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Strategies for “crawling” Web sites efficiently have been described more than a decade

ago. Since then, Web applications have come a long way both in terms of adoption to
provide information and services and in terms of technologies to develop them. With

the emergence of richer and more advanced technologies such as AJAX, “Rich Internet
Applications” (RIAs) have become more interactive, more responsive and generally more

user friendly. Unfortunately, we have also lost our ability to crawl them.

Building models of applications automatically is important not only for indexing
content, but also to do automated testing, automated security assessments, automated

accessibility assessment and in general to use software engineering tools. We must regain

our ability to efficiently construct models for these RIAs. In this paper, we present two
methods, based on “Model-Based Crawling” (MBC) first introduced in [1]: the “menu”

model and the “probability” model. These two methods are shown to be more effective

at extracting models than previously published methods, and are much simpler to im-
plement than previous models for MBC. A distributed implementation of the probability

model is also discussed. We compare these methods and others against a set of experi-

mental and “real” RIAs, showing that in our experiments, these methods find the set of
client states faster than other approaches, and often finish the crawl faster as well.
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1 Introduction

Building models automatically for software is an important aspect of software engineering.

Many tools require such a model as input, for example automated software testing tools or

reverse engineering tools. In the case of Web sites and Web applications, the most obvious

motivation for automated model inference is indexing the content of the sites, which is done

through “crawling”. Indexing is obviously a central feature of the Web, but it is by no means

the only reason why inferring models is important. We also require models for tasks related

a Fellow of IBM Canada CAS Research, Canada

243



244 Model-Based Rich Internet Applications Crawling: “Menu” and “Probability” Models

to good software engineering: models are needed as input for automated testing of applica-

tions (“model-based testing”), models are also needed for automated security assessments,

for automated usability assessments, or simply as a way to better understand the structure

of the website.

Nearly two and a half decades of research in the area of model extraction and crawling

has produced a large body of work with many powerful solutions [2, 3]. The majority of the

studies, however, focus on traditional web applications, where the HTML view of the page is

generated on the server side. In this model, there is a one-to-one relation between the URL of

the page and the state of its Document Object Model (DOM) [4]. Thus, many of the proposed

web crawlers use the URL to identify the state of the DOM. This assumption reduces the

basic task of crawling the Web to the task of finding all the valid and reachable URLs from

a set of seed URLs.

However, the so-called Rich Internet Applications (RIAs) break the one-to-one relationship

between the URL and the state of the DOM. In RIAs, DOMs are partially updated by client-

side script execution (such as JavaScript R©), and asynchronous calls to the server are done

through technologies such as AJAX [5]. Such sophisticated client-side applications create a

one-to-many relation between the URL and the reachable DOM states associated with that

URL.

This evolution is positive, but comes at a cost which has been underestimated: the crawling

techniques developed for traditional web applications just do not work on RIAs. We have lost

our ability to crawl and model web applications as they are typically created todayb. Even

simple websites are not immune to the problem since common tools to create and maintain

website content are increasingly adding AJAX-like scripts to the page. We need to address

this issue, which means to develop web crawlers that do not rely solely on the URL to uniquely

identify the state of the application, but also take into consideration the DOM structure and

its properties to identify different states of the application. There is some work being done in

that domain (see [6] for an overview), but more must be done. This paper is one step in this

direction.

Crawling RIAs is much more complex than crawling traditional web applications. The

one-to-many relation between a URL and states of the DOM can be modeled as a directed

graph referred to as the application graph. In the application graph, each state of the DOM

is a node, and each JavaScript event is a directed edge. To construct such a graph, one must

differentiate between different states of the DOM, which is a challenge in itself, but outside

the scope of this paper (see e.g. [7] for a discussion on the topic). In this model, taking an edge

from a node means executing a JavaScript event from the DOM that the node represents.

After defining the application graph, the task of crawling a RIA is reduced to the task

of discovering every state in the application graph. The state that is reached when a given

URL is loaded is called the “initial state of the URL”. For a crawler to ensure that all states

reachable from a given URL are discovered, the crawler has to start from the initial state of the

URL, take every possible transition, and do this for every newly discovered state recursively.

This often takes a long time. It is thus interesting for a crawler to discover as many states as

b See e.g. https://developers.google.com/webmasters/ajax-crawling/docs/getting-started, in
which Google suggests to create static URLs to index the pages that will not be reached by the crawler
because of AJAX.

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
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possible during early stages of the crawl, and postpone executing events that most probably

lead to states that have already been visited.

To this end, we have introduced a general approach called model-based crawling [1, 8],

where a crawling strategy aims at discovering the states of the application as soon as possible

by making predictions based on an anticipated model for the application. In this paper, we

explore two new strategies using the model-based crawling approach. The first one, called

“Menu” model, uses a very simply paradigm for the crawled Web application: some events

will always lead to the same client-state, no matter what the source client-state is. This new

algorithm is simpler and more efficient to discover all reachable DOM states in a RIA than

the other known strategies. The second one, called the “probability” model, can be seen as

a generalization of the first one. In this approach, we try to compute the probability that a

given event will lead to a new state at the next execution, based on how often it did lead to a

new state during previous executions. The “probability” model is even simpler to implement,

and does not have much overhead. It is comparable to the “menu” model in terms of efficiency

in our test cases. It can also be efficiently distributed, and we describe a concurrent imple-

mentation of the model. Both models, as all model-based crawling strategies, are complete,

which mean that they will eventually discover all possible client-states and all possible tran-

sitions between these client-states (under some assumptions described in Section 2). What

distinguishes these strategies is not the model being eventually built, but how fast the model

is built, and specifically how early in the process the client-states are found. The “menu”

model was first introduced in [9] and the “probability” model in [10].

