
Journal of Web Engineering, Vol. 13, No. 3&4 (2014) 183–202

© Rinton Press

COMPONENT-BASED WEB ENGINEERING

USING SHARED COMPONENTS AND CONNECTORS

STEFANIA LEONE1, a, ALEXANDRE DE SPINDLER2, MOIRA C. NORRIE3 and DENNIS MCLEOD1

1Semantic Information Research Laboratory, University of Southern California

Los Angeles, CA, 90089-0781, USA

{stefania.leone|mcleod}@usc.edu

2Center for Information Systems, Zurich University of Applied Sciences
8400 Winterthur, Switzerland

alexandre.despindler@zhaw.ch

3Institute for Information Systems, ETH Zurich

8092 Zurich, Switzerland

norrie@inf.ethz.ch

Today, web development platforms often follow a modular architecture that enables
platform extension. Popular web development frameworks such as Ruby on Rails and

Symfony, as well as content management systems (CMS) such as WordPress and Drupal

offer extension mechanisms that allow the platform core to be extended with additional
functionality. However, such extensions are typically isolated units defining their own

data structures, application logic and user interfaces, and are difficult to combine. We
address the fact that applications need to be configured more freely through the com-

position of such extensions. We present an approach and model for component-based

web engineering based on the concept of components and connectors between them,
supporting composition at the level of the schema and data, the application logic and

the user interface. We have realised our approach in two popular web development set-

tings. First, we demonstrate how our approach can be integrated into web development
frameworks, thus bringing component-based web engineering to the developer. Second,

we present, based on the example of WordPress, how advanced end-users can be sup-

ported in component-based web engineering by integrating our approach into CMS. The
applicability of our approach in both settings demonstrates its generality.

Keywords: Component-based Web Engineering, Web Development Frameworks, Content
Management System, WordPress, Symfony

1 Introduction

Nowadays, web information systems are typically developed in the context of complex and

evolving requirements, where systems are continuously adapted and extended. In the domain

of the Web, community-driven development [8] has become a popular way of providing more

configurable and extensible web platforms. Ruby on Railsband Symfonycare examples of web

application frameworks targeted at professional web developers. Typically, such frameworks

aStefania Leone’s work is supported by the Swiss National Science Foundation (SNF) grant PBEZP2 140049.
bhttp://rubyonrails.org/
chttp://symfony.com/

183

184 Component-based Web Engineering using Shared Components and Connectors

foster a model-view-controller (MVC) application design and adhere to modular architectures,

where developers are free to install shared modules in order to extend the framework core.

Similarly, content management systems (CMS) such as WordPressdand Drupalefollow such

a paradigm by offering the possibility to install plug-ins that extend the platform core with

additional functionality. The WordPress Plug-in Directoryfhosts tens of thousands of plug-

ins developed by the WordPress community, providing functionality ranging from site access

statistics, over sophisticated photo galleries to full-fledged eCommerce solutions. Since CMS

are frequently used by small companies and individuals, the developers can often be cate-

gorised as advanced end-users with a limited set of technical skills. Modern CMS platforms

such as WordPress therefore allow plug-ins to be selected and installed through graphical

administrator interfaces.

Such extensions may define their own data structure, application logic and user interfaces.

Although extremely powerful when it comes to extending the platform core, extensions are

typically difficult to combine. In the case of CMS, extensions represent isolated units and there

is no systematic approach to composing them with other extensions. For example, a small

company that runs their online shop based on a WordPress eCommerce plug-in, e.g. WooCom-

merceg, might want to perform a customer satisfaction survey by using a survey plug-in such

as WordPress Simple Surveyh. Ideally, the survey plug-in could directly integrate the customer

data managed by the eCommerce plug-in with its own participant data. However, the current

WordPress application model would require the company’s developer to familiarise themself

with the code of the eCommerce and survey plug-ins and programatically extract and map

the customer data from the eCommerce plug-in to the participant data defined by the survey

plug-in. This is a task that goes far beyond the skills of a typically WordPress user.

While web development frameworks such as Symfony provide basic support for collabo-

ration between extensions, the collaboration is typically restricted to message passing at the

service level. There is no explicit and systematic support for other types of collaboration,

such as a collaboration of survey and eCommerce extensions where data is exchanged and

integrated. While professional developers have the skills of familiarising themselves with the

code of the two extensions and realising the collaboration code, this is a cumbersome and

inefficient task, which also compromises the system’s update resilience. The collaboration

logic, which may become arbitrarily complex, needs to be integrated as part of one of the two

extensions. If the developer later decides to install an update of that extension, they would

either have to manually copy and reintegrate the collaboration code into the new version, or

the collaboration logic would be lost.

This article is an extended version of our previously published work [12], where we showed

how such compositions could be supported in the setting of CMS by using a well-defined com-

ponent model. In order to build an application, components are composed through config-

urable connectors between them that encapsulate collaboration logic. We introduce different

connector types supporting compositions at the schema and data level, at the level of the

application logic, and at the level of the user interface. In [12], we described how we imple-

dhttp://wordpress.org
ehttp://drupal.org/
fhttp://wordpress.org/extend/plugins/
ghttp://wordpress.org/extend/plugins/woocommerce/
hhttp://wordpress.org/extend/plugins/wordpress-simple-survey/

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 185

mented the approach for the WordPress platform, offering a graphical composition plug-in

that enables components to be composed based on configurable connector types. In parallel,

we have extended an object database with our component model and investigated how our

approach can be used to support model-driven information system engineering [10].

This article extends and generalises our previous work by showing how the approach can

be applied in popular web development frameworks as well as CMS platforms. In this way, we

are able to offer component-based web engineering to a wide range of professional developers:

our CMS extension and its graphical composition tool is targeted at advanced end-users with a

mix of design and technical skills, while our web development framework extension is tailored

towards experienced web developers.

We give an overview of the background in Sect. 2, followed by an introduction to our

approach in Sect. 3. We present the component and composition model in Sect. 4, and

follow this with an extended example illustrating its use in Sect. 5. Section 6 describes how

we integrated our approach into the web development framework Symfony, while Sect. 7

describes how we integrated it into the WordPress platform, including the presentation of the

composition plug-in. Concluding remarks are given in Sect. 8.

