition. The web
service composition problem should be considered as an uncertain planning problem. This paper used
Partially Observable Markov Decision Process to deal with the uncertain planning problem for service
composition. According to the uncertain model, we propose a fast learning method, which is an uncertainty
planning method, to compose web services. The method views invocations of web service as uncertain
actions, and views service quality as partially observable variables. The method does not need to know
complete information, instead uses an estimated value function to approach a real function and to obtain a
composite service. Simulation experiments verify the validity of the algorithm, and the results also show
that our method improves the success rate of the service composition and reduces computing time.
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1 Introduction

With the development of web service technology, composing services to meet needs of customers has
become an inevitable trend. Web services on the internet are distributed, heterogeneous, autonomous
and dynamic, which leads to two kinds of uncertainty of web services.

Uncertainty of web services refers to the uncertain results of invoking services and the uncertain
QoS (Quality of Services) values, which are hard to precisely predict and affect the process of service
composition.

For the first uncertainty, behaviors of web services or results of web services are main reasons. For
example [1], a web service needs to request many products from markets or suppliers, but it does not
know whether markets or suppliers can provide enough products. Therefore the uncertain quantity of
product in the suppliers' inventory leads to uncertain execution results of the web service. In another
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words, different estimations on product quantities of suppliers and markets will lead to different
invocation results, i.e., if suppliers are very unlikely to meet the order requirements, the service will
first request products from markets. However, if markets are very unlikely to meet the order
requirements, the service will first request products from suppliers, which makes the service process
different.

For the second uncertainty, values of QoS, such as response time and availability etc., are uncertain
because other factors such as network delays constantly change QoS values. This phenomenon exits
and is generally solved by providing an average value [2], but we suggest that using uncertain QoS
values with probability distribution is more realistic. The last response time of web services cannot be
a reasonable criterion, because the load of the system varies over time. Moreover, the average response
time of web services cannot be an adaptive criterion in environments emphasizing efficiency.
Probability distribution solves our problem when guaranteeing long-term and stable QoS values are
difficult, and unstable QoS values affect the success rate of services composition and the quality of
composed services.

One more significant and similar example is e-Marketplace, which is a dynamic supply chain for
textile industry [24]. In addition, Uncertain and dynamic environments are widespread, especially in
wireless networks, and some researchers [19-21] already have studied on the service composition in
their specific areas.

Therefore, when taking into account the uncertain and dynamic nature of real-world cases, the
following considerations have practical significance for reliable services composition: how to compose
services based on implicit knowledge of business logics and how to model uncertain QoS values to
ensure that composite services have higher QoS.

Because of the uncertainty of web services and QoS constraints, web service composition must take
into account the results of services to dynamically adjust web service composition. Therefore, web
service composition should not only be a composition plan under certain specific restrictions, but also
be an optimal policy of web service composition in certain conditions. Focusing on uncertainty and
QoS constraints of web services, this article uses Partially Observable Markov Decision Processes
(POMDP) [3] to study the problem of web service composition (i.e. view it as an uncertainty
planning).

Partially Observable Markov Decision Processes is a decision-making method solving a planning
problem, just using partial information of environments due to lack of information.

POMDP is an extension of Markov Decision Processes (MDP). In the MDP model, we make
decisions based on actual states of a system, but in many cases, the exact states of the system are
difficult to obtain. For example, sensors measuring a complex mechanical system are often affected by
noise pollutions, which lead to the difficulty of obtaining exact states of the system. Whereas, POMDP
assumes that the information of the system states is just partially knowable and cannot be observed
directly, thus it models the system with the incomplete information, and then makes decisions based on
the current incomplete information. POMDP has a wide range of application areas [4], such as road
maintenance, machinery reparation, robot control, machine vision, mobile target acquisition, target
identification, distribution of arms and so on. This paper, which is inspired by reinforcement learning
[5], proposes a learning method based on time to compose web services in uncertain environments.
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Contributions in this paper:

As far as we know, we are the first to use POMDP to model the problem of service composition. We
transfer the model to adapt the service composition in the uncertain environment.

After comparing many learning algorithms from both theoretical perspective and experimental
perspective, and indicating sufficiency of these methods, we propose a method and verify the
performance and adaption of this algorithm in the domain of service composition.

