
Journal of Web Engineering, Vol. 13, No. 3&4 (2014) 277–301
c© Rinton Press

IMPROVING SEARCH AND EXPLORATION

IN TAG SPACES USING AUTOMATED TAG CLUSTERING

JONI RADELAAR, AART-JAN BOOR, DAMIR VANDIC

JAN-WILLEM VAN DAM, and FLAVIUS FASINCAR

Econometric Institute, Erasmus University Rotterdam

Burgemeester Oudlaan 51, PO Box 1738, NL-3000 DR

Rotterdam, the Netherlands
joni@radelaar.nl, aartjan.boor@gmail.com, vandic@ese.eur.nl, jwvdam@gmail.com, frasincar@ese.eur.nl

Received July 15, 2013
Revised April 3, 2014

In recent years we have experienced an increase in the usage of tags to describe resources.

However, the free nature of tagging presents some challenges regarding the search and

exploration of tag spaces. In order to deal with these challenges we propose the Semantic
Tag Clustering Search (STCS) framework. The framework first groups syntactic varia-

tions using several measures based on the Levenshtein distance and the cosine similarity

based on tag co-occurrences. We find that a measure that combines the newly introduced
variable cost Levenshtein similarity measure with the cosine similarity significantly out-

performs the other methods we evaluated in terms of precision. After grouping syntactic
variations, the framework clusters semantically related tags using the cosine similarity

based on tag co-occurrences. We compare the STCS framework to a state-of-the-art

clustering technique and find that the STCS framework performs significantly better in
terms of precision. For the evaluation we used a large data set gathered from Flickr,

which contains all the pictures uploaded in the year 2009.

Keywords: Tagging, syntactic clustering, semantic clustering, tag disambiguation

1 Introduction

On today’s World Wide Web, it is becoming increasingly popular to use tags to describe

resources. Tags are freely chosen keywords that can be used to annotate resources, such as

videos, photos, or Web pages. The advantage of using tags is that, because there are no re-

strictions on the tags that can be used, they provide a flexible way of describing resources [21].

The disadvantage of using tags is that, because of the unstructured nature of tagging, there

are some problems associated with retrieving resources using tag-based searches [10, 20].

One example of a problem with tag-based searches is that it is possible that different

tags have the same or closely related meanings. This can be caused by syntactic variations,

but it can also be the result of the use of synonyms [9]. Examples of syntactic variations

are misspellings or the use of the grammatical number form of a specific word. Golder and

Huberman [13] describe the basic level variation problem, which is an issue in tag-based

searches. This problem refers to the fact that different users may employ different levels of

granularity to describe a resource. For example, one user might tag a picture of a dog as

“animal” (not very specific), while another user would use “Dalmatian” (very specific). The

277

278 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

use of homonyms is another problem when tagging a resource. A homonym is a word with

multiple meanings. For example, “Turkey” refers to both the country and the animal.

The problems described above can lead to difficulties when searching for resources using

tags. For example, if a user is looking for a picture using “dog” as a keyword, he or she

would most likely also be interested in pictures tagged with “dogs” (syntactic variation),

“Dalmatian” (more specific, semantically related term), “doggy” (synonym), and “dough”

(misspelling of dog).

One way to tackle these problems is to create clusters of syntactically and semantically

related tags. Creating syntactic clusters involves the grouping of tags that are syntactic

variations of each other. An example of such a cluster is {“parijs”, “paris”}. Creating

semantically related clusters involves grouping tags that are semantically related. An example

of such a cluster would be {“paris”, “notredame”}. Tags with multiple meanings can then be

identified by checking whether a tag occurs in multiple semantic clusters. If a tag occurs in

multiple clusters it most likely also has multiple meanings, e.g., “bow” can refer to both the

weapon and the front of a ship.

Search algorithms can utilize these syntactic and semantic clusters in order to improve

the quality of search query results. For example, when a user enters a tag as a search query,

the search algorithm could also include in the result pictures that are tagged with a syntactic

or semantic variation of the entered query, and therefore improving recall. Also, if a tag is

ambiguous, the user can be offered the choice to select between the different tag meanings

(defined by the semantic clusters) and thus improve the precision of the query results.

Several clustering techniques for tags have been previously proposed [7, 28, 30, 35]. How-

ever, the evaluation of these techniques is done using relatively small datasets with at most

several hundreds of thousands resources. In this article we describe the Semantic Tag Clus-

tering Search (STCS) framework that supports several clustering techniques. We evaluate

different syntactic and semantic clustering techniques using a dataset that contains more re-

sources than previously used, i.e., tens of millions. The data for our experiments is retrieved

from Flickr.com [1], a very popular photo sharing website. To construct a large data set we

use all images uploaded on Flickr in 2009.

We also develop a Web application that is based on the proposed framework and allows

users to search for pictures using tags and presents the results of the search using several clus-

tering techniques. For each query the user can experiment with several clustering techniques

and choose the one that produces the most adequate results. This gives us insight into which

clustering methods produce the best results for different real-world end-users. Statistical tests

are used to analyze if our search engine performs better than existing alternatives.

The contributions of this paper to searching and browsing tag-spaces are four-fold: it

proposes a new syntactic clustering algorithm, adapts an existing semantic algorithm with

two new heuristics, evaluates the syntactic and semantic clustering algorithm on a larger data

set than previously used in related work, and implements a Web application with different

methods for searching and browsing tag spaces.

The work presented in this paper consolidates our previous results on syntactic and seman-

tic clustering for searching tag spaces [25, 29, 33, 31, 32, 34] and proposes novel techniques

for clustering in our framework, such as advanced data cleaning operations and a variable

cost Levenshtein distance. In [29, 33] we laid the foundations for the STCS framework, which

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 279

included a syntactic and semantic clustering step. In [25, 32] we investigated the use of a

graph clustering algorithm that is based on community detection in graphs. We focused on

the scalability of our framework in [31, 34] and provided solutions for the found bottlenecks.

Different from previous publications, in this paper we perform an in-depth sensitivity analysis

of the framework parameters and provide the details of the Web application that implements

the proposed framework. We also experiment with a novel variable-cost Levenshtein similar-

ity measure that improves the syntactic clustering process. Furthermore, for the evaluation,

we use larger data sets than previously reported in the literature.

2 Related Work

In this section we discuss the work related to the research done in this paper. We have

divide the discussion over three subsections on tag clustering, similarity measures, and cluster

evaluation, as these are the most important topics that we address in our framework.

2.1 Tag Clustering

Echarte et al. [11] discuss the influence of syntactic variations on the quality of folksonomies.

To improve the quality of folksonomies they propose to use pattern matching techniques, such

as the Levenshtein [17] and Hamming [14] distances, to identify syntactic variations. Using

data from CiteULike the authors evaluate the performance of the Levenshtein and Hamming

distances. The data set used to evaluate the performance of the two measures for identifying

syntactical variations contained the 10,000 most popular tags and 1,577,198 annotations. One

annotation consists of a user assigning one tag to a resource. The outcome of this study is

that overall the Levenshtein distance performs better than the Hamming distance. However,

both techniques do not perform well with tags shorter than 4 characters. In a later paper,

Echarte et al. [12] introduce a new fuzzy similarity measure for grouping syntactic variations

of tags. They compare this new measure with the Levenshtein and Hamming distances and

find that it performs significantly better in identifying syntactic variations.