2 Background and Related Work

Over the years, numerous frameworks and approaches for designing and developing web in-

formation systems have been proposed. Popular web development frameworks such as Ruby

on Rails, Zendior Symfony facilitate web application development in terms of MVC applica-

tion designs and high-level abstractions for recurring application requirements such as HTTP

request and response handling, persistence and user interface generation. These frameworks

typically propagate a modular development approach based on loosely-coupled modules that

interact at the service level as advocated by service-oriented architecture (SOA) [5]. Such col-

laborations create explicit dependencies between components. Also, collaboration is limited

to message passing, while a developer’s requirement may call for different or more complex

forms of collaboration, such as data exchange and transformation as required by the compo-

sition between an eCommerce extension and a survey extension, or collaboration at the user

interface level.

In parallel, CMS became popular for providing simple ways of creating websites and pub-

lishing their content. Platforms such as WordPress and Drupal provide graphical administra-

tor interfaces, which support the design of content and layout in terms of general publishing

units and presentation styles. The extension mechanisms inherent to these platforms allow

for the integration of arbitrary data and services in order to support the creation of more

complex web information systems. The configuration and use of plug-ins is typically per-

formed through the administrator interface. While web development frameworks at least

offer service-based collaboration, in the case of CMS, there is no support for composing plug-

ins. Also, there is little control or conventions with respect to the plug-in internals and, in

the case of WordPress and Drupal, developing and composing plug-ins requires knowledge of

PHP as well as an in-depth understanding of the underlying CMS and its inner workings.

A number of approaches support web application development from reusable components.

With WebComposition [6], web applications are built through hierarchical compositions of

i http://www.zend.com

186 Component-based Web Engineering using Shared Components and Connectors

reusable application components. Similarly, web mashups are composed through the orches-

tration of reusable, self-contained services that interact at the message level and may span

multiple applications and organisations. Mashup editors offer graphical tools as an alternative

to programmatic interfaces. These tools support the composition process, both for general,

e.g. [4, 16, 3] and domain-specific mashup creation, e.g. [7, 1]. While some mashup editors

help users to integrate information from distributed sources, others provide support for build-

ing new applications from reusable components. For example, MashArt [3] enables advanced

users to create their own applications through the composition of user interfaces, applica-

tion components and data sets. The focus is on integrating existing components through

event-based composition, where components can react to events of other components.

We build on and extend these ideas. In contrast to previous work, our approach offers

component-based web engineering based on the definition and configuration of explicit con-

nectors that encapsulate the collaboration logic between components. As stated in [17], one

of the main challenges of modular system development lies in the fact that modular units may

not be compatible for composition. As a consequence, our component model is inspired by the

Architecture Description Language (ADL) [15, 2]. ADL is an approach to component-based

software engineering [9], where the component model consists of components and explicit

connectors between them. Our connectors encapsulate the composition logic between compo-

nents, exhibiting functionality ranging from simple message passing to complex collaboration

logic such as data transformation operations. The definition of explicit connectors thus al-

lows for arbitrary components to be composed: connectors act as enabler for component

collaboration and by that, we circumvent the problem of component incompatibility.

We introduce different types of connectors, which can be configured to define the compo-

sition required in a particular composition scenario. For example, a schema connector could

be configured to support the structural composition of the eCommerce and survey compo-

nents, such as the integration of shop customers and survey participants. We will show how

advanced end-users using CMS as well as programmers using web development frameworks

can equally benefit from this approach.

Our approach and model is not dissimilar to the application model introduced by the

Google Android platformjfor developing and running mobile applications. Their application

model propagates the reuse of different types of application components across multiple appli-

cations, where application compositions are configured through so-called intents that define

the glue code between the various components. While intents allow base values to be passed

among components in the form of key-value pairs, our connectors generalise this approach

and may define arbitrarily complex collaboration logic between components.

3 Approach

We introduce a component-based approach to web engineering based on ideas of ADL where

applications are modelled based on reusable components and explicit connectors between

them. Components may provide arbitrary functionality and define their own data structure,

application logic and user interface.

We introduce our approach based on the example of a company that makes use of a

CMS extended with an eCommerce component for their online business. Figure 1 gives an

jhttp://developer.android.com/guide/

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 187

overview of this scenario. The eCommerce component, in the centre, enables the company to

create and manage an online store, including product, customer and order management. The

component defines a schema that represents the eCommerce application domain by means

of entity types and relationships, and manages data structured accordingly. Furthermore,

the component defines application logic by means of methods and events which implement

the online store functionality. This functionality is made available to the shop customers by

means of a graphical user interface.

eCommerce
User Interface

Events:
onOrderCreate

...

Survey
User Interface

Customer OrderplacesSurvey

Question providesHas

Has Participant

...

Is-a

Electronic Payment

Methods

verifyCard();
...

User
Credentials

User Interface

1

2

Methods:
printOrder();
...

Events:
onPayment
...

...

Data

...
...

...

Data Bill Murray 2-23-2013
45$

places

has

Order
Item

...

Methods:
createSurvey();
startSurvey();
...

Events:
onStart
...

Fig. 1. Composition Scenario

In order to evaluate customer satisfaction, the company decides to perform a customer

satisfaction survey. However, they would like to reuse their customer data when performing

the survey. For this purpose, they selected a survey component—shown on the right—that

offers the required functionality to define and carry out surveys. The survey component, in

turn, consists of a user interface, application logic and a schema describing its data. How-

ever, the company wants to avoid having two separate user entities and therefore creates a

connection between the eCommerce customer and the survey participants.

The connector 1 on the left in Fig. 1 defines the composition between the two compo-

nents. It is a specialisation connector that defines an is-a relationship between the Customer

entity of the eCommerce component and the Participant entity of the survey component.

Through this specialisation connector, the customer data can be reused as participant data

for the survey without the need for additional development or configuration efforts.

Figures 2 and 3 illustrate, by means of screenshots taken from our graphical component

composition tool, how a user configures a specialisation connector through a graphical com-

position wizard. The composition tool allows for arbitrary components to be composed using

configurable default connectors. We assume that the user already selected the components

to be composed as well as the default specialisation connector required for the composition.

This selection configures the composition wizard with the required metadata about the com-

ponents to be composed. Figure 2 shows how the user creates the actual is-a relationship by

selecting the Customer entity of the eCommerce component and the Participant entity of

the survey component. Furthermore, the user sets the Customer entity to become the parent

entity by checking the parent checkbox. Next, the user has the possibility to define attribute

mappings between the attributes of the two entity types. In our example, while both entities

share attributes for person names, the names of these attributes do not match.

