
Journal of Web Engineering, Vol. 10, No. 1 (2011) 001–020
c© Rinton Press

USING TRACEABILITY LINKS AND HIGHER-ORDER TRANSFORMATIONS

FOR EASING REGRESSION TESTING OF WEB APPLICATIONS

PIERO FRATERNALI

Dipartimento di Elettronica ed Informazione, Politecnico di Milano, via Ponzio 24/5

20133, Milano, Italy

piero.fraternali@polimi.it

MASSIMO TISI

AtlanMod, INRIA & Ecole des Mines de Nantes, La Chantrerie 4, rue Alfred Kastler
BP 20722, F-44307 Nantes Cedex 3, France

massimo.tisi@inria.fr

Received June 1, 2010

Revised November 25, 2010

For Model-Driven Engineering to become widely accepted by developers, it is necessary
that its principles and techniques be applied not only to the generation of code from Plat-

form Independent Models (PIMs), but more generally to all the phases of the software

life-cycle. This paper focuses on the use of PIMs to support automation in the regres-
sion testing phase of a system; the proposed framework lets developers record and replay

testing sessions and investigate testing failures at the level of their PIMs; this is made
possible by traceability links automatically weaved into the generated code, whereby

developers can follow application execution at the model level. Such traceability links

are created by a modified version of the code generation transformation, automatically
produced by means of a Higher-Order Transformation (HOT). A HOT is a transfor-

mation that takes as input a transformation (the original code generator) and creates

another transformation (the code generator capable of producing traceability links). The
HOT weaves into the code generator additional rules producing traceability clues that

help developers link any error to the model features likely to cause it. This approach

is particularly helpful in the Web context, where code generation transformations must
follow changes in the technology and presentation styles. Using HOTs ensures the au-

tomatic evolution of the transformation for traceability links when the code generation
transformation changes.

Keywords: Model-Driven Engineering, Model-Driven Architecture, Testing, Regression,
Testing Automation

Communicated by: M. Gaedke, M. Grossniklaus, and O. Diaz

1 Introduction

Model-Driven Engineering (MDE) is the branch of Software Engineering that advocates the

use of models and model transformations as the primary means for representing a system and

its application domain and for turning the system specifications into an executable application

[10]. Models incorporate the knowledge about the application domain or software solution at

hand. In the Model-Driven Architecture [23], the OMG view on model-driven development,

models are classified, according to their degree of abstraction with respect to the implemen-

1

2 Using Traceability Links and Higher-Order Transformations for ...

tation technology, into Computation Independent Models (CIMs), which express knowledge

about the application domain irrespective of the software system under design, Platform

Independent Models (PIMs), which describe a specific system abstracting away from the im-

plementation technology details, and Platform Specific Models (PSMs), which incorporate

knowledge about the selected deployment infrastructure and technology [28].

The knowledge embodied in the model is primarily used for forward engineering, that is,

the progressive refinement towards the final implementation code, from CIM to PIM to PSM.

However, models have a range of application that goes beyond code generation [34]. They can

be used as documentation, to estimate the size and effort of application development [4][5],

and even as a support to testing [9, 7, 25, 29, 31].

In the domain of testing, the use of models mostly concentrates on automating the produc-

tion and execution of test cases, for example by using the knowledge embedded within models

for producing test sets satisfying specific quality criteria (e.g., selected coverage criteria over

the application models or execution paths).

Other activities related to testing, like model-based selective regression testing and behav-

ioral result evaluation are less supported [26]. Regression testing refers to the inspection of

successive versions of a deployed system, in order to identify and remove regressions, which

are those situations in which a fault occurs in a program functionality that previously worked,

due to a change in the software. Behavioral result evaluation, instead, refers to the activity

whereby a developer traces the results of a testing session, typically a set of identified bugs,

to the most likely source of malfunctioning in the software [37].

When testing and debugging an application, developers are used to think in terms of

the functionality at the source code level, and want to trace any testing failure directly to

the source code elements that are most likely to have caused it. In an MDE environment

supported by code generation transformations, the link between the occurrence of a testing

failure and the source code is not there; developers specify the application at a high level,

and the detailed source code is produced by a model transformation. When a regression test

fails, developers should be able to link the failure not to the platform-dependent, low-level

code, but to the PIM that they have specified.