Specia and Motta [28] introduce a method for building clusters of semantically related

tags using a non-hierarchical clustering technique based on tag co-occurrence. They also

explore the relationships between pairs of tags within a cluster. The cosine similarity among

tags given by their co-occurrence vectors is used as a similarity measure in the clustering

process. Before creating the clusters, the authors merge morphologically similar tags using

the normalized Levenshtein similarity measure. Data used for the experiment is gathered

from Flickr and Delicious. The Flickr data set contained 49,087 distinct resources and 17,956

distinct tags, and the Delicious data set contained 14,211 distinct resources and 11,960 distinct

tags. The results have been evaluated manually and the authors found that the clustering

approach results in meaningful groups of tags corresponding to concepts in ontologies.

Begelman et al. [7] propose to build a directed graph where tags are represented by vertices.

An edge between two vertices indicates a (strong) relation between the two tags represented

by the vertices. The weight of the edge is based on the co-occurrence of the two tags the

edge connects. The authors employ an algorithm that recursively uses spectral bisection to

split the graph in two clusters. This split is then evaluated using the modularity function,

which was introduced by Newman and Girvan [23], and provides a measure of the quality of

a particular division of a network. The clustering algorithm has been applied to a dataset

280 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

containing 200,000 resources and 30,000 tags.

Yueng et al. [35] also use a graph-based clustering algorithm. Like Begelman, the authors

use the modularity function to evaluate the quality of a division. However, in addition they

also investigate the effect of various network representations of tags and resources on the re-

sulting clusters of semantically related tags. These different representations include networks

based on co-occurrence of tags, and context of tags using cosine similarity. For their research,

the authors used a small data set gathered from Delicious, by manually selecting 20 tags

that are used to represent two or more concepts and complementing these tags by randomly

selecting 30 tags from the 100 most popular tags. For each tag they then gathered about

500 images that are annotated with that tag. After applying the clustering algorithm to the

used tag representations, the resulting clusters are evaluated manually. The conclusion of

their experiment is that networks based on tag context similarity capture the most concepts.

These networks use the cosine similarity to compare the context in which two tags are used,

as reflected by the co-occurrence vectors of the tags. In addition the results produced by

the clustering algorithm are compared with WordNet synset relations. The results of this

comparison is that the clustering algorithm detects more semantically related tags than are

derived using WordNet [22] synsets.

Schmitz [27] proposes a subsumption-based model to derive a hierarchy of semantically

related Flickr tags. Schmitz uses an adaptation of the simple statistical subsumption model

described by Sanderson and Croft [26]. In the model proposed by Schmitz the statistical

threshold for the subsumption of a tag is adjusted dynamically and filters are added to control

for the highly idiosyncratic vocabulary of Flickr tags. This model is then used to derive

trees of semantically related tags. For the experiment Schmitz gathered an initial dataset of

approximately 9 million images, 200,000 tags, and 8 million tag pairs. However, the exact

amount of data used to derive the trees in unknown, since the algorithm filters the data during

the clustering process to reduce memory usage. The resulting trees were evaluated manually.

The result of this evaluation is that the adapted model works better than the original model

described by Sanderson and Croft [26].

All of the above mentioned methods suffer from two main issues, which are addressed by

our approach. First, none of the methods deals with the problem of uneven cluster sizes. In

tagging spaces, some clusters can be very large while others can be rather small. This can

result in poor performance in the cluster merging process. Second, none of the methods have a

robust syntactic similarity measure that gives different weights to various mistake types made

by users. This is another important aspect in tagging spaces as tags are typed by everyday

users and some type of mistakes occur more often than others.

2.2 Similarity Measures

There are many measures that can be used to determine the similarity between two tags.

Cattuto et al. [8] evaluate a few similarity measures using a Delicious dataset containing

the 10,000 most popular tags. They perform this evaluation by comparing the relations

established by using the different similarity measures with WordNet synsets. The experiment

shows that the cosine similarity is the best similarity measure for detecting synonyms, while

FolkRank and co-occurrence appear to be most useful for detecting various other semantic

relations, such as type-of and multi-world relations.

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 281

Markines et al. [19] evaluate several similarity measures, including matching similarity,

overlap similarity, Jaccard similarity, Dice coefficient, cosine similarity, and mutual informa-

tion, using a more systematic approach. They evaluate the performance of these measures by

generating several two-dimensional views on the tripartite data gathered from BibSonomy.org.

Their initial dataset contained 128,500 resources, 1,921 users, and 58,753 tags. However, for

the evaluation, the initial dataset is reduced to the tags that occur in WordNet (17,041 tags)

and the 2000 most popular resources. The two-dimensional view is generated by using several

aggregation methods. An important difference between BibSonomy.org and Flickr is that in

Flickr only one user can tag a resource. Therefore, for Flickr data only projection aggregation

is useful. The result of projection aggregation can be seen as a matrix with binary elements

wrt ∈ {0, 1} where rows correspond to resources and columns corresponds to tags. Given a

resource and a tag, a 0 in a matrix cell means that no user associated that resource with that

tag, whereas a 1 means that at least one user has performed the indicated association. All

similarity measures can then be derived directly from this information.

The evaluation of the various tag-tag similarity measures in the previous study is done

using Kendall τ correlations between the similarity vectors generated by the various measures

and a reference similarity, given by the Jiang-Conrath distance [15] between terms in WordNet.

The outcome of this evaluation is that mutual information is the best similarity measure when

using projection aggregation. The remaining similarity measures have the same performance

when compared to each other. However, because mutual information is a computationally-

intensive measure, its use is unfeasible for large data sets.

We use the algorithm of Specia and Motta [28] as a starting point and improve upon it by

adapting their heuristics for merging clusters. We also build upon the idea of using a fuzzy

clustering technique to improve the results of syntactic clustering, as proposed by Echarte

et al. [12]. For our experiment we use a large dataset that contains more resources than

previously used in similar research.

2.3 Evaluation

In the literature different measures have been used to evaluate clusters. Larsen and Aone [16]

describe the precision measure. Average precision is defined as follows:

AP(Ω, C) =
1

|Ω|
∑
wk∈Ω

max
cj∈C
|ωk ∩ cj |

|wk|
(1)

where Ω = {ω1, ω2,, ωk} is the set of computed clusters and C = {c1, c2,, cj} is the set

of desired clusters. We interpret ωk as the set of tags in ωk and cj as the set of tags in cj .

Manning et al. [18] present the purity measure to evaluate clusters. They define purity as

follows:

purity(Ω, C) =
1

N

∑
wk∈Ω

max
cj∈C
|ωk ∩ cj | (2)

where Ω and C are the same as in the previous equation and N is the total number of tags

in Ω (including duplicates). We use these two measures to evaluate the different clustering

techniques.

282 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

3 Framework Design

To address the issues mentioned in the introduction, we propose to use the Semantic Tag

Clustering Search (STCS) framework. The framework consists of two distinct layers: remov-

ing syntactic variations and finding semantically related tags. In the first layer we address

syntactic variations of tags, like misspellings and morphological variations. These variations

are eliminated by creating clusters of tags that are syntactic variations of each other and

assigning a label, i.e., a unique tag, to each cluster. The second layer of the framework ad-

dresses the problem of identifying semantically related tags. In this section we first define

the problem formally. Then, we give the used similarity measures and present the STCS

framework.

3.1 Problem Definition

The input for the framework is the data set that is defined as a tuple D = {U, T, P, r},
where U , T , and P are the finite sets of users, tags, and pictures, respectively. The ternary

relationship r ⊆ U×T×P specifies the initial annotations of the users. The problem definition

for the two distinct layers of the STCS framework is discussed below in separate sections.

