
Journal of Web Engineering, Vol. 13, No.1&2 (2014) 001-023
© Rinton Press

ENHANCED LBS DISCOVERY IN A DECENTRALIZED REGISTRY BASED WEB
SERVICES ENVIRONMENT

MELWYN D’SOUZA V.S. ANANTHANARAYANA

National Institute of Technology Karnataka, Surathkal, India
melwyn_in@yahoo.com anvs@nitk.ac.in

Received August 30, 2012
Revised July 25, 2013

Location Based Services (LBS) is the most happening thing in the mobile industry today. Everybody is
trying to generate revenue from location based services. Mobile phone manufacturers are developing new
smart phones every day and network providers are offering high speed data connections. Several LBS
providers and applications are available in the market but the major problem is service provider
dependency. This paper gives an overview of a decentralized registry based architecture using web
services technology which facilitates dynamic discovery, interoperability and provider independence. The
web services technology uses UDDI registry service for publishing and discovering services but the
discovery results obtained are not reliable as the service discovery considers only static service description.
This paper contributes to enhancing LBS discovery by considering service dynamics and expanding LBS
discovery process to neighboring locations.

Key words: location based services, web services, SOA, service discovery, query
propagation
Communicated by: M. Gaedke & S. Murugesan

1 Introduction

Mobile phones have now become a basic necessity of life as they help us connect with each other
ubiquitously. As a result, new mobile phone manufacturers and mobile network operators are emerging
in the market everyday and thus the technology is improving tremendously. On the other hand, mobile
users are constantly in search of enhanced features in their mobile phones and improved services from
mobile operators. To satisfy the end user requirements mobile phone manufacturers today are in the
market with smart phones which are like small computers. On the other hand, mobile network
operators are working on improved infrastructure to provide reliable and high speed networks at
affordable cost but their profit share is decreasing due to stiff competition between them. Mobile
operators are now trying to generate revenues from various add-on services in addition to those from
voice services. They began delivering value added services (VAS) like short messaging service
(SMS), multimedia messaging service (MMS) and general packet radio service (GPRS) to attract more
customers and increase revenue per user (RPU). Due to advanced technology and infrastructure,
mobile operators are now able to provide high speed internet connection over mobile networks which

2 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

have opened several avenues for them to generate additional revenue. Location based services (LBS)
is one such area.

Services provided to mobile users according to their geographic location are known as location
based services [1]. Requesting the location of nearest ATM, petrol pump, restaurant, hospital and
ambulance services are some examples of location based services in a mobile environment. Location
based services exploit the position of mobile terminals to provide customized services that are relevant
to the current location of mobile users. Thus, location is an essential parameter for all location based
services.

LBS is a fast-growing research area. LBS has very high potential to generate revenue to service
providers, mobile operators, mobile phone manufacturers and application developers. According to
ABI Research forecast [2], mobile LBS revenue is expected to reach an annual global total of $13.3
billion by 2013, up from an estimated $515 million during 2007. According to eMarketer forecast [3],
the number of worldwide users of mobile location based services is expected to jump to 486 million in
2012 from 18.9 million in 2007. Navigation services, social networking and local search services are
believed to emerge as widely used applications by the mobile users.

Figure 1. Mobile LBS Components

LBS system basically consists of five components [4]: Mobile device, LBS Application,
Positioning System, Service Provider and the Communication network as shown in figure 1. Mobile
device is a tool for the end user to use LBS application and to consume services. LBS application is the
one through which end user consumes location based services. Positioning system is responsible for
providing the end user’s position information. The mobile user position can be obtained by either using
the global positioning system (GPS) or the mobile communication network. The Service provider is
responsible for processing the service requests and providing various services. Communication
network is the one which is responsible for communication between the mobile device and LBS
providers.

D. Melwyn and V.S. Ananthanarayana 3

At present, mobile LBS applications provided by the service providers are tightly coupled with
their own systems. This tightly coupled architecture helps service providers in security and billing but
results in service provider dependency to service consumers. The best solution here is to use service
oriented architecture which supports dynamic discovery of services to avoid service provider
dependency. Service oriented architecture (SOA) [5] is the latest paradigm in the evolution of software
development aimed at facilitating the design and development of dynamic, flexible and loosely
coupled platform independent applications. SOA uses the publish-find-bind and execute paradigm to
facilitate dynamic discovery of services. Service providers publish their services by registering them in
a registry. This registry is used by the service consumers to find required services. The registry
provides consumers with a contract and an endpoint address for those services which match the search
criteria. Web Services technology is the preferred standards-based solution to realize SOA. Web
services [6] are loosely coupled components and use open standards to provide interoperability
between various applications. Web Services support openness and heterogeneity in addition to the
dynamic discovery of services by using XML, SOAP, WSDL and UDDI open standards. The data is
tagged with XML [7] and transferred using SOAP [8]. Services are described using WSDL [9] and
published in UDDI [10]. The block diagram of service oriented architecture using web services
technology is shown in figure 2. Applying Web services technology to the mobile environment is
known as Mobile Web Services (MWS) [11]. User mobility with their terminals is a distinguishing
characteristic of Mobile Web services compared to conventional Web services.

Figure 2. SOA using Web Services technology

One of the most important sub tasks in service oriented architecture is service discovery.
Discovery corresponds to the activity of locating a resource that meets certain functional criteria. Web
service discovery is the process of locating information that describes a particular web service using
the web services description language (WSDL). It is through the discovery process that web service
clients learn that a web service exists and where to find the web service's description document. The
Inquiry API is used to locate and obtain details about web service entries in a UDDI registry.