Figure 3 shows how such attribute mappings are created. The user is about to create a

mapping between the User.firstname and the Participant.forename attributes. At the

188 Component-based Web Engineering using Shared Components and Connectors

Fig. 2. Specialisation Screenshot Fig. 3. Attribute Mapping Screenshot

bottom of the figure, the list of mappings defined so far is shown, including the attribute

User.lastname that was previously mapped to the Participant.surname attribute. With

these mappings, the specialisation connector ensures that, each time the name of a survey

participant is accessed, the corresponding customer name from the eCommerce component is

retrieved and displayed. Note that, in this example, the specialisation does not require any

data mapping operations to be executed, since the survey component does not yet contain

data. However, when composing two components containing data, the specialisation definition

implies the execution of data mapping along with the definition of conflict resolution strategies,

which is also supported by our composition wizard.

While this is the basic functionality provided by the specialisation connector, advanced

users are free to extend the configured connector programatically. For example, the connector

could be extended for data mining by defining queries that join survey data with customer

data in order to answer questions such as “Do customers who selected answer (a) in question 4

buy similar products?”.

In a second step, the company decides to offer support for electronic payments, a function-

ality that is not provided by the eCommerce component. For this composition, the eCommerce

component is composed with an electronic payment component, shown on the right of Fig. 1.

The event registration connector 2 operates at the application logic level, based on events

and callback methods. Figure 4 and 5 show the steps involved in configuring such a connec-

tor. Again, we assume that the user has already selected the components to be composed

and the connector type, which configures the composition wizard for this specific composition

scenario. Furthermore, the user has decided that the electronic payment component should

be invoked as a result of an event that occurs in the eCommerce component. The screenshot

in Fig. 4 shows how a user defines a binding between events and handling by selecting an

event and method. In the current example, the user selected the onOrderCreated event from

the survey component. According to the description shown below the drop-down menu, the

event gives access to the order created as well as the order attributes. On the left, the user

selected the invokePayment method of the electronic payment component. As a result, the

description of the method and its parameters is displayed, explaining that the method takes

two parameters amount and currency.

Once the basic binding is created, the user may define mappings between the event object

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 189

Fig. 4. Binding Creation Screenshot Fig. 5. Parameter Mapping Screenshot

attributes and the method parameters, as shown in Fig. 5. In the current example, the

user intends to map the price attribute of the order object to the amount parameter of the

invokePayment method. Furthermore, a list of all mappings created so far is illustrated at the

bottom. The user already created a mapping for the currency parameter by assigning default

value “USD” to it. Note that users are free to define such default values for parameters in

cases where the attributes and parameters do not match or are incompatible, and we support

basic type transformation.

As these two composition examples illustrate, connectors provide the glue between com-

ponents and are configured by the user to adhere to a particular composition scenario. The

definition of explicit connectors thus enables incompatible components to collaborate. We

offer different types of connectors that support the composition at various levels of a com-

ponent. Figure 6 gives an overview of the composition levels and shows, from left to right,

that connectors may be used at the data level, the schema level, the application logic level

and the user interface level. We provide connector types for all these levels and present our

component model including the various connector types in the following section.

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data Level Schema Level Application Logic Level User Interface Level

Fig. 6. Composition Levels

4 Component Model

A component is an application providing arbitrary functionality to its users. Components

may be composed with other components using explicit connectors between them in order to

form more complex applications. The general component model along with the composition

interface is shown on the left in Fig. 7, while the eCommerce component introduced in Sect. 3

is shown on the right as an example following this model.

Formally, a component is defined as a tuple of four elements:

Component = 〈Schema,Data,Application Logic,User Interface〉

190 Component-based Web Engineering using Shared Components and Connectors

Component

UI

Application Logic:
Methods, Events

Data
(Entities & Relationships)

Schema
(Entity Types & Relationships)

Composition Interface

Schema Interface
getEntities();
getRelationships();

Application Logic Interface
getEvents();
getMethods();

UI Interface
getWidgets();

Data Interface
getEntityData(...);
getRelationData(...);

eCommerce
User Interface

Customer Orderplaces

Methods:
printOrder();
...

...

...

Bill Murray 2-23-2013
45$

places

has

...

...

Fig. 7. Component Example

The Schema is a data model instance describing the component Data in terms of a set of

entity types {E1, . . . , EM} and relationships {R1, . . . , RN}. The Application Logic includes a

set of methods {m1(), . . . ,mU ()} implementing the application logic and events {e1, . . . , eV }
related to these methods. Components typically contain basic CRUD methods supporting the

management of their entity types and relationships, as well as higher-level methods providing

domain-specific functionality. Component developers are free to define an arbitrary number

of events triggered by the execution of such methods. For example, a component may define

events marking the start and end of CRUD method executions.

Finally, the User Interface defines the graphical user interface. In CMS, the user inter-

face is typically specified by layout themes defining the general presentation of the provided

publishing units for the complete web site. As part of the user interface, components may

define a set of views {V1, . . . , VN} displaying specific component data or providing compo-

nent services to the users. Views represent complete user interfaces including user interface

controls, layout and style templates. Note that components do not necessarily specify mul-

tiple or all of these four elements. For example, while the eCommerce component specifies

Schema, Application Logic and View elements, other components may for example only spec-

ify Application Logic and Schema elements.

Components expose a composition interface which defines in which way they may be com-

posed with other components. In order to implement such an interface, component developers

need to specify which of the component elements they wish to make available for composition.

Component interfaces do not need to expose component elements at all levels. At the schema-

level, the interface specifies the subset {Ei, . . .} ⊆ {E1, . . . , EM} of composable entity types

and the subset {Rj , . . .} ⊆ {R1, . . . , RN} of composable relationships. The specification of the

data available for composition consists of a query Q over the composable schema elements.

Similar to the schema interface definition, application logic made available for composition

is defined in terms of subsets {mk(), . . .} ⊆ {m1(), . . . ,mU ()} and {el(), . . .} ⊆ {e1, . . . , eV }.
Finally, user interface views are exposed in terms of the subset {Vi, . . .} ⊆ {V1, . . . , VN}.

In Fig. 7, a programmatic representation of the composition API is shown, with getter

methods to access the defined subsets of composable views, methods, events, schema elements

and data.

