
Journal of Web Engineering, Vol. 13, No. 1&2 (2014) 053–066
c© Rinton Press

PROCESSING MULTIPLE REQUESTS TO CONSTRUCT SKYLINE

COMPOSITE SERVICES

SHITING WEN

Ningbo Institute of Technology, Zhejiang University, Ningbo, China

wst1029@mail.ustc.edu.cn

QING LI

City University of Hong Kong, Hong Kong, China

itqli@cityu.edu.hk

CHAOGANG TANG

China University of Mining and Technology, Xuzhou, China

tcg@mail.ustc.edu.cn

AN LIUa LIUSHENG HUANG

University of Science and Technology of China, Hefei, China

liuan@ustc.edu lshuang@ustc.edu.cn

YANGGUANG LIU

Ninbo Institute of Technology, Zhejiang University, Ningbo, China

ygliu@nit.zju.edu.cn

Received April 1, 2013
Revised July 25, 2013

The performance of a composite service is determined by the performance of involved
component services. When multiple non-functional criteria are considered, users are re-

quired to express their preferences over different quality attributes as numeric weights in
existing methods. However, this imprecise method may not reflect the natural ordering of
services and thus could miss some user-desired services. In this paper, we propose a com-
position framework to construct multiple skyline composite services for each individual
request. We also discuss how a service registry can effectively deal with multiple requests
simultaneously by materializing the intermediate composite services. We evaluate the
efficiency and effectiveness of our methods through extensive experiments.

Keywords: Web Services; Skyline Composition; Materialization

Communicated by: D. Schwabe & E.-P. Lim

1 Introduction

Web service composition has been an emerging methodology for building modern business

applications [1]. The functional granularity of services should be constrained from a reusability

point of view [2]. Thus, multiple services need to be composed into a new value-added

one, resulting in a composite service, to fulfill users’ complex requirements. Specifically, a

aCorresponding Author

53

54 Processing Mutliple Requests to Construct Skyline Composite Services

composite service is specified as an abstract process composed by a set of abstract tasks.

Prior to the run time, it has to bind a concrete service for each abstract task. QoS-based

service composition aims at finding the best combination of web services that satisfy a set of

end-to-end QoS constraints with maximum utility, which is defined by users according to their

preferences. To the best of our knowledge, all utility functions use weight-additive methods

to obtain a single numerical value and compare this value to select a service to invoke (e.g.,

[3, 4, 5, 6, 7, 8]). This is an optimization problem known as NP-hard. In particular, how

to determine the weight of each dimension of QoS is non-trivial, and the composer can only

return one composing result for each request according to the utility value. The fairness of

these methods is determined by the weight of each QoS dimension, but such a weight is hard

to be assigned objectively. Indeed, ensuring the fairness by means of simple weigh-additive

methods is almost impossible in service composition.

Recognizing the shortcomings of traditional composition methods, there are has been quite

some research on constructing composite services through the skyline technique [9] which, un-

like traditional methods, does not assign any weight to each QoS dimension in the process of

composition (e.g., [10, 11, 12]). According to such skyline-based composition, only those ser-

vices belonging to the skyline (i.e., those not dominated by any other functionality-equivalent

services), are valid candidates for the composition. This can provide an initial pruning of can-

didate services. However, performing an exhaustive search by finding all skyline composition

results is time consuming. We observe that skyline-based composition may produce many in-

termediate composition results. Furthermore, multiple requests can share those intermediate

results, similar to the case of multi-query processing in data warehouses [13]; indeed, mul-

tiple requests may overlap on some common intermediate composition results, and common

sub-composition results may appear multiple times for a complex request. In this paper, we

consider materializing some intermediate skyline composition results for accelerating compo-

sition since the same request may be issued multiple times by different users. The concept of

materializing indicates to store the results (intermediate results) of past requests for reuse to

answer a new request. Our main work and contributions can be summarized as follows:

• We propose a formal model for dealing with multiple service composition requests,

through materializing a set of intermediate composite service classes. Our model can

return a set of skyline candidate solutions for each request.

