
Journal of Web Engineering, Vol. 13, No.1&2 (2014) 097-113
© Rinton Press

A FAST APPROACH FOR QUERYING MULTIPLE ONTOLOGY VERSIONS
BASED ON A CONCEPT LATTICE

YAQING LIU1,2, RONG CHEN1, YINGJIE SONG1, WU DENG1,3

1School of Information Science & Technology, Dalian Maritime University, Dalian, China
2Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and

Engineering, Zigong, China
3Software Institute, Dalian Jiaotong University, Dalian, China

liuyaqing234@yeah.net

Received March 16, 2013
Revised August 27, 2013

In this paper we propose a fast approach for querying multiple ontology versions, in which a novel model
named as a version lattice based on a concept lattice is developed to serve as its foundation. We depict
formally related problems of multiple ontology versions query and prove the equality between our
description and a logic-based one. Supporting various requirements on multiple ontology versions, our
approach can save more running time than previous algorithms, which is explained by analyzing our
algorithms. Also experiments show that the advantage of running speed is more remarkable for ontology
versions which are large in quantity and scale.

Key words: Ontology version, Version lattice, Concept lattice
Communicated by: G.-J. Houben & K. Turowski

1 Introduction

Ontology research has been increasing in popularity and ontologies plays an important role in many
fields such as computer science, commerce, biology, etc, since the Semantic Web was firstly proposed
in 2001[1]. Because the outer knowledge environment keeps changing constantly, ontologies need to be
modified continuously. So a serious problem emerges: ontology evolution. Ontology evolution is the
timely adaptation of an ontology to the arisen changes and the consistent propagation of these changes
to dependent artifacts[2]. During ontology evolution, each modification of an ontology will generate a
new version, which will cause many ontology versions to co-exist[13]. In order to manage ontology
versions effectively, ontology versioning is proposed.

Ontology versioning is defined as “the ability to handle changes in ontologies by creating and
managing different variants of it” [3]. For ontology developers, the latest ontology version is usually
less stable than older versions because those ontology changes used to alter older versions have not yet
been admitted by ontology users. Keeping multiple versions is good to withdraw or adjust the changes
to avoid unintended results. For ontology users, they may prefer an earlier version because some

98 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

functions of earlier version are necessary to them. In addition, a lower requirement of resource for
older version is also an important reason to select an older one. By now, a lot of research work[2-8] has
been devoted to solving the above two problems. In view of the logical nature of ontologies, most of
them are based on logic. The low query efficiency, which is very important, is neglected although the
basic requirement of function is met. Specifically for large ontology versions both in quantity and in
scale, the query time is unbearable[14]. In order to improve query efficiency, this paper proposes a novel
approach based on a concept lattice for multiple ontology versions.

Unlike literatures [2] and [4], which only support queries between two ontology versions, our work
is concerned with multiple ontology versions. Also, unlike literatures [5-8], which is focused on the
quality of the query, our work is more concerned about the performance of query time. In current work
we are trying to develop a new approach to querying multiple ontology versions. In this paper we
report two contributions.

 We use formal concept analysis to build version lattice models for multiple ontology versions.
The model is able to reveal clearly their similarities and differences.

 Seven algorithms are applied to multiple ontology versions query. We prove the correctness of
these algorithms. The experiment shows that our algorithms can save more time than existing
work.

This paper is organized as follow. Section 2 introduces basic definitions and conventions about
concept lattices. Section 3 proposes the version lattice, a novel model for representing multiple
versions. Section 4 shows how multiple version queries are solved. Section 5 shows the advantage of
our approach by analyzing algorithms and executing experiments. Section 6 discusses related work. In
the last section, we conclude the paper.

2 Formal Description of Concept Lattice

FCA(Formal Concept Analysis) is a very suitable tool for analyzing the relationship between objects
and attributes. Concept lattice structure can be obtained when applying FCA(Formal Concept
Analysis) to a formal context. Because multi-inheritance is supported, the concept lattice structure is
more expressive than the tree model which only supports single-inheritance for concepts. FCA has
been applied to many realms such as data mining, information extraction and program clustering[9].

2.1 Some Definitions of Concept Lattice

Definition 1. A formal context FT is defined as a 3-tuple: FT=(B,A,P), where
 B is a group of formal objects.
 A is a group of formal attributes.
 P⊆B×A. For any b∈B and a∈A, (b,a)∈P holds iff object b has attribute a.

Definition 2. Given a formal context FT=(B,A,P) and X⊆B. δ(X)={a∈A|∀b∈X: (b,a)∈P} is said to
be the common attributes of X.

Definition 3. Given a formal context FT=(B,A,P) and Y⊆A. τ(Y)={b∈B|∀a∈Y: (b,a)∈P} is said to
be the common objects of Y.

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 99

Definition 4. Given a formal context FT=(B,A,P). A 2-tuple fc=(X,Y) is said to be a formal
concept of FT iff Y=δ(X) and X=τ(Y) hold, where X⊆B and Y⊆A. X is said to be the extent of fc and Y
is said to be the intent of fc.