4 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

In SOA, service broker, usually a registry is the one which facilitates dynamic discovery of
services. For LBS, a centralized registry model is probably the most efficient in terms of design,
configuration, control and maintenance. In this case, mobile clients only have to maintain the location
information of one registry. The main drawbacks as is in any centralized system lie in the bottleneck of
the central registry and the inactivation of entire system when the central registry shuts down or
crashes. Centralized registry models results in lower performance if there are too many services to be
registered or queried. Furthermore, storage may be a constraint when the number of service
registrations grows very large, since one computer node must host all service registrations. Also,
service providers must include location scope of each service in the service description.

Registry replication attempts to overcome the disadvantages of the centralized approach for LBS
by replicating the entire information and putting them on different sites. However, replication may
temporarily improve the performance if the number of publishers and subscribers is limited. Also, data
becomes less consistent when the system has more number of replication sites. The UDDI Business
Registry (UBR) is an example for registry replication model.

Decentralization is a natural solution when a system grows large and becomes complex. There are
several reasons why a decentralized approach is attractive in case of location-based services. It
improves query processing as services are distributed on multiple servers and hence the response time.
Decentralized systems have no weak point that can bring the entire system down if individual registries
crash or go down and hence are robust against failure and attacks. A decentralized registry based
architecture for LBS using web services technology is explained in [12].

Though it has become possible to discover and consume web services on mobile devices, reliable
service discovery is the most challenging and an essential requirement in the mobile environment.
Cellular phone is the most widely used mobile device but it still has many limitations like low
storage, low processing power, small screen and difficult to use keyboard. Cellular network’s low
bandwidth and intermittent connectivity are also major concerns.

Web services architecture uses UDDI, a registry that employs a search service based on keyword
matching. Pure keyword based search fails to retrieve services as syntactically different query
keywords may be semantically equivalent and UDDI does not have any functionality to infer from
keywords. Also, keyword based search fails to understand similarities and differences between the
capabilities provided by web services. One of the solutions to overcome the drawbacks of keyword
based matching is semantic search where concepts are used instead of words for matching. OWL-S
(Web Ontology Language for Web Services) [13], WSMO (Web Service Modelling Ontology) [14]
and WSDL-S (Web Service Semantics) [15] are some of the well known standards developed in this
regard. Though the semantic matching improves the search mechanism, there is no guarantee that web
services included in the result set are actually available over the internet.

UDDIe [16] is an extended registry for web services, which includes finite and infinite lease time
concept to avoid missing or out of date services information in registries. However, the lease time does
not ensure the real availability of web services as the relationship is established in advance between
service providers and the registry. Also, there is no functionality for checking the real availability of
web services. Ad-UDDI [17] introduces active monitoring of web services by checking the real time
status of services and collecting the services information periodically. By active monitoring, even if

D. Melwyn and V.S. Ananthanarayana 5

the availability of web services is ensured, there is no guarantee that the requested real world (abstract)
service is available at the moment. For example, movie ticket reservation web services might be
available but there is no guarantee that tickets for a particular show are available at the time of service
invocation. Contribution of our work is to enhance the web services discovery process by using web
services availability and abstract service availability checks. This paper also explains service
availability time concept which avoids invoking web services for availability check whenever real
world services are not available and thus improves response time.

 In a mobile environment, mobile users are interested in consuming services which are available at
the current location. If the required services are not available at the current location then they would
prefer to consume services available at immediate neighboring locations. In this case, mobile users
need an automated system which helps them to search for services available at the current location and
expand this search to immediate neighboring locations if the required services are not available at the
current location. Another important aspect of mobile environment is user mobility with their terminals
which leads to change in user location. Change in user location is very likely when a mobile user is
travelling in a vehicle or roams around the border of a location. The automated service search system
should consider this change of user location during the search process so that results returned are
corresponding to the current location of the mobile user. The term handover or handoff is used in
cellular telecommunication system to refer the process of transferring an ongoing call or data session
from one cell connected to another. This process of handover indicates the change in user location.

A distributed registry based architecture which explains how to move a web service execution
from one service execution server to another is proposed in [18]. During the service execution, if
mobile client moves from one location to another then the proposed system finds an execution server at
the new location and transfers the service execution to that server. The basic idea here is to have
minimum distance between the service consumer device and service execution server so that the data
transfer path between them is very short. In [19], authors have explained how to move service
registrations from one registry to another and maintain caching while a service provider moves from
one location to another. This work uses peer-to-peer architecture in which service providers host web
services on their mobile terminals. When mobile service providers move from one location to another,
it is required to unregister their services from the source location registry and register at the
destination. Also, authors have used flooding concept to forward queries but change in user location is
not considered. Contribution of our work is the search query propagation when user changes his
location or required services are not available at the current location using one-hop and two-hop
neighbor information.

Most of the recent literature contributes significantly on location privacy. Location attribute is an
inherent property of all location based services. Many researchers are working on location privacy
issue as sharing location information with unknown people is very risky. L2P2 [20], VERDICT [21],
3PLUS [22] and PShare[23] are some of the latest privacy preserving schemes. With respect to user
specific service delivery, a data mining based LBS delivery mechanism is explained in [24]. In this
data mining based method, various usage patterns are utilized to deliver user specific services. A
semantic web based LBS delivery system is explained in [25]. Semantic web technologies help in
developing more intelligent location-based applications that deliver more accurate and relevant
information to the user.