The rest of this paper is organized as follows. The second section introduces related research on the
service composition based on MDP. The third section describes service composition based on
POMDP. The fourth section proposes a learning algorithm to address the service composition problem
(i.e. the POMDP problem). The fifth section introduces an example of supply chain services. The sixth
section shows extensive experiment results of the service composition. The final section summarizes
the paper.

2 Current Practice and Research

There are a variety of service composition methods based on the Artificial Intelligence planning, such
as classic planning which is based on state-space [6], neoclassic planning which is based on
propositions and constraints satisfaction, heuristics and control policy planning which is based on
heuristics function [7], logic planning which is based on model checking [8], graph planning which is
based on Graphplan [9, 10], and uncertainty planning which is based on Markov Decision Processes.

Markov Decision Processes can be defined as a six-tuple: M={S, A, T, R, H, S0}. S is a collection of
system states. S0 is an initial state of the system states. A is a collection of actions. T: S×A→S is a state
transition probability. R: S×A→R denotes that performing action A at state S will return a reward R. H
is a planning stage. The process of solving MDP decision problems are to find out an optimal policy,
π(s)→a. The optimal policy elaborates which action in each state should be taken, so that the largest
cumulative rewards will be obtained. Usually, a value iteration method or a policy iteration method is
used to obtain the optimal policy.

Gao et al. [11] modeled service composition based on MDP, viewing a task collection as a state, and
viewing success rate of invocations as transition probabilities. They compared and analyzed two
algorithms that can solve MDP, which are the forward value iteration algorithm and the afterward
value iteration algorithm, also they proved that the forward value iteration algorithm is more suitable
for dynamic web services environments.

We are tracking the studies of Doshi. Doshi et al. [1] proposed a scene that a retailer requests
products by querying product inventory from many providers, and then they used MDP to compose
services that have the uncertain business logic, afterwards used a Bayesian learning method to learn the
transition probability among services. Based on the previous literature, they [12] further proposed a
composition method of hierarchical semi-Markov decision process, where they considered the service
execution time and added the ability to decompose tasks. Recently they [13] proposed a method
combined with risk preferences to adapt a composite service to different types of users.

Chen et al. [14] transferred the service composition problem into the artificial intelligence planning
problem, and then combined MDP with Hierarchical Task Network (HTN) to solve the problem. The
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method first decomposed service requirements into sub-requirements by means of HTN, and then used
MDP to solve the sub-requirements. The article indicated that the fewer are constraints of a service, the
bigger is the probability that the service is selected. Wang et al. [15] proposed an adaptive approach for
service composition, which mapped services to actions of MDP and constructed a map of service
network. Each path generated by the method is a workflow path. Furthermore, to prove the adaptability
of the composition method, the paper also conducted experiments and analysis on learning efficiency.
Wang et al. [16] went a step further by combining the Semi-Markov Processes with the preference
logic to solve the service composition problem. Semi-Markov Processes was used for modeling service
execution time, and the preference logic was used for modeling the preference degree that different
users prefer the different QoS criteria. Li et al. [17] extended a finite state machine model and
introduced a probabilistic computation tree logic to denote MDP properties, such as the states
accessibility and the probability of success for service composition, and then used a probabilistic
model checker, PRISM, to analyze and verify reliability and cost of composed service. Fan et al. [18]
proposed a new method for measuring QoS to adaptively update QoS values, and designed a reliable
composition algorithm of web service based on MDP.

The current insufficiency of the service composition methods based on MDP is the assumption that
QoS values can be accurately provided, but due to uncertain network environments and uncertain
invocation results of Web services, this assumption is too optimistic. Therefore, this paper proposes a
new service composition method based on learning algorithm to deal with this problem.

3     Problem Formulation

3.1 Web service composition modeled by POMDP

In our problem of web service composition, the possible structure of the composite service is
predefined, and multiple services with the same functionality have been grouped already. Our goal is
to select a best business process and its services, and the principle of selection is based on rewards that
will be described below.

3.1.1 Preliminary of POMDP

Partially Observable Markov Decision Processes can be defined as: M={S, A, T, R, Z, O, H, B},
where S is a collection of system states. A is a collection of actions. T is a state transition probability.
R denotes a reward of performing action A in state S. Z is a collection of observations. O is a
probability of getting observation Z when performing action A in state S. H is a planning stage. B is a
system's belief. POMDP's goal is to find an approximate optimal policy, which describes that each
state should take what action, so that the cumulative rewards are the maximum.