Definition 5. Given a formal context FT=(B,A,P). A formal concept set is defined as FC={fc|fc is
a formal concept of FT}.

Definition 6. Given a formal context FT=(B,A,P). fc1≤fc2 holds iff X1⊆X2 and Y2⊆Y1 hold, where
 fc1, fc2∈FC are two formal concepts of FT.
 fc1, fc2 are represented as fc1=(X1,Y1) and fc2=(X2,Y2), respectively.

Property 1. Given a formal concept set FC, ≤ is a partial order on FC.
Proof

fc, fc1, fc2, fc3∈FC are denoted as fc=(X,Y), fc1=(X1,Y1), fc2=(X2,Y2) and fc3=(X3,Y3), respectively.
The proof is shown as follow. Because ≤ is reflexive, anti-symmetric and transitive, ≤ is a partial order
on FC.

Definition 7. Given a formal context FT=(B,A,P). FC=(FC,≤) is said to be concept lattice of FT.

2.2 Representation of Concept Lattice

A concept lattice is usually represented as a line diagram because it can vividly represent the
relationship between any two formal concepts. By now a lot of effective approaches have been
proposed to generate line diagrams[11], so the algorithm of building line diagram is omitted and only
related definitions and properties of it are shown as follow.

Definition 8. Given a concept lattice FC=(FC,≤). fc1 is said to cover fc2 iff all of (1),(2) and (3)
hold.

(1) fc1, fc2∈FC and fc1≤fc2 hold.
(2) fc1≠fc2 holds.
(3) fc1≤fc2∧fc2≤fc3→ fc1=fc2∨fc2=fc3 holds.

Definition 9. Given a formal context FT=(B,A,P) and its concept lattice FC=(FC,≤). LG=(V,E) is
line diagram of FC, where

 There is a one-to-one correspondence between v∈V and fc∈FC, which is represented as
oto(v,fc).

 E⊆V×V is the directed edge set of LG. And <v1,v2>∈E holds iff f1 covers f2, where
oto(v1,fc1)∧oto(v2,fc2) holds.

Definition 10. Given a line diagram LG=(V,E). v1 is said to be the upper neighbour of v2 and v2 is

≤ is a partial order on FC

∀fc∈FC, fc≤fc fc1≤fc2, fc2≤fc1→ fc1=fc2 fc1≤fc2, fc2≤fc3→ fc1≤fc3

X⊆X X1⊆X2, X2⊆X1, Y1⊆Y2, Y2⊆Y1→ fc1=fc2

X1=X2, Y1=Y2 → fc1=fc2

X1⊆X2, X2⊆X3→ fc1≤fc3

X1 ⊆X3→ fc1≤fc3

100 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

said to be the lower neighbour of v1 iff <v1,v2>∈E holds.

Convention 1. Given a line diagram LG=(V,E). UNs(v)={v’|<v,v’>∈E } is set of all upper
neighbours. LNs(v)={v’|<v’,v>∈E } is set of all lower neighbours.

Definition 11. Given a line diagram LG=(V,E). For ∀v∈V, the name of v is defined as (Xu-X,Y-
Yl), where oto(v,(X,Y))∧oto(vu,(Xu,Yu))∧oto(vl,(Xl,Yl)) holds, where <vu,v>∈E and <v,vl>∈E.

Definition 12. Given a line diagram LG=(V,E), v1 is said to be the descendant of v2 and v2 is said
to be the ancestor of v1 iff <v1,v2>∈E holds or ∃v’1,v’2,…,v’n∈V, <v1,v1’>∈E∧<v1’,v2’>∈E∧…∧
<vn’,v2>∈E holds.

Convention 2. Given a line diagram LG=(V,E). DEs(v)={v’| v’ is a descendant of v } is set of all
descendants. ANs(v)={v’| v’ is an ancestor of v } is set of all ancestors.

Convention 3. Given a line diagram LG. We use signs V(LG) and E(LG) to represent the vertex set
and the edge set of LG, respectively.

Convention 4. Given a line diagram LG=(V,E) and a vertex v, v is represented as ↑ iff ¬∃v’∈V ,
<v,v’>∈E holds.

Convention 5. Given a line diagram LG=(V,E) and a vertex v, v is represented as ↓ iff ¬∃v’∈V ,
<v’,v>∈E holds.

Property 2. Given a line diagram LG=(V,E) and a vertex v=(X,Y). For ∀x∈X and ∀y∈Y, x has y.
Proof
By definition 9, there is a one-to-one correspondence between an vertex v=(Xv,Yv) and a formal

concept (X,Y)∈FC. By definition 4, ∀x∈X and ∀y∈Y, formal object x has formal attribute y. By
definition 11, Xv⊆X∧Yv⊆Y holds. So, ∀x∈Xv and ∀y∈Yv, formal object x has formal attribute y.

 Property 3. Given a line diagram LG=(V,E). ∀x1∈X1 and ∀y2∈Y2, x1 has y2 if (X1,Y1) is a lower
neighbour of (X2,Y2), where (X1,Y1),(X2,Y2)∈V.
 Proof
 The proof is shown as follow.