6 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

The main objective of our work is to explain a decentralized registry based web services discovery
system that allows service consumers to find and consume services available within proximity. This
paper starts with the overview of decentralized registry based architecture for LBS using web services
technology and explains how to search local services in such an environment in section 2. It then
proceeds with the classification of LBS based on various characteristics of abstract services in section
3 and contributes in enhancing LBS discovery by using web services availability and abstract service
availability check in section 4. Other contribution of our work is the search query propagation to
immediate neighboring locations in case of required services not being available at the current location
or in case of mobile user changing his location after submitting the query but before receiving the
results is explained in section 5. The proposed LBS discovery process is intended to improve reliable
and reduce query execution total cost and wireless bandwidth consumption. We conclude general
observation of our work in section 6.

2 The overview of proposed LBS System

2.1 Registry Organization

Figure. 3. Decentralized registry organization for LBS.

In the proposed system, cellular network system is considered in order to divide the entire
geographical area into locations. In a cellular network system [26], a cellular service area is divided
into smaller areas called cells. A cell or group of cells is considered as a location in the proposed
system. Whenever a mobile user is roaming in cell X, the user is considered to be in location X.
Service registry is decentralized and registries are placed in each of these locations. Registry located in

D. Melwyn and V.S. Ananthanarayana 7

each location or cell is called as local registry (LR). The local registry is the one which allows service
providers to register their services and service consumers to search for required services. Service
providers publish interface and binding information of their services to the local registry. Service
consumers use this information to bind and execute provider services. Each local registry contains
service registrations belonging only to its own corresponding location. Search response time improves
when compared to centralized registry based system due to less number of service registrations in each
LR and location based service search accuracy increases as LR contains only local service
registrations. Decentralized registry organization in a cellular network is shown in figure 3 along with
the main components of LBS system at each location.

2.2 Registry Discovery

In the proposed system, by-broadcast mode has been used to discover the local registry. In the by-
broadcast mode, a broker in every location periodically broadcasts the local registry address over the
wireless channel. Mobile clients listen to the wireless channel and download the local registry address
to discover local services. In the cellular network system, each cell is served by a base transceiver
station (BTS), also known as a base station (BS). Each BTS broadcasts both the location area identity
(LAI) and the Cell-ID on the broadcast control channel to its cell. A mobile terminal always knows its
Cell-ID and LAI as it always receives these broadcast messages. In the proposed method, the cellular
network base station is configured to broadcast the local registry address along with other existing
parameters.

Following is the J2ME source code which is used to get the Cell-ID and LAI of user’s current
location.

String cellid = System.getProperty("CellID");

Similarly, in the proposed system, usage of the below given code is suggested to get the local
registry address.

String lraddress = System.getProperty("LRAddress”);

The other option is to use the cell global identity (CGI) as part of local registry address. The cell
global identity (CGI) is a major network identity parameter. CGI consists of location area identity
(LAI) and cell identity (CI). LAI includes mobile country code (MCC), mobile network code (MNC),
and location area code (LAC). For example, for a given cell, if MCC=111 and MNC=22 and
LAC=33333 and CI=12345 then the address of local registry could be represented in terms of web
URL as www.111223333312345.reg. In case of multiple cells grouped as a single location, one could
configure multiple URLs to point to the same LR which is associated with that location. Once the local
registry address is obtained, users can proceed with the service discovery process.

2.3 Functional Details

The location based application functionality mainly consists of three steps. They are local registry
discovery, local service discovery and local service consumption as shown in figure 4. Whenever a
mobile user is interested in searching for local services, the location based application listens to the
base stations broadcast channel and downloads the local registry address (step 1). Once the local
registry address is discovered, it proceeds with the web services discovery process (step 2). It then

8 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

binds and executes a web service based on the user’s choice (step 3). An algorithm is given below with
the steps which are required to be executed to search and consume local services by the location
sensitive applications.

Figure 4. Functional flow diagram of a decentralized registry based web services environment.

Algorithm: Search&ExecuteLocalServices

/* Executed by Location based applications whenever mobile users need to consume local services */.

Begin

1. Get location sensitive application input from the mobile user.

2. Get Local Registry address by listening to the BTS's Broadcast Channel.

3. Find Web services in the local registry by using the address obtained in step 2 and passing

the input parameters obtained in step 1.

4. Download binding information of a Web Service based on the user's choice.

5. Bind and execute the selected Web service.

6. Display results to the user.

End

3 LBS Classification

Location based services could be broadly classified into several categories based on the various
characteristics of abstract services. It is very important to understand the difference between web
services and abstract services to classify LBS.

D. Melwyn and V.S. Ananthanarayana 9

Abstract services are the real world services offered by service providers. For example, in case of a
hotel offering twenty five double bed rooms, each double bed room is an abstract service. The
availability of these abstract services is dynamic in nature and hence changes over time. For example,
a hotel will not be able to book a room with double bed on a specific date if all such rooms in the hotel
are already booked on that date.

Web services are computational entities using standardized interfaces that allow service consumer
applications to interact with a provider to consume abstract services. Basically, it is a tool to automate
abstract service consumption. More about abstract services & web services can be found in [27].

Classification of Location Based Services is given below:
1. Based on the abstract service provider

a. Owner Services are the services provided by the abstract service providers
themselves. In this case, web service provider and abstract service provider is the
same entity. For example, a hotel room reservation web service published by the
hotel owner.

b. Agent Services are the services provided by the providers who are not the abstract
service providers. In this case, web service provider and abstract service provider are
different entities. For example, an agent providing room reservation services at
different hotels using his own web service.

2. Based on nature of the abstract service
a. Services of Information are the services which provide requested information to

consumers. These are like read-only data accessing services. For example, weather
information, nearest ATM details, nearest gas station information, etc.

b. Services of Transaction are the services which allow consumers to carry out some
transactions. These are like updatable data accessing services. For example, room
reservation, ticket reservation, ordering food, etc.

3. Based on the number of types of abstract services involved
a. Atomic Service is the one which provides a single type of abstract service. For

example, hotel room reservation.
b. Composite Service is the one which provides multiple types of abstract services.