Connectors specify how components collaborate and at which level. For example, the

specialisation connector presented in Sect. 3 defines an is-a relationship at the schema level,

and the event registration component binds a callback function to an event at the application

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 191

logic level. Figure 8 shows the basic types of connectors—categorised based on the composition

level. The view connector, shown at the top, supports composition at the UI level through the

integration of views between components. The connector forms the union of views defined as

User Interface := {V1, . . .} ⊆ UserInterfaceA ∪ UserInterfaceB . In the example in Fig. 8,

the connector integrates a view of component A into the user interface of component B.
Sc

he
m

a
Le

ve
l

Component A Component B

Order
Item

Order

Has

Open
Order

Deliver
ed

Order

Is-
a

map Order
Item

Order

Has

U
I L

ev
el

View Connector

UI Component BUI Component A

D
at

a
Le

ve
l

A
pp

lic
at

io
n

Lo
gi

c
Le

ve
l

Component A Component B
Event Registration Connector

Instance A Instance B

Association Connector

...... ...

Component A Component B

... ...

Specialisation Connector

...

Component A

...

Component B

...

Map Connector

Connector

register

notify
invoke

Reduce Connector

243
243

243
55.5

reduce

Component BComponent A

Fig. 8. Basic Connector Types and Composition Scenarios

At the application logic level, Fig. 8 illustrates the event registration connector based on

a UML sequence diagram that reflects the collaboration between components and connectors

in an event-based setting. The connector is specified as Application Logic := {m1(){ei →
mj()}, . . .} defining functions binding events of component A to methods of component B.

Schema-level connectors compose components based on schema elements, such as spe-

cialisation and association [13]. As shown in Fig. 8, a specialisation connector defines an

is-a relationship establishing a specialisation relationship among entity types from different

component schemata and the association connector defines a relationship between two entity

types from different components. More generally, a schema connector may define arbitrary

schema elements among component entities Schema := {{E1, . . .}, {R1, . . .}}.
Finally, data connectors allow data from one component to be reused by another compo-

nent. As shown in Fig. 8, data reuse may be defined by a mapping connector that maps the

schema of one component to the schema of another component, or by a reduce connector that

transforms data from one component to a format specified by another component. Generally,

data connectors may be defined as combinations of map and reduce functions of the form

Data := {map(){Ei.aj ← reduce(Ek.an, El.am)}, . . .}. Such map and reduce functions may

in turn be bound to data mapping connector events to define whether the mappings should

192 Component-based Web Engineering using Shared Components and Connectors

occur once, multiple times or periodically.

Note that we have given a minimal specification of the various connector types, while

they may define richer functionality. For example, the association connector may also define

application logic in the form of CRUD methods in order to create associations, as well as a

view that allows new associations to be created and viewed graphically. Similarly, a reduce

connector may define a user interface, where the reduce function could be configured.

As seen with these examples, connectors define the same building blocks as components

and, thus, can be seen as a special type of component, where the functionality is not targeted

at the application domain, but rather at the composition of domain-specific application units.

Figure 9 shows the metamodel of our component model. A component defines a user inter-

face, application logic, schema and data, and, depending on the implementation technology,

these elements may be realised in different ways. A connector is a sub-type of component,

and therefore, they can in turn be composed. Connectors are classified according to their sup-

ported composition level, which defines the access points of a connector. A concrete connector

is an instance of such a connector type and is instantiated with values that are particular to

a composition scenario. For example, a specialisation connector will be instantiated with an

is-a relationship between two entity types.

Component

Application
Logic

Schemadefines

Datadefines

conforms

defines

Connector

defines User
Interface

Is-a

compose

defines

Component
Interface

Schema
Connector

Application
Logic

Connector

UI
Connector

Is-a

Is-a

Map
Connector

Association
Connector

Data
Connector

Specialisation
Connector

Is-a

Is-a
Event

Registration
Connector

View
Connector Is-a

Reduce
Connector

Fig. 9. Component Metamodel

5 Extended Example

We will now present an extended example of an eCommerce application composition to il-

lustrate in more detail how the approach can be applied in practice. Figure 10 shows the

composition scenarios on the left and the involved connector configurations on the right.

As a first step, the eCommerce component is composed with a review component in order

to allow products to be reviewed by customers. The composition is based on the association

connector shown in 1 . This connector defines the association between the product and the

review entity including the cardinality constraints. A product may have 0 or n reviews, while

a review relates to exactly one product.

In a second step 2 , the eCommerce component is composed with the survey component

through a specialisation connector as described in Sect. 3. On the left, the specialisation

is defined by means of an is-a relationship and the two attribute mappings. To evaluate

the outcome of the survey the company makes use of a spreadsheet component. The two

components are composed at the data level 3 , where the data of the survey component is

mapped to the data format of the spreadsheet component. The mapping is specified by a

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 193

eCommerce
Component

Customer Is-a User

eCommerce Survey
Specialisation Connector Configuration
isA(Customer, Participant)

map(Customer.firstname, Participant.forename)
map(Customer.lastname, Participant.name)

Product Reviewhas

ReviewseCommerce
Association Connector Configuration
has(Product, Review)

min(Product, received) = 0
max(Product, received) = *
min(Review, received) = 1
max(Review, received) = 1

Survey
Component

eCommerce
Component

Review
Component

eCommerce
Component

Spreadsheet
Component

Survey
Component

Answer
map

1

2

3

Spreadsheet

Question

Has

...

eMail
Component

eCommerce
Component4

Key-Value
Component

Order
Item

reduce Value

Has

Key5
Product

is

...

Key-Value
Component

eCommerce
Component

6

reduce(product,keyvalue, daily)

“Today’s Best-seller” = KeyValue.key;
SELECT product.name WHERE
max(product.orderitem.count()) = KeyValue.value;

Reduce Connector Configuration

UI Key-Value UI eCommerce View Connector Configuration

bind (KeyValieView, eCommerceProductsView)

eCommerce eMail

Order eMail
Connector

register
notify

invoke

Event Registration Connector Configuration
bind (onOrderCompleted, sendMail)

sendMail.to = onOrderCompleted.customer.email;
sendMail.from = “orders@myshop.com”;
sendMail.body = “Dear Customer, ...”;
sendMail.subject = “Order Confirmation No.” +

onOrderCompleted.order.ID;

eCommerce Key-Value

map(Answer, Cell, once)

Answer.value = Cell.value
Answer.no = Cell.row.no
...

Map Connector ConfigurationSurvey

Cell

...

Fig. 10. Scenario Application

number of attribute mappings between the entities of the survey component and the entities

of the spreadsheet component, where the survey questions and answers are mapped to the

cell entity of the spreadsheet component.