• We address the problem of materializing a set of intermediate skyline composite service

classes by adopting the Mix Integer Programming (MIP) method.

• We also propose a Heuristic Materializing Approach (HMA) to select a set of appropriate

intermediate composite service classes to materialize, so as to reduce the complexity of

the MIP method.

The rest of the paper is organized as follows. Section 2 presents a motivating example

and gives our problem statement. Section 3 presents a framework to constructing skyline

composite services. Section 4 presents our algorithms for processing multiple requests. Section

5 evaluates the performance of our proposed algorithms. Section 6 discusses some related

works. Finally, Section 7 concludes the paper and sheds light on future research.

S.-T. Wen, Q. Li, C.-G. Tang, A. Liu, L.-S. Huang, and Y.-G. Liu 55

Table 1. Computation Cost for Calculating Skyline Solutions

Service Class Non-Materialized Materialized

Transports 337.5 12.5
Visit Friend 2290 31.25
Travel Process 13038 78.125
Attend Conf. 318995 390.25

2 Motivating Example and Problem Statements

2.1 Motivating Example

In order to improve reusability of a service, a provider may offer different granularities for

different users’ requests. Figure 1(e) shows an example of a global composition plan, where

the square nodes indicate composite service classes, and oval nodes indicate atomic service

classes. Particularly, the oval nodes and square nodes provide, respectively, services at atomic

granularity and composite granularity for users’ invocation.

Suppose that for illustrative purpose each atomic service class has 10 services and half

of them are skyline services. We first show the benefits of materializing a set intermediate

composite service classes to accelerate processing of a composition request in the service

registry. We consider four frequent composition requests: r1: transports, r2: visiting a friend,

r3: travel process, and r4: attending a conference.

When a service provider receives a request, it may select a suitable level of invocation in the

global service composition plan (c.f. Figure 1(e)). Figure 1((a)-(d)), the provider generates

four sub-composition plans cp1, cp2, cp3 and cp4 for requests r1, r2, r3, and r4, respectively.

In order to achieve fast request processing, some intermediate composite service classes can

be materialized because different users may send their requests multiple times. To show

the difference of the cost on obtaining all skyline solutions with and without materializing

the intermediate composite service classes, we use request r1 as an example. If we do not

materialize any intermediate nodes, the cost of replying all skyline candidate solutions for

r1 includes two parts: 1) the cost of calculating all candidate composite solutions (cost is

25, namely, travel times); 2) the cost on filtering the skyline candidate solutions (cost is

252/2=312.5). However, if we materialize the intermediate composite service class Transport,

the cost for obtaining all of skyline solutions is 12.5. For simplicity, we assume that the

approach for constructing skyline composite service classes uses linear search and nested loop

techniques. Therefore, the cost for request processing and maintaining intermediate composite

service classes are determined by the size of the involved service classes. Table 1 lists the cost

for calculating all of the skyline solutions for requests r1, r2, r3, and r4, respectively.

While materializing some intermediate composite service classes can save the average

request processing time, it still produces an additional maintenance cost for updating those

intermediate composite service classes if their atomic service classes are changed. In fact,

how to balance the additional maintenance cost with the saving from materialization is an

optimization problem [13]. In the next sub-section, we give a formalized definition of our

problem.

56 Processing Mutliple Requests to Construct Skyline Composite Services

(a) Composition Plan for r1 (b) Composition Plan for r2

(c) Composition Plan for r3

(d) Composition Plan for r4

(e) A Global Composition Plan

Fig. 1. Composition Plan of Each Request

S.-T. Wen, Q. Li, C.-G. Tang, A. Liu, L.-S. Huang, and Y.-G. Liu 57

2.2 Problem Statement

We formalize the problem of efficiently processing multiple composition requests for composing

all skyline composite services as follows:

Definition 1 (Optimal Selection) Let I = {1, 2, ..., n} be a set of intermediate composite

service classes. Each element i ∈ I binds to fr
i which is an access frequency derived from

users’ requests, and fs
i which is an update frequency derived from updated atomic service

classes’. The optimal selection is to find a set of intermediate composite service classes to

materialize, so as to minimize the total cost of processing all requests subject to the maximal

space available for materialization.