The rest of this paper is organized as follows: in Section 2, we give an overview of model-

based crawling. In Section 3, we explain the “Menu” strategy in details. In Section 4, we

explain the “Probability” strategy, and descrive a concurrent implementation for it. We then

present the experimental study in Section 5 . In Section 6, a summary of related works is

presented. In Section 7, we conclude the paper.

2 Problem Overview and Model-Based Crawling

2.1 Goals and Assumptions

The end goal is to build a “model” of a RIA; in our case, the model is a graph G = (V,E) where

the set of nodes V represents the client-states and the set of edges E represents the transitions

between client-states, labeled by JavaScript events. Building such a model is potentially a

very lengthy process, because of the large number of states and transitions involved. Because

of this, many of the existing strategies do not try to build a complete model of the application

being crawled. Our approach is different: we insist that under some assumptions and given

enough time, the strategy should produce a complete model of the RIA (more specifically,

given enough time any given client state or any given transition will be found). On the other

hand, we acknowledge that, most of the time, we will not have enough time to complete the

crawl, so we want to achieve as much as possible, as early as possible. Thus, we have two

goals for our strategies:

1. Our first goal is to produce a complete model as efficiently as possible, which means

that we want to minimize the number of events we need to execute to produce such a

model.
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2. Our second goal is that, as we produce this model, we should discover as many states

as possible as early as possible during the crawl.

We say that a strategy is more efficient than another if it is better at reaching these two

goals. The second goal is particularly important because, in most cases, it is more important

to find the states than it is to find the transitions. Indeed, for many purposes, one is only

interested in the states, not in the transitions. The transitions are only important as a means

to show that we haven’t missed any state. If we are not going to run the crawl to the end,

we want to ensure that the partial model being built will contain as many states as possible.

In order to achieve the first goal above, the completeness of the model, we need to make

some assumptions regarding the behaviour of the Web application being crawled.

1. The first assumption is that the RIA being crawled is deterministic from the point of

view of the crawler. This means that, from the same state, the same action will always

produce the same result (go to the same state). It is thus sufficient to execute each

event from each state only once in order to infer a full model.

2. The second assumption is that we assume that if user inputs are involved, we have

access to a collection of sample inputs that are good enough to build the model. We do

not address here the question of how to generate such inputs. In practice, it means that

the model we are building is complete with respect to this collection of sample inputs

only.

3. Finally, we assume that we can always “reset” the RIA by reloading the initial URL,

and thus the underlying application graph is strongly connected.

Note that these assumptions are rather strong, especially the first one: in reality, in

practice even if the application is overall deterministic, it may not appear deterministic from

the point of view of the client: the client doesn’t have access to the server state, for example,

so two client-states could be identical from the point of view of the client, but be in fact two

different application-wide states. Although these assumptions are fairly commonly made in

the literature, we recognize that they are limiting and that more work will have to be done

to relax them in the future.

2.2 Model-Based Crawling

In general, it is not possible to devise a strategy that would be efficient at finding the states

early, since the graph of the application could be any graph. We have introduced model-

based crawling as a solution to this problem [1]. With model-based crawling, we work from

a particular behavioural model, referred to as meta-model. This meta-model provides some

indication on how the application will behave under some particular circumstances (the cir-

cumstances and the behaviour depend on the meta-model). An efficient (ideally, optimal)

strategy is designed to crawl applications that are an instance of this meta-model. A second

issue is to adapt the strategy to cope with “violations”, that is, how to adapt the crawling

strategy on-the-fly when the application does not behave as predicted by the meta-model.

It is of course very important to deal with such violations, and deal with them efficiently if

possible, since in practice, very few RIAs, if any, will be an exact instance of the meta-model.
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Once such a strategy is defined, any RIA can be crawled with it. If the strategy is efficient,

then the more the RIA behaves as predicted by the meta-model, the better the result. It is

thus important to create meta-models that are realistic, in that they capture real behaviours

of RIAs.

A model-based strategy usually consists of two phases:

1. State exploration phase where the objective is to discover all the application states

as predicted by the meta-model of the strategy.

2. Transition exploration phase where the objective is to execute all remaining events,

to complete the model and find states not predicted by the model.

It is possible that, during the second phase, new states are discovered (which is typically

an instance of a violation), in which case we will switch back to the first phase. Thus, a

model-based crawling strategy may alternate between these two phases multiple times before

finishing the crawl. The strategy finishes the crawl when it has executed all the events in the

application, which guarantees that all states of the application have been discovered.

Our first model-based crawling strategy is the “Hypercube” strategy where the meta-

model predicts that when an event is executed from a state, this event is “consumed” and is

not enabled in the resulting state, while the other events are still enabled. The meta-model

also predicts that events are independent, that is, executing a subset of events on any order

will always yield the same state. In that case, the RIA will have a hypercube structure [1].

The Hypercube strategy is an optimal strategy for RIAs that fully follow the hypercube meta-

model. However, in practice, few RIAs follow this model, and the algorithms involved are

rather complex. Even though the results were better than other strategies even for RIAs that

do not follow this model, we present here two strategies that are better still, much easier

to understand and that are based on meta-models more commonly found in RIAs. Refer

to [8, 11] for a detailed overview of model-based crawling and the hypercube strategy.