The focus of this paper is to establish a link between the implementation level at which

the application is tested and the platform-independent model at which it is designed, so as to

ease the production of regression test sets and their behavioral evaluation after a new release

of the system is generated and deployed. This goal is pursued by means of a framework

for regression testing, which enables Model-Driven Engineers to manage the testing of their

application without exiting the level of abstraction of MDE.

The main contributions of the proposed framework consist of:

• An Higher-Order Transformation (HOT), whereby the model to text transformation

that produces the source code of the application from its PIM is modified, so that

model traceability clues are automatically weaved into the generated code.

• A Navigation Recorder, whereby the developer can implement a test session as a navi-

gation script. The recorder not only registers the navigation steps of the user, but also

encodes correctness assertions automatically, exploiting the model traceability clues

weaved into the generated code.

P. Fraternali and M. Tisi 3

• A Test Session Player, embedded within the same IDE used by the developer for editing

the PIM and generating the code, which allows one to modify the model and generate

the code, play any previously recorded regression test session, and trace failures back

to the PIM elements that have caused them.

The rest of the paper is organized as follows: Section 2 introduces the motivations of this

work and presents a case study used throughout the paper; Section 3 illustrates the gen-

eral architecture of the Higher-Order Transformation framework for the production of model

traceability clues in a model-to-code transformation; Section 4 describes in greater detail the

rules that compose the HOT; Section 5 presents a browser’s extension for recording testing

sessions, enabling the automatic production of correctness assertions, and a plug-in extension

of a MDE development tool, allowing the seamless integration of change management, code

generation and regression testing. Section 6 describes the runtime environment for executing

the regression test sessions. Section 7 briefly discusses the implementation work; Section 8

compares our contribution to the related work; Section 9 draws the conclusions.

2 Motivation and Case Study

Regression testing is the activity aimed at detecting software regressions, defined as those

situations in which a program functionality that was previously working ceases to do so, as a

consequence of a change in the software.

Regression testing is particularly relevant in modern Web development methodologies

for several reasons: 1) Web applications are often delivered in short times and are subject to

continuous evolution; 2) the enabling technologies are still in motion, which introduces further

source of uncontrolled changes; 3) rapid prototyping in the early phase of development is often

used, to help the stake-holders compare alternative functionalities.

In Web applications, testing sessions can be encoded as scripts that simulate the user’s

navigation. Such scripts operate on the platform-dependent realization of the application and

reproduce the interaction-evaluation loop typical of Web browsing: the user inputs or selects

values using the interface and assesses the response computed by the system; if this is correct,

she proceeds in the interaction.

Navigation can be recorded using a state-of-the-practice Record & Play tool. Several such

tools exist (e.g., Selenium [32] and TestGen4Web [33]), which implement an event-handler

that listens to the events occurring inside the browser and then generate a test script (usually

in XML format) that contains one or more assertions to be verified after each navigation step.

An example of interaction that could be recorded as a test script is:

1. Go to the Google home page
2. Fill the input form with the string ‘WebTest ’
3. Press the ‘I’m Feeling Lucky ’ button
4. Assert that the string ‘WebTest ’ must appear in the returned page

Specifying an assertion requires an extension of the browser. Figure 1 shows how step (4)

is performed in a popular Record & Play tool.

The test scripts generated by the Navigation Recorder can then be executed, using one of

several Web test environments available, e.g., Canoo WebTest [13], Cactus [35], HTMLUnit

[20] and JWebUnit [22], which replay the test session and verify the assertions, highlighting

failures.

4 Using Traceability Links and Higher-Order Transformations for ...

Fig. 1. Creating an Assertion with a Record & Play tool

The problem of this approach is that the evaluation of the testing session breaks the

MDE abstraction level, because the testing sessions are defined in terms of the platform-

specific realization of the application, and not at the level of the platform-independent models

produced by the designers. This semantic mismatch hampers the task of linking failures back

to the model elements that are likely to cause them. Furthermore, the testing sessions based

on the realization of the system may depend on technological details and not only on the

application functions: for example, an assertion on the page content may be sensible to

the specific markup used for rendering the application look & feel. After a change of the

presentation, such an assertion would fail, even if the functionality and content of the page

are still valid.