Property 4. Given a line diagram LG=(V,E). ∀x1∈X1 and y2∈Y2, x1 has y2 if (X1,Y1) is a descendant
of (X2,Y2), where (X1,Y1),(X2,Y2)∈V.

x1 has y2

 (X1,Y1) is a formal concept

Y2⊆Y1

x1∈X1 y2∈Y1

y2∈Y2

(X1,Y1) covers (X2,Y2)

(X1,Y1) is a lower neighbour of (X2,Y2)

(X1,Y1) ≤(X2,Y2)

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 101

Proof
The proof is shown as follow.

3 Formal Description of Version Lattice

3.1. Ontology and Ontology version

Definition 13. An ontology O is defined as a 5-tuple[10]: O={C,R,Hc,Rel,Ao}
where:

 C is the set of classes, which represents various entities in some domain being modeled. We
assume that classes are named by one or more natural language terms and are normally referenced
within the ontology by a unique identifier.

 HC⊆C×C is a set of taxonomic relationships between classes. Such relations define the hierarchy
of classes.

 R is the set of non-taxonomic relationships. The function Rel: R→C×C maps the relation identifiers
to the actual relationships.

 Ao is a set of axioms, usually formalized into some logic language. These axioms specify additional
constraints on the ontology and can be used in ontology consistency checking and for inferring new
knowledge from the ontology through some inference mechanism.

For brevity, O is short for ontology throughout this paper. Its class set is denoted by O.C,
taxonomic relationships by O.HC.

Definition 14. Os={O1,O2, …,On} is said to be the ontology space of O iff ∀1≤i≤n, Oi is a version
of ontology O.

For example, the ontology space Os={O1,O2, O3, O4,O5} about ontology O is shown in Figure 1.
Each class is denoted by an ellipse. All of c1, c2, c3, c4 are classes of O. Every taxonomic relationship is
denoted by an arrow from subclass to superclass. An example is that c1 is a subclass of c2 in O1

x1 has y2

 (X1,Y1) is a formal concept

Y2⊆Y1

x1∈X1 y2∈Y1

y2∈Y2

∃(X1’,Y1’), (X2’,Y2’), …, (XN’,YN’), Y2⊆Y1’∧Y1’⊆Y2’∧…∧ Yn’⊆Y1

 (X1,Y1)≤(X1’,Y1’)∧(X1’,Y1’)≤(X2’,Y2’)∧…∧(Xn’,Yn’)≤(X2,Y2)

 (X1,Y1) covers (X1’,Y1’)∧(X1’,Y1’) covers (X2’,Y2’)∧…∧(Xn’,Yn’) covers (X2,Y2)

 <(X1,Y1),(X1’,Y1’)>∈E∧<(X1’,Y1’),(X2’,Y2’)>∈E∧…∧<(Xn’,Yn’),(X2,Y2)>∈E

 (X1,Y1) is a descendant of (X2,Y2)

102 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

3.2. Version Lattice

By the taxonomic relationship of an ontology, a formal context for its ontology space can be built.
Definition 15. Given an ontology space Os={O1,O2,…,On}, FTOs=(B,A,P) is said to be a version

formal context, where
 B:=Os.
 A:=O1.HC∪O2.HC∪…∪On.HC.
 For any b∈B and a∈A, (b,a)∈P holds iff a∈b.HC holds.

 For example, the version formal context of the ontology space Os={O1, O2, O3, O4, O5} shown in
Figure 1 is shown in Figure 2. For any (ci,cj)∈A, ci is subclass of cj. if (b,a)∈P holds, the character ‘×’
appears across b and a.

 Convention 5. Given a version formal context FTOs=(B,A,P). We use FCOs=(FCOs,≤) to represent
the concept lattice of FTOs (named as the version lattice) and use LGOs=(V,E) to represent the line
diagram of FCOs.

 The line diagram of the version lattice based on the version formal context shown in Figure 2 is
shown in Figure 3.

(c1,c2) (c4,c3) (c2,c3) (c1,c3) (c4,c2)
O1 × ×
O2 ×
O3 × ×
O4 ×
O5 ×

Figure 2 The version formal context based on the ontology space shown in Figure 1

4 Query Algorithms for Class Hierarchy

In paper [8], seven cases of multiple ontology versions queries for the class hierarchy of ontology
versions were proposed. In our paper, these seven cases may be divided into two types. One is named
as multiple ontology versions query without parameters and the other is named as multiple ontology
versions query with parameters.

c1

c2

c3 c3 c4

c3 c2

c2 c1

c3 c1

O1

Figure 1 An example ontology space Os={O1, O2, O3, O4, O5}

c4

O2

O3

O4

O5

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 103

The performance of query is enhanced greatly because the search space is decreased greatly in
algorithms 1-7. In algorithms 1-7, the traversed objects are vertices rather than ontology versions
themselves. And similarities and differences between ontology versions about the class hierarchy are
displayed in vertices. Because these queries are to find similarities and differences between ontology
versions, only a small subset of V is checked. These results of queries such as 1, 2 and 3 can be
provided directly by the line diagram.