In order to send customers order notifications, the eCommerce component is composed

with an email component 4 . An event registration connector is configured in such a way,

that, upon the completion of an order, an order confirmation email is sent to the respective

customer. This functionality is achieved by binding the event onOrderCompleted to the

sendEmail method and defining mappings between event attributes and method parameters.

Finally, the company would like to display the current best-selling product next to the

products overview page. To do so, the eCommerce component is composed with a Key-Value

component, which provides the functionality of managing and displaying key-value pairs. To

realise the desired functionality, the two components are connected at two levels. In 5 , a

reduce connector is configured in such a way, that, once a day, the best-selling product of

the day is selected from the eCommerce component and stored as value to the key “Today’s

best-seller” to the Key-Value component, as shown in the reduce connector configuration in

Fig. 10. To present the best-selling product on the eCommerce products overview, in 6 , the

two components are also composed at the user interface level through a view connector. The

connector configuration defines that the key-value view displaying the best-selling product is

194 Component-based Web Engineering using Shared Components and Connectors

Symfony Bundle

Control:
PHP Classes (Controllers, Events, ...), Services

Model:
Doctrine Entity Classes

View:
TWIG Templates, associated CSS and JS

Component

Application Logic
(Methods, Events)

Data
(Entities & Relationships)

Schema
(Entity Types & Relationships)

C
om

position A
P

I

UI
(View)

Symfony Bundle Structure

Control:
PHP Classes (Controllers, Events), Services

Model:
Doctrine Entity Classes

View:
TWIG Templates

Extended Symfony Bundle Structure

Control:
PHP Classes, Services

Model:
Doctrine Entity Classes

View:
TWIG Templates

Data:
PHP Data Objects

Composition API

Schema Interface
.../API/entities

Application Logic Interface
.../API/events
.../API/services

UI Interface
.../API/views

Data Interface
.../API/queries

Fig. 11. Symfony Bundle Structure and Extension

placed alongside the eCommerce products overview.

6 Component-based Web Development Frameworks

In order to offer support for component-based web engineering to web developers, we demon-

strate the integration of our approach with web development frameworks. With our approach,

developers compose web applications from shared components and configurable connectors be-

tween them. We show how we integrated our approach with Symfony, a community-driven

PHP-based framework. The integration of our approach with other frameworks supporting

MVC application design and modular extensibility can be done analogously.

Web applications developed with Symfony are organised as so-called bundles. A bundle

represents a fully functional web application following the MVC pattern. Bundles may ex-

hibit arbitrary functionality, may access a database, make use of functionality provided by

other bundles and offer their functionality to the user via web interfaces. Bundles may also

provide framework functionality. In fact, the Symfony framework itself is based on a mod-

ular architecture, consisting of a set of loosely coupled bundles defining the core framework

functionality. For example, the HTTP Fundamental bundle defines an object-oriented layer

for the HTTP request and response handling, the Form bundle facilitates the HTML form

creation, processing and reuse, and the Event Dispatcher bundle provides an event system.

The fact that bundles follow the MVC pattern is reflected in the bundle structure. A bun-

dle defines a root folder and a number of subfolders containing the source code files for the

application’s model, controllers and views, as well as additional configuration files. The Sym-

fony bundle structure is shown in the left part of Fig. 11. For the realisation of an application’s

model, developers may use the Doctrine bundle, which supports data management by means

of an object-relational mapping (ORM) layer. With Doctrine, a bundle’s model is represented

by PHP objects referred to as entities that are mapped to the underlying database schema.

A bundle’s control is realised by bundle-specific controller classes that extend the Symfony

Controller class, and other PHP classes implementing the bundle’s application logic. Enti-

ties typically define their own controller classes providing basic CRUD functionality for their

creation, retrieval, update and deletion. Finally, an application’s view is typically realised by

means of so-called TWIG templates, associated style sheets and JavaScript files. Symfony

uses the TWIG template engine that supports the rendering of templates. Templates are

associated to a controller function and fetched and processed upon the function’s invocation

when responses need to be rendered.

In order to speed up development and facilitate bundle creation, developers can make

use of a generator tool that interactively generates a bundle. This generator creates the

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 195

Table 1. Symfony Concepts for Component-based Web Engineering

Component Model Concepts Symfony Concepts
Component and Connector Bundle
View TWIG Template (and associated Files and Controller)
Method PHP Function, Service (e.g. in Controller)
Event Symfony Event
Entity and Relationship Doctrine Entity, ORM and Database Schema
Data and Query PHP Objects and Queries (e.g. SQL)
Composition API URL of the form /{bundlename}/api/[type]

bundle structure in terms of folders containing source code files for default controllers, TWIG

templates and bundle configurations. Also, a bundle’s entities, the corresponding database

schema and ORMs can be generated via this generator. As part of the generation process,

the generated bundle is registered with the framework. Developers may develop their own

bundles or install and reuse bundles shared by the community. The bundle installation process

in Symfony is usually managed via Composerk, a tool for PHP dependency management and

shared bundles may provide their own installation instructions.

Collaboration among Symfony bundles is achieved through dependency injection. Symfony

provides a mechanism where controllers and other PHP classes can be registered as services.

A central service container manages the creation and configuration of services defined by the

registered bundles. Through the service container interface, services can be accessed and

invoked across bundles and thus enable loosely coupled collaboration between bundles.

6.1 Realisation

We extended the Symfony application model with our component model to support component-

based web engineering. With our extension, bundles can be composed to not only collaborate

through services, but developers may define arbitrary complex collaboration logic—at the

level of the user interface, application logic, schema and data—by means of connectors. Ta-

ble 1 summarises how our component model concepts are realised through native concepts or

extensions of the Symfony application model. On the left of Fig. 11 we illustrate the extended

Symfony bundle structure coloured in grey.

Components are represented by Symfony bundles. Symfony’s MVC bundle structure is an

ideal match to our component structure defining user interface, application logic and schema.

At the user interface level, views are represented by Symfony’s TWIG templates, associated

stylesheets, Javascript and controllers. At the application logic level, events are represented by

user- or system-defined Symfony events supported by the Event Dispatcher bundle. Methods

are represented by regular PHP functions typically defined as part of a bundle’s controller

or in a separate PHP class. Functions may be registered with the service container in order

to expose them to other bundles. The schema defined by our component model is covered

by the Doctrine bundle. Component entities and relationships are represented by Doctrine

entity classes, the corresponding database schema and ORMs. Finally, data corresponds to

PHP objects that are instances of the schema entities. Data may be exposed for sharing by

means of queries over a bundle’s schema. Here, the query language depends on the type of

the underlying database, e.g. SQL for relational databases.