3 Constructing Skyline Composite Services

In our model, we use S to denote a set of service classes which classify the universe of available

web services according to their functionality. More specifically, Si = {si,1, si,2, ..., si,n} a

services class, Si ∈ S represents a set of functionality-equivalent web services (e.g., flight

booking services) with different non-functional properties (e.g., at different response time and

different prices).

Given a set of points in a d-dimensional space, a skyline query selects those points that

are not dominated by any other points [9]. A point x is said to dominate another point y, if

x is better than or equal to y in all dimensions and strictly better in at least one dimension.

Definition 2 (Dominance) Consider a service class S, and two services x, y(∈ S) charac-

terized by a set Q of QoS attributes. We say x dominates y, denoted as x ≻ y, iff x is as

good or better than y in all parameters in Q and better in at least one parameter in Q, i.e.,

∀k ∈ [1, |Q|] : qk(x) ≤ qk(y) and ∃k ∈ [1, |Q|] : qk(x) < qk(y).

Definition 3 (Skyline Services) The skyline services of a service class S, denoted by SLs,

comprise those services in S that are not dominated by any other services, i.e.,SLs = {x ∈

S|¬∃y ∈ S : y ≺ x}.

Definition 4 (Skyline Composition) Given a set of component services and a user request r,

we compose all candidate solutions such solutions are termed as skyline compositions in which

the overall QoS is not dominated by each other.

A straightforward method for finding all skyline composite services is by iterating and

comparing all possible combinations of candidate services, which is very time-consuming. In

the following section, we address this problem by materializing some intermediate composite

service classes, with an aim to improve the performance of processing multiple user requests

of constructing all skyline composite services as candidate solutions.

Figure 2 gives an overview of our skyline-based composition framework which involves four

types of entities: Service, Service Registry, Customer, and Composer. The service publishes

its basic information (e.g., input parameters, output parameters, and QoS parameters) in the

Service Registry when it is ready for use (Step (1)). Composition begins when a user sends

to the Composer a request that contains the required functionality and personal preferences

(Step (2)). After receiving the request, the Composer makes use of the search ability of

the Service Registry to find out all the possible candidate skyline composite services that

can fulfill the user’s requirements. A composition will be activated if no single service can

fulfill the user’s requirements. In this case, several services will be selected and composed

58 Processing Mutliple Requests to Construct Skyline Composite Services

u
ser (3)

Composer

search

Compositor Filter Skyline

Candidate Set

Services

Parse

WSDL,O

WL-S

QoS Data

Handler

Inverted

Table

S
erv

ice R
eg

istry
(2) Request

(4)

Reply

Invoke

(1)

Register

Fig. 2. System Architecture

as a temporary composite service and recommended to the user if the composite service is

not dominated by any other composite service (Step (3)). The user selects and invokes a

composite service from the set of candidate composite services (Step (4)) recommended to

him/her.

In our approach, we first prune all non-skyline sub-services which have the same function-

ality non-skyline in order to keep the sub-service candidates as small as possible. By focusing

only on the skyline services with respect to each service functionality, we can speed up the

composition process while still being able to find all candidate skyline solutions.

4 Multiple Request Processing

4.1 Global Composition Plan

As shown in Figure 2, the Composer can use the search ability of the service Registry to

obtain, based on a batch of composition requests, a global composition plan like the one in

Figure 1(e).

Our goal is to find a set of intermediate composite service classes to materialize, so that the

total cost is minimum. In this regard, we make several observations as follows: 1) to achieve

the best performance, an intuitive way is to materialize all the intermediate composite service

classes, which, however, will incur the highest cost of maintenance; 2) to achieve the lowest

maintenance cost, the easiest way is to leave all intermediate composite service classes virtual,

which, however, will result in the poorest performance; 3) if we choose to materialize some of

the intermediate composite service classes, and leave some of them virtual, we may achieve

an optimal composition performance in terms of the total cost of processing requests and

maintaining materialized intermediate composition results.