4.1. Query Algorithms for Multiple Ontology Versions without Parameters

Os={O1,O2,…,On} denotes an ontology space throughout this paper.

Query 1: Search all taxonomic relationships which always hold in every ontology version.
Those all taxonomic relationships which always hold in every ontology version can be described

formally as O1.HC∩O2.HC∩…∩On.HC.
Lemma 1. O1.HC∩O2.HC∩…∩On.HC =δ(Os) holds
Proof
δ(Os) is the set of common attributes of all ontology versions. Vertex↑= (Os,δ(Os)) is the top most

in LGOS. For ∀O∈Os and ∀h∈δ(Os), h holds in O by property 2. So O1.HC∩O2.HC∩…∩On.HC=δ(Os)
holds.

By lemma 1, algorithm 1 is used to find all taxonomic relationships which always hold in every
ontology version.

Algorithm 1: Diff(Os)
Input: Os, ontology space
Output: COMMON, all taxonomic relationships which always hold in Os
1. COMMON:=∅;
2. (X,Y):=getTopVex(LGOs); //Function getTopVex(LGOs) is used to get the vertex ↑ from LGOs
3. COMMON:=Y;
4. RETURN COMMON

Figure 3 The line diagram based on the version formal context shown in Figure 2

(∅,{(c2, c3)})

({O1},∅)

({O5},{(c1,c3)}) ({O2},{(c4,c3)})

{O3},{(c4,c2)})

({O4},{(c1,c2)})

↑

↓

104 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

 Query 2: Given an ontology version Oi∈Os(1≤i≤n), search those taxonomic relationships
which hold in Oi and don’t hold in Os-{Oi}.

Those taxonomic relationships which hold in Oi and don’t hold in Os-{Oi} can be described
formally as New=Oi.HC-O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC ∪…∪On.HC.

Lemma 2. New=Y holds if {Oi}=X holds, where ↓=(X,Y).
Proof

We prove Y⊆New in step 1 and prove New⊆Y in step 2. According to step1 and step 2, New=Y is
proved.

Lemma 3. New =Y holds if {Oi}=X holds and ∀(X’,Y’)∈DEs((X,Y)), X’=∅ hold, where
(X,Y)∈V(LGOs) and (X,Y) ≠↓.

Proof
We prove Y⊆New in step 1 and prove New⊆Y in step 2. According to step1 and step 2, New=Y is

proved.

Y⊆New

Y⊆Oi.HC-O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC

(Y⊆Oi.HC) Y∩(O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC)=∅

{Oi}=X ↓=(X,Y)Step 1 for lemma 2

New⊆Y

Oi.HC-O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC⊆Y

 Y∪O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC=O1.HC∪…∪On.HC

{Oi}=X ↓=(X,Y)Step 2 for lemma 2

Y⊆New

Y⊆Oi.HC-O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC

(Y⊆Oi.HC) Y∩(O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC)=∅

∀(X’,Y’)∈DEs((X,Y)), X’=∅
Step 1for lemma 3 {Oi}=X

New⊆Y

Oi.HC-O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC⊆Y

Y∪O1.HC∪O2.HC∪…∪Oi-1.HC∪Oi+1.HC∪…∪On.HC=O1.HC∪…∪On.HC

{Oi}=XStep 2 for lemma 3 ∀(X’,Y’)∈DEs((X,Y)), X’=∅

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 105

By lemma 2 and lemma 3, algorithm 2 is used to search those taxonomic relationships which hold in a

special ontology version O and don’t hold in Os-{O}.

 Query 3: Given an ontology version Oi∈Os, search those taxonomic relationships which
don’t hold in Oi and hold in Os-{Oi}.

Those taxonomic relationships which don’t hold in Oi and hold in Os-{Oi} can be described
formally as Del=O1.HC∩O2.HC∩…∩Oi-1∩Oi+1∩…∩On.HC–Oi.HC.

Lemma 4. Del =Y1 holds if all of (1), (2) and (3) hold.
(1) {Oi}=X
(2) ↑=(X,Y)
(3) (X1,Y1)∈LNs((X,Y)) and |LNs((X,Y))|=1.
Proof

By lemma 4, algorithm 3 is used to search these taxonomic relationships which don’t hold in a
selected ontology version O and hold in Os-{O}.