For example, a local tour package service which includes hotel room reservation
service and taxi booking service.

4. Based on the time of abstract service availability
a. Time dependent Services are the ones which are available only during particular

time of the day. For example, a restaurant service available from morning 6:00AM to
evening 9:00PM.

b. Anytime Services are the ones which are available round the clock. For example,
weather information service.

5. Based on abstract service provider mobility
a. Fixed Location Services are services that are provided at a fixed location. Most of

the location based services fall under this category. For example, hotel rooms,
restaurants, etc.

10 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

b. Mobile Services are the ones that are not provided at a fixed location. For example,
taxi service, ambulance service, etc.

6. Based on the abstract service provider’s proximity
a. Local Services are the ones whose provider is available within the current locality. It

means that the service provider exists within some approachable distance from the
service consumer. For example, restaurants, ambulances, taxi, hospital, etc.

b. Remote Services are the ones whose provider is not available within the current
locality. In this case, the scope of the service matters more than the distance. For
example, a weather service provider located in USA could provide weather services
to any part of the world based on the name of location or the PIN code.

4 Enhancing LBS Discovery

As discussed in the introduction section, service discovery is one of the most important sub tasks in
service oriented architecture. In the proposed architecture, UDDI service is used as a broker to
facilitate dynamic search of location based services. UDDI is a search service based on keyword
matching which considers static information provided in the web service description and does not
consider dynamics like web service availability and abstract service availability. Web service
description available in UDDI registry does not guarantee the availability of web service and abstract
service availability. Thus, in order to improve the LBS discovery, service availability check module is
included in the local registry and the details are given below.

4.1. Service Availability

In a decentralized registry based web services environment for location based services, web
service discovery and execution occurs dynamically. In such a dynamic environment, successful
execution of web services depends mainly on the web service discovery. The execution of a web
service may fail due to any of the following reasons:

a) Web service is not available
b) Abstract service is not available
c) Runtime error

Web service availability and abstract service availability could be traced before the execution of a
service, whereas, runtime errors could be traced only during the execution of web services. The
existing UDDI is a keyword based matching service which is not considering web service availability
and abstract service availability as part of service discovery and hence the results obtained by the
UDDI Inquiry API are not completely reliable. This paper considers the web service availability and
abstract service availability as part of service discovery to improve the reliability of results obtained
during the service discovery.

The web service availability check could be done by using the following pseudo-code. This
pseudo-code is written by assuming that each web service has a standard function called isAvailable()
which returns a value True upon execution.

D. Melwyn and V.S. Ananthanarayana 11

Try
{

isAvailable = webService.isAvailable();
}
Catch(Exception)
{

isAvailable = False;
}

The Abstract service availability check could be done by using the following pseudo-code. This
pseudo-code is written by assuming that each web service has a standard function called
isServiceAvailable() which accepts required parameters and returns relevant results.

Try
{

isAvailable = webService.isServiceAvailable(parameter list);
}
Catch(Exception)
{

isAvailable = False;
}

The parameter list differs from service to service. In case of a hotel room booking service, the
parameters could be check-in date, check-out date, room type and number of people to reserve a room
whereas in case of an airline ticket reservation, it could be source, destination, date of travel, number
of adults, number of children and number of infants, etc.

To find web service availability and abstract service availability, it is not necessary to invoke the
same web service twice. The network system will return a service not found error, “404: Not Found”,
during the abstract service availability check if the web service is not available. But, during the
experiment it was observed that the abstract service availability check takes a minimum of about 20
seconds even if there exists a single unavailable web service. This duration is the default timeout
period when a web service is not available or the web server is not reachable. This increases web
services query response time and hence it was decided to have a separate process to check web service
availability. This process is placed under a scheduler and executes periodically.

Local registry architecture for the availability check process is shown in figure 5. As shown in the
figure, services in UDDI are extended with three properties, Status, CTime and Count. The Status
property could have three possible values. Value “Yes” indicates that the WS is available, “No”
indicates that the WS is not available and “NULL” indicates that the WS is obsolete. The CTime
property contains WS last checked date and time. The Count property contains a value which indicates
how many times WS availability check returned False value from the last obtained True value.

12 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

Figure 5. Local registry architecture for Service Availability check

During WS availability check or an abstract service availability check, if a WS is found available
then the Status property would be set to “Yes” and Count to Zero. If the WS is not available then the
Status property would be set to “No” and Count incremented by one. If the Count property exceeds
some threshold value then the Status property would be set to “NULL” and an email sent to the
corresponding service provider stating the WS has become obsolete due to WS unavailability. In the
experiment, threshold value was set to ten. Thus, if a WS was found to be not available consecutively
for ten times then the WS becomes obsolete and an email is sent to the provider. Note that, the CTime
property would be set to current DateTime in case of an abstract service check process and current
scheduled time in case of WS availability check.

Abstract service availability check is part of service discovery process. This process fetches only
those web services from the UDDI where Status = “Yes” to avoid unavailable and obsolete web
services. The WS availability check manager is a separate process, placed under the scheduler to
execute periodically. It maintains a WS List which contains services that are to be invoked to check
their availability. Whenever the scheduler starts this process, the WS List is filled with only those web
services where (1) Status = “No” and (2) Status = “Yes” AND CTime <= WS availability check last
executed time to avoid obsolete services and services which are already invoked by the abstract service
check process after the previous execution of WS availability check process.

The abstract service availability increases the reliability of service discovery results but the
drawback is that it requires additional time to check abstract service availability by invoking the web
services. For example, if the UDDI returns description for hundred web services then all those hundred
web services are required to be invoked to check the abstract service availability. This increases
service discovery time which is not appropriate in mobile environment. Thus, the next challenge here
is to reduce the service discovery time.