3.1.2 Model parameters

Web service composition can be modeled by POMDP as follows:

S: State, a finite set of states of the world [15]. Web services constitute states. Service composition
can be regarded as a task flow from an initial state to a final state, if we select a service successfully,
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we go to the next service, or we continue to select until successfully. States are denoted as blue
rectangles in Fig.1.

A: Action, namely web service invocation. Results of web service invocations are uncertain. Actions
are denoted as circles in Fig.1.

T: S×A×S→[0,1]. T is a state transition function, expressing the probability distribution that the
current services transit to the next services after an invocation of the current services.
T(s,a,s')=P(s'|s,a) denotes the probability that service S invokes action A to transit into a new service
S'. POMDP imports uncertainty of the invocation results into the planning by the state transition
function. State transition function has Markov property, which means that the next state only depends
on the current state and the action taken by the current state. Generally, service reliability can serve as
transition probabilities, and some researchers use the Bayesian learning methods to obtain the
probabilities instead. Transitions are denoted as arrows in Fig.1.

R: S×A×S→Rf, R is a reward function, which means the reward that we take action A in the current
service S and transit to the next service S'. Reward function is an additional factor of POMDP
compared with MDP and other classical planning models. POMDP let the planning objective be
maximum benefits by means of reward function. The maximum benefits refer to long-term rewards,
rather than rewards of simply taking one step. Rewards reflect user preferences for web services, and it
could be domain-related preferences (preferences on the different suppliers). The example of rewards
is shown in table 1.

 Z: Observations that are likely to be observed. They are also a collection of QoS ranks. In the
uncertain environments, due to the complex factors such as network load etc., we cannot get
comprehensive QoS information at some time, so the QoS information is partially observable. QoS
ranks are comprehensive values of all QoS criteria. Five major QoS criteria are execution time, cost,
reliability, availability and reputation. The QoS criteria values have different dimensions and ranges,
and the relative importance of the criteria is not assigned, hence the QoS criteria must be normalized to
one single dimension (or utility) [22] to compare which service is better than others. Moreover, QoS
criteria of web service have the following features: generalization, ambiguity, dynamism and
relevance. Unfortunately, these features make normalized QoS uncertain, so we turn normalized QoS
values into different QoS ranks. We specify three ranks for each service, and each rank has a
possibility. More ranks can be specified according to statistical data if more fine control is needed. For
instance, we have six group values of QoS criteria, which can be normalized into six QoS values, say,
1, 2, 1, 2, 3, 2. If three ranks are specified, the first rank is 3 with 1/6 probability, the second rank is 2
with 3/6 probability, and the third rank is 1 with 2/6 probability. Data of table 1 are generated in
accordance with this method.

O: S×A×Z→[0,1]. O is an observation function. It is the probability distribution of observations
when we take an action in the current state. O(a,s',z)=Pr(z|a,s') is the probability of the QoS rank Z
when we take action A to transit to service S'. For example, for one service, we assume that the
possibility of being the first rank of QoS is 30%, the possibility of being the second rank of QoS is
70%, and the possibility of being the third rank of QoS is 0%. This probability distribution should be
from statistical data. In contrast, in the MDP problem with fully observable variables, Z is equal to S,
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which means the state is entirely observable. Therefore, observation function is an additional factor of
POMDP compared with MDP model, making POMDP more realistic.

H: Stage, implied by the discount factor [23]. It refers to the number of planning steps. To achieve
maximum benefits, plans should not only take into account the current action, but also the following
actions. H can be divided into finite steps and infinite steps. Each step has a certain amount of benefits,
and later benefits need to be assigned a smaller discount to make the total benefits convergent. This
meets the principle of economics that the benefits decrease over time. Discount factor is [0,1]∈γ , which
specifies the decreased discount value when the steps increase. γh is the discount value in step h.