3.1.1 Removing Syntactic Variations

To make the detection of semantically related tags effective, it is useful to first remove syntactic

variations of tags from the data set. Syntactic variations are usually misspellings of words,

but may include translations of tags in other languages or morphological variations. An

example of a syntactic variation, in which one of the tags is the plural form of the other tag

is “nutcracker” and “nutcrackers”.

To remove these syntactic variations we create a set of tag sets T ′ ⊂ P(T). Each element

of the set T ′ is a cluster that contains all tags that are syntactic variations of each other

under the condition that each tag can only appear in one cluster. To determine the label of

a cluster, we define m′ which is the bijective function that indicates a label for each x ∈ T ′,

m′ : T ′ → L. For each l ∈ L and some x ∈ T ′, l ∈ x holds, thus, l is one of the tags from

cluster x that is selected as the label.

3.1.2 Finding Semantically Related Tags

The second layer of the framework aims at creating clusters of tags that are semantically

related. For this purpose, we define a set T ′′ in which each element is a cluster of elements

l ∈ L. By only clustering tags that are labels of syntactic clusters we disregard the syntactic

variations in the semantic clusterings. An example of a semantic cluster is {“necklace”,

“bracelet”, “earrings”, “beads”}. A tag can be part of multiple clusters, each with a different

meaning. An example that presents the different types of clusters can be seen in Fig. 1.

3.2 Similarity Measures

In this section we discuss the similarity measures used in the framework, i.e., the Levenshtein

distance, variable cost Levenshtein distance, and cosine similarity.

3.2.1 Levenshtein Distance Measure

The Levenshtein distance [17] measures the amount of typographic difference between two

strings, which is also called the edit distance. The Levenshtein distance between two strings

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 283

parijs

paris

syntactic cluster

notre

dam

notre

dame

syntactic cluster

semantic cluster

hunch

back

hunch

bak

syntactic cluster

semantic cluster

Fig. 1. Example of syntactic and semantic clusters

is defined by the minimum number of edit operations needed to transform one string into the

other. An operation is defined as an insertion, deletion, or substitution of a single character.

For example, the Levenshtein distance between ‘pair’ and ‘stairs’ is 3, since the following

three edit operations change one string into the other, and it is not possible to achieve this

result with fewer than three edits:

1. pair → spair (insert of ‘s’ at the beginning)

2. spair → stair (substitution of ‘p’ for ‘t’)

3. stair → stairs (insert ‘s’ at the end).

We denote this distance by alvij , which is the absolute Levenshtein distance between tag i and

j because it does not considers the length of the strings. One can argue that a Levenshtein

distance of three is more significant if the edit distance between two strings of 5 characters

than if both strings consist of 12 characters.

The framework needs to be able to deal with varying tag lengths as shown above, that is

why we use the normalized Levenshtein similarity, which is a measure that is relative to the

tag length. The normalized Levenshtein similarity between tag i and j, denoted by lvij , is

defined as

lvij = 1− alvij
max(length(ti), length(tj))

(3)

3.2.2 Variable Cost Levenshtein Distance Measure

The traditional Levenshtein distance assumes that each insertion, substitution, or deletion of

a character has the same contribution with regards to the overall cost, i.e., each operation

adds to the distance a fixed amount of cost. This approach produces limited results when

aiming to identify syntactic variations. The addition of an ‘s’ at the end of a word, to create

the plural form of the word, contributes less to the distance between two words than replacing

an ‘a’ with a ‘u’ somewhere in the middle of a word. Inspired by the fuzzy similarity measure

proposed by Echarte et al. [12], we propose the Variable Cost Levenshtein distance, denoted

by avclvij , which addresses this previously identified problem. Unlike Echarte et al. we use

a clustering algorithm instead of a fuzzy finite state automaton for computing syntactical

variations. We also use different costs for different operations and combine the variable cost

Levenshtein with the cosine similarity. We define the variable cost based on the following

heuristic rules:

284 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

Parameter
Rule 1

Parameter
Rule 2

Parameter
Rule 3

Precision Recall F-measure

0.5 0.5 100 0.88 0.88 0.88
0.5 0.5 50 0.88 0.88 0.88
0.5 0.5 10 0.88 0.88 0.88
0.5 0.5 5 0.88 0.88 0.88
0.5 0.5 3 0.87 0.88 0.87
0.5 0.5 2 0.82 0.88 0.85
0.5 0.5 1 0.72 0.88 0.79
0.5 0.5 0.5 0.50 0.88 0.64

0.5 1.0 100 0.87 0.88 0.87
0.5 0.75 100 0.87 0.88 0.87
0.5 0.5 100 0.88 0.88 0.88
0.5 0.25 100 0.87 0.88 0.87
0.5 0 100 0.87 0.88 0.87

1 0.5 100 0.87 0.73 0.79
0.75 0.5 100 0.87 0.86 0.86
0.5 0.5 100 0.88 0.88 0.88
0.25 0.5 100 0.87 0.89 0.88

0 0.5 100 0.88 0.78 0.83
Fig. 2. Performance of the Variable Cost Levenshtein Distance

1. The addition of a ‘s’ at the end of a word costs 0.5.

2. An operation involving a non-alphanumerical character costs 0.5.

3. An operation involving two numerical characters costs 100.

4. Any other operation costs 1.

We have tested these rules on a sample dataset with 1100 tags that contain syntactical

variations and found this combination of rules and costs to provide good precision and recall

results on our sample without making the measure too complex and thus slow. Because we

wanted to reduce the cost of the operations considered by rule 1 and 2, for these rules we

evaluated all values between 0 and 1 with a step of 0.05. For rule 3 we evaluated all values

between 0 and 200 with a step of 0.1 for values between 0 and 1 and a step of 1 for values

between 1 and 200. Table 2 provides an overview of the performance of this measure when

using a threshold of 0.7, which was, using a hill-climbing procedure, found to be the optimal

threshold.

The rationale behind rule 1 is that tags are often used in both the singular and the

plural form like ‘car’ and ‘cars’. The rule should ensure that these syntactic variations are

marked correctly. The second rule aims at identifying syntactic variations that make use

of non-alphanumerical characters as hyphenation, e.g., ‘high-speed’ and ‘highspeed’. In our

experiments we found that the Levenshtein distance causes many errors when trying to identify

syntactic variations in tags with numerical characters. To address this problem we have

introduced rule 3. Numbers in tags often represent precise meanings like dates. We found

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 285

Collect data and

clean data set

Cleaned data

set U × T × P

Syntactic clustering based
on various similarity

measures

Map syntactic variations

to tag labels

Filtered data

set U × L × P

Semantic clustering

of tag labels

Remove syntactic variations Find semantically related tags

Semantically

clustered

data

Search Engine /

Evaluation Application

Fig. 3. Overview of the framework

the Levenshtein distance produced a lot of errors with these type of tags because often there

is a large difference in meaning between two tags while there is only a single number that

is different. Consider the two tags ‘23062009’ and ‘23012009’ for example. The normalized

Levenshtein similarity between these two strings is 0.875 which is relatively high while these

strings do not represent syntactic variations. Finally, rule 4 applies the traditional Levenshtein

cost to all other operations. The normalized variable cost Levenshtein similarity between tag

i and j, denoted by vclvij , is defined in Equation 4.

vclvij = 1− avclvij
max(length(ti), length(tj))

(4)

3.2.3 Co-occurrence Data and the Cosine Similarity

To measure the semantic relatedness between tags and the syntactic similarity of short tags,

we utilize the cosine similarity measure based on co-occurrence vectors of tags. This measure

essentially describes the similarity of the context in which two tags appear. We define the

context of a tag by measuring how often the tag is used together with other tags, called the

tag co-occurrence. The cosine similarity between two tags measures to what extent the two

tags have a similar context by comparing the co-occurrence vectors of these tags.