3 The “Menu” Model

The “Menu” meta-model is based on the idea that some events will always lead the application

to the same resulting state, regardless of the source state from which the event is executed.

These kind of events are referred to as the “menu events”. We called this model menu

model because our menu events are often the intended model behind application menus. Such

behaviour is realized by the menu items present in a web application such as home, help,

about us etc.

Once an event is identified as a menu event, we can use it to anticipate some part of the

application graph, and use this anticipated graph to build an efficient strategy. Thus, the

core of the strategy is to identify these menu events, and then execute the events that are

not menu events sooner than the menu events (since menu events are anticipated to produce

known states). In practice, we prioritize the events based on the execution history:

1. Globally unexecuted events: This category represents the events that have not yet

been executed at any state discovered so far. Events in this category have the highest

priority.
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2. Locally unexecuted events: This category represents the events that have been

executed at some discovered state but have not been executed at the current state of the

application. Events in this category are further divided into the following subcategories:

(a) Non-classified events: Events in this subcategory have been executed only once

globally. A second execution is necessary to classify the event. Events in this sub-

category have the second highest priority next to the globally unexecuted events.

(b) Menu events: Events are classified as menu events when their first two executions

from two different states have led to the same state. They have the lowest priority.

(c) Self-Loop events: Events are classified as self-loop events when their first two

executions from two different states have not changed the state of the application.

They have the same priority as the menu events.

(d) Other events: All the remaining events belong to this category. These are the

events that have shown neither menu nor self-loop behaviour in their first two

executions. These events have the same priority as non-classified events.

Since the events in the menu and self-loop categories are not expected to lead to a new

state, they have the lowest priority. The categorization of the events is done throughout the

crawl. The priority sets are updated as new events are found in newly discovered states and

as more information about results of the execution instances of the events become available.

3.1 State Exploration Phase

The primary goal of the state exploration phase is to discover all the states of the application

as soon as possible. To do so, the strategy constructs a weighted directed graph model

of the application An edge may be an executed event, a resetc, or a predicted transition.

For simplicity, we assume that each event has the same unit cost, but the cost of reset is

different and it depends on the application being crawled. Predicted transitions correspond

to unexecuted events that are classified either as menu event, in which case the predicted

resulting state is the resulting state of the menu event, or as non-classified event, in which

case the predicted resulting state is the state which was reached on the first execution of the

eventd, or as self-loop event, in which case the predicted resulting state is the starting state of

the self-loop edge. Figure 1 shows an instance of a graph.

The state exploration phase categorizes the events. Each event initially belongs to the

globally unexecuted category. Unexecuted events are then picked according to the priority

sets. All the instances of the events from a higher priority set are exhausted before executing

an event from a lower priority set. Among the events within the same priority set, priority is

given to the event which is closer to the current state than the others (closeness is in terms of

number of transitions that are needed to be taken to reach a state where the event is enabled

and unexecuted), otherwise one is chosen at random. During the state exploration phase, we

execute all the unexecuted events in the application, except for categorized menu and self-loop

events.

c A reset is the action of resetting the application to its initial state by reloading the URL.
d For the purpose of predicting the next state of transitions, all non-classified events are assumed to be

menu events.
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Fig. 3. Example of a violation for the path in Figure 2

Once an event is picked for execution, the shortest known path from the current state to

the state where the event is going to be executed. This path may contain predicted transitions,

which may of course be wrong, and the application may end up in a state that is not the

predicted one. When this happens, the crawled RIA contradicts the menu model (at least

from that state, and for this event). To adapt to such a violation, the strategy discards the

current path and looks for the next unexecuted event from the state reached.

For instance, considering the execution of the example path shown in Figure 2, let us

assume that there is a violation when the predicted transition e2 (originating from sint1)

is taken. After executing event e2 on sint1, we reach state s′ instead of sint2. After this

violation, the menu strategy builds a new path from the current state (s′) to a next state

with an unexecuted event.

During the execution of a path, traversing predicted transition leads to the execution of

an event that had not been executed from that state before, which permits the categorization

of that event if it is not already categorized.

3.2 Transition Exploration Phase

The state exploration phase executes all the events discovered during that phase, except for

the events in the menu and the self-loop categories that have not been executed as part of

a predicted edge on a path to the next selected event. Once the state exploration phase is

over, the menu strategy moves to the transition exploration phase. The transition exploration
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phase verifies the validity of the assumptions made at the state exploration phase by executing

all these remaining events. If the application follows the menu model, all the states of the

application are found by the end of the state exploration phase. Any violating menu or

self-loop events, however, may lead to the discovery of a new state.

During the transition exploration phase, the strategy tries to find the least costly path

to execute all the remaining events in the application. The cost of this path is measured in

terms of the total number of events and resets required. If we define a walk of the graph

as a sequence of adjacent edges, the transition exploration problem can be mapped to the

problem of finding the least costly walk of the graph that traverses all the edges representing

the unexecuted events at least once.

3.2.1 Graph Walk

The transition exploration phase uses a walk generator function to calculate a walk that

covers all of the unexecuted events. During the calculation of the graph walk, the applica-

tion graph includes predicted transitions. Hence, executing the event sequence in the walk

might not result in the expected state, in which case we have a violation as explained in

Section 3.2.2. Considering the example in Figure 1 where the next state of all the unexecuted

events have been assumed, a possible walk that covers every unexecuted event is the sequence

< e1, e3, e0, e1, e2 >, which starts at the initial state, s0, and terminates at s3.