B: Belief state [23]. It is a vector of states. The belief state B consists of all states. B={b0, b1, … ,
bn}, and b0 is initial belief that denotes where the service process should start. Because states are
partially observable, some observations are perceived only after we take an action. But these
observations used for describing states are not complete information to make the next decision. In this
circumstance, in order to get the current state of the environment, we must maintain a complete
sequence of actions and observations of each step to infer state changes. This complete sequence is
called history, its form is defined by: ht = {a0, z0, a1, z1, … , at, zt}, where t denotes the current time
point. However, with passing of time, history will become longer and longer until it is difficult to
maintain. Fortunately, the state transition function satisfies the Markov property, which means the last
belief state can fully decide the next belief state. Belief states are sufficient statistics of history,
therefore, through the belief state we can convert POMDP in the discrete space into belief-MDP in the
continuous space, which will be described below.

3.1.3 Partially Observable Service Composition

POSC (Partially Observable Service Composition) is a POMDP problem, or a belief-MDP problem.
POSC = {B, A, Z, Γ, ρ}. The service composition can be described by this 6-tuples, and a generated
optimal policy is a composed service. As we mentioned earlier, B is a belief state in the continuous
space, meaning the belief degree that we select one service. The value of belief state is ( ) [0,1]b s ∈ ,

where ( ) 1b ss =∑ . All belief states form a geometric simplex with |S−1| dimensions. A and Z
respectively are the finite sets of actions and observations, the same as those of MDP. Γ:B×A×Z→B is
a belief state transition function, meaning the probability of being the belief state B', when taking the
action A in the current belief B and then obtaining the observation Z. ρ: B×A→R is a reward function

in the belief space, namely  ( ) ( ), , ( )b a R s a b ss= ×∑ρ .

Solving POMDP problems is to select an approximate optimal policy. Policy π is a function
mapping belief state b ( b B∈ ) into action a ( a A∈ ):

π(b)→a                                                                         (1)

For methods that not use belief states to infer the states, instead maintain a historical sequence, the
policy also can be defined as:

π(b0,ht)→a                                                                  (2)
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where ht is the history at the moment t, b0 is the initial belief state. It's necessary to consider future h
steps before making a decision. In addition, two problems need to be considered, that are how to
decide a policy is the optimal policy, and how to compare two policies. Therefore, a criterion must be
specified to decide what the optimal policy is. This paper uses the maximum-expected total-discount-

benefits criterion to measure the policy, ( )[ , ]hE R s ah hh ×∑ γ . According to the criterion, we can
calculate out what the reward is, when we take an action in a state. That reward is called value
function.

Value function is a function mapping each action in a state into a reward so that we can see which
action is better than others [23], thus it indicates how good one service invocation is. The optimal
value function of POMDP reflects, from a long-term point of view, how many benefits a service
contributes, as shown in formula 5. All of optimal value functions constitute an optimal policy.

( ) ( ) ( ) ( )max[ , | , ' ]1V b b a P z b a V bt ta z Z

∗ ∗= + ∑ −∈
ρ γ

                                   (3)

Optimal policy is a strategy that decides to take which action in each step (or state) [23], thus it
indicates how good one composite service is. Its strategy is equal to a composite service. Its value
reflects the overall rewards of this composite service, as shown below.

( ) ( ) ( ) ( )arg max[ , | , ' ]b b a P z b a V bt ta z Z

∗ ∗= + ∑
∈

π ρ γ
                                     (4)

3.2 Steps solving POMDP

Belief state B' at time t can be denoted by belief state B at time t-1 by means of recursive calculation.
When we take action A and then obtain observation Z, belief state B will be updated to B' based on
Bayes rule, as follows:

            
( ) ( )

( )
( ) ( ) ( )

( ) ( )
', , , | ', , '| , ,

' '| , ,
, , | , ,

P s b a z P z s b a P s b a P b a
b P s b a z

P b a z P z b a P b a
= = =

               

( ) ( )
( )

( ) ( )
( )

| ', '| , ( )| ', '| ,
| , | ,

P z s a P s s a b sP z s a P s b a s S
P z b a P z b a

×∑ ∈= =
                                                      (5)

( ) ( ) ( )| , | ', '| , ( )
'

P z b a P z s a P s s a b s
s S s S

= × ×∑ ∑
∈ ∈                                                                       (6)

By iteratively updating belief state, web services can be composed according to the following
circulate procedure: (1) when state is st-1 and belief state is bt-1; (2) we select actions at-1; (3) obtain
observations zt-1 and rewards rt-1; (4) move to a new service st in accordance with state transition
function T(s,a,s'), and then belief state is updated to bt. New service st is selected for the next service.
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4     Using Learning Algorithms to Generate Composite Services