3.3 STCS Framework

In this section we discuss the two layers of the framework in detail. An overview of the

framework is presented in Fig. 3.

286 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

3.3.1 Removing Syntactic Variations

For the detection of syntactic variations we have selected the Levenshtein similarity measure

because related work shows it performs better in detecting syntactic variations than the

Hamming distance measure [11]. Later research [12] suggests that a fuzzy based similarity

measure that uses variable costs performs better in identifying syntactic variations than the

Levenshtein distance. Therefore, inspired by this work, we use the normalized variable cost

Levenshtein similarity (vclvij) that we have previously described in this paper. Because the

Levenshtein distance does not perform well for short tags, we use two alternative measures

that combine the cosine similarity, first, with the normalized Levenshtein similarity and,

second, with the normalized variable cost Levenshtein similarity, respectively.

The measure combining the cosine similarity and the normalized Levenshtein similarity

(CosLevij) is defined as follows:

CosLevij = zij × lvij + (1− zij)× cos(i, j) (5)

where

zij =
max(length(ti),length(tj))

maxtk
(length(tk)) , with ti, tj , tk ∈ T . (6)

Using the normalized Levenshtein similarity for short tags may result in false positives, i.e.,

two tags being incorrectly identified as syntactic variations of each other, e.g., ‘cat’ and ‘cut’.

To address this problem the weight in the equation of the cosine similarity between two tags

increases as the tags become shorter.

Initial experiments with the variable cost Levenshtein showed that a lower weight for the

cosine similarity and a higher weight for the variable cost Levenshtein similarity improved the

precision of the syntactic clustering. We therefore used a sample of 1100 tags with syntactic

variations to determine a weight distribution that improves the recall and precision of the

found syntactic variations. Based on these experiments we define the measure combining the

cosine similarity with the variable cost Levenshtein similarity measure as follows:

CosVarLevij = (1− vczij)× vclvij + vczij × cos(i, j) (7)

where

vczij = max(0, 0.3− max(length(ti),length(tj))
maxtk

(length(tk))) (8)

with ti, tj , and tk ∈ T .

For our data set, where the length of the longest tag in the data set is 32, this second

combined measure only uses the cosine similarity when the length of the longest tag of the two

tags is less than 10 characters. If the longest of the two strings contains 10 or more characters

the measure fully relies on the normalized variable cost Levenshtein similarity and the cosine

similarity is disregarded. The weight of the cosine similarity as related to the length of the

longest of the two tags is depicted in Figure 4.

The framework uses an initial set of tag pairs with a normalized Levenshtein similarity

or normalized variable cost Levenshtein similarity above a certain threshold α as input for

the algorithm that removes syntactic variations. The α threshold represents the minimum

similarity for which we consider two tags to possibly be syntactic variations of each other. This

threshold is used to disregard tag combinations that are unlikely to be syntactic variations.

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 287

The initial list is used to create sets T and E as input to construct an undirected graph.

The set T contains each unique tag from the input list. The set E is a set of weighted edges

between the nodes in T , where the weight represents the similarity between corresponding

tags as given by one of the two previously stated similarity measures.

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

!"&#

! % ' () $!

!"
#$
%&

'(
&$
)*
+

,&%)+*'"-'+*&'."%)&#+'+/)

Fig. 4. The distribution of the cosine weight

To build the graph, all the elements from set T are first added as nodes to the graph.

Next, all the edges from set E that have a weight above a certain threshold β are added to

the graph, connecting the nodes from set T . A node is considered a syntactic variation of

another node when there is an edge connecting the two nodes with a weight higher than β.

The syntactic clusters can then be obtained by retrieving the connected components in the

graph as sets of vertices. A connected component is defined as a maximal subgraph in which

all pairs of vertices in the subgraph are, directly or indirectly, reachable from one another.

Each subgraph then contains all the nodes (tags) that are syntactic variations of each other

and thus forms a cluster of syntactic variations. An example of some resulting subgraphs

(clusters) is presented in Fig. 5 with each node containing a unique tag.

We utilize this data to create a new data set in which the tags from each cluster are

aggregated and presented as a single tag, which we call the label for the cluster. The tag from

a cluster that is used most frequently in the data set is selected as the label of that cluster.

whale Colloseum

coliseumwhales

coloseum

trees

tree

Fig. 5. An example of graph containing three subgraphs (clusters)

288 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

The resulting data set is used as input for the semantic clustering algorithm. An example of

a syntactic cluster is shown in Table 6. The tag on the first row is the label for the cluster.

holland
hollande
hollandia
hollands
holanda
hollanda
holandia

Fig. 6. An example of syntactic variations

3.3.2 Clustering Semantically Related Tags

After the syntactic variations and misspellings have been removed from the dataset, the new

dataset can be used to effectively construct semantic clusters. The Clustering by Commit-

tee [24] partitional clustering algorithm used by Specia and Motta [28] is employed for this

purpose, both with and without some modifications. The algorithm was selected because it

uses all tags instead of the cluster centroid as other partitional algorithms (e.g., k-means) do

in order to calculate the similarity between two clusters. The algorithm also allows for a tag

to appear in multiple clusters, representing thus its different meanings.

The algorithm first creates initial clusters where each tag is a separate cluster. Then all

the tags for which the average cosine similarity with respect to all the tags in each cluster is

above a certain threshold (χ) are added to the cluster. This often results in many identical or

nearly identical clusters. Therefore, Specia and Motta utilize two smoothing heuristics that

merge very similar and redundant clusters. For each combination of two clusters the algorithm

checks if one cluster contains the other, i.e., if all the elements in the smaller cluster are also

part of the larger cluster. If this is the case, the smaller cluster is removed. For each pair of

clusters the algorithm also evaluates how similar the clusters are in order to merge clusters

that are very similar. This is done by checking if the number of unique tags in the smaller

cluster (with respect to the larger cluster), represents less than a fixed percentage of the

number of tags in the smaller cluster. If this is the case the tags in the smaller cluster that

do not occur in the larger cluster are added to the larger cluster and the smaller cluster is

removed.

The problem with the second heuristic is that the percentage used for merging two similar

clusters is fixed. Therefore, the minimum required number of different elements increases

with the size of the smaller cluster. This is a problem because it makes it difficult to select

a threshold for which the larger clusters do not merge too easily and the smaller clusters

too difficultly. The minimum number of different elements for two clusters to prevent being

merged, is given by the following function: f(|c|) = bε · |c|c where ε is the threshold and |c|
is the number of elements in the smaller cluster. So for ε = 0.40 and |c| = 30, the minimum

number of different elements is given by f(30) = 12. This means that cluster c will be merged

into a larger cluster C, if |D| ≤ 12 where D = c − C. Since f(2) = 0, a cluster with a size

smaller than 3 is never merged.

To address the above described problem, we utilize two new heuristics, instead of the

second heuristic. The first new heuristic considers the semantic relatedness between the large

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 289

cluster and the cluster difference between the small and the large cluster. The second new

heuristic considers the size of the difference between two clusters relative to the size of the

smaller cluster in combination with a dynamic threshold.