The present work aims at supporting the definition and evaluation of test sessions in a

MDE context, by:

• providing a (possibly automatic) way to preserve the elements of the conceptual model

in the definition of the platform-dependent testing session;

• allowing the user to translate the use cases into navigation sessions without worrying

about the presence of the models in the background;

• supporting the execution of regression testing from the replay of navigation sequences,

with the possibility for the modeler to inspect the failures and trace their possible causes

to the model elements.

The proposed approach is illustrated with respect to an exemplary MDE methodology,

based on a Domain Specific Language targeted to Web application development, called

WebML [14]. We use WebML to model a simplified Web application, derive testing sessions,

generate the code with model-to-implementation traceability links, and perform regression

testing with the support of the application model. As a case study, we consider a Product

Catalog Web application, for publishing and managing content about furniture. The home

page contains the product and offer of the day, with a link to access their details, and a form

for logging in. From the home page, several other pages are reachable, which allow one to

browse the content of the catalog.

Figure 2 shows the data model of the case study, using the simplified E-R notation of

WebML; the Product, Combination, and Store constitute the core entities of the data schema;

products are clustered in Categories and associated with Images and a Technical Record.

A Web application is specified on top of a data model by means of one or more site

views, comprising pages, possibly clustered into areas, and containing various kinds of data

publishing components (content units in the WebML jargon) connected by links.

P. Fraternali and M. Tisi 5

Fig. 2. Data model of the Product Catalog Application

Figure 3 shows a fragment of the site view for publishing the content of the Product

Catalog application. The Home page contains two data publishing components (data units),

which display selected attributes of a product and of a combination object, and one entry unit,

which denotes a data entry form. Data publishing units are associated to selectors to filter

which data elements have to be shown. For instance the Product of the day data unit shows

only the product whose attribute highlighted is true. The units have outgoing links, which

enable navigation and parameter passing. For example, the Product of the day data unit has

an outgoing link that permits the user to reach the Product Page, where all the details of the

product displayed in the home page are shown. The Product page contains further content

units, connected to the Product details data unit by transport links (represented as dashed

arrows), which only allow parameter passing and are not rendered as navigable anchors.

Figure 4 shows a fragment of the site view for managing the data of the same applica-

tion. The login unit in Figure 3 checks the credentials of the user and redirects him to this

administration siteview, if he has sufficient rights. The fragment in Figure 4 has only one

page, for deleting products and inserting new ones. This page contains a list of all products

and a form for new insertions. The list of products is associated to checkboxes, for selecting

the ones that have to be deleted. A clickable link will activate a Delete unit that will erase

the selected products from the database. For the addition of new products, once the form

has been filled, a link will start a chain of operations to implement the requirement of having

only one highlighted item in every moment. First a Switch unit will check the value of the

highlighted field in the form. If this value is negative, the new product will be simply created

by a Create unit that receives the needed data from the form by a transport link. Otherwise,

if the administrator wants to create an highlighted item, before the product creation a Modify

unit will be activated, to reset the highlighted flag from any other product.

The WebML PIMs can be automatically translated into a running application, by means

of the WebRatio tool suite [3]. The WebRatio code generator produces all the implementation

artifacts for the Java2EE deployment platform, exploiting the popular MVC2 Struts presenta-

tion framework and the Hibernate persistence layer. In particular, the View components can

6 Using Traceability Links and Higher-Order Transformations for ...

Fig. 3. Publishing site view of the Product Catalog Application

utilize any presentation platform (e.g., HTML, FLASH, Ajax), because the code generator is

designed to be extensible: the generative rules producing the components of the View adopt

a template-based style and thus can incorporate examples of layout for the various WebML

elements (pages and content units) coded in arbitrary presentation languages.

In the case study, a testing session is expressed at high level using the concepts that appear

in the application model. In the subsequent Sections, we will use the following example:

1. Go to the Home Page of the Product Catalog
2. Check that the ‘Product of the day ’ data unit displays the ‘Lucid ’ item
3. Fill the login form with username ‘manager ’, password ‘manager ’ and click the ‘Login ’

button
4. Fill the ‘New product ’ form inserting as code ‘1234’, as name ‘Aladdin ’, as price

‘3000’, selecting the ‘highlighted ’ checkbox , and clicking on the ‘Save ’ button
5. Click on the ‘Logout ’ link
6. Check that the ‘Product of the day ’ data unit displays the ‘Aladdin ’ item
7. Navigate the outgoing link of the ‘Product of the day ’ unit
8. Check that the ‘price ’ attribute is ‘3000’

The above test can reveal several bugs. Step 1 checks that the Home page is correctly

generated and that the communication between the client and the Web server works properly.