To this end, we define a global composition plan (GCP) as a directed acyclic graph that

represents a processing plan of multiple requests. In particular a GCP is a labeled DAG

G = (V,A,CR, CU , FR, FS) , where V is a set of nodes in GCP and A is a set of arcs

over V. Here, the vertex set V includes three types of vertexes (i.e., user, atomic service

class, and intermediate service class), and we use r ∈ V to represent a user request, use

s ∈ V to represent a basic service class, and i ∈ V to represent an intermediate service

S.-T. Wen, Q. Li, C.-G. Tang, A. Liu, L.-S. Huang, and Y.-G. Liu 59

class, respectively. Further, cpi ∈ CR represents the cost to access an intermediate service

class i, and cui ∈ CU indicates the cost to update an intermediate composite service class

i. Lastly, fr
i ∈ FR represents the accessing frequency of intermediate service class i, and

fs
i ∈ FS represents the update frequency of intermediate service class i, respectively. We

distinguish the frequencies of user requests from the frequencies of accessing intermediate

composite service classes. Suppose we have a set of requests R = {r1, r2, ..., r|R|} and each

request rj has a frequency frj . We have the following formula:

fr
i =

|R|∑

j=1

frj × xrj ,i (1)

where xrj ,i is set to 1 if the request rj needs to access the intermediate service class i, and

0 otherwise. Similarly, we distinguish update frequencies of intermediate composite service

classes from the basic service classes’ update frequencies. Note that the update of the inter-

mediate composite service classes is derived from the update of basic service classes. Suppose,

there is a set of basic service classes S = {S1, S2, ..., S|S|}, and each basic service class Sj has

an update frequency fSj
. We have the following formula:

fs
i =

|S|∑

j=1

fSj
× xSj ,i (2)

where xSj ,i is set to 1 if the intermediate composite service class i derives from basic service

class Sj , and 0 otherwise.

4.2 Using Mix Integer Programming

How to select the set M of intermediate service classes to materialize depends on four factors:

1) the accessing frequency of each intermediate composite service class; 2) the updating fre-

quency of each intermediate composite service class; 3) the cost of accessing each intermediate

service class; 4) the cost of maintaining each intermediate composite service class. Thus, we

can calculate the request processing cost and maintenance cost through formulas (3) and (4).

In particular, the cost of accessing the intermediate composite service class i is as follows:

CostP = fr
i × cpi (3)

The cost of maintaining the intermediate composite service class i is given below:

CostM = fs
i × cui (4)

Then, we can calculate the total cost of processing all requests as follows:

Costtotal(M) =
∑

i∈M CostP +
∑

i/∈M CostU
=

∑
i∈M fr

i × cpi +
∑

i/∈M fs
i × cui

(5)

Given a GCP, Our task is to find a set of materialized intermediate composite service

classes such that the total cost of request processing and intermediate results maintenance is

the minimal. Here, we advocate using a mix integer programming (MIP) method to solve this

problem directly. There are three kinds of input in MIP, i.e. variables, objective function,

60 Processing Mutliple Requests to Construct Skyline Composite Services

and constraints on the variables, in which both the objective function and constraints must

be linear. MIP attempts to maximize (minimize) the value of the objective function by

adjusting the values of variables based on the constraints. The output of MIP is the maximum

(minimum) value of the objective function as well as the values of variables at this maximum

(minimum) point.

The objective function is in particular based on formula (3) and (4). Mathematically, it

can be expressed as:

Min
∑n

i=1
fr
i × cpi × (1− xi) +

∑n
i=1
×cui × xi

Subject to
∑n

i=1
space(i)× xi ≤ spaceavail

xi ∈ {0, 1}(1 ≤ i ≤ n = |I|)
(6)

Here, the variable xi is set to 1 if the intermediate composite service class i is selected,

and 0 otherwise. Further, spaceavail is the available space for materializing the intermediate

composition results. Note that we assume here all basic service classes have been materialized.