D. Melwyn and V.S. Ananthanarayana 13

In the proposed system, it was observed that most of the location based services are local services
and are time dependent services. For example, a restaurant service would not able to book a table for
10:00AM if the restaurant opens at 11:00AM, whereas a hotel room reservation service might be
available twenty four hours a day. Time of abstract service availability depends upon individual
service providers. Restaurant A might open at 8:00AM and close at 10:00PM, whereas Restaurant B
might open at 6:00AM and close at 11:00PM. Almost all the restaurant services remain closed between
1:00AM and 5:00AM, whereas, most of them remain open between 7:00AM and 11:00PM. If the time
of abstract service availability is made to be stored in the local registry as part of web service
description then abstract service availability check time could be reduced significantly. Thus, service
availability time property was also included in the local registry to reduce number of WS invokes
during abstract service check.

4.2. Experimental Results

The proposed system was developed using various Microsoft tools. The local registry web service
interface was developed by using Microsoft .NET web services which internally uses Microsoft UDDI
as a service registry. BTS functionality which provides local registry address to the location sensitive
applications was made available by using a web service. The Restaurant Finder client program which
is a location sensitive application and runs on the mobile device was developed in Microsoft .NET CF
3.5. The client application was successfully tested on Windows Mobile 5.0 Pocket PC R2 emulator.

Figure 6. Number of web services descriptions returned by a local registry comparison: with abstract service

check versus without abstract service check.

A comparison between the number of web services returned by the local registry with abstract
service check and without abstract service check is shown in figure 6. It was observed that the local
registry always returned 300 matching restaurant web services without the abstract service check.
Whereas, when the abstract service check was applied, the results obtained were very promising. The

14 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

local registry returned zero web services between 11:30PM and 5:30AM as there was no restaurant
open during that duration. It returned less than 200 web services during 5:30AM to 11:30AM and also
8:30PM to 11:30PM. It returned more than 200 web services only during 11:30AM to 8:30PM as most
of the restaurants remain open during that time.

The availability check not only increases the reliability of the service discovery results but also
reduces bandwidth consumption. For example, during the experiment, the local registry always
returned 300 web service descriptions to the mobile device without the abstract service check and
returned zero web service descriptions between 11:30PM and 5:30AM with the abstract service check.
The average web services descriptions returned between 5:30AM and 11:30PM is 142 with the abstract
service check against 300 web services descriptions without the abstract service check.

As it was mentioned earlier, the major drawback is the time consumed while invoking web
services to check the abstract service availability. In the case of above mentioned experiment, local
registry always invoked 300 web services to check the abstract service availability. In the experimental
setup it was taking about 9 seconds time to invoke matching 300 restaurant web services to check
abstract service availability but the results obtained were highly reliable. Thus, it’s a trade-off between
response time and reliable results.

An experiment was carried out to reduce web service invokes for the abstract service check by
introducing a time filter in the local registry as most of the LBSs are time dependent services. A
comparison between number of web services invoked for the abstract service check with time filter
versus without time filter is shown in figure 7. None of the web services were invoked between
11:30PM and 5:30AM as none of the restaurant services were open during that duration but the time
filter has no effect when all restaurants are open. For example, as shown in figure 7, all three hundred
web services were invoked at 7:30PM as all the restaurants were open.

Figure 7. Number of web services invoked by local registry comparison: with time filter versus without time filter

D. Melwyn and V.S. Ananthanarayana 15

5 Expanding LBS Discovery

It is natural that mobile users are interested in searching for services available at the current location
but if the required services are not available at the current location then it is also obvious that they
would prefer to search for services available at the immediate neighboring locations. For example,
during some emergency, an ambulance service available at the current location is of priority but
ambulance service available at the immediate neighboring location is the best choice if ambulance
service is not available at the current location. Similarly, for a mobile user who is searching for near-by
restaurants, if none of the restaurants are available at the current location then he would prefer to
search for restaurants available at the nearest neighboring locations. Thus, the requirement is to search
for services available at the current location and then expand the search to immediate neighboring
locations if no such services are available at the current location.

Figure 8. One-hop and two-hop neighbor registries of local registry D.

Consider another situation where a mobile user submits a search query when he was at location D,
as shown in figure 8, and would reach location G before he had obtained the search results. In this
case, the search results obtained are not relevant to the location G. Change of location is very likely in
a mobile environment. Thus, the requirement is to get search results relevant to the current location of
a mobile user, even if the user is in mobility.

The above mentioned requirements motivate us to expand the LBS discovery by implementing
query propagation in a decentralized registry based architecture in case of (1) services which are
requested by the end users are not available at the current location, (2) mobile users change their
location after the search query submission and before obtaining the results back. In order to implement

16 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

these two requirements, our proposed system requires mobile location information and neighboring
local registry information.

 In a cellular network, position of a mobile phone could be obtained either from the mobile device
itself or the network provider. The most common positioning system available in a mobile device is
global positioning system (GPS). The GPS works with the help of 32 satellites orbiting in space and a
receiver fixed in mobile devices. A low-cost mobile GPS tracking solution is explained in [28]. The
main drawbacks of GPS are high power consumption and failure in indoor environment. In the case of
network provider based tracking, Cell-ID is the simple and most economical mobile tracking system.
Cellular base stations periodically broadcast this Cell-Id, a unique id for each cell. Cell-ID based
tracking system is not highly accurate as reception area of base stations is large in rural areas but
sufficient for many location based applications. According to the Federal Communications
Commission (FCC) wireless 911 rules [29], every wireless service provider must provide more precise
location information to Public Safety Answering Points (PSAPs). Accuracy of this location
information must be within 50 to 300 meters depending upon the type of location technology used
[fcc.gov]. Researchers are working on different tracking methods like time difference of arrival
(TDOA) and angle of arrival (AOA) for higher accuracy of mobile device position [30].