Our immediate situation is similar to the problem known as the Rural Chinese Postman

Problem (RCPP) [12] where, given a graph, we want a least cost tour covering only a subset

of the edges. We need a least cost tour to execute all the remaining unexecuted events.

Unfortunately, the RCPP is an NP-complete problem, so we do not attempt to solve this

problem. Instead, we use the Chinese Postman Problem (CPP). In CPP, given a graph we

want a least cost tour of all the edges. Unlike the RCPP, there are polynomial algorithms

for the CPP. However, this is not a perfect analogy to our situation: in the current graph,

we have both executed and predicted transitions, and we only want to execute the predicted

ones. If we consider the subgraph containing only the predicted transitions, this subgraph

may not be connected, and a tour may not exist. To address this problem, we augment this

subgraph with a few of the known transitions (including resets if necessary), until the graph

is strongly connected again. We then use a CPP algorithm to create a tour that goes over all

transitions (see [13] for details). This solution gives reasonably good results (although clearly

non optimal) at a small computational cost.

3.2.2 Violation and Strategy Adaptation

When going over the tour, each predicted transition may lead to a violation of the assumption,

and the application can end up in a state that is not the one predicted. There are two cases

to handle :

1. Wrong known state: This is the case where the resulting state has been discovered

previously, but it is not the expected one. When this happens, the predicted edge is

removed from the graph, replaced with the newly executed transition. At this point, we

end up in a wrong state in the tour. Instead of recomputing a tour, we have opted for a

simpler solution: the strategy keeps the original walk, and brings the application back

to the state that was expected to be reached initially. To do this, we simply find the
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shortest known path that does not contain any predicted edges from the current state

to that next state, and execute it first.

2. New state: Should a violation lead to the discovery of a new state, the crawling

strategy switches back to the state exploration phase if there are events unclassified as

“other events”. Otherwise, the existing CPP is augmented to include any additional

discovered unexecuted events.

4 The “Probability” Model

The Menu model explained above is rather simple to understand, but the implementation

is not necessarily immediate, in particular when it comes to the computation of the graph

walk described in Section 3.2.1. Moreover, the classification of events is not very specific:

set of “other events” contains anything that is not menu or self loop. Finally, it may be

challenging to distribute this strategy over several concurrent crawlers, especially when in

comes to handling the violations (Section 3.2.2). The “probability” model helps with these

issues.

The Probability strategy is a strategy based on the belief that an event which was often

observed to lead to new states in the past is more likely to lead to new states in the future.

In this strategy an event’s probability of discovering a new state on its next exploration is

estimated based on how successful it was in its past explorations and this estimated probability

is used as a priority measure.

The Probability Strategy chooses the next event to explore considering two aspects of an

event: the event’s estimated probability of discovering a new state on the next exploration,

and the length of the shortest transfer sequence to a state where the event can be executed.

4.1 Probability of an Event

Using the so-called “rule of succession” [14], we can estimate the probability, P (e), of discov-

ering a new state on an event e’s next exploration using the following Bayesian formula:

P (e) =
S(e) + ps
N(e) + pn

(1)

• N(e) is the “exploration count” of e, that is, the number of times e has been explored

(executed from different states) so far,

• S(e) is the “success count” of e, that is, the number of times e discovered a new state

out of its N(e) explorations,

• ps and pn are called the pseudo-counts and they represent the “initial success count”’

and the “initial exploration count”, respectively. These terms are preset and define the

a priori (initial) probability for an event.

To use this formula we assign values to ps and pn to set an initial probability. For

example, ps = 1 and pn = 2 can be used to set an event’s initial probability to 0.5 (note

that N(e) = S(e) = 0 initially). After each exploration of an event, the event’s probability is

updated by taking into account the result of this recent exploration.
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4.2 Choosing The Next Event to Explore

When selecting the next event to explore, simply choosing an event with the highest proba-

bility is not efficient, since that event may be some distance away from the current state. To

make a decision, we should also take into account the length of the transfer sequence to be

executed to reach the candidate state.

For a state s ∈ S, we define the probability of the state, P (s), as the probability of the

event that has the highest probability among all the unexplored events of s. If s has no

unexplored event then P (s) = 0. lT (s) is the length of the shortest known transfer sequence

from the current state scurrent to s.

From a given current state, we therefore have the task of selecting among the neighbour-

hood a state s with high value for P (s) and a small value for lT (s). This task is non trivial in

the case that there is a state s1 with a higher probability than another state s2, but farther

away from the current state. In order to determine which of the two states is more interesting,

we consider the difference, k = lT (s1) − lT (s2), of the lengths of the transfer sequences and

we calculate the “k-iterated probability” of s2 (the state that is closer to the current state),

noted as P (s2, k). We define P (s2, k) as the probability of discovering a new state by choosing

s2 and exploring k more events after the event in s2 is explored.

In order to calculate P (s, k) for a state s, we need to estimate the probabilities of the

states that we will traverse as we execute the k events. Assuming that reaching any state is

equally likely, we can compute the average probability of all the state Pavg as

Pavg =

∑
s∈S P (s)

|S|
(2)

Using this estimation for Pavg, it is easy to compute P (s, k):

P (s, k) = 1− (1− P (s))(1− Pavg)k (3)

In plain words, this value is one minus the probability of not discovering any state by

choosing s and then not discovering any state by exploring k more events (each with proba-

bility Pavg).