The first new heuristic merges two clusters C and c where |C| ≥ |c| when the average

cosine between all elements in cluster difference D and the elements in the large cluster is

above a certain threshold δ. This average cosine is defined as:

Average cosine =
∑
d∈D

Avgd
|D|

(9)

where:

Avgd =
∑
x∈C

cos(x, d)

|C|
(10)

The second new heuristic merges two clusters when the normalized difference between the

clusters is smaller than the new dynamic threshold ε. The normalized difference η is defined

as:

η =
|D|
|c|

(11)

Threshold ε is defined as:

ε =
φ√
|c|

(12)

thus:

f(|c|) = bε · |c|c = bφ ·
√
|c|c (13)

The distribution of the maximum allowed difference for which two clusters are merged can

be optimized by changing φ. If any of the three heuristics (the first old heuristic and the two

new heuristics) are fulfilled we merge the considered clusters.

4 Framework Implementation

In this section we present our implementation of the framework described in the previous

section. First we discuss the data collection and processing. Then, we describe the imple-

mentation of the two framework layers, i.e., removing syntactic variations and identifying

semantic clusters. The implementation of the framework is done in Java in combination with

a MySQL database. For data collection and processing we used PHP scripts.

4.1 Data Processing

In this section we discuss the collection of our data set. We also explain which data processing

steps we have performed in order to obtain the data set that we used for the evaluation.

4.1.1 Data Collection

We gathered data from the popular picture sharing website Flickr.com for our experiments.

For the original data set we collected all the (public) pictures uploaded to Flickr in 2009,

together with their associated tags and users. To speed up the data collection we distributed

the process over four machines. Our initial data set contained 38,788,518 pictures, 1,017,168

tags, and 196,344 users. To make the data set suitable for our experiments we performed a

data cleaning operation.

290 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

4.1.2 Data Set Cleaning

After gathering the data we used a few procedures to clean it. Flickr has very few restrictions

for users with regards to how they tag their pictures, which is a source of noise in our data

set. We applied the following cleaning steps in the order in which they are listed:

(1) Remove tags with a tag length larger than 32 characters.

The data set contained tags consisting of multiple tags or words without spaces

that formed complete sentences. These were removed as we solely want individual

tags (words) in our data set.

(2) Remove tags containing unrecognizable signs.

Non-Latin characters (like Arabic or Cyrillic signs), signs which are not part of

the Latin alphabet or of the numeric signs, are removed because it is impossible

for us to evaluate the resulting clusters.

(3) For each user, remove images with identical tag strings.

One of the problems we encountered in our data set was the presence of hundreds

of pictures uploaded by the same user with identical tags. These were, for ex-

ample, sets of holiday pictures annotated with identical tags, often unrelated to

the picture. Someone would for example tag hundred pictures of a trip to France

with ‘eiffeltower’ and ‘beach’ simply because some of the pictures contained the

Eiffel Tower and others pictured a beach. To prevent these sets from influencing

the co-occurrence measure, and in the end our clustering results, we only kept one

arbitrary picture of each of these sets and removed the others.

(4) Remove tags which occur in less than 133 different pictures.

We used the statistic Q1−1.5×IQR to identify outliers and found that tags which

were used less than 133 times should be considered as outliers. We do not remove

frequently occurring tags, because these offer valuable information.

After the initial cleaning the data set contained 147,064,188 associations, 31,951,884 co-

occurrence pairs, and 97,569 tags.

4.1.3 Calculating Cosine Similarity

In order to calculate the cosine similarity between two tags, the co-occurrence vector for

each tag is required. We obtain these vectors by constructing a matrix, with both a row

and a column for each tag, in which the cells contain the co-occurrence for that particular

combination of tags. We used the matrix data structure from the Colt library [2] to store the

co-occurrence matrix because it only stores non-zero values in memory, resulting in a small

memory footprint. Even though Colt is designed for large matrices, it was unable to handle

the large size of our data sets. We addressed this problem by implementing our own high

performance matrix library on top of Colt, which utilizes a Colt vector to store each column

of the matrix. This means that in our implementation a matrix with n columns utilizes n Colt

vectors, each representing a column. We used this matrix to calculate the cosine similarity

for each unique combination of two tags in our data set.

Using the previous matrix representation we encountered two problems. First the matrix

was very large in size and the machines we had available, which contained up to 6 GB

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 291

RAM, did not have enough memory available to store the matrix. The second problem we

encountered was that the number of calculations we needed to perform was very large and it

would take a single machine infeasibly long to complete them. We tried to address the first

problem by storing the part of the matrix the algorithm was currently operating on in memory

and the rest on the hard drive, loading the required parts from the hard drive just-in-time

for the needed computations. This made each calculation a lot slower making our second

problem larger, because the total required computation time increased.

Both previously described problems were addressed by utilizing the cloud computing ser-

vice Amazon EC2 [3]. We implemented the algorithms in a distributed architecture and

executed them in parallel on multiple Amazon EC2 high memory instances each having 17.1

GB RAM and thus being capable to load the entire matrix in memory. Using Amazon’s

auction system we placed bids on the overcapacity in their system. Based on our bids, other

bids, and available oversupply, the number of instances running in parallel was updated ev-

ery 30 minutes automatically. The total number of instances running in parallel fluctuated

trough time between 3 and 52 instances. Due to the use of the α threshold, for the syntactic

clustering we performed 5,829,400 cosine similarity computations using 16 computing hours.

The computations were finished by the Amazon EC2 system in 2.5 hours.

In order to reduce the time required for the cosine calculations for the semantic cluster-

ing process, we only considered the 10,000 most popular tags for the semantic clustering.

However, we made sure that the co-occurrence information of these tags compromises all the

information provided by the associations made in 2009 that contain one of these 10,000 tags

(approximately 72% of the total amount of associations). For the semantic clustering we per-

formed 150,000,000 cosine similarity computations in 33 hours using 192 computing hours.

When Amazon EC2 launched a new instance our software was automatically started. The to-

tal of 150,000,000 cosines is needed because there are three syntactic clustering methods used

in the semantic clustering (normalized Levenshtein, normalized Levenshtein + cosine, and

variable cost Levenshtein + cosine) and each syntactic clustering method requires 50,000,000

cosines to be computed (3 × 50,000,000 = 150,000,000). The reason why each syntactic

clustering method that relies on the cosine similarity requires the 50,000,000 cosines to be

computed is that it is the number of cosine combinations in the upper (or lower) triangular

matrix of tag combinations, i.e., (10,000× 10,000− 10,000)/2 = 50,000,000.

Each Amazon EC2 instance loaded the full matrix from the disk in RAM and connected

to a central job server which coordinated each instance to perform a distinct portion of the

calculations. When an instance finished its computations, it sent the results back to the job

server which updated the central MySQL database with the results and sent a new job to the

instance. An overview of this process can be seen in Fig. 7.

The disadvantage of using the overcapacity in the Amazon EC2 system is that the instances

can be terminated at any moment. Therefore, there was a risk that the job server would

receive corrupted results from an instance which was terminated while sending the results of

its computations back to the job server. To address this issue we had a validation program

running on the job server which validated the incoming results by verifying if each result

contained two tag id’s and a cosine similarity and by checking if the number of returned

results matched the number of calculations in the job the instance was working on. If there

was a mismatch the results were disregarded and the job was rescheduled to be calculated by

292 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

Job Server Amazon EC2 Instances

1. job request

2. job

MySQL DB Server

4. results

3. results

Fig. 7. Overview of the distributed calculations process

a different instance.

4.1.4 Calculating (Variable Cost) Levenshtein Distance and the Combined Measure

We used the SimMetrics [4] library to perform the Levenshtein Distance measure calculations

because it provided an efficient and easy to use implementation of this measure. We then

modified the SimMetrics library to support the variable cost Levenshtein Distance measure.