 In the proposed system, a cell or group of cells is considered as a location and hence it is
sufficient to know the Cell-Id of a mobile phone to find the current location. A location system (LCS)
is included in the architecture for this purpose as shown in figure 9. This location system is part of
network provider which provides Cell-Id, latitude and longitude of mobile phones under their
coverage. Local registry finds the Cell-Id information of a mobile phone from this LCS and maps to
corresponding local registry address. Mobile terminals can get their own current position by using
either GPS receiver attached to them or from the location system of their network provider.

Figure 9. Functional diagram of LBS query propagation.

In order to find neighboring local registry information, the proposed system follows neighbor cell
list (NCL) concept of cellular network [31]. In cellular networks, each cell is configured with a
neighbor cell list, a list of neighbor cells as handover candidates. Handover is one of the most critical

D. Melwyn and V.S. Ananthanarayana 17

features in cellular networks that allow transferring a call from one cell to another in order to avoid call
termination when the mobile phone gets outside the range of the first cell. The BTS broadcasts NCL to
all mobile phones connected to the serving cell. Mobile phones measure the channel signal quality of
cells included in the NCL of the serving cell and submit the measurement results to the network. The
network initiates a handover if the signal quality from a neighbor cell is better than that of the serving
cell by a handover margin. In recent practice, the NCL is manually configured at the beginning of the
network deployment by predicting static information such as base station locations, antenna patterns,
and received signal maps. The NCL is manually updated when new cells are installed. Many
researchers are working on automated NCL configuration systems.

Based on NCL concept, each local registry in the proposed system is configured with a list of
neighboring local registries. This list is called as neighbor local registry list or simply neighbor registry
list (NRL). For example, neighbor registry list of local registry D is {A, E, F, G, C, B} and neighbor
registry list of local registry G is {D, F, J, I, H, C}. Note that if registry A contains B in its NRL then
registry B contains A in its NRL. Each registry exchanges its NRL information with the members of its
own NRL by communicating with each other. The list which contains registry information of each of
its neighbor’s NRL is called as neighbor’s neighbor registry list (NNRL). Using NRL and NNRL
information, each local registry, LR, creates two-hop neighbor registry list (TNRL) by finding distinct
local registries of each of its neighbor’s NRL and removing LRs of its own NRL and itself. That is
TNRL = Distinct (NNRL) – NRL – {LR}. For example, two-hop neighbor registry list of local registry
D is {H,I,J,K,L,M,N,O,P,Q,R,S}. Basically, NRL contains one-hop neighbor registry information and
TNRL contains two-hop neighbor registry information. Thus, each registry can directly communicate
with its one-hop neighbors, one-hop neighbor’s neighbors and two-hop neighbors.

Figure 10. NRL, NNRL and TNRL of local registry D.

18 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

The NRL Manager and NRL Data components are included in local registries as shown in figure
9. The NRL manager is responsible for updating NRL data. The NRL manager periodically
communicates with its neighboring registries and updates the NRL, NNRL and TNRL data. The details
of NRL data of local registry D in figure 8 is shown in figure 10.

There are several advantages of maintaining NRL and NNRL information in a local registry. First
and foremost is that a local registry can directly communicate with its one-hop neighbors, neighbors of
one-hop neighbors and two-hop neighbors. This ensures that the query propagation would not result in
infinite loops and hence hop_count field as in flooding concept is not required. Also, for a given query,
query_id field as in flooding concept is not required as each registry is reached only once.

When a search query request is received by a local registry, it would first search in its own
repository for the required services and then it propagates the query to immediate neighboring
locations only if the required services are not available at the current location. Assume that the mobile
client is at location D and wants to search for some restaurant services. Initially, the LBS application
would connect to the local registry D and request for restaurant services available at that location by
executing GetServices() method. The local registry D first searches in its own repository (UDDI) and
retrieves web services list, say result R= {rD}. If there exists no service which would match client’s
requirement then the local registry D will communicate with its all one-hop neighbor local registries
which are configured in its NRL. In this case, the retrieved result is R = { rA, rE, rF, rG, rC, rB}. This
functionality is shown below in line 1 to line 6 of GetServices() function pseudo-code.

Before returning results to the mobile client, local registry checks for client’s current location. In
this process, mobile phone’s current location is obtained from the cellular network provider.
Whenever a mobile phone moves from one cell to another, it registers itself in the new cell and the
network system updates its database accordingly. If the location has not changed then the result
obtained so far is valid and returned to the client. If the client location has changed then the local
registry should return the results corresponding to the new location. Assume that the mobile client has
now moved to location G from D. Now, instead of propagating the query directly to local registry G,
the system checks whether it has already communicated with G and has a result. That is, the system
checks whether G is in its NRL. If yes then it checks whether rG is empty. If rG is not empty then the
resultset, R={rG}. If rG is empty then the local registry checks whether it has already communicated
with any one-hop neighbors of local registry G and then contacts remaining one-hop neighbors of local
registry G. In this case, resultset R={ rC, rD, rF, rJ, rI, rH }. This functionality is shown below from line 7
to line 25 of GetServices function pseudo-code.