The function space(i) can calculate the size of space occupied by the intermediate service

class i. If we adopt the standard MIP solver for the global optimization problem, the time

complexity is O(2n) . In the next section, we propose a heuristic algorithm for this problem

to aleviate the expense.

Algorithm 1: Initial Materializing Composition Results (IMCR)

input : GCP, spaceavail
output: M :a Set of Composite Service Classes

1 begin

2 if spaceavail <
∑

S∈SS space(S) then
3 return : M ← ∅;
4 else

5 foreach S ∈ SS do

6 M ←M ∪ {S};
7 spaceavail ← spaceavail − space(S);

8 end

9 end

10 sList← Sort I according to gain(i) : i ∈ I;
1212 while sList 6= ∅ do
13 i← sList;
14 if space(i) > spaceavail then
15 remove : sList← sList/{i};
16 else

17 M ←M ∪ {i};
18 spaceavail ← spaceavail − space(S);
19 remove : sList← sList/{i};

20 end

21 end

22 return : M ;

23 end

S.-T. Wen, Q. Li, C.-G. Tang, A. Liu, L.-S. Huang, and Y.-G. Liu 61

4.3 Heuristic Algorithm

Our heuristic algorithm consists of two parts: 1) initialization of materializing composite

service classes (IMCR); and 2) update of materializing composite service classes (UMCR).

The aim of IMCR is to materialize the intermediate composite service classes according to

users’ previous request frequencies, basic service classes’ update frequencies, and available

space for materialization. The UMCR algorithm is to deal with the situation where new

intermediate composite service classes need to be materialized. Moreover, how to replace an

intermediate composite service class from the set of materialized composite service classes

depends on the gain and loss metrics if the available space does not suffice to materialize

the new composite service class. Below, we first introduce some notations to be used in our

heuristic algorithm.

• Costtotal(M) denotes the total cost for processing all users’ requests with materializing

a set of intermediate composite service classes. M represents the set of materialized

intermediate service classes.

• gain(i) denotes how much gain we will earn from materializing an intermediate com-

posite service class i. Using this gain metric, we can assess the cost-effectiveness of each

intermediate composite service class and select a class with a higher gain metric as a

candidate for materialization. The definition of the gain metric is given below:

gain(i) =
Costtotal(M)− Costtotal(M ∪ {i})

space(i)
(7)

As shown in formula 7, we compute the difference between the total cost with M and

the total cost after the addition of an intermediate service class i, and divide the cost

difference by the space required for materializing the additional intermediate composite

service class i. In our algorithm, we prefer to select an intermediate composite service

class with a higher gain metric for materialization in order to achieve better performance

in cost reduction. However, an intermediate composite service class with a high gain

metric will not be selected if its occupied space exceeds the actual available space.

• loss(i) denotes how much loss will incur by removing an intermediate composite service

class i from the materialized set M. Using this loss metric, we can assess the cost-

effectiveness of each intermediate composite service class, and select a class with a lower

loss metric as a candidate for deletion. The definition of the loss metric is shown as

follows:

loss(i) =
Costtotal(M/{i})− Costtotal(M)

space(i)
(8)

As shown, we compute the difference between the total cost with M and the total cost

after the deletion of an intermediate service class i, and divide the cost difference by the

space released after removing from M the intermediate composite service class i. In our

algorithm, we prefer to select an intermediate composite service class with a lower loss

metric for removing in order to achieve better performance in terms of cost reduction.

62 Processing Mutliple Requests to Construct Skyline Composite Services

Algorithm 1—the IMCR algorithm is to select the intermediate composite service classes

with the largest value of gain metric(c.f. Lines 12-21). The aim is to materialize the basic ser-

vice classes first(Lines 02-09) if the available space is enough. It sorts all intermediate service

classes according to their values of the gain metric (Line 10). In addition, Algorithm 2—the

UMCR algorithm is to add new intermediate composite service classes to the materialized set

if there is available space (Lines 02-06). Otherwise, it will delete one or more materialized

composite service classes with the lower loss metric values, and materialize a new intermedi-

ate composite service class whose gain metric is higher than that of the replaced intermediate

composite service classes (Lines 07-23). Interestingly, we can see that both Algorithms 1 and

2 have the O(n) time complexity, i.e., they are of linear time complexity.