We did not encounter any performance problems and applied the calculation to every cell

of our co-occurrence matrix storing the resulting values in a MySQL database. Finally we

used a Java program which operated on the database with the precomputed cosine similarity

measure and Levenshtein measure to compute the combined measure.

4.2 Removing Syntactic Variations and Semantic clustering

We used the Java Universal Network/Graph Framework (JUNG) [5] graph library to store the

graph used by the algorithm that performed the syntactic clustering. We chose this library

because it provides an efficient and easy to use method to retrieve the sets of connected

components, in our case clusters, from a graph. The graph was populated by loading the

nodes and edges from the MySQL database in which we also stored the resulting syntactic

clusters. We used a separate Java program operating on this database to aggregate the co-

occurrence information of the tags identified as syntactic variations. The semantic clustering

algorithms are also implemented in Java.

5 Results and Discussion

In this section we present the experimental results obtained using the framework implemen-

tation. In the next sections, we discuss the evaluation of each of the two framework layers,

i.e., removing syntactic variations and identifying semantic clusters.

5.1 Removing Syntactic Variations

We chose α = 0.5 as a threshold for the normalized (variable cost) Levenshtein similarity to

identify potential syntactic variations. We obtained this value using a sample of 100 tag pairs

that were known to be syntactic variations. We found that the normalized (variable cost)

Levenshtein similarity between these tag pairs was never smaller than 0.5. The goal of this

threshold was to reduce the number of potential syntactic variations for which the calculation

of the cosine similarity was required. A value of 0.5 effectively reduced this number without

possibly losing syntactic variations.

For the identification of syntactic variations we evaluated the following similarity measures:

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 293

• normalized Levenshtein similarity;

• normalized variable cost Levenshtein similarity;

• measure combining the normalized Levenshtein similarity with the cosine similarity,

called CosLev;

• measure combining the normalized variable cost Levenshtein similarity with the cosine

similarity, called CosVarLev.

For each of these measures the β thresholds that we have used can be found in Table 8. We

have chosen these values because they resulted in the best precision on random samples of

100 clusters. For this threshold we tried all values between 0 and 1 with a step of 0.1 and all

values between 0.85 and 0.95 (where the best results were found) with a step of 0.025. For

the evaluation of each value we drew a random sample of 100 clusters (our training set).

Similarity measure β
normalized Levenshtein 0.7

variable cost Levenshtein 0.875
CosLev 0.7

CosVarLev 0.85
Fig. 8. Similarity measures and the β threshold

We evaluated the performance of the different measures by drawing a different random

sample of 100 clusters (our test set) for each measure and evaluating these manually. The

evaluation of each cluster in the random samples was done using majority voting with a group

of 3 users. Each person in the group chose the number of correct tags in a cluster and majority

voting is then used to determine the final number of correct tags that is used in the precision

and purity calculations. The results of this evaluation can be found in Table 9, which shows

the average precision and the purity measure for the clusters obtained using each of the four

similarity measures.

By performing a one-tailed unpaired unpooled two sample t-test with a significance level

of 0.05, we can conclude that the measure combining the normalized Levenshtein similarity

with the cosine similarity (CosLev) performs significantly better than the normalized Leven-

shtein similarity alone in terms of precision per cluster. The associated p-value for this t-test

is 0.0001. In the same way, we can conclude that the measure combining the normalized vari-

able cost Levenshtein similarity with the cosine similarity (CosVarLev) performs significantly

better than the normalized variable cost Levenshtein similarity alone. The associated p-value

is 0.03. With a p-value of 0.02, we can also conclude that the CosVarLev measure performs

significantly better than the CosLev measure. Because the combined measures resulted in the

best performance, we used these measures to identify the syntactic variations before moving

on to the semantic clustering layer. Using the CosLev similarity measure resulted in the

identification of 9,373 syntactic variations, while the CosVarLev measure identified 13,750

syntactic variations.

Some examples of resulting clusters with syntactic variations are presented in Table 10.

The tags on the first row are the labels for the clusters. For the cluster ‘kitten’ we can see

that it contains the plural form (‘kittens’). Also, we observe that the cluster ‘polizei’ contains

syntactic variations that are translations in various languages, e.g., ‘politie’ and ‘polis’.

294 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

Similarity Average Purity
measure precision

normalized Levenshtein 0.70 0.67
variable cost 0.89 0.84
Levenshtein

CosLev 0.89 0.88
CosVarLev 0.94 0.92
Fig. 9. Similarity measures performance

kitten piccadilly polizei
kittens picadillycircus politi
kitty picadilly polizia
kittie piccadillycircus politie
kitties policia
kitteh polis

poliisi
policja

Fig. 10. Examples of clusters with syntactic variations

5.2 Finding Semantically Related tags

For the evaluation of the semantic clustering process, we have experimented with different

combinations of similarity measures used for the syntactic clustering process and clustering

methods used for the semantic clustering process. An overview of these combinations can be

found in Table 11.

Method Similarity Algorithm
used for used for

syntactic semantic
0 normalized Specia and Motta

Levenshtein w/ original heuristics
1 CosLev Specia and Motta

w/ original heuristics
2 CosLev Specia and Motta

w/ new heuristics
3 CosVarLev Specia and Motta

w/ new heuristics
Fig. 11. Clustering methods

All semantic clustering algorithms use the cosine similarity based on co-occurrence vectors

as a similarity measure. For the different semantic clustering methods we choose the thresholds

as displayed in Table 12. We have selected these thresholds because they resulted in the

highest precision on random samples of 50 clusters (our training set). For each threshold we

drew a separate random sample for all values between 0.1 and 0.9 with a step of 0.1. For

the evaluation of the clusters in these random samples we again used majority voting with a

group of 3 users. For the chosen thresholds we used majority voting and a different random

sample of 100 clusters (our test set) for each method to calculate the average precision and

purity, which can be found in Table 13.

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 295

Method # χ δ φ ε
0 0.8 – – 0.2
1 0.8 – – 0.3
2 0.8 0.7 0.9 –
3 0.8 0.7 0.7 –

Fig. 12. Thresholds used

Method # Average Purity
precision

0 0.75 0.73
1 0.80 0.78
2 0.86 0.89
3 0.93 0.92

Fig. 13. Evaluation results

Again we performed a one tailed unpaired unpooled two sample t-test with a significance

level of 0.05. From this, we can conclude that the methods using the new heuristics (methods

2 and 3) perform significantly better than the original Specia and Motta method (method

0) in terms of precision per cluster. The p-values for these tests are 0.0007 and 0.00007,

respectively. With a p-value of 0.04 we can also conclude that, when using the CosLev

similarity for the syntactic clustering, and using the new heuristics for the semantic clustering

algorithm (method 2) significantly improves the precision per cluster when compared to using

the original heuristics for the semantic clustering and CosLev for syntactic clustering (method

1). Last, we can conclude, based on a p-value of 0.01, that using the CosVarLev similarity

for the syntactic clustering phase (method 3) significantly improves the precision per cluster

of the semantic clustering algorithm when compared to using the CosLev similarity for the

syntactic clustering phase (method 2).

5.3 Picture Search Engine

To evaluate if the proposed clustering methods improve the search and exploration of tag

spaces, we have built a picture search engine. The picture search engine allows users to

search our entire data set using one of the previously defined clustering methods. Users can

enter a query consisting of one or multiple tags separated by spaces. After submitting a query,

the results are presented to the user. Any additional information provided by the clustering

algorithms is presented in the left column on the results page. An image of the results page for

the query ‘surf’ is shown in Figure 14. In this image we can see on the left side the identified

clusters for the query ‘surf’. We now first explain how the search engine works and then we

present the results of the evaluation using the search engine.