Algorithm 2: NewTaxRel(Os,O)
Input: Os, ontology space and O∈Os, a special ontology version
Output: New, taxonomic relationships which hold in O and don’t hold in Os-{O}.
1. New←∅;
2. // Lines 3-7 are responsible to find the vertex which includes O.
3. WHILE(hasMoreVertices(LGOs,↓)≠∅)
4. //Function hasMoreVertices (LGOs,↓) is used to traverse all vertices from ↓ to ↑ in LGOs

5. (X,Y):=getNextVertex(LGOs);//Function getNextVertex(LGOs) is used to get a vertex.
6. IF O∈X
7. BREAK;
8. IF ↓=(X,Y) OR ∀(X’,Y’)∈Des((X,Y)), X’=∅ //By lemma 2, 3, Y is assigned to New, or not.
9. New:=Y;
10. RETURN New

Del=Y1

O1.HC∩O2.HC∩…∩Oi-1∩Oi+1∩…∩On.HC–Oi.HC=Y1

O1.HC∩…∩On.HC=Y

↑=(X,Y)

O1.HC∩O2.HC∩…∩Oi-1∩Oi+1∩…∩On.HC=Y∪Y1

↑=(X,Y) {Oi}=X (X1,Y1)∈LNs((X,Y)) |LNs((X,Y))|=1

106 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

4.2. Query Algorithms with Parameters

Query 4: Given a taxonomic relationship h∈O1.HC∪O2.HC∪…∪On.HC, search for ontology
version Om where Om has h and the maximum index, h∈Om.HC∧∀m<i≤n, h∉Oi.HC.

 Algorithm 4 is used to search ontology version Om.

Query 5: Given an ontology class c∈O1.C∪O2.C∪…∪On.C, search for ontology classes set
commonChildren={c’|(c,c’)∈O1.HC∩O2.HC∩…∩On.HC}.

Algorithm 5 is used to search for ontology version ontology classes set commonChildren.

Algorithm 4: NewVersion(Os,h)
Input: Os, ontology space and h, a selected taxonomic relationship
Output: O, an ontology version
1. Candidate:=∅; //∀O∈Candidate, O has h.
2. //Lines 3-8 are responsible to find the first ontology version which has h.
3. WHILE(hasMoreVertices(LGOs,↑)≠∅)
4. //Function hasMoreVertices(LGOs,↑) is used to traverse all vertices from ↑ to ↓ in LGOs

5. (X,Y):=getNextVertex(LGOs);//Function getNextVertex(LGOs) is used to get a vertex.
6. IF h∈Y
7. Candidate:=Candidate∪X;
8. BREAK;
9. //Lines 10-13 is responsible to find all ontology versions any of which has h.
10. WHILE(hasMoreVerticex(LGOs,DEs((X,Y)))≠∅)
11. //Function hasMoreVerticex(LGOs,DEs((X,Y))) is used to traverse all vertices from (X,Y) to ↓
12. (X’,Y’):=getOneVertex(LGOs); //Function getNextVertex(LGOs) is used to get a vertex.
13. Candidate:=Candidate∪X’;// For ∀O∈X’, O has h by property 4.
14. O:=Max(Candidate);
15. //Function Max(Candidate) is used to find the ontology version which has max index in

Candidate.
16. RETURN O

Algorithm 3: DelTaxRel(Os,O)
Input: Os, ontology space and O∈Os, a special ontology version
Output: Del, taxonomic relationships which don’t hold in O and hold in Os-{O}.
1. Del:=∅;
2. (X,Y):=getTopVertex(LGOs);
3. //Function getTopVertex(LGOs) is used to get vertex ↑.
4. IF {O}=X AND (X1,Y1)∈LNs((X,Y)) AND |LNs((X,Y))|=1
5. //By lemma 4, Y1 is assigned to New, or not.
6. Del:=Y1;
7. RETURN Del

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 107

Query 6: Given an ontology class c∈O1.C∪O2.C∪…∪On.C and an ontology version Oi∈Os,
search for ontology classes set newChildren={c’|(c,c’)∈Oi.HC∧(c,c’)∉O1.HC∪O2.HC∪…∪Oi-1.HC∪
Oi+1.HC ∪…∪On.HC}.

Algorithm 6 is used to search for ontology version ontology classes set newChildren.

 Query 7: Given an ontology class c∈O1.C∪O2.C∪…∪On.C and an ontology version Oi∈Os,
search for ontology classes set loseChildren={c’|(c,c’)∉Oi.HC∧(c,c’)∈O1.HC∩O2.HC∩…∩Oi-1.HC∩
Oi+1.HC∩ …∩On.HC}.

Algorithm 7 is used to search for ontology version ontology classes set loseChildren.

Algorithm 5: getCommonChildren(Os,c)
Input: Os, ontology space and c, an ontology class
Output: Children, ontology classes set
1. Children:=∅;
2. (X,Y):=↑;
3. //Lines 4-6 is explained by convention 5.
4. FOR EACH (c1,c2) in Y
5. IF c==c1

6. Children:=Children∪{c2};
7. RETURN Children

Algorithm 6: getNewChildren(Os,O,c)
Input: Os, ontology space and O, a special ontology version and c, an ontology class
Output: Children, ontology classes set
1. Children:=∅;
2. //Lines 3-7 is responsible to find the vertex which has O.
3. WHILE(hasMoreVertices(LGOs,↓)≠∅)
4. //Function hasMoreVertices(LGOs,↓) is used to traverse all vertices from ↓ to ↑ in LGOs.
5. (X,Y):=getNextVertex(LGOs); //Function getNextVertex(LGOs) is used to get a vertex.
6. IF O∈X
7. BREAK;
8. IF (X,Y)=↓ OR ∀(X1,Y1)∈DEs((X,Y)), X1=∅
9. //Line 8 is explained by lemma 2 and 3, c2 is objective ontology class.
10. FOR EACH (c1,c2) in Y
11. IF c==c1

12. Children:=Children∪{c2};
13. RETURN Children

108 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

5 Analysis and Experiments of Algorithms

5.1. Complexity Analysis for Our Algorithms

In paper [8], a prototypical system named as MORE, which is based on a description logic reasoner,
was implemented for multiple version management. As is well known, the core algorithm for
description logic reasoners is Tableau, which has exponential time complexity in the worst case.
Compared with Tableau, the time complexity of our approach is in the worst case polynomial.