The strategy thus consists of choosing the state with the highest P (s, k) from the current

state, then transfer to that state, execute the event with the highest probability on that state,

and update the set of probabilities accordingly. The strategy stops once all transitions have

been executed.

In practice, it is not necessary to always compute P (s, k) for all pair of states. See [11] for

an algorithm implementing this strategy with an overall complexity of O(|E|2 + |E||V | log n).

4.3 Distributing the Probability Strategy Across Concurrent Crawlers

In order to speed up the execution of the strategy, we can distribute the work over several

concurrent processes. In our context, based on our experiments, the most time consuming

task is events execution, and subsequent DOM update and analysis. Consequently, we have

implemented a distributed version of the algorithm that works as follows: a centralized co-

ordinator collects the information found so far and builds the application graph. A certain

number of “crawlers” are in charge of executing the events and report back the results (new
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states, new events found) to the coordinator. In this distributed version, each crawler im-

plements its own version of the probability strategy, so the computation of the strategy is

distributed as well.

The coordinator is in charge of informing the crawlers about the graph as it is being

built. Based on that knowledge, each crawler decides what event to execute next (using the

probability strategy), and reports back the result of the execution to the coordinator. The two

activities are carried out concurrently: every time a crawler executes an event, it sends the

result of that execution to the coordinator using an asynchronous message (which we assume

here to be reliable) and continues the crawl by choosing the next event to execute based on

the probability strategy. On the other hand, the coordinator accumulates global information

about the graph and, from time to time, informs the crawlers about it.

In order to avoid duplication of work, each event should be assigned to a single crawler,

who is in charge of executing that event [15]. For efficiency reasons, this should be done

transparently, without requiring the crawlers to coordinate among themselves. This can be

achieved by assigning the ownership of an event as a function of the identifier of the crawler.

The difficult part, for the probability strategy, is to efficiently compute the probability of

an event as well as choosing the next event to execute, without centralizing the decision nor

introducing coordination between the crawlers.

Because the probability of an event is based on the result of that event’s execution across

several states, a good way to distribute the algorithm is to assign an event to a single crawler,

so that one crawler is in charge of the execution of all instances of that event across all states

in which that event is enabled. This way, the crawler in charge of that event can easily

compute the probability of that event locally using Equation (1).

Computing the next event to execute is more difficult, since a given crawler may not be

the “owner” of the event that has the best probability. In order to resolve that issue, we

adapt the probability strategy by restricting the computation of the next event to execute to

the events that are assigned to the crawler. In other words, our distributed implementation

of the strategy can be seen as a partitioning of the events among crawlers, with each crawler

computing the original probability strategy on the subset of the events assigned to ite. The

concurrent implementation is thus not the exact replica of the centralized version, but a close

approximation.

The last point to clarify is the partitioning of the events amongst crawlers. We use an

approach where each crawler is assigned an identifier between 0 and n − 1 (for n crawlers).

Each event identifier is hashed into a integer value h, and the value k = h mod n is computed.

The event is assigned to crawler k. That computation can be done independently and locally

by each crawler, as well as by the coordinator.

5 Implementation and Evaluation

In this section, we present our experimental results, comparing the efficiency of the Menu and

Probability strategies against many other existing crawling strategies on several AJAX-based

RIAs.

e Each crawler can still execute an event assigned to another crawler once the coordinator did broadcast
the information about the result of the execution of that event.
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5.1 Measuring the Efficiency of a Strategy

As explained before, our definition of an efficient strategy is a strategy that builds the en-

tire model quickly, while finding the states as early as possible in the process. In order to

determine efficiency, measure speed, instead of measuring time, we measure the number of

event executions and the number of resets required by each strategy to complete two tasks:

finding the states and finding the complete model. This is reasonable since the time spent

for event executions and resets dominates the crawling time and the numbers depend only on

the decisions of the strategy. And this way, the results do not depend on the hardware that

is used to run the experiments and are not affected by the network delays which can vary in

different runs.

In order to determine the relative cost of event executions and resets, we measure for

each application the following two values. t(e)avg: the average event execution time obtained

by measuring the time for executing the events in a randomly selected set of events in the

application and taking the average, and t(r)avg: the average time to perform a reset. For

simplicity, we assume that each event execution takes t(e)avg and this becomes our cost unit.

Then, we calculate “the cost of reset”: cr = t(r)avg/t(e)avg. Finally, the cost of a strategy

is calculated by ne + nr × cr where ne and nr are the total number of events executed and

resets used by the strategy, respectivelyf.

5.2 Other Crawling Strategies Used for Comparison

• Optimized Standard Crawling Strategies: The standard crawling strategies are Breadth-

First and Depth-First. We use “optimized” versions of these strategies, meaning that

when there is a need to move from the current state to another known state, the shortest

known path from the current state to the desired state is used. This is in contrast to

using systematic resets. The results presented here with the optimized versions are

much better than the ones obtained using the standard, non-optimized Breadth-First

and Depth-First strategies.

• Greedy Strategy [16]: This is a simple strategy that prefers to explore an event from

the current state, if there is one. Otherwise, it chooses an event from a state that is

closest to the current state.

• Another Model-based Crawling Strategy: The Hypercube strategy [1] is based on the

anticipation that the application has a hypercube model.