Algorithm 2: Updating Materialized Composition Results(UMCR)

input : M, spaceavail, i′, I
output: M :a Set of Composite Service Classes

1 begin

2 if spaceavail ≥ space(i′) then
3 M ←M ∪ {i′};
4 spaceavail ← spaceavail − space(i′);
5 return : M ;

6 end

7 i← min(loss{I});
99 while I 6= ∅ do

10 tempSet← tempSet ∪ {i};
11 if gain(i′) > gain(tempSet) then
12 if spaceavail +

∑
i∈tempSet space(i) ≥ space(i′) then

13 M ←M/{tempSet};
14 M ←M ∪ {i′};
15 spaceavail = spaceavail +

∑
i∈tempSet space(tempSet)− space(i′);

16 return : M ;

17 else

18 I ← I/{i};
19 i← min(loss{I});

20 end

21 end

22 end

23 return : M ;

24 end

5 Experiments

In this section, we evaluate the effectiveness of our proposed method by conducting extensive

experiments.

S.-T. Wen, Q. Li, C.-G. Tang, A. Liu, L.-S. Huang, and Y.-G. Liu 63

NMA

NMA

HMA

(a) Anti-Correlated

A

A

(b) Independent

A

A

(c) Correlated

Fig. 3. Average Processing Cost per Requests (APCR) vs. Size of Basic Service Class

5.1 Simulation Setup

Given a service class, the size of the skyline services depends on the distribution of the QoS

values and correlations between different QoS parameters. These include: 1) the correlated

dataset, in which a service that is good in one dimension is also good in another dimension; 2)

the independent dataset, in which the values of two QoS dimensions are independent of each

other; and 3) the anti-correlated dataset, in which there is a clear trade-off between a pair

of dimensions. Note that the number of skyline services is relatively small in the correlated

dataset, large in the anti-correlated, and medium in the independent ones.

All experiments are performed on a PC with 2.2GHz Intel Pentium Duo2 CPU, 2048M

of RAM. Microsoft Windows 7 Operating Systems, J2SDK 1.6. To make the experimental

result comparable, our experiments are conducted on a publicly available dataset EEE05

[14]. However, this dataset only has the WSDL files of services, and the QoS information is

not contained. In order to test our approach with a larger number of services and different

distributions, we use each WSDL file of EEE05 as a service class and use a publicly available

synthetic generator [15] to obtain three different datasets. Each service’s QoS is represented

by a vector of four dimensions, namely, response time, availability, price, and reputation.

We evaluate the following three methods: non-materialized method as baseline method

(NMA), mix integer programming method (MIP), and our proposed heuristic materializa-

tion approach (HMA), respectively. We apply these methods to a set of composite service

plans generated by test requests of EEE05 dataset, then merge all these plans to generate a

single global composition plan.

5.2 Average Processing Cost

By inspecting carefully the intermediate composite service classes which are selected for ma-

terialization, we find that the efficiency of our algorithm may be affected by the size of basic

service classes. So we evaluate below how the size of the basic service classes impacts on

the average processing cost per request (APCR), by varying the size of basic service class

from 100 to 1000. For an intermediate composite service class i, we set the access frequency

and updat frequency fr
i = 50 and fs

i = 10 times per time unit, respectively. The available

space for materializing intermediate composition results is assumed to be of 50%. Figure

3 shows the average processing cost when different types QoS information are applied. The

X-axis represents the size of the basic service classes, and the Y-axis indicates the APRC. We

64 Processing Mutliple Requests to Construct Skyline Composite Services

A

Fig. 4. Performance Evaluation

can observe that the non-materialized approach (NMA) has larger average process cost than

that of the MIP method and our heuristic materialized method for all types of the datasets.