4.1 Non-learning methods solving POMDP

POMDP can be divided into a finite stage planning and an infinite stage planning, and a policy
generated from the finite stage planning is not steady, because its optimal action may depend on a
successive state. This paper uses POMDP with infinite stages. Up to now, several POMDP exact
algorithms have been proposed, however the time and space complexity of these exact algorithms are
very high. Littman and Cassandra [23] respectively proved that solving POMDP with exact algorithms
is difficult, impossible in polynomial time. Therefore, besides some approximate algorithms, we need
an effective algorithm to solve the service composition problem modeled by POMDP, and that is
reinforcement-learning method.

4.2 Learning methods solving POMDP

Reinforcement learning is a kind of Machine Learning algorithm in the Artificial Intelligence
domain. It uses the observed reward to learn an optimal policy (or approximate optimal policy), in
order to make the cumulative reward maximum. The biggest advantage of reinforcement learning to
solve MDP or POMDP problems is that it can find the optimal policy without knowing the state
transition function and the reward function.

Reinforcement learning is the basis of our method. Trial-and-error search and delayed reinforcement
are the most important characteristics of reinforcement learning. Reinforcement learning is divided
into passive learning and active learning. For passive learning, the policy is known and fixed, whose
task is to obtain a state utility (state-action pair), in other words, its aim is to evaluate this policy. For
active learning, the policy is unknown, whose task is to take necessary actions to obtain the optimal
policy. Active learning is suitable for service composition. Monte Carlo and Temporal difference are
common methods of this type.

4.2.1 Monte Carlo method

Monte Carlo method learns the policy by estimating the value function V(s). On the premise of
unknown state transition function and reward function, it repeatedly uses formula 7 (an estimated value
function) in each learning cycle to progressively approach formula 3 (the real value function).

 
( ) ( ) [ ( )]V s V s R V st t t t← + −α

                                                 (7)

In the formula 7, α is a learning rate, a predefined constant. Rt is a reward,
2

1 2 3R r r rt t t t= + + ++ + + Lγ γ , it indicates the learning of Monte Carlo method starts only after the
end of a learning cycle.

4.2.2 Temporal Difference method

Temporal Difference method combines Monte Carlo with dynamic planning. Similar to Monte Carlo,
it still uses rewards in a complete learning cycle. In the learning process, the iteration method (formula
8) is used to estimate the real value function (formula 3), also without knowing environment model.
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The simplest Temporal Difference is one-step forward method, namely TD(0). During iterations of
the value function, it simply modifies the estimated value of adjacent states, which is more efficient
then Monte Carlo due to Monte Carlo begins learning only after a complete learning cycle. Monte
Carlo method uses rewards that obtained after a complete learning cycle to approach the real value
function, whereas Temporal Difference uses the value function of the next state and the current reward
to approach the real value function. The iterative formula of TD(0) is:

( ) ( )( ) ( ) [ ]11V s V s r V s V st tt t t← + + −++α γ
                                            (8)

4.2.3 Q-learning method

Q-learning is an advanced Temporal Difference method, which estimates the value function based on
actions, Q(st,at), to learn the optimal policy. The iterative formula (estimated value function) of Q-
learning is:

( ) ( ) ( ) ( )
11 1 1, , [ max , , ]

tt t t t t a t t t tQ s a Q s a r Q s a Q s a
++ + +← + + −α γ                      (9)

In the belief state space, Q-learning must be appropriately changed, the iteration function is
following, by which we obtain the composite service.

( ) ( ) ( ) ( )
11 1 1, , [ max , , ]

tt t t t t a t t t tQ b a Q b a r Q b a Q b a
++ + +← + + −α γ                         (10)

When Q-learning method selects an action, it needs to reach a compromise between exploring
(exploration) new strategies and taking advantage of (exploitation) the optimization strategies that are
already retrieved, in order to avoid local optimal solutions. The previous literatures use a ε-greedy
policy to select the action (0<ε<1). The concept of the method is to greedily select, with ε probability,
the retrieved action that has the maximum Q(bt,at) currently, and to explore, with 1-ε probability, new
actions. This probability can ensure that each action has opportunities to be explored. Moreover, it can
guarantee the actions that have maximum Q(bt,at) have higher priority to be selected. In other words, it
accelerates the speed of convergence, and ensures the effective learning.