• The Optimal Cost: We also present the optimal cost of discovering all the states for each

application. This is not a strategy. This cost is calculated once the model is known.

Finding an optimal path that visits all states in a known graph is the Asymmetric

Traveling Salesman Problem (ATSP). We use an exact ATSP solver [17] to find this

path. This gives us an idea of how far from the optimal speed each strategy is (for the

first phase, find all the states).

f We measure the value of cr before crawling an application and give this value as a parameter to each
strategy. A strategy, knowing how costly a reset is compared to an average event execution, can decide whether
to reset or not when moving from current state to another known state.
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Name #states #transitions Cost of Reset

Real Applications

Bebop 1,800 145,811 2
Elfinder 1,360 43,816 10
FileTree 214 8,428 2
Periodic Table 240 29,034 8
Clipmarks 129 10,580 18
DynaTable 448 5,376 19

Test Applications
TestRIA 39 305 2
Altoro Mutual 45 1,210 2

Table 1. Applications tested, along with their number of states, transitions, and the cost of reset.

5.3 Applications Tested

We compare the strategies using two test RIAs and six real RIAsg. This number is not as large

as we would like, but we are limited by the tools that are available to ush. With the increasing

exposure to this problem, better tools will be made available, and we will be able to test our

strategies on a much broader test set. The following table provides, for each test RIA, the

number of states, transitions as well as the cost of reset.

5.4 Experimental Setup

We have implemented all the mentioned crawling strategies in a prototype of IBM R© Security

AppScan R© Enterprisei. Each strategy is implemented as a separate class in the same code

base, so they use the same DOM equivalence mechanism [18], the same event identification

mechanism [7], and the same embedded browser. For this reason, all strategies find the same

model for each application.

We crawl each application with a given strategy ten times and present the average of these

crawls. In each crawl, the events of each state are randomly shuffled before they are passed

to the strategy. The aim here is to eliminate influences that may be caused by exploring the

events of a state in a given order since some strategies may explore the events on a given state

sequentially.

5.5 Costs of Discovering States (Strategy Efficiency)

The box plots in Figure 4 show the results. For each application and for each strategy, the

figure contains a box plot: the lower edge, the line in the middle and the higher edge of

the box show the cost of discovering 25%, 50% and 75% of the states, respectively. The

maximum point of the line shows the cost of discovering all the states. The plots are drawn

in logarithmic scale for better visualization. Each horizontal dotted line shows the optimal

cost for the corresponding application.

The results show that for almost all applications, the menu and the probability models

are more efficient than the other strategies, sometimes by a wide margin. It can be seen that

g http://ssrg.eecs.uottawa.ca/testbeds.html
h We stress that the work in question is not related to the strategy described here, but to the limitation

of the available tools.
i Details are available at http://ssrg.eecs.uottawa.ca/docs/prototype.pdf Since our crawler is built

on top of the architecture of a commercial product, we are not currently able to provide open-source imple-
mentations of the strategies.

http://ssrg.eecs.uottawa.ca/testbeds.html
http://ssrg.eecs.uottawa.ca/docs/prototype.pdf


256 Model-Based Rich Internet Applications Crawling: “Menu” and “Probability” Models

the Menu strategy has the best performance to discover all the states except for the Bebop

application where it is beaten by the Probability strategy. In fact, in all cases but for the

periodic table, both menu and probability strategy beat the other strategies to discover 75%

and 100% of the states (and 50% as well, except the Probability strategy on DynaTable). This

is particularly important if one assumes that the crawl will not be executed to the end and

that in most cases it will be cut short. It shows that the Menu and the Probability strategies

will provide the most information after the least amount of time, with a slight edge to the

Menu strategy.
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Fig. 4. Costs of Discovering the States (Strategy Efficiency), in logarithmic scale. Each horizontal
dotted line shows the optimal cost for the corresponding application.

5.6 Costs of the Complete Crawl

The previous results show the costs of discovering all the states. However, the crawl does not

end at this point since a crawler cannot know that all states are discovered until all events are

explored from each state (in other words, we could provide this information only because we

have run the tests to the end). In Table 2, the total number of events and the total number

of resets during the crawl are shown as well as the costs calculated based on these numbers.

It can be seen that the model-based strategies and the Greedy strategy finish crawling with

significantly less cost compared with Breadth-First and Depth-First. The strategies presented

here are in the same ballpark but not significantly better than the Hypercube model-based

or greedy strategies. However, the complete crawl is not as important a factor as finding all

the states, as explained before.

5.7 Time measurements

In Sections 5.5 and 5.6, the costs are expressed in terms of number of event executions and

resets, which is independent from external factors such as network conditions or load on the
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Bebop FileTree Periodic Table Clipmarks
Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 13, 386, 210 27 13, 386, 264 99, 336 13 99, 362 897, 358 236 899, 246 19, 569 72 20, 868
Breadth-First 943, 001 8, 732 960, 466 26, 375 1, 639 29, 652 64, 850 14, 633 181, 916 15, 342 926 32, 015
Greedy 826, 914 27 826, 968 20, 721 13 20, 747 29, 926 236 31, 814 11, 396 56 12, 398
Hypercube 816, 142 27 816, 196 19, 865 13 19, 891 29, 921 236 31, 809 11, 350 56 12, 356
Probability 816, 922 27 816, 976 19, 331 13 19, 357 29, 548 236 31, 436 11, 456 62 12, 563
Menu 814, 220 27 814, 274 19, 708 13 19, 734 37, 489 236 39, 377 11, 769 71 13, 043