Moreover, while the APCR of the heuristic method is larger than that of the MIP , the gap is

reasonably narrow on all the datasets. More specifically, no matter which type of the dataset

the is used, the average request processing cost of the heuristic method is always close to the

average request processing cost of the MIP method. Lastly, as Figure 3 shows, the average

processing cost generally goes up when the size of the basic service classes increases with the

anti-correlated dataset incurring the largest ACPR, the independent data set incurring the

midum ACPR, and the correlated dataset incurring the lowest ACPR. In addition, we also

notice that there is an exponential increase in the method of NMA. However, by increas-

ing the number of basic services of each class, the required APCR by both MIP and HMA

methods for all the three datasets increase slowly when compared to the NMA method.

5.3 Performance Evaluation

In this part of experiments, we investigate the performance of the heuristic materialization

approach (HMA) and mix integer programming (MIP) method by varying the number of

intermediate composite service classes. Since the non-materialize approach (NMA) does

not materialize any intermediate composite service class, it has no overhead on storing the

intermediate composite service classes hence is not comparable. To compare the performance

of HMA and MIP , we vary the number of intermediate composite service classes from 5

to 50. Runtime overheads mainly involve the cost of deciding which intermediate composite

service class should be materialized and to which extent the cost can be saved by materializing

this service class. From Figure 4, we can see that the HMA approach is indeed much more

efficient than MIP, consistent with the fact that the complexity of HMA is O(n) but the

complexity of MIP is O(2n).

6 Related Work

Web services composition has been studied extensively in recent years. Generally, there are

two types of composition: manual and automatic. The former manually defines a process

consisting of multiple tasks, and its objective is to bind these tasks to concrete services while

satisfying users’ QoS constraints. Hence, it is also called QoS-aware service composition. In

[3], the authors consider it as an integer programming (IP) problem in which the objective

S.-T. Wen, Q. Li, C.-G. Tang, A. Liu, L.-S. Huang, and Y.-G. Liu 65

function is defined as a linear composition of multiple QoS parameters. In [7], the authors

also adopt IP but they use a different method to eliminate loop constructs in the process of

composite services. Yu et al. [4] propose a combinatorial model and a graph model. The

combinatorial model considers service composition as a multi-dimensioned multiple choice of

0-1 knapsack problems. The graph model considers service composition as a multi-constraint

optimal path problem. They propose a polynomial heuristic algorithm for the combinatorial

model and an exponential heuristic algorithm for the graph model. Alrifai and Riss [5] decom-

pose global QoS constraints into an optimal set of local QoS constraints by using IP technique.

The satisfaction of local constraints guarantees the satisfaction of global constraints. Through

the decomposition of global constraints, it is only necessary to conduct several local selections

simultaneously, which significantly improves the performance of the composition process.

Automatic service composition also dynamically generates composite services, and current

approaches for automatic service composition are mainly based on AI planning [16]. In [17],

the authors propose a planning algorithm called WSPR, whichi is essentially in accordance

to the graph plan of [18], but differs in that it adopts a heuristic to minimize the number

of services in a solution while the graph plan aims at minimizing the number of steps but

keeping necessary actions. However, WSPR ignores QoS constraints, so a composite service

sometimes cannot fulfill the user QoS requirements. While the work of [19] has considered

QoS and counted QoS as only one-dimensioned vector, the method presented in [19] is hard

to be extended to multiple QoS dimensions. Our work not only dynamically generates a

composite service, but also search all skyline candidate solutions for a given user request.

7 Conclusions

In this paper, we have proposed a materialized approach to accelerate service composition.

Our method achieves a low cost on request processing, which is guaranteed by two conditions.

One is that multiple requests have the ability to share some sub-composite services. The

other is that the frequency of updating atomic service classes is typically lower than the

frequency of arriving requests. To find which intermediate composite service classes should

be materialized, we have proposed a MIP and a heuristic algorithm (HMA) algorithm with

some experimented studies.