Step 2 verifies that the item extracted from the database is correct. Step 3 and 5 test the

authentication mechanism. Step 4 exercises the chain of operations for the creation of a new

highlighted product and Step 6 verifies the result of these operations. Step 7 and 8 test the

contextual navigation from the Home Page to another Web page, verifying that the link in

the Home Page exists and has proper parameters and that the destination page is computed

properly.

With an implementation-oriented approach, an equivalent case must be encoded manually,

by navigating the generated HTML pages and asserting conditions on the HTML content (e.g.,

images, input forms, strings, etc.). Furthermore, the resulting script depends on the graphical

layout. For example, step (2) requires evaluating an XPath expression over the page markup:

P. Fraternali and M. Tisi 7

Fig. 4. Administration site view of the Product Catalog Application

the evaluation of some XPath expressions may change if the page layout is updated (even if

functionality does not change).

3 Weaving Traceability Links into the Code Generation Transformation

One way of circumventing the semantic gap between the application model and the imple-

mentation subjected to regression testing is enhancing the implementation with traceability

clues, which have no functional meaning but can help linking the occurrence of a failure to

the model elements more likely to bear responsibility.

In the context of MDE, this task can be achieved by a Higher-Order Transformation, that

is, a transformation that acts on the transformation used for generating the code.

Fig. 5. Using HOT to weave traceability links into the code generator transformation

Figure 5 pictorially illustrates the HOT framework: the code generation process can be

seen as a model-to-model transformation (T1 in Figure 5) that maps an input model at level

M1 (the WebML model of the application) into a an executable model (the Java2EE code).

T1 is normally a lossy transformation: since its purpose is to produce the code to be actually

executed, no extra information is added to the output model and the links between the input

8 Using Traceability Links and Higher-Order Transformations for ...

and output artifacts are lost.

Adding traceability to the generative framework of Figure 5 requires preserving the re-

lationship between the elements of the input model and the elements of the output model

derived from them. Traceability links can be stored: 1) in the input model; 2) in the output

model; 3) in a separate ad-hoc model.

In this paper, we have opted for the second solution, but in our case the transformation

T2, which produces an output model comprising the needed traceability links, is dynamically

generated from T1. In this way, T1 can still be used to produce the concise and efficient code

needed for application execution, but the traceability links needed for regression testing can

be obtained by using T2.

With this solution, the major problem is to ensure the consistency between T2 and T1, so

that the code produced for testing is exactly equivalent to the production code, modulo the

presence of traceability links.

This result can be attained by deriving T2 automatically from T1 by means of a HOT, as

depicted in Figure 6.

Fig. 6. Input and Output Models of the HOT

The input of the HOT is the M2M transformation that produces the implementation

code. This transformation can be seen as a model, represented by the chosen transformation

language (Groovy, in our case study). The output is another transformation, derived by ex-

tending the input model with extra elements (additional code generation rules) for producing

the traceability links in the implementation code.

WebML
model

- Page/Link/Unit Logic
- Access and
authentication logic

T1: M2M
TRANSFORMATION

- Java Beans (*.java)
- Configuration (*.hbm)
- Mapping (*.cfg)
- HQL Queries

- JSP pages
- Struts Configuration
- Localization bundles
- Validation

T1.1: Layout

T1.3: Persistence

T1.2: Business logic

Fig. 7. Structure of T1 transformation

P. Fraternali and M. Tisi 9

Figure 7 shows the internal structure of the input model of the HOT (i.e., the original

Groovy code generation transformation).

The transformation is organized into three sub-transformations.

1. The Layout Transformation generates a set of JSP pages (one for each page of the

WebML model) and miscellaneous elements required by the target platform: Struts

configuration (i.e. the controller in the Struts MVC architecture), localization bundles,

and form validators.

2. The Business Logic Transformation generates a set of XML files (logic descriptors)

describing the run-time behavior of the elements of the source model, mainly pages,

links, and units. In addition, this transformation produces secondary artifacts, such as

the access/authentication logic.