Altoro Mutual TestRIA Elfinder DynaTable
Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 6, 876 34 6, 944 1, 433 1 1, 435 1, 998, 329 194 2, 000, 559 156, 499 1 156, 518
Breadth-First 3, 074 334 3, 742 1, 216 55 1, 326 115, 702 7, 033 186, 028 20, 368 1512 49, 096
Greedy 2, 508 34 2, 576 1, 001 1 1, 003 67, 187 190 69, 085 9, 059 1 9, 078
Hypercube 2, 489 34 2, 557 994 1 996 67, 453 195 69, 402 9, 059 1 9, 078
Probability 2, 451 34 2, 520 972 1 974 49, 731 134 51, 076 9, 208 1 9, 227
Menu 2, 457 35 2, 527 974 1 976 48, 438 203 50, 466 11, 192 1 11, 211

Table 2. Total Costs of Complete Crawling

Bebop FileTree Periodic Table Clipmarks Altoro Mutual TestRIA Elfinder DynaTable
Depth-First 93 : 42 : 14 01 : 43 : 06 05 : 37 : 45 00 : 14 : 44 00 : 02 : 37 00 : 00 : 27 55 : 15 : 56 01 : 10 : 15
Breadth-First 09 : 00 : 31 00 : 38 : 29 00 : 21 : 48 00 : 07 : 17 00 : 00 : 54 00 : 00 : 25 04 : 42 : 47 00 : 43 : 45
Greedy 08 : 17 : 07 00 : 29 : 57 00 : 14 : 44 00 : 04 : 11 00 : 00 : 44 00 : 00 : 20 02 : 18 : 56 00 : 02 : 07
Hypercube 08 : 10 : 36 00 : 29 : 10 00 : 15 : 20 00 : 04 : 12 00 : 00 : 24 00 : 00 : 19 02 : 19 : 29 00 : 02 : 01
Probability 00 : 12 : 50 00 : 00 : 36 00 : 14 : 15 00 : 04 : 32 00 : 00 : 06 00 : 00 : 04 01 : 09 : 14 00 : 01 : 25
Menu 00 : 18 : 49 00 : 00 : 15 00 : 08 : 49 00 : 01 : 55 00 : 00 : 04 00 : 00 : 03 02 : 01 : 29 00 : 00 : 56

Table 3. Total time required to find all states (hh:mm:ss).

computer. For completeness, we provide here some timing information as well. In Table 3

we provide time measurements for finding all the states (corresponding to Figure 4), and in

Table 4 the time required to complete the crawl (corresponding to Table 2). The experiments

where executed on a a laptop equipped with an Intel R©, CoreTMi7 processor and 4MB of

RAM, accessing copies of the RIAs installed on a local network.

As expected, the time measurements reflect the fact that strategies which execute less

events and less resets often require proportionately less time. The major source of difference

between the time measurements and our cost measurements is our simplifying assumption

that each event execution takes the same average time. As a result of this simplification, for

Clipmarks our measured value for cost of reset is a bit higher than the real time delays incurred

by the resets during crawling. This is why the Breadth-First has more cost than Depth-First

(since Breadth-First uses many resets), but actually Breadth- First finishes earlier than Depth-

First. Except for this case, the cost measurements are in line with the time measurements.

In addition, since the Menu strategy calculates a Chinese Postman Path for its transition

exploration phase, for larger models (Bebop, ElFinder) the Menu strategy requires more time

to complete the crawl than the other strategies that execute a comparable number of events

and resets.

Bebop FileTree Periodic Table Clipmarks Altoro Mutual TestRIA Elfinder DynaTable
Depth-First 97 : 05 : 22 01 : 43 : 28 05 : 38 : 02 00 : 14 : 52 00 : 12 : 00 00 : 00 : 34 55 : 17 : 30 02 : 04 : 47
Breadth-First 09 : 04 : 57 00 : 43 : 05 00 : 42 : 19 00 : 08 : 14 00 : 15 : 07 00 : 00 : 27 04 : 53 : 40 00 : 44 : 05
Greedy 08 : 32 : 04 00 : 33 : 42 00 : 15 : 06 00 : 04 : 28 00 : 04 : 28 00 : 00 : 21 02 : 21 : 47 00 : 06 : 44
Hypercube 08 : 22 : 54 00 : 33 : 02 00 : 15 : 42 00 : 04 : 29 00 : 04 : 19 00 : 00 : 21 02 : 22 : 05 00 : 06 : 31
Probability 07 : 54 : 03 00 : 31 : 37 00 : 14 : 42 00 : 04 : 39 00 : 04 : 46 00 : 00 : 21 02 : 03 : 43 00 : 06 : 08
Menu 12 : 48 : 55 00 : 33 : 40 00 : 20 : 06 00 : 04 : 22 00 : 04 : 24 00 : 00 : 21 08 : 23 : 26 00 : 11 : 02

Table 4. Total time required to finish crawling (hh:mm:ss).
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Fig. 5. Cost of discovering FileTree application

states with multiple nodes.

1 2 3 4 5 6 7 8

0

5

10

Number of crawlers

T
im

e
(1

0
00

S
ec

on
d

s) JavaScript Execution
Idle

Fig. 6. The total time to Crawl the FileTree

application with multiple nodes.