We stated the best time complexity and the worst one of our approach in Table 1. The complexity
results of algorithms 1-7 are explained as follow.

 For algorithm 1, the output “common” is got directly from vertex ↑. So the complexity is
always O(1) both in best situations and worst situations.

 For algorithm 2, lines 3-7, a loop sentence, is responsible to find the vertex which includes O.
Function hasMoreVertices(LGOs, ↓) is used to traverse all vertices from ↓ to ↑ in LGOs. If
↓=(X,Y) holds, the best time complexity is O(1). The worst situation is that both ↑=(X,Y) and
∀(X’,Y’)∈Des((X,Y)), X’=∅ hold. So, the worst time complexity is O(n), where n is the
number of vertices in LGOs.

 For algorithm 3, the output “common” is got from vertex ↑ and its neighbour. So the
complexity is always O(1) both in best situations and worst situations.

 For algorithm 4, lines 3-8, a loop sentence, is responsible to find the first ontology version
which has h. Function hasMoreVertices(LGOs,↑) is used to traverse all vertices from ↑ to ↓ in
LGOs. If both (X,Y)=↑ and h∈Y hold, the best time complexity is O(1). If both (X,Y)=↓ and
h∈Y hold, the worst time complexity is O(n), where n is the number of vertices in LGOs.
Lines 10-13 is responsible to find all ontology versions any of which has h. Function
hasMoreVerticex(LGOs,DEs((X,Y))) is used to traverse all vertices from (X,Y) to ↓. If both
(X,Y)=↓ and h∈Y hold, the best time complexity is O(1). If both (X,Y)=↑ and h∈Y hold, the
worst time complexity is O(k), where k is cardinality of DEs((X,Y)). Function
Max(Candidate) is used to find the ontology version which has max index in Candidate. If

Algorithm 7: getLoseChildren(Os,O,c)
Input: Os, ontology space and O, a special ontology version and c, an ontology class
Output: Children, ontology classes set
1. Children:=∅;
2. (X,Y):= ↑;
3. IF O={X} AND |LNs((X,Y))|==1 AND (X1,Y1)∈LNs((X,Y))
4. //Line 3 is explained by lemma 4. c2 is objective ontology class.
5. For EACH (c1,c2) in Y1

6. IF c==c1

7. Children:=Children∪{c2};
8. RETURN Children

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 109

both (X,Y)=↓ and h∈Y hold, the best time complexity is O(1). If both (X,Y)=↑ and h∈Y hold,
the worst time complexity is O(k).

 For algorithm 5, lines 4-6, a loop, is responsible to traverse all elements in Y. So, the time
complexity is O(k), where k is the cardinality of Y.

 For algorithm 6, lines 3-7, a loop, is responsible to find the vertex which has O. Function
hasMoreVertices(↓) is used to traverse all vertices from ↓ to ↑ in LGOs. If both (X,Y)=↓ and
O∈X hold, the best time complexity is O(1). If both (X,Y)=↑ and O∈X hold, the worst time
complexity is O(n), where n is the number of vertices in LGOs. Lines 8-12, a loop, are
responsible to traverse all elements in Y. If (X,Y)=↓ holds, the time complexity is O(k), where
k is the cardinality of Y. If (X,Y)≠↓ holds, the time complexity is 1.

 For algorithm 7, lines 5-7, a loop, is responsible to traverse all elements in Y1. The time
complexity is O(k), where k is the cardinality of Y1.

Table 1 Time complexity of our approach
Query times A1 A2 A3 A4 A5 A6 A7
Best Time
complexity O(1) O(1) O(1) O(k)+O(k), 2k<n

O(n), 2k>n O(k) O(k) O(k)

Worest Time
complexity O(1) O(n) O(1) O(k)+O(k), 2k>n

O(n), 2k<n O(k) O(n)+O(k) O(k)

In Table 1, the first line denotes algorithms 1-7. The other lines claim the time complexity of the
corresponding algorithm.

5.2. Experiment and Results

The experimental environment is a 16G RAM, Intel P3770 3.9GHZ, Windows XP OS. We compare
our approach with a Tableau algorithm. In our experiment, the reasoner Pellet 2.2.0, which is based on
the Tableau algorithm, is used. Pellet is open source tool and implemented by Maryland university.
Pellet can be downloaded from http://clarkparsia.com/pellet.