In subsequent research, we will further investigate the effect of limited space on material-

izing intermediate composite service classes. In addition, we will consider whether grouping

users’ request can reduce requests’ processing cost.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant

No. 61003044 and 60873234, and Zhejiang Provincial Natural Science Foundation of China

under Grant No. Y1101202.

References

1. A. Liu, Q. Li, L. Huang, and M. Xiao, “Facts: A framework for fault-tolerant composition of
transactional web services,” Services Computing, IEEE Transactions on, vol. 3, no. 1, pp. 46–59,
2010.

2. R. Haesen, M. Snoeck, W. Lemahieu, and S. Poelmans, “On the definition of service granularity
and its architectural impact,” in Advanced Information Systems Engineering. Springer, 2008, pp.

66 Processing Mutliple Requests to Construct Skyline Composite Services

375–389.
3. L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “Qos-aware middleware

for web services composition,” IEEE Transactions on Software Engineering, vol. 30, no. 5, pp.
311–327, 2004.

4. T. Yu, Y. Zhang, and K. Lin, “Efficient algorithms for web services selection with end-to-end qos
constraints,” ACM Transactions on the Web (TWEB), vol. 1, no. 1, p. 6, 2007.

5. M. Alrifai and T. Risse, “Combining global optimization with local selection for efficient qos-
aware service composition,” in Proceedings of the 18th international conference on World wide
web. ACM, 2009, pp. 881–890.

6. M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A qos broker based architecture for efficient
web services selection,” in Proceedings 2005 IEEE International Conference on Web Services ICWS
2005. IEEE, 2005, pp. 113–120.

7. D. Ardagna and B. Pernici, “Adaptive service composition in flexible processes,” IEEE Transac-
tions on Software Engineering, vol. 33, no. 6, pp. 369–384, 2007.

8. S. Wen, Q. Li, L. Yue, A. Liu, C. Tang, and F. Zhong, “Crp: context-based reputation propagation
in services composition,” Service Oriented Computing and Applications, vol. 6, no. 3, pp. 231–248,
2012.

9. S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in Proceedings of the 17th
International Conference on Data Engineering. IEEE, 2001, pp. 421–430.

10. Q. Yu and A. Bouguettaya, “Computing service skyline from uncertain qows,” IEEE Transactions
on Services Computing, vol. 3, no. 1, pp. 16–29, 2010.

11. M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for qos-based web service compo-
sition,” in Proceedings of the 19th international conference on World wide web. ACM, 2010, pp.
11–20.

12. D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere, and T. Sellis, “Top-k dominant web services
under multi-criteria matching,” in Proceedings of the 12th international conference on extending
database technology: advances in database technology. ACM, 2009, pp. 898–909.

13. J. Yang, K. Karlapalem, and Q. Li, “Algorithms for materialized view design in data warehousing
environment,” in Proceedings of the International Conference on Very Large Data Bases. Institute
of Electrical and Electronics Engineering(IEEE), 1997, pp. 136–145.

14. M. Blake, K. Tsui, and A. Wombacher, “The eee-05 challenge: A new web service discovery and
composition competition,” in Proceedings of IEEE International Conference on e-Technology,
e-Commerce and e-Service, EEE 2005. IEEE, 2005, pp. 780–783. [Online]. Available:
http://ws-challenge.georgetown.edu/ws-challenge/The%20EEE.html

15. “Random data generator:http://randdataset.projects.postgresql.org/.”
16. J. Rao and X. Su, “A survey of automated web service composition methods,” Semantic Web

Services and Web Process Composition, pp. 43–54, 2005.
17. S. Oh, D. Lee, and S. Kumara, “Web service planner (wspr): An effective and scalable web service

composition algorithm,” International Journal of Web Services Research (IJWSR), vol. 4, no. 1,
pp. 1–22, 2007.

18. A. Blum and M. Furst, “Fast planning through planning graph analysis,” Artificial intelligence,
vol. 90, no. 1-2, pp. 281–300, 1997.

19. W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu, “Qsynth: a tool for qos-aware automatic
service composition,” in 2010 IEEE International Conference on Web Services (ICWS). IEEE,
2010, pp. 42–49.