5.3.1 Implementation

The picture search engine processes user queries by querying our entire dataset of 38,788,518

images using any of the 97,568 tags from our filtered data set. The user can choose from the

different clustering methods available which are “Original”, “Original + CosLev”, “Modified

+ CosLev” and “Modified + CosVarLev”. “Original” is the original method as proposed

by Specia and Motta, which uses the normalized Levenshtein similarity for the syntactic

296 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

Fig. 14. The results page for the query ‘surf’

clustering. “Original + CosLev” is the original semantic clustering algorithm as proposed by

Specia and Motta enhanced with the CosLev combined measure for syntactic clustering. The

“Modified + CosLev” option utilizes the modified version of the Specia and Motta algorithm

and the CosLev measure for the syntactic clustering. Finally the “Modified + CosVarLev”

option uses the modified Specia and Motta algorithm and the new combined measure which is

based on the variable cost Levenshtein and cosine similarity to perform syntactic clustering.

Retrieving and Sorting the Results The search engine uses a relatively straightforward

approach to retrieve and sort the results of a query. To retrieve the results of a query the

system checks which images have been tagged with the keywords in the query. These pictures

are sorted based on the cosine similarity between the query tags and the image tags. For

equal cosine values, these pictures are then sorted based on the number of views each picture

received on Flickr.com in the period before we retrieved our dataset from Flickr.

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 297

Syntactic Variations When a users enters a tag that we have identified as a syntactic

variation, the system automatically replaces this tag internally with its label. This means

that when a users searches for ‘holanda’, the system will also include pictures tagged with

‘holland’, ‘hollande’, ‘hollandia’, ‘hollands’, ‘hollanda’ and ‘holandia’ in the result. This

improves the search results because it allows the system to correct for syntactic variations

and possibly show more relevant results, i.e., it improves recall.

Semantic Clusters When the system detects that a particular tag is part of multiple

clusters, these clusters are presented to the user in addition to the results of the query. The

user can select a specific cluster which is utilized by the system to reorder the results of the

query showing more relevant results, based on the selected cluster, first. When a user selects

a specific cluster the search engine sorts the resulting images descending based on the cosine

similarity between the tags assigned to each image and the tags in the chosen cluster. This

feature allows the user to obtain more relevant results when searching for a picture using a

tag that has multiple meanings. We define the cosine similarity between an image y and a

cluster x as follows:

cos(x, y) =
x · y
‖x‖‖y‖

(14)

where x is the tag vector of the image, which contains a binary value for each tag which is 0

if the tag has not been associated with the image and 1 if the tag has been associated with

the image, and y is the tag vector of the cluster which contains a binary value for each tag

which is 0 if the tag is not part of the cluster and 1 if the tag is part of the cluster. When a

query contains multiple tags that each are present in separate clusters, the system enables the

user to select one of the available clusters for each tag. To sort the results of this query the

cosine similarity between each image and each individual selected cluster is calculated and

the images are sorted descending based on the average cosine similarity between the images

and the clusters.

Related Tags When a tag occurs in a single semantic cluster we utilize this cluster infor-

mation to provide the user with a list of related tags. The user can select one of the related

tags to explore related pictures. When a related tag is selected the system shows the results

for this related tag. If the original query consists of multiple tags, a query tag can be replaced

by its related tag. This feature is useful for example when the results of a query do not

provide the user with any results. The list of related tags can then assist the user in finding

results for similar queries. Such a feature can also be useful when there are too many results.

By selecting a related tag, the user has to browse through a smaller selection of pictures.

5.3.2 Evaluation

The evaluation of the search engine is done using a random sample of 50 tags. Again majority

voting with a group of 3 users is used. For the evaluation of the syntactic variations detection

we use these 50 tags as queries and determine the precision for the first 20 results (P@20). We

also compute the mean average precision (MAP) using samples of the first 20 results for each

query. We measure recall by counting the number of correctly retrieved pictures among the

first 20 results. Better identification of syntactic variations should lead to a higher average

P@20 and higher mean average precision, because the search algorithm can include more

298 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

correct syntactic variations of the entered query in the search. The results of this evaluation

can be seen in Table 15.

Similarity Average MAP Average #
measure P@20 images

correctly
retrieved

normalized 0.84 0.87 16.74
Levenshtein

CosLev 0.86 0.88 17.1
CosVarLev 0.92 0.93 18.28

Fig. 15. Syntactic variation detection

By performing a one tailed paired t-test with a significance level of 0.05 we can conclude

that the CosVarLev similarity measure significantly improves the precision P@20 when com-

pared with the normalized Levenshtein similarity. The associated p-value is 0.01. These re-

sults partly confirm the syntactic clustering evaluation conclusions from Section 5.1. However,

from this small sample we cannot conclude the CosVarlev similarity significantly improves the

P@20 when compared with the CosLev similarity or that the CosLev similarity significantly

improves the P@20 when compared with the normalized Levenshtein similarity.

To evaluate the effect of the different semantic clustering methods mentioned in Section 5.2

on the searching and retrieving of pictures we use a set of 16 ambiguous tags as queries. We

evaluate the performance of the techniques by comparing the P@20 and MAP obtained using

the different methods. For this purpose we allow users to select clusters to better specify their

queries and evaluate the results obtained based on the users final selections. The results of

this evaluation can be found in Table 16.

Semantic Average MAP Average #
clustering P@20 images
method # correctly

retrieved
0 0.36 0.41 7.25
1 0.42 0.43 8.31
2 0.53 0.57 10.63
3 0.64 0.65 12.81
Fig. 16. Semantic clustering search evaluation

Because of the non-normality of the data and the small sample size, we cannot use a

t-test. Therefore, we now use the non-parametric Wilcoxon signed rank test for two paired

samples. Using this test with a significance value of 0.05 we can conclude that method 3, in

terms of P@20, performs significantly better than method 0, method 1, and method 2, with

p-values of 0.002, 0.003, and 0.005, respectively. Thus, the new heuristics in combination

with the CosVarLev measure leads to better results than using the original heuristics and the

normalized Levenshtein or CosLev measure.

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 299

6 Conclusion

The main objective of this paper is to propose a method to perform syntactic and semantic tag

clustering. For the syntactic clustering we compare a measure that combines the normalized

Levenshtein similarity and the cosine similarity with a measure that combines the normalized

variable cost Levenshtein similarity with the cosine similarity. Our conclusion is that the

measure using the variable cost Levenshtein similarity and the cosine similarity performs

significantly better with regard to precision than the other measure. Using this measure

the clustering method as proposed in the framework was also able to effectively find more

syntactic variations from the data set.

For the semantic clustering we evaluated the state-of-the-art algorithm proposed by Specia

and Motta [28] both with and without two new heuristics for merging two similar clusters. The

first new heuristic considers the semantic relatedness between the large cluster and the cluster

difference between the small and the large clusters. The second new heuristic considers the size

of the difference with respect to the small cluster in combination with a dynamic threshold.

We also investigate the impact of the different syntactic and semantic clustering methods.

Our conclusion is that the method using the new heuristics and the normalized variable cost

Levenshtein similarity combined with the cosine similarity as a similarity measure for the

syntactic clustering process, significantly outperforms the other methods in terms of precision.

We have also shown that our results are valid on a significantly larger dataset than was used

in similar works (38,738,518 resources).