4.2.4 Time-based Learning method

However, the ε-greedy strategy does not take into account the time factor, i.e. the ε value does not
change over time. Inspired by Q-learning, we propose a Time-based Learning method (TL) that is
suitable for service composition. The method decides how and when to explore and exploit. Its basic
idea is to decline the number of exploration over time and to increase the number of exploitation over
time. TL function is:

( ) ( ) ( )1
( ) max { , - , , ln , }1 1 1 1ln1

TL t Q b a Q b a t Q b at t t t t ta tt
⎡ ⎤= ×+ + + +⎣ ⎦+                      (11)

In the formula above, TL function will obtain the maximum value from the exploration (left part of
max) and the exploitation (right part of max), i.e. the times of trying new services will decrease, and
the times of using retrieved services will increase over time. Time-based learning method is shown
below:



L. Yu, Z.-L. Wang, L.-M. Meng, X.-S. Qiu, and J.-T.  Zhou      459

Algorithm: Time-based learning method

Inputs: the current belief bt+1 and reward rt+1

Outputs: an action at+1

Variables: Q(b,a), which is a table storing belief b and
action a.

     t, a point in time.

α, a learning rate.

         bt, at and rt are the previous belief, action and
reward, initially null

1.Steps:

2.Begin

3.  If b is not null

4.  Then

5.     

( ) ( )

( )

1
( ) max { , - , ,1 1ln1

ln , }1 1

TL t Q b a Q b at t t ta tt
t Q b at t

⎡ ⎤= + +⎣ ⎦+

× + +

6.     ( ) ( ) ( )1, , [ ( ) , ]t t t t t t tQ b a Q b a r TL t Q b a+← + α + γ −

7.     Increase t

8.   End If

9.   If bt+1 is terminal

10.  Then bt, at, rt ← null

11.  Else

12.    bt ← bt+1

13.    at ← at+1  

14.    rt ← rt+1

15.  End If

End Begin

In the 6th line, we choose a larger value, namely TL(t), to replace Q(bt+1,at+1). In the 11th-14th line,
we iteratively update the belief, action and reward. A strategy determines a composite service. We
compose services by learning strategies. When the environment changes, the learning strategies is
adapt to the changed environment.
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5     Case Studies

5.1 Original problem

Supply chain service is a composite service for retailers to request products. The member of supply
chain services (Fig.1) contain a Retailer (R), a Manufacturer1 (M1, contracted manufacturer), a
Manufacturer2 (M2, non-contracted manufacturer), a Preferred Supplier (PrS), the Other Supplier
(OtS), a Spot Market (SpM) and a Delivery carrier (D). In Fig. 1, the manufacturer1 and the
manufacturer2 shared the supplier and the spot market, but the manufacturer1 has the preferred
supplier. The possible process that the retailer requests products is: the retailer selects an appropriate
manufacturer to place orders, if the manufacturer has the preferred supplier, it first queries the
inventory of preferred supplier. If the inventory of preferred supplier is empty, the manufacturer
queries the other supplier, or directly buys products from the spot market. After choosing the supplier,
the retailer needs to select the delivery carrier that transports the products to complete the order
processing. During the process, some conditions will affect success rate of service composition. For
example, a query may fail because lack of products or bad QoS, then it will go back to the last service
to continue querying. Moreover, the spot market is usually able to meet the requirements of orders, but
it has more fluctuated costs, so it may not be the first choice.

Fig.1. Supply chain services

Vendors involved in the business process use web services to close the deal, and the entire business
process is a service that is going to be composed by these component services. As mentioned earlier,
the uncertain invocation results and the uncertain QoS values exist in web services. In this case, the
uncertainty of the invocation results is that the retailer does not know whether the manufacturer1 or the
manufacturer2 is more likely to provide the necessary products. The uncertainty of QoS is reflected in
the spot market. For a certain period of time, the market has sufficient and cheap products but slower
response time, and for another period of time, the situation is contrary.