To support component composition, we extended the Symfony bundle definition with

khttp://getcomposer.org/

196 Component-based Web Engineering using Shared Components and Connectors

a composition API. The composition API is accessible through a rest-based API defined

and implemented by every component, giving access to the component elements shared for

composition. A component’s exposed elements can be accessed via the following URL pattern

{component-URL}/api/[element-type]. For example, a component’s shared events can be

accessed via {component-URL-Pattern}/api/events. Thus, the URL

www.myshop.com/../ecommerces/api/events

returns an array specifying all exposed events defined by the eCommerce component. Sim-

ilarly, shared views, services, entities and data can be accessed via analogous URLs. The

composition API is realised by a configuration file, created by the bundle developer, which is

fetched by the bundle’s controller upon request of the composition API URL.

Connectors specifying the collaboration logic between components are also realised as bun-

dles. Connectors define and encapsulate the composition logic between components through

the components’ shared elements. We implemented configurable connector bundles, one for

each connector type. While we introduced connector configurations through a graphical com-

position interface in Sect. 3, in the case of Symfony, the configuration is based on connector

templates that are configured manually by the developer, as shown in the next section.

6.2 Proof-of-concept application

As a proof of concept, we implemented the example application shown in Fig. 10 using the

extended Symfony framework. The scenario components were realised as extended Symfony

bundles and we configured the connector templates for the various composition scenarios.

When defining a new composition, instead of inspecting all the code of the involved com-

ponents, the developer simply inspects the components composition API for suitable shared

elements and then configures the connector template accordingly. For example, the collabora-

tion between an eCommerce and email component, defining that upon the OrderCompleted

event of the eCommerce component, the sendMail function of the email component should

be invoked, can be configured using the event registration connector template. Below, we

show an excerpt of the template. The event listener class encapsulated the collaboration logic

defined by the event registration connector, which is a binding between an event and a ser-

vice. The class is parametrised using extended Backus Naur notation and contains comments

that support the developer when configuring the connector. The class defines a callback func-

tion that takes an event object as argument, performs the mappings between event object

attributes and service parameters and invokes the service using the mapped parameters.
class <EVENT_LISTENER_CLASS_NAME> {

public function <EVENT_NAME>(<EVENT_TYPE> $event) {

//TODO ATTRIBUTE PARAMETER MAPPING

//invoke function

$service = $this->get("<SERVICE_NAME>");

$service-><FUNCTION_NAME>([PARAMETER {, PARAMETER}]);

}

}

To configure the connector, the developer inspects the composition API of the two involved

components and decides on the shared elements to be used for the composition. The config-

ured connector is shown in the code snippet below. The class NotificationEventListener

defines a callback function onOrderCompleted. The onOrderCompleted function is invoked

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 197

by the Event Dispatcher upon the OrderCompletedEvent event of the eCommerce compo-

nent. The function takes the event object as argument, performs the mapping between event

object attributes and function parameters and invokes the sendMail function of the email

component. The sendMail function is accessible trough the shop.email service defined by

the email component.

class NotificationEventListener {

public function onOrderCompleted(OrderCompletedEvent $event) {

// get order information from event object

$to = $event->getCustomerEmail();

$from = ‘‘orders@myshop.com’’

...

// invoke function

$service = $this->get("shop.email");

$service->sendMail(array("to" => $to, "from" => $from,));

// ...

}

}

A developer is free to further extend the connector with any additional functionality, if re-

quired. For example, data could be stored to the database, or some other services could

be invoked. Note that the event listener class NotificationEventListener needs to be

manually registered in Symfony’s configuration file as part of the event registration.

As a second example, we present the configuration of the view connector between the

eCommerce and the key-value components. As a result of this composition, the key-value view

is displayed alongside the eCommerce products overview to display the best-selling product

of the day. The code snippet below illustrates an excerpt of the view connector template,

where two views are composed in such a way, that one view is displayed as the main content

of the web page, while the other view is placed in the sidebar. Note that the double curly

brackets include the invocation of the render function and the template’s controller. Through

this inclusion, the original content presented by the template is shown.

{% extends ’::base.html.twig’ %}

{% block body -%}

<div id="content">{{ render(controller(<TWIG_TEMPLATE_NAME>)) }}</div>

<div id="sidebar">{{ render(controller(<TWIG_TEMPLATE_NAME>)) }}</div>

{% endblock %}

Below, a snippet of the configured view connector is shown, defining that the products

overview, represented by the eCommerceBundle:Product:index, is shown as part of a main

content div element, while the key-value view KeyValueBundle:KeyValue:index is rendered

next to the products overview in a sidebar div element.

{% extends ’::base.html.twig’ %}

{% block body -%}

<div id="content">{{ render(controller(‘eCommerceBundle:Product:index’)) }}</div>

<div id="sidebar">{{ render(controller(‘KeyValueBundle:KeyValue:index’)) }}</div>

{% endblock %}

As shown with these two examples, component composition via configurable connector

bundles significantly saves development efforts. Without our extension, bundles could only

be composed at the service level. Any other type of collaboration between bundles would

involve detailed code inspection of the components and the manual implementation of the

composition logic as part of one of the involved components, which causes further problems

when component updates are available.

198 Component-based Web Engineering using Shared Components and Connectors

Table 2. WordPress Concepts for Component-based Web Engineering

Component Model Concepts Wordpress Concepts
Component and Connector Plug-in
View WordPress Widget
Method PHP Function
Event Hook
Entity and Relationship DataPress Entity
Data and Query PHP Objects and Queries (e.g. SQL)
Composition API Extension of Plug-in Header

While currently, the connector configuration is done manually, connector templates can

be used as a starting point for automatic connector configuration, either based on Symfony’s

console-based configuration tool, or a graphical composition tool as shown in Sect. 3.

7 Component-based Content Management Systems

To show how component-based web engineering could be provided to developers using CMS

platforms, we extended WordPress with support for our approach. We first give a short

introduction to the WordPress plug-in mechanism before presenting our extension and the

composition plug-in that supports composition through a graphical user interface.