In conventional systems, where there is no search query propagation on location change of a
mobile user, mobile users are required to re-initiate the search process every time user changes his
location. Let us consider total cost of LBS search query processing which includes two way
communications cost and local registry search processing cost as x units per local registry. In the case
of above mentioned example, if rG is not empty then the total cost reduction is 1*x units as rG is already
available and it is not necessary to contact local registry G again. If rG is empty then the total cost
reduction is 4*x units as results from four local registries C, D, G and F is already available and the

D. Melwyn and V.S. Ananthanarayana 19

system needs to contact only remaining three registries H, I and J. Thus, for n users, best case cost
reduction is n*4*x units.

As discussed earlier, if a mobile user is roaming around the border of a location then there is a
high chance of user returning to the original location due to handover process. Also, if the location
coverage area is small and mobile user is travelling in a vehicle with high speed then there is a
possibility of further change in user’s location. Thus, the local registry again checks for the change in
location. If user has moved back to the original location D then the original resultset R= {rD} or R = {
rA, rE, rF, rG, rC, rB} is returned. In this case, reduction in total cost is either 1*x units in case of rD is not
empty or 7*x units in case of rD is empty as results from all seven registries is already available. If user
has moved to a different location from where the non-empty resultset is already obtained then that
resultset is returned. For example, user has moved to location I and the local registry D already has
non-empty rI then it returns resultset rI. In this case, reduction in total cost is 1*x units. Otherwise, the
local registry throws “Location Changed” exception so that LBS application can proceed with a fresh
search request connecting to the current local registry. This functionality is shown below from line 26
to line 39 of GetServices function pseudo-code.

// LR => Object representing the current local registry
// nrl => neighbor registry list
// wsList => Object representing collection of web services retrieved from registries

Function GetServices(params)
1. wsLsit[LR] = LR.GetLocalServices(params);
2. If (wsLsit[LR] == EMPTY) Then
3. ForEach (reg in LR.nrl)
4. wsList[reg] = reg.GetLocalServices(params); // Parallel execution
5. End For
6. End If

7. LR1 = GetClientLR();
8. If (LR1 == LR) Then
9. Return wsList;
10. End If
11. If (LR1 memberOf LR.nrl) Then
12. If (wsList[LR1] != EMPTY) Then
13. wsList1[LR1] = wsList[LR1];
14. Else
15. ForEach (reg in LR1.nrl)
16. If (reg memberOf wsList) Then
17. wsList1[reg] = wsList[reg];
18. Else
19. wsList1[reg] = reg.GetLocalServices(); // Parallel execution
20. End If

20 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

21. End For
22. End If
23. Else
24. Throw Exception(“Location Changed”);
25. End If

26. LR2 = GetClientLR();
27. If (LR2 == LR1) Then
28. Return wsList1;
29. End If
30. If (LR2 == LR) Then
31. Return wsList;
32. End If
33. If (LR2 memberOf LR1.nrl AND wsList1[LR2] != EMPTY) Then
34. Return wsList1[LR2];
35. End If
36. If (LR2 memberOf LR.nrl AND wsList[LR2] != EMPTY) Then
37. Return wsList[LR2];
38. End If
39. Throw Exception(“Location Changed”);

End Function

The above mentioned pseudo-code is the default search functionality of the proposed local registry
architecture. The drawback of the above mentioned pseudo-code is that mobile user does not have any
control on search area. It always starts from the current local area and then proceeds to neighboring
locations only if required services are not available at the current location. Thus, proposed system also
supports very flexible additional search functionality which allows user to specify search area. The
search area could be the current location, one-hop neighbors, two-hop neighbors, current location and
one-hop neighbors, current location and one-hop neighbors and two-hop neighbors or one-hop
neighbors and two-hop neighbors. Pseudo-code for the GetServicesByArea function which supports
flexible search area functionality is given below. In this case, FromLevel and ToLevel indicate the
search area range and possible values are 0 for current location, 1 for one-hop neighbors and 2 for two-
hop neighbors.

// LR => Object representing the current local registry
// nrl => neighbor registry list
// wsList => Object representing collection of web services retrieved from registries

Function GetServicesByArea(params, FromLevel, ToLevel)

1. If (FromLevel == 0) Then

2. wsList[LR] = LR.GetLocalServices(params);

3. End If

D. Melwyn and V.S. Ananthanarayana 21

4. If (fromLevel < 2 AND ToLevel > 0) Then

5. ForEach (reg in LR.nrl)

6. wsList[reg] = reg.GetLocalServices(params); // Parallel execution

7. End For

8. End If

9. If (ToLevel == 2) Then.

10. ForEach (reg in LR.nnrl)

11. wsList[reg] = reg.GetLocalServices(params); // Parallel execution

12. End For

13. End If

End Function

6 Conclusions

This paper presented decentralized registry based architecture for location based services discovery in
a mobile environment. This architecture allows mobile users to search for services available at the
current location. This architecture provides enhanced LBS discovery by including dynamics like web
services availability and abstract services availability. This functionality takes more time than
conventional UDDI search but ensures reliable results and reduced wireless bandwidth consumption.
Also, LBS discovery is extended to one-hop and two-hop neighboring registries when either required
services are not available at the current location or mobile user changes his location during the search
process.

Using this proposed architecture, cellular network providers can generate additional revenue by
providing location information and charging service providers and consumers to access their local
registries. Software companies can develop LBS applications using any technology as Web services
technology offers interoperability and mobile users can enjoy service provider independence due to the
usage of service oriented architecture.

The proposed system can be further improved by introducing caching of abstract service
availability results at each local registry. Caching is an important mechanism to reduce LBS discovery
time and hence we would like to consider caching in future studies.

References
1. Beaubrun, R., Moulin B. and Jabeur, N., An architecture for delivering location-based services,

International Journal of Computer Science and Network Security (IJCSNS), Vol.7 No.7, 2007,
160 - 166.