(1) Experiment for an education ontology E
Table 2 the number of taxonomic relationships for each ontology version

Versions of E E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Number of
taxonomic
relationship

510 532 524 558 568 601 615 628 624 641

Table 3 the running time of our approach & Tableau for E (unit: ms)
Name Number of versions A1 A2 A3 A4 A5 A6 A7

Our approach 5 0 0 0 47 16 15 15
Tableau 5 360 371 377 38 355 305 296

Our approach 8 0 0 0 94 16 15 15
Tableau 8 640 595 625 48 611 588 612

Our approach 10 0 0 0 125 16 15 15
Tableau 10 812 822 799 35 773 791 802

110 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

E has ten versions E1, E2, …, E10. The number of taxonomic relationship of every version is shown in
Table 2. We compare our approach with Tableau on the time complexity of each query in Table 3.
Three tries were done in total in our experiment. Three ontology versions, five ontology versions and
ten ontology versions are set as ontology space, respectively. The results of the experiment are shown
in Figure 4. All of the running time of our approach for algorithms A1, A2, A3 are 0, which is
explained that the time was too low to measure.

Figure 4 The running time about Tableau & our approach

Figure 5 The average running time about Tableau & our approach

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 111

 (2) Experiment for ontology OJKL and BioSAIL

We have compared our approach with Tableau on different versions of real life ontologies from
different domains. In the following, we briefly report experiments we performed on detecting changes in
the class hierarchy of the following two ontologies.

The OJKL ontology (Ontology of the Juridical Legal Knowledge) is a legal Ontology that has been
developed in the SEKT project [15]. We used five different versions of the ontology from different stages
of the development process. Each of these versions contains about 80 classes. The BioSAIL ontology
was developed within the BioSTORM project[16]. We take three versions of the BioSAIL ontology for
the tests reported below. Each version of BioSAIL ontology has about 180 classes.

The result is stated in Table 4.

Table 4 the running time of our approach & Tableau for OJKL and BioSAIL (unit: ms)
Name Ontology A1 A2 A3 A4 A5 A6 A7

Our approach 0 0 0 13 8 7 7
Tableau OJKL 85 87 88 10 83 81 81

Our approach 0 0 0 25 8 8 6
Tableau BioSAIL 177 181 183 22 170 163 163

(3)Comments

For Tableau, the running time is increasing by a wide margin as the number of versions increasing,
which is shown by Figure 4. In contrast to the running time of Tableau, the running time of our
approach is almost unchanged as the number of versions increases. According to Figure 5, the average
running time of our approach is much less than Tableau.

By Table 3 and Table 4, algorithms 1, 2, 3, 5, 6 and 7 beat Tableau in performance of query. But
algorithm 4 is a little weaker than Tableau. By analyzing the three ontologies, we find the vertex
containing taxonomic relationship h is very near to vertex ↓. So in our experiments, the time
complexity of algorithm 4 is almost worst because the time complexity of algorithm 4 is proportional
to the number of vertices in line diagram. But for query 4, Tableau traverses these ontology versions
from the max indexed ontology to the min indexed one. Most of ontology versions are not traversed
because the h is contained in the greater indexed ontology and is found earlier. It is faster to find
answer because there is less deduction in query 4 than other queries. This is why the switches take
place in performance for A4.

6 Related Work

A lot of research work has been done on ontology versioning[12]. The research approaches are mainly
based on logic.

Inspired by these similar problems, which software engineering have faced for many years, Noy
proposes an ontology management framework, PROMPT, for comparing different ontologies on
structure and mapping similarities and differences between them[2]. Given any two ontologies, three
result items, “renamed”, “operation” and “map level” are shown by PROMPTDIFF. According to a set
of heuristic matchers, PROMPT is able to map between any two ontologies. A bi-directional map
between two ontologies BOV is presented[4]. Four mapping relations, “Equivalence”, “Isomorphic”,

112 A Fast Approach to Querying Multiple Ontology Versions Based on Concept Lattice

“Isomerours” and “Mutiple_Change”, are defined to describe the relationship between mapping
elements. Linguistic similarity and structural similarity are computed according to mapping relations
between two ontologies. A threshold thaccept is set to identify the mappings. Compared to related
approaches, the major advantage of BOV is that less time and effort are required for mapping
identification and transformation in bi-directions. But PROMPT and BOV are only adaptive to two
ontologies and they do not provide support for query across multiple ontologies. If the approaches in
PROMPT or BOV are used to query across multiple ontologies, it will become a NP problem.

Based on the logical nature of ontologies, logic approaches are proposed to highlight differences
between multiple ontologies and support queries on them. Theoretically, Leenhee presents a model-
independent ontology evolution framework for revising and managing multiple ontology versions in a
possible worlds setting[5]. Based on AGM theory, Leenhee defines three different transformation types
for depicting ontology evolution: expansion transformation, revision transformation and contraction
transformation. In addition, equivalence-preserving, possibility and necessity of ontology evolution are
discussed at length. Furthermore, Heflin gives a formal description and account for three kinds of links
between semantic web documents: commitment to an ontology by a resource, extension of one
ontology by another, and backward-compatibility of an ontology with a prior version[6]. Practically,
OntoView, a tool supporting ontology versioning, is developed[7]. For two ontologies on the web, any
of non-logical change, logical definition change, identifier change, addition of definitions and deletion
of definitions is shown to users by OntoView. Huang extends temporal logic by adding three temporal
operators: previous operator, sometimes-in-the-past operator and always-in-the-past operator[8]. In
addition LTM, a query language based on temporal logic is defined to provide reasoning queries and
retrieval queries to users.