The WordPress plug-in mechanism allows the WordPress blogging model to be extended

in terms of data structure, application logic and presentation by hooking into the WordPress

core. A number of hooks are provided as part of the platform core, which allow plug-ins

to inject additional functionality, data structures and presentation into the WordPress core

execution environment. Hooks may represent plug-in lifecycle events such as their installa-

tion or uninstallation, as well as administrative or end-user activities including the creation,

manipulation, retrieval, selection, display and deletion of posts, pages or plug-in-specific data.

Typically, the plug-in code includes functions for creating and deleting database tables, for

inserting and selecting table data and the assignment of these functions to particular hooks.

Plug-in developers are free to define their own hooks, which enables plug-ins to react to events

of other plug-ins. For the user interface, plug-ins rely on the WordPress publishing process

and themes that define the structure and layout of the complete web site. A plug-in may,

however, define widgets that can be placed in various areas of the user interface.

In order to install a plug-in, the files containing the plug-in code, typically one or more PHP

and JavaScript files, are uploaded into the target WordPress platform through the WordPress

administrator dashboard where they can be activated and deactivated. Upon activation,

the additional functionality, data structures and presentation facilities become part of the

WordPress platform and are available for immediate use.

7.1 Realisation

We extended the WordPress plug-in model to adhere to our approach, as summarised in

Table 2. At the level of the application logic and user interface, the WordPress plug-in model

matches our component model. At the level of the user interface, plug-ins may define widgets,

which correspond to our view definition. The WordPress core handles the generation of the

user interface from themes including the placement of such widgets. Similar to Symfony,

application logic is represented by PHP functions and events. At the data and schema level,

however, WordPress only supports a basic notion of types and data may be stored in arbitrary

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 199

ways and formats. Also, plug-ins do not define a composition API, as defined by our approach.

In order to integrate support for richer schema definition, we built on our previous work [11]

where we introduced DataPress, a WordPress plug-in which supports the generation of tai-

lored WordPress plug-ins from user-defined ER models. With DataPress, a user graphically

defines an application domain by means of ER models and DataPress automatically gener-

ates a plug-in that allows data to be managed accordingly. For each defined entity type and

relationship, DataPress generates data structures, CRUD functions and user interface com-

ponents supporting the creation and management of the data. By building on this approach,

we not only gain support for ER modelling, but we can also extend the automatic generation

of plug-ins in order to conform to our component model. We additionally generate two hooks

for each of the generated CRUD operations—a “before” and “after” hook. For example,

for the creation of an order entity, the two hooks onOrderCreate and onOrderCreated are

generated. Furthermore, we generate an extended plug-in header defining the composition

API, which gives access to the composable plug-in elements. The plug-in header specifies the

names of the entities, relationships, functions, events and widgets defined by a plug-in and

the user can simply remove elements that should not be made available for composition. The

configuration of a connector for a particular composition scenario is based on such names

defined in the respective plug-in header.

In order to enable advanced end-users to compose components, we provide a composition

plug-in that supports the graphical composition process, as illustrated in the screenshots in

Sect. 3. Figure 12 gives an overview of the composition plug-in architecture. The composi-

tion plug-in, shown in the centre, is a regular WordPress plug-in that is integrated into the

dashboard. It provides access to locally installed plug-ins, shown on the left, and the con-

nector type plug-ins, shown on the right. It builds on an extended version of DataPress and

Wordpress Core

Composition
Plug-in

Relationship Plug-in

Data Mapping Plug-in

DataPress
Plugin

Event Registration Plug-in

Association Plug-in

...

Plug-in Directory

Currency
Converter

Component

Survey
Component

eCommere
Component

Rating
Component

...

Fig. 12. Composition Plug-in Architecture

supports the generation of plug-ins from user-defined ER models structured according to our

component model. Using this composition plug-in, new plug-ins can be composed with the

installed ones by configuring one of the provided connector types. Assuming that all plug-ins

are structured according to our approach, a user could also download, install and compose

plug-ins from the WordPress Plug-in directory, shown on the left.

Each connector type is realised as a parameterised plug-in—similar to the connector tem-

plates presented in Sect. 6—which gets “instantiated” upon composition. The composition

plug-in automatically generates and installs the configured connector plug-ins.

200 Component-based Web Engineering using Shared Components and Connectors

7.2 Proof-of-concept application

As already mentioned, with our composition plug-in connectors are graphically configured,

and generated and installed automatically. As a proof of concept, we have realised the example

application presented in Sect. 10 using our composition plug-in and we will show examples

of the generated connectors. First, we show a configured event registration connector that

corresponds to the configuration shown in Fig. 10, where a notification email is sent to the

customer, once they completed the order.
/* Plug-in Name: NotificationConnector*/

...

add_action(‘onOrderCompleted’, ‘sendEmailTemp’, 1, 2);

function sendEmailTemp($orderID, $email) {

$to = $email;

$subject = ‘Order Confirmation no.’.$orderID;

$from= ‘orders@myshop.com’;

$body= ‘Dear Customer....’;

sendEmail($to, $from, $subject, $body);

}

Through the configuration process, the connector was named Notification Connector and

the event and function names to be bound together were injected into the plug-in template.

In WordPress, the add action function registers a specific hook with a specific function.

The add action function further defines the priority of the funtion invocation, as well as

the numbers of arguments that are passed from the event to the function. While WordPress

assumes that the number and types of attributes provided by the hook match the parame-

ters of the callback function, we generalised this approach by giving the user the possibility

to define attribute-parameter mappings, as shown in Fig. 5. In this example, the event

onOrderCompleted defines two attributes while the function sendEmail takes four parame-

ters. The mappings are reflected in the connector code. When an onOrderCompleted event is

triggered, a helper function sendEmailTemp function is invoked, accepting the two attributes

defined by the onOrderCompleted event as parameters. The function implements the defined

attribute mappings and invokes the actual sendEmail function using these mappings. In this

example, the attribute $to from onOrderCompleted is mapped to the parameter $email, and

the parameters $email, $from, $subject are set to the default values. Note that more

advanced users are free to extend a configured connector plug-in with additional code.