In Fig. 1, POMDP's states are denoted by services. POMDP's actions are web service invocations,
and the service invocation results are unknown, which may or may not meet the product requirements.
POMDP's observations are QoS ranks, which aggregate the execution time, cost, reliability and
credibility etc. Each vendor has some candidate services denoted by wsij in the table below, and we
have their statistical data of QoS. According to these data, we can calculate the ranks and probabilities.
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O(1)/R denotes the probability of being the first rank of QoS and its reward, etc. O/R denotes that it is
a stable QoS value in the MDP case and its reward, which is assumed by other researchers.

TABLE I.  Observations, rewards and services

Service O(1)/R O(2)/R O(3)/R O/R

ws11 0.51/1 0.29/1 0.2/1 1/1

ws21 0.67/6 0.33/2 0/0 1/4

ws22 0.9/7 0.1/1 0/0 1/4

ws31 0.49/8 0.33/2 0.18/2 1/4

ws32 0.38/7 0.22/3 0.4/2 1/4

ws41 0.67/4 0.33/2 0/0 1/3

ws42 0.92/5 0.08/1 0/0 1/3

ws51 0.43/3 0.57/1 0/0 1/2

ws52 0.88/3 0.12/1 0/0 1/2

ws53 0.55/2 0.45/2 0/0 1/2

ws61 0.4/1 0.37/1 0.23/1 1/1

ws71 0.42/1 0.28/1 0.3/1 1/1

5.2 Solutions of the problem

The following Figure is an optimal policy obtained by our TL algorithm.

Fig. 2. An optimal policy

Based on this policy, the retailer places orders to the manufacturer1 at first. From a list of candidate
services of the manufacturer1, it will select a service with a better QoS rank. Next, the manufacturer1
queries to the preferred supplier and the other supplier. If the QoS of manufacturer1 is the first rank
(about 67% opportunities from statistical data), it goes to the preferred supplier, and then the preferred
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supplier requests to the delivery carrier. If the QoS of manufacturer1 is the second rank (about 33%
opportunities), the manufacturer1 queries the other supplier. There are two possible situations that the
preferred supplier requests to the delivery carrier. In the first one, where the observation of QoS is the
first rank (around 49% opportunities) or the second rank (about 33% opportunities), either of them
meets the QoS requirements, so the preferred supplier places orders to the delivery carrier. In the
second one, the observation of QoS is the third rank (about 18% opportunities), then it turns to the
other supplier. Finally the other supplier places orders to the delivery carrier, the observation of this
invocation is QoS the first rank (about 92% opportunities). ws11, ws22, ws42, ws52, ws71 are selected
by TL method as the best component services for the composite service in this case.

Three QoS ranks of the manufacturer1 constitute a probability distribution, and the sum of the
probability of three QoS ranks is 100%. If the QoS-ranks probability distribution of the manufacturer1
does not always intend to be high QoS rank, and the QoS-ranks probability distribution of other
vendors intends to be Normal Distribution, then the optimal policy may become more complex, as the
following Figure.

Fig. 3. A changed optimal policy

Based on the optimal policy, the optimal plan for the service composition is: the retailer places
orders to the manufacturer1, and then the manufacturer1 queries to the manufacturer2, the preferred
supplier and other suppliers. If the QoS of the manufacturer1 is the first rank (about 11%
opportunities), it goes to the preferred supplier, and then the preferred supplier requests to the delivery
carrier. If the QoS of manufacturer1 is the second rank (around 27% opportunities), it goes to the other
supplier, and then the other supplier requests to the delivery carrier. Thereafter, the remaining branch
of the policy is the same with Fig. 2. The difference is the time when the QoS of the manufacturer1 is
the third rank (around 62% opportunities), this time it cancels the orders for the manufacturer1, and
places the orders to manufacturer2 instead. When the QoS of the manufacturer2 is the first rank
(around 93% opportunities. We ignore other probabilities here for simplifications), then it goes to the
manufacturer2 who will query the inventory of the other supplier in the next step. When the QoS of the
other supplier is the first rank (around 96% opportunities), then it turns to the other supplier. Finally
the other supplier places orders to the delivery carrier. TL method selects ws11, ws22, ws31, ws42,
ws52, ws71 as the best component services for the composite service in this case.
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6     Simulation Results