2. X Pan, J Xu and X Meng, Protecting Location Privacy against Location-Dependent Attacks in
Mobile Services, IEEE Transactions on Knowledge and Data Engineering, Vol.24, Issue: 8, 2012,
1506 - 1519.

22 Enhanced LBS Discovery in a Decentralized Registry Based Web Services Environment

3. The Mobile Location-Based Services Report, Available at http://www.businesswire.com/
news/home/20081014006008/en/Mobile-Location-Based-Services-Report-Estimates-63-Million.

4. Steiniger, S., Neun M. and Edwardes, A. ‘Foundations of Location Based Services’, Lecture Notes
on LBS, V. 1.0.

5. Agustinus B.W., David Taniar, Wenny R, and Bala S., Mobile service oriented architectures for
NN-queries, Journal of Network and Computer Applications, 2009, 434-447.

6. Kreger, H., Web services conceptual architecture (WSCA 1.0), IBM Software Group. 2001
7. Extensible Markup Language, Available at http://www.w3.org/TR/ 2008/REC-xml-20081126/
8. Simple Object Access Protocol, Available at http://www.w3.org/ TR/soap12-part1/
9. Web Services Description Language, Available at http://www.w3.org/ TR/wsdl20/
10. Universal Description, Discovery and Integration, Available at http://www.oasis-open.org/

specs/index.php#uddi
11. Farley, P and Capp, M., Mobile Web Services, BT Technology Journal, Vol. 23 No. 2, 2005, 202 -

213.
12. D'Souza, M. and Ananthanarayana V. S., Decentralized registry based architecture for location-

based services, Sixth International Conference on Industrial and Information Systems , ICIIS
2011, (2011), 136 - 139.

13. Web Ontology Language for Web Services, Available at http://www.daml.org/ services/owl-s.
14. Web Service Modeling Ontology, Available at http://www.wsmo.org/.
15. Web Service Semantics, Available at http://www.w3.org/Submission/WSDL-S/
16. ShaikhAli, A., Rana, O.F., Al-Ali, R.J. and Walker, D.W., UDDIe: An Extended Registry for Web

Services, Proceedings of the 2003 Symposium on Applications and the Internet Workshops
(SAINT'03 Workshops). 2003, 85 – 89.

17. Du, Z., Huai, J. and Liu, Y., Ad-UDDI: An Active and Distributed Service Registry, Proceedings
of the 6th international conference on Technologies for E-Services, Trondheim, Norway, 2005,
58–71.

18. Linwa, A.C.B., Pierre, S., Discovering the architecture of geo-located web services for next
generation mobile networks, Mobile Computing, IEEE Transactions on, Volume: 5, Issue: 7,
2006, 784 – 798.

19. Doulkeridis, C., Zafeiris, V., Norvag, K., Vazirgiannis, M. and Giakoumakis, M., Context-
based caching and routing for P2P web service discovery, Distributed and Parallel Databases
Journal, Volume 21 Issue 1, (February 2007), 59 - 84.

20. Yu Wang, Dingbang Xu, Xiao He, Chao Zhang, Fan Li and Bin Xu, L2P2: Location-aware
location privacy protection for location-based services, INFOCOM, 2012 Proceedings IEEE,
2012, 1996 – 2004.

21. Haibo Hu, Qian Chen and Jianliang Xu, VERDICT: Privacy-preserving authentication of range
queries in location-based services, 2013 IEEE 29th International Conference on Data Engineering
(ICDE), 2013, 1312 – 1315.

22. Ben Niu, Xiaoyan Zhu, Haotian Chi and Hui Li, 3PLUS: Privacy-preserving pseudo-location
updating system in location-based services, 2013 IEEE Wireless Communications and Networking
Conference (WCNC), 2013, 4564 – 4569.

23. Marius W, Frank D and Kurt R, PShare: Ensuring location privacy in non-trusted systems through
multi-secret sharing, Pervasive and Mobile Computing, Volume 9, Issue 3, (June 2013), 339-352.

24. Shang-Pin Ma and Duan-Yi Yan, Location-Based Web Service Delivery: A Data-Mining-Based
Approach, 2012 International Symposium on Computer, Consumer and Control (IS3C), 2012, 666
– 669.

25. Mahmood F.M. and Bin Abdul Salam Z.A., A conceptual framework for personalized location-
based Services (LBS) tourism mobile application leveraging semantic web to enhance tourism

D. Melwyn and V.S. Ananthanarayana 23

experience, 2013 IEEE 3rd International Advance Computing Conference (IACC), (2013), 287 -
291.

26. Patel, U.R. and Gohil, B.N., Cell Identity Assignment Techniques in Cellular Network: A Review,
3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT),
2010, 594-596.

27. Keller, U., Lara, R., Lausen, H. and Fensel, D. ‘Semantic Web Service Discovery in the WSMO
Framework’, Semantic Web Services: Theory, Tools and Applications, 2007, 281 - 316.

28. Moloo, R.K. and Digumber, V.K., Low-Cost Mobile GPS Tracking Solution, 2011 International
Conference on Business Computing and Global Informatization, 2011, 516 – 519.

29. Wireless 911 Services, available at http://www.fcc.gov/guides/wireless-911-services/
30. Goetz, A., Fischer, G., Weigel, R., GSM Mobile Phone Localization using Time Difference of

Arrival and Angle of Arrival Estimation, 9th International Multi-Conference on Systems, Signals
and Devices, 2012, 1 - 7.

31. Van Minh Nguyen and Claussen, H., Efficient self-optimization of neighbour cell lists in
macrocellular networks, IEEE 21st International Symposium on Personal Indoor and Mobile
Radio Communications (PIMRC), 2010, 1923 - 1928.