As a second example, we show the configured reduce connector described in Fig. 10 step 5

defines a query that selects the best-selling product of the eCommerce component and maps

and stores it as a key value pair of the key value component The generated connector configu-

ration defines the following code snippet, where the result of the SELECT query executed on

the eCommerce component is mapped to the values that will be inserted into the key value

component. According to the connector configuration, the reduce function is invoked once a

day. Note that the reduce function shown in this snippet is a simplified version kept short

due to the lack of space.
function reduce($select, $insert){

global $wpdb;

$results = $wpdb->get_results($select, ARRAY_A);

foreach ($results as $result) {

$wpdb->insert($insert, $result);

}

}

S. Leone, A. de Spindler, M.C. Norrie, and D. McLeod 201

As a last example, we show a view connector that injects a widget from one component into

the user interface of another component, based on a user’s configuration. In Fig. 10 step 6 the

view connector is configured in such a way, that the key value widget is displayed in the default

sidebar when the eCommerce main view is displayed. To support the selective display of

widgets, we make use of a third-party widget Widget Logiclthat extends the Wordpress widget

functionality with the possibility to control with which pages a widget should be displayed.

Upon activation, the configured view connector stores the widget-view mapping in the Widget

Logic database table. The Widget Logic plug-in hooks into the WordPress publishing process

in such a way that every time the eCommerce products overview is displayed, the key value

widget is displayed alongside the eCommerce products overview.

While the plug-ins representing the configured event registration connector only defines

application logic between two components and the widget connector only stores widget place-

ment information, other connectors may be much richer and also define their own schema,

data and views. For example, the association connector, which associates reviews to products

in our example, also creates a database table as part of its installation process where associ-

ated pairs of entities are stored. Furthermore, the connector also defines a widget allowing

users to graphically create associations. This is described in detail in [11]. As part of the

association connector configuration, the user also configures the placement of the association

widget, for which we rely on the Widget Logic widget. In the current example, the widget

is placed alongside the product view, but it could also be configured to be visible along with

both composed components, as part of a dynamic sidebar injected into the layout theme, or

as part of the dashboard.

With our approach we enable the collaboration between plug-ins based on these config-

urable connectors. By doing so, we minimise development efforts: we circumvent the detailed

inspection of plug-ins to be composed and the manual implementation of the composition logic

as part of one of the involved plug-ins, which would causes problems, when plug-in updates

are available.

8 Conclusion

Our approach, model and implementation is a practical solution to integrating component-

based web engineering with CMS and web development frameworks supporting MVC ap-

plication design and modular extensibility. By defining components and explicit connectors

between them, we not only circumvent possible incompatibilities between components, but we

also ensure that composed systems are resilient to component updates, since the composition

logic is completely encapsulated within the connector code.

We see our work as a further step towards providing systems that are easy to develop [14].

The application of our approach in the domain of CMS as well as its integration with web

development frameworks showcases the generality of our approach. We have shown, by means

of proof-of-concept applications, how our approach simplifies the development of web infor-

mation systems. Although the composition process through graphical user interfaces is clearly

more limited than the programmatic implementation of connectors, the scenario presented

has shown that a small set of simple connector types covers a wide range of composition

scenarios, and thus allow for complex applications to be developed.

l http://wordpress.org/plugins/widget-logic/

202 Component-based Web Engineering using Shared Components and Connectors

While we applied our approach in an eCommerce scenario, we are exploring the application

of our approach to diverse domains for the purpose of testing, experimenting, and refining it

to support a high level of general applicability. For example, new domains may call for new

connector types, which could be added at any level.

References

1. O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. Fernández-Villamor, V. I. Chepegin,
J. A. Fornas, S. Wilson, C. Kögler, and H. Chang (2012), End-user-oriented Telco Mashups:
The OMELETTE Approach, Proc. World Wide Web Conf. (WWW’12)(Companion Volume).

2. P. C. Clements. (1996), A Survey of Architecture Description Languages, Proc. Intl. Workshop on
Software Specification and Design (IWSSD 1996).

3. F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan (2009), Hosted Universal Composition: Mod-
els, Languages and Infrastructure in mashArt, Proc. Intl. Conf. on Conceptual Modeling (ER’09).

4. R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and P. Gandhi (2007), Intel Mash Maker: Join
the Web, ACM SIGMOD Record, Vol.36(4) pp.27-33.

5. T. Erl (2005),Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall
PTR.

6. H.-W. Gellersen, R. Wicke, and M. Gaedke (1997), Webcomposition: An object-oriented support
system for the web engineering lifecycle, Computer Networks, Vol.29(8-13) pp.1429-1437.

7. M. Imran, S. Soi, F. Kling, F. Daniel, F. Casati, and Ma. Marchese (2012), On the Systematic De-
velopment of Domain-Specific Mashup Tools for End Users, Proc. Intl. Conf. on Web Engineering
(ICWE’12).

8. R. Kazman and H.-M. Chen (2009), The Metropolis Model a New Logic for Development of Crowd-
sourced Systems, Commun. ACM, Vol.52(7), pp.76-84.

9. Kung-Kiu Lau and Zheng Wang (2007), Software Component Models, IEEE Trans. Softw. Eng.,
Vol. 33, pp. 709-724.

10. S. Leone, A. de Spindler, and D. McLeod (2013), Model-driven Composition of Information Sys-
tems from Shared Components & Connectors, Proc. Intl. Conf. on Cooperative Information Sys-
tems (CoopIS’13).

11. S. Leone, A. de Spindler, and M. C. Norrie (2012), A Meta-Plugin for Bespoke Data Management
in WordPress, Proc. Intl. Conf. on Web Information Systems Engineering (WISE’12).

12. S. Leone, A. de Spindler, M. C. Norrie, and D. McLeod (2013), Integrating Component-based Web
Engineering into Content Management Systems, Proc. Intl. Conf. on Web Engineering (ICWE’13).

13. S. Leone and M. C. Norrie (2011), Building eCommerce Systems from Shared Micro-Schemas,
Proc. Intl. Conf. on Cooperative Information Systems (CoopIS’11).

14. H. Lieberman, F. Paterno, and V.r Wulf (Eds.) (2006), End User Development (Human-Computer
Interaction Series), Springer.

15. N. Medvidovic and R. N. Taylor (2000), A Classification and Comparison Framework for Software
Architecture Description Languages, IEEE Trans. Softw. Eng., Vol. 26(1) pp. 70-93.

16. S. Murthy, D. Maier, and L. Delcambre (2006), Mash-o-Matic, Proc. ACM Symposium on Docu-
ment Engineering (DocEng’06).

17. M. Shaw (2011), Modularity for the Modern World: Summary of Invited Keynote, Proc. Intl.
Conf. on Aspect-Oriented Software Development (AOSD’11).