5.8 Distributed Crawl

Figure 5 show the cost of discovering states in the FileTree application in distributed mode.

As can be seen, distributing the work reduces the time it takes to discover application states

up to a certain point. Figure 6 shows the total time needed to crawl the application. As

the number of crawlers increases, a good speed up is achieved until six crawlers and it starts

degrading afterwards. Several possible factors contributing to this degradation are the co-

ordinator becoming slower to distribute the knowledge of the graph among the nodes, so

the path computed by the crawlers is not as good and the events that are split between too

many crawlers, so each crawler does not have enough data to compute statistically significant

probabilities. Distributing the probability strategy is an effective solution to speed up the

crawl, but the maximum number of useful crawlers that can be used is driven by the number

of events in the application and can be relatively small.

6 Related Works

A survey of traditional crawling techniques is presented in [2]. For RIA crawling, recent

surveys are presented in [6] and [3]. Except for [1, 8, 10, 18] which present other model-based

crawling strategies and [16] which presents the Greedy strategy, the published research uses

Breadth-First or Depth-First strategies for crawling RIAs. As we have seen, Breadth-First

and Depth-First strategies are less efficient than the Greedy and the model-based strategies.

[19] and [20] suggest algorithms to index a RIA. [20] offers an early attempt in crawling

AJAX applications based on user events and building the model of the application. The

application model is constructed as a graph using the Breadth-First strategy. [19] introduces

an AJAX-aware search engine for indexing the contents of RIAs. In this model components

are adapted to handle RIAs. The crawler identifies JavaScript events and runs a standard

Breadth-First search on them. [21] offers an algorithm, called AjaxRank, similar to PageRank

[22] tailored to RIAs, to give weight to different states based on the connectivity. Dist-RIA

Crawler suggests an event-based partitioning algorithm to run a distributed Breadth-First

strategy [15]. Wu and Liu [23] seek to reduce the number of JavaScript events executed

to crawl an application. They do so by using HTML elements XPaths expressions as an
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indication to weather an element has been clicked before or not. In a more advanced attempt

Moosavi [24] identifies independent client-side widgets. In this model, called Component-based

Crawling, a state is not defined as state of DOM, but as an individual independent widget.

[25–27] seek to automate regression and other testing of a RIA. Crawljax [28,29] constructs

a state-flow graph of the application by exercising client-side code and identifying the events

that change the state of the application. Crawljax differentiates states using Levenshtein

distance method [30], and uses a Depth-First strategy. [31] describes the derivation of test

sequences from the application model obtained by crawling. [32] is similar, but takes a white-

box testing approach where the program fragments of the states are analyzed. PYTHIA [33]

generates unit tests at JavaScript function level using a greedy strategy to maximize code

coverage. It then generate test oracles using mutation testing.

FeedEx [34] extends [16] by defining a matrix to measure the impact of executing an

event. Four factors to prioritize the events in FeedEx matrix are: code coverage, navigational

diversity, page structural diversity and test model size. Event execution order is derived by

calculating different events impact priority and sorting it.

Several other tools exist to create a graph model of the application. RE-RIA [35] uses

execution traces to create the graph model of the application. As an improvement to RE-RIA,

CrawlRIA [36] generates the execution traces by running a Depth-First strategy. CreRIA [37]

facilitate reverse engineering of a RIA for dynamic analysis. DynaRIA [38] offers a tool to

comprehend a RIA better for testing and other purposes. It also helps to visualize the run-

time behavior of the application. More generally, the concept of “GUI ripping” is introduced

in [39]. This is a different, but related question to the one we are addressing here. Some

efforts are being done to apply to mobile applications what is done on RIAs. This field is

quite new, but some work has already been done in the context of model inference for native

android apps [40,41] and native iOS apps [42].

In the context of session transfer, Imagen [43] improves definition of RIAs client-side state

by considering factors such as: JavaScript functions closure, JavaScript event listeners, and

HTML5 elements such as Opaque Objects and Stream Resources. As [43] explains, these

factors are not reflected in the DOM and require extra effort to be reflected into client-side

session.

7 Conclusion and future studies

Two new model-based crawling algorithms were introduced: the Menu model and the Prob-

ability model. We models RIAs as a graph, based on the JavaScript events in each state

of the DOM. The approach consists of making assumptions about the category of events in

order to derive a strategy, then learn, and adapt these categories as the crawling proceeds.

In the Menu model, the events are assumed to either always lead to the same state (menu

events), or to always lead to new states. In the probability strategy, an actual probability

of leading to a new state is calculated for each event, based on how successful it was in the

past at finding new states. A concurrent implementation of the probability model was also

described. A prototype implementation for these strategies was built and the performance of

these strategies is compared with several other algorithms. We have shown empirically that

our new strategies are better than other known strategies when it comes to finding all the

states of the application being modeled. We have also evidences showing that the concurrent
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implementation of the probability strategy provides an good additional speed up, opening the

door to fast crawling of RIA using concurrent crawlers.

Some directions for future studies are:

• Better definition of states: Learning about independent widgets, as suggested by [24],

can substantially improve performance of both Menu and Probabilistic model by reduc-

ing the number of events to execute.

• Adaptive Crawling : starting from a generic meta-model and recognizing the meta model

of a web-application on-the-fly is another area of improvement.

• Relaxing assumptions: In future work, it will be important to relax or waive some of

the assumptions made in regard to this work. In particular the assumptions that the

applications is deterministic from the viewpoint of the model builder.
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