In the future we would like to experiment with the use of the Wikipedia [6] as a tool to

help identify syntactic variations of tags and to detect different meanings of a tag. Wikipedia

might prove useful because, like tags, the content on Wikipedia is generated by users. This

means that Wikipedia is more likely to (quickly) include new words, new senses of words or

syntactic variations of words than other providers of lexical information, like WordNet [22].

We would also like to investigate how we can further improve the concept of the variable

cost Levenshtein measure. For this purpose we plan to use a machine learning algorithm

to develop a variable cost Levenshtein distance measure. We want to leverage the machine

learning algorithm to estimate for each operation in the Levenshtein algorithm the probability

that this operation constitutes a syntactic variation. As algorithm variables we would like to

consider: the characters involved in the operation, the position of the characters in the string,

the adjacent characters, the length of the strings, and the type of operation, i.e., insert,

substitute, or delete. Additionally, we would also like to experiment with other clustering

methods based on the minimum description length principle [30].

References

1. Flickr Online Photo Sharing Service: http://www.flickr.com.
2. Colt Libraries for High Performance Scientific and Technical Computing in Java: http://acs.

lbl.gov/~hoschek/colt/.
3. Amazon Elastic Compute Cloud (Amazon EC2): http://aws.amazon.com/ec2.
4. SimMetrics Java Library: http://www.dcs.shef.ac.uk/~sam/simmetrics.html.
5. Java Universal Network Graph (JUNG) Framework: http://jung.sourceforge.net.
6. Wikipedia Online Encyclopedia: http://en.wikipedia.org.
7. G. Begelman, P. Keller, and F. Smadja. Automated tag clustering: Improving search and explo-

ration in the tag space. In Collaborative Web Tagging Workshop (WWW 2006), pages 22–26,

300 Improving Search and Exploration in Tag Spaces Using Automated Tag Clustering

2006.
8. C. Cattuto, D. Benz, A. Hotho, and G. Stumme. Semantic grounding of tag relatedness in social

bookmarking systems. In 7th International Semantic Web Conference (ISWC 2008), pages 615–
631. Springer, 2008.

9. A. Dattolo, F. Tomasi, and F. Vitali. Towards disambiguating social tagging systems. In San
Murugesan, editor, Handbook of Research on Web 2.0, 3.0 and X.0: Technologies, Business, and
Social Applications, chapter 20, pages 349–369. IGI Global, 2010.

10. F. Echarte, J.J. Astrain, A. Crdoba, and J. Villadangos. Ontology of folksonomy: A new modeling
method. In Semantic Authoring, Annotation and Knowledge Markup Workshop (SAAKM 2007),
pages 28–31. CEUR-WS, 2007.

11. F. Echarte, J.J. Astrain, A. Crdoba, and J. Villadangos. Pattern matching techniques to identify
syntactic variations of tags in folksonomies. In 1st World Summit on The Knowledge Society
(WSKS 2008), pages 557–564. Springer, 2008.

12. F. Echarte, J.J. Astrain, A. Crdoba, and J. Villadangos. Improving folksonomies quality by
syntactic tag variations grouping. In 2009 ACM Symposium on Applied Computing (SAC 2009),
pages 1226–1230. ACM, 2009.

13. S. Golder and B. A. Huberman. Usage patterns of collaborative tagging systems. Journal of
Information Science, 32(2):198–208, 2006.

14. R.W. Hamming. Error detecting and error correcting codes. Bell System Technical Journal,
26(2):147–160, 1950.

15. J.J. Jiang and D.W. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy.
In International Conference on Research in Computational Linguistics (ROCLING X), pages 19–
33, 1997.

16. B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In
Fifth ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD
1999), pages 16–22. ACM, 1999.

17. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710, 1966.

18. C.D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval. Cambridge
University Press, 2008.

19. B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G. Stumme. Evaluating similarity
measures for emergent semantics of social tagging. In 18th World Wide Web Conference (WWW
2009), pages 641–650. ACM, 2009.

20. A. Mathes. Folksonomies - cooperative classification and communication through shared meta-
data, 2004. Computer Mediated Communication, LIS590CMC (Doctoral Seminar), Gradu-
ate School of Library and Information Science, University of Illinois Urbana-Champaign http:

//www.adammathes.com/academic/computer-mediated-communication/folksonomies.html.
21. D.R. Millen and J. Feinberg. Using social tagging to improve social navigation. In Workshop

on the Social Navigation and Community-based Adaptation Technologies (SNC-BAT 2006) at AH
2006, pages 532–541, 2006.

22. G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. WordNet: An on-line lexical
database. International Journal of Lexicography, 3:235–244, 1990.

23. M.E.J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical
Review E, 69(2):026113, 2004.

24. P. Pantel. Clustering by Committee. PhD thesis, University of Alberta, 2003. http://www.

patrickpantel.com/cgi-bin/web/tools/getfile.pl?type=paper&id=2003/cbc.pdf.
25. J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, F. Hogenboom, and F. Frasincar. Improving the

exploration of tag spaces using automated tag clustering. In Eleventh International Conference
on Web Engineering (ICWE 2011), volume 6757 of Lecture Notes in Computer Science, pages
274–288. Springer, 2011.

26. M. Sanderso. and B. Croft. Deriving concept hierarchies from text. In 22nd ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR 1999), pages 206–213. ACM,

J. Radelaar, A.J. Boor, D. Vandic, J.W. van Dam, and F. Frasincar 301

1999.
27. P. Schmitz. Inducing ontology from flickr tags. In Collaborative Web Tagging Workshop (WWW

2006), pages 206–209, 2006.
28. L. Specia and E. Motta. Integrating folksonomies with the semantic web. In 4th European Semantic

Web Conference (ESWC 2007), pages 503–517. Springer, 2007.
29. J.W. van Dam, D. Vandic, F. Hogenboom, and F. Frasincar. Searching and browsing tag spaces

using the semantic tag clustering search framework. In 4th International Conference on Semantic
Computing (ICSC 2010), pages 436–439. IEEE, 2010.

30. M. van Leeuwen, F. Bonchi, B. Sigurbjrnsson, and A. Siebes. Compressing tags to find interesting
media groups. In 18th ACM Conference on Information and Knowledge Management (CIKM
2009), pages 1147–1156. ACM, 2009.

31. D. Vandic, F. Frasincar, and F. Hogenboom. Scaling pair-wise similarity-based algorithms in
tagging spaces. In 12th International Conference on Web Engineering (ICWE 2012), volume 7387
of Lecture Notes in Computer Science, pages 46–60. Springer, 2012.

32. D. Vandic, J.W. van Dam, and F. Frasincar. A Semantic-Based Approach for Searching and
Browsing Tag Spaces. Decision Support Systems, 54(1):644–654, 2012.

33. D. Vandic, J.W. van Dam, F. Hogenboom, and F. Frasincar. A semantic clustering-based approach
for searching and browsing tag spaces. In 26th Symposium on Applied Computing (SAC 2011),
pages 1693–1699. ACM, 2011.

34. R. Vermaas, D. Vandic, and F. Frasincar. Incremental cosine computations for search and explo-
ration of tag spaces. In 22nd Database and Expert Systems Applications (DEXA 2012), volume
7447 of Lecture Notes in Computer Science, pages 156–167. Springer, 2012.

35. C.A. Yeung, N. Gibbins, and N. Shadbolt. Contextualising tags in collaborative tagging systems.
In 20th ACM Conference on Hypertext and Hypermedia (HT 2009), pages 251–260. ACM, 2009.