Our simulation computer has following configurations: 2.13GHZ Intel Core2 and 2GB RAM. In the
simulation, we randomly generate transitions, rewards and observations. The related discount factor is
0.9, learning rate is 0.2, and ε is 0.6. We assume each service has four candidate services in the Fig.4
and Fig.5. The two figures show that Q-learning and TD(0) are more efficient than Monte Carlo
method, the reason is that the value function of TD(0) in the iteration only modifies values of adjacent
states. Moreover, Monte Carlo method begins to iterate after a whole learning cycle, whereas TD(0)
and Q-learning are only need to search one step forward. Q-learning is slightly better than TD (0),
because Q-learning uses a ε-greedy strategy to assign a higher priority to the current optimal action. TL
is better than these methods. Because, with time passing, TL tries less new services and tries more
existing optimization services to find the best composition.

Fig. 4. Comparison of learning speed w.r.t. services

Fig. 5. Comparison of learning speed w.r.t. candidate services

The methods used in the paper [18] and in this paper are compared in two aspects: success rate of
service composition and computation cost (computing time). Lit is the result of the paper [18], TL is
the result of the method this paper used. Fig. 6 shows that our success rate of service composition in
uncertain environments is higher than that obtained by [18].The reason is that, general methods based
on MDP simply use the service reliability for the service transition probabilities and do not consider
partially observable QoS variables, whereas TL method maps QoS ranks to partially observable
variables, which is more suitable for uncertain service environments.
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Fig. 6. Comparison of success rate of service composition

Fig. 7 shows that, as the number of services increases, computing time of TL method is significantly
shorter than that in the [18]. With the number of services dramatically increases, the computing time of
the traditional methods dramatically increase. However, TL method has lower time complexity and
shorter computing time.

Fig. 7. Comparison of computing time

Above experiments show that more parameters make the model more realistic, TL method improves
success rate of the service composition and reduces computing time.

Our method can adjust learning speed over time to accelerate convergence. A learning cycle
(Episode) is a process of learning policy, and a process of service composition. The initial policy is not
optimal at the beginning. As the learning cycle increases, the policy continues to be optimized until it
is convergent. Convergence means a method has learned the best policy (i.e. the best plan for service
composition). The number of convergent learning cycle is the number of cycles to learn the best
policy. Each learning cycle will go from the initial state to the final state. We randomly generated
transition graphs, whose number of services is between 1000 and 4000, and number of candidate
services is between 1000 and 10000. The effect of service composition using TL method is shown in
Fig. 8. Comparing our results with the results of literature [15], we observed that the cumulative
reward is converged to the optimal policy very fast. From Fig. 8 and Fig. 9, we can see that our method
is faster than that of literature [15]. The convergence time increases polynomially with the number of
services and candidate services.
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Fig. 8. Convergence time with respect to services

Fig. 9. Convergence time with respect to candidate services

Fig. 10. Influence of changes of QoS on learning

In the dynamic network environments, the average values of QoS criteria may not always remain the
same. Therefore, we regularly change the QoS values with a certain probability in the experiment. In
Fig. 10, we respectively change 5%, 10% of the QoS criteria values in every 100 learning cycle,
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comparing to the stable QoS values (the changing rate is 0%). Lit is the result of literature [15] in Fig.
10, TL is the result of our method. Results show that TL's convergent speed is faster in three cases. Fig.
10 also indicates that even though the change of QoS values increases the computing time that find the
optimal solution, it does not stop the algorithms to find the optimal solution.

In the dynamic network environments, the number of web services may increase because of
provisions of new services, and may reduce because of failures of existing services. In another
experiments, we change the quantity of services by a certain probability. There are three kinds of
circumstances, 0%, + 2% and - 2%, which means the quantity of services remains the same, the
quantity increases by 2% and the quantity reduces by 2%. Below is the comparison result, it shows that
the decreasing the quantity of services reduces the computing time, and increasing the quantity of
services raises the computing time.

Fig. 11. Influence of changes of services on learning

7     Conclusions

To solve the web service composition problem in uncertain environments, this paper proposes a time-
based learning algorithm, which is a dynamic decision-making method whose advantage is no need to
know complete information. It views unpredictable invocation results of Web services as uncertainty
of actions, and views unstable QoS as uncertainty of partially observable variables. The proposed
method is applied to a real scenario, a composition service for supply chain. Comparing to the methods
based on MDP, the experiments show that our method achieves higher success rate of service
composition and shorter computing time.
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