Logic approaches, such as these, are more expressive for highlighting differences between them and
supporting queries to them. But when facing large ontologies both in quantity and in scale, the running
efficiency of multiple versions query decreases heavily. Our approach is able to provide all 7 queries
proposed in [8], but the running efficiency of our approach is higher.

7 Conclusions and Future Work

In this paper, we discussed the running efficiency of querying multiple ontology versions. We
proposed a novel management model based on a concept lattice for representing the relationship
among multiple ontology versions, and then mathematically described the query requirement on
multiple ontology versions. Based on a version lattice, we showed higher running efficiency by theory
and experiments.

Next, we intend to look at differences between classes, class properties, axioms, etc. The approach
based on concept lattices should be applied to them easily. One example is that individuals and classes
are considered as formal attributes and formal objects, respectively. Another is that properties and
classes are viewed as formal attributes and formal objects, respectively. Perhaps, the difference of
axioms is more difficult because these axioms, which are represented by description logic language
generally, are hard to be expressed as formal attributes. A potential approach to query cross multiple
versions with axioms is based on decomposition of definition and structure of axioms.

Y.Q. Liu, R. Chen, Y.J. Song, and W. Deng 113

Acknowledgements

This work was supported by National Natural Science Foundation of China (61175056, 61203283),
Young Key Teachers Foundation Projects of Dalian Maritime University (2012QN031), the Open
Project Program of Artificial Intelligence Key Laboratory of Sichuan Province (2013RYJ02,
2012RYJ02), the Higher growth plans of Liaoning Province for Distinguished Young Scholars
(LJQ2013049)，State Key Laboratory of Software Engineering (SKLSE) (SKLSE2012-09-27), the
Open Project Program of Sichuan Provincial Key Lab of Process Equipment and Control (GK201202),
the Open Project Program of the Traction Power State Key Laboratory of Southwest Jiaotong
University (TPL1203), the Open Project Program of Guangxi Key Laboratory of Hybrid Computation
and IC Design Analysis (Guangxi University for Nationalities) (2012HCIC06).

References

1. Berners-Lee, T., Hendler J. and Lassila O., The Semantic Web. Scientific American, 2001.
2. Noy, N.F., Musen M.A., Ontology Versioning in an Ontology Management Framework. IEEE

Intelligent Systems, 19(4):6-13(2004).
3. Klein, M., and Fensel, D., Ontology versioning for the Semantic Web. In SWWS’2001, (2001).
4. Zhao,S. and Tierney B., Bi-directional Ontology Versiong BOV. Lecture Notes in Computer

Science, 2005, 906-912.
5. Leenhee, P.D., Revising and Managing Multiple Ontology Versions in a Possible Worlds Setting.

Lecture Notes in Computer Science, 2004, 798-809.
6. Heflin, J and Pan, Z., A Model Theoretic Semantics for Ontology Versioning. In ISWC’2004,

(2004).
7. Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D., Ontology versioning and change detection on

the Web. Lecture Notes in Computer Science, 2002, 247-259.
8. Huang, Z. and Stuckenschmidt, H., Reasoning with Multi-version Ontologies: A Temporal Logic

Approach. Lecture Notes in Computer Science, 2005, 398-412.
9. Tilley, Thomas., Cole, R., Becker, P and Eklund, P., A Survey of Formal Concept Analysis

Support for Software Engineering Activities. Lecture Notes in Computer Science, 2005, 250-271.
10. Stojanovic, L. Methods and Tools for Ontology Evolution. PhD thesis, University of Karlsruhe,

Germany, 2004.
11. Godin, R., Missaoui, R and Alaoui, H., Incremental concept formation algorithms based on Galois

(concept) lattices. Computational Intelligence, 11(2):246-267 (1995).
12. Liu, Y., Chen, R and Du, Z., A novel model for ontology versions maintenance. Journal of

Computational Information Systems, 7(14):5201-5209, 2011.
13. Liu, Y., Chen, R., Gao, J and Yang, H., A Conflict-Resolving Approach to Ontology Evolution in

Open Environments. Engineering Intelligent System, 18(3/4): 223-231, 2010.
14. Li, Y., Comparison and Analysis of Programming Ontology Reasoner. Journal of South China

Normal University, 44(3):59-63, 2011.
15. Casanovas, Pompeu; Poblet, Marta; Casellas, Nuria; Contreras, Jess; Benjamins, V.Richard;

Blzquez, Mercedes., Supporting newly-appointed judges: A legal knowledge management case
study. Journal of Knowledge Management, 2005.

16. Klein, M., Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit
Amsterdam, 2004.