3. The Persistence Transformation produces the standard Hibernate artifacts: Java Beans

and configuration mapping (one for each entity of the source model) as well as the overall

database configuration.

The sub-transformations are based on Groovy. Being the output a set of structured XML

and JSP/HTML files, the Groovy generators use a template-based approach: each sub-

transformation comprises templates similar to the expected output (e.g., XML or HTML)

enriched with scriptlets for looking-up the needed elements of the source model.

The HOT must apply to the relevant original transformation rules and produce extended

rules such that: 1) they generate the same output elements as the original rules; 2) they add

the needed traceability links to the output.

The design of the HOT requires deciding where to store the traceability links in the output

model (the Java2EE code) and what information to use for the trace links. In the present

version of the HOT, the following design decisions have been taken:

• The traceability link information amounts to:

– the id and name of the content units appearing within the pages of the WebML

model;

– the id, name and type of each value included in the content units;

– the id, name and parameters of navigable links;

– the id of form fields.

• Such traceability links are stored into the View elements of the output model, so that

they can be easily added to the recording of the user’s navigation.

The above-mentioned design choices entail that the HOT takes only the layout sub-

transformation in input, because this is the only one that produces the View elements. The

traceability links are stored within presentation-neutral, transparent elements (e.g., HTML

DIV elements) added to the View artifacts of the output model (namely, the JSP pages).

An example can help illustrate the modified behavior of T2 with respect to T1.

10 Using Traceability Links and Higher-Order Transformations for ...

The ProductOfTheDay data unit of Figure 3 can be represented by the following fragment

of the input modela:

1 <DataUnit id="dau16" name=" Product of the day">
2 <Selector id=" dau16sel">
3 <AttributesCondition attributes ="att23"
4 name=" highlight"/>
5 </Selector >
6 </DataUnit >

Transformation T1 (for an XHTML implementation of the View) maps the data unit

into JSP code that produces the following mark-up fragment, for a specific product named

“Lucid”:

1 <table >
2 <tr> <td >Lucid </td> </tr >
3 <tr> <td >1500 </td > </tr>
4 <tr> <td ></td> </tr >
5 </table >

Transformation T2, derived from T1, maps the data unit into JSP code that produces a

mark-up fragment enhanced with traceability links:

1 <div id=" testUnit id:dau16 name:Product of the day">
2 <table >
3 <tr> <td><div id=" testAttribute id:att10 name:name
4 type:string unitName:Product of the day">
5 Lucid
6 </div ></td> </tr >
7 <tr> <td><div id=" testAttribute id:att11 name:price
8 type:float unitName:Product of the day">
9 1500

10 </div ></td> </tr >
11 <tr> <td><div id=" testAttribute id:att12 name:thumbnail
12 type:blob unitName:Product of the day">
13
14 </div ></td> </tr >
15 </table >
16 </div >

The trace clues, inserted in rendering-neutral DIV elements, link the output model (e.g., an

XHTML table cell containing the string ‘Lucid’) to the input model (e.g., the name attribute

published by the ProductOfTheDay data unit).

4 Higher-order transformation rules

The HOT for producing traceability links must match the input model (transformation T1)

and produce an output model (transformation T2), by suitably extending T1. Therefore, the

HOT will contain rules that detect the portions of T1 that produce relevant presentation code

and augment them with extra logics for creating the traceability links, without altering the

semantics of T1 code generation rules.

To show how the HOT is implemented in a generic way, we illustrate the creation of the

traceability link for a content unit. The HOT locates the following instruction in T1:

1 <%printRaw(executeTemplate(templateFile.absolutePath ,
2 [" params" : unitLayout.parameters ,
3 "templateType" : "unit "])) %>

aWebML has both a visual notation and an XML syntax, and is also equipped with a MOF metamodel; for
simplicity, in the example, we use the XML syntax.

P. Fraternali and M. Tisi 11

The instruction is an explicit call to the Groovy transformation rules for the unit content.

It will be translated by the HOT to a new version in T2 that creates an additional DIV

element:

1 <div id=" testUnit_id :<%= unitId%>_name:<%= unitName%>_">
2 <%printRaw(executeTemplate(templateFile.absolutePath ,
3 [" params" : unitLayout.parameters ,
4 "templateType" : "unit "])) %>
5 </div >

This translation is achieved by the following HOT rule:

1 rule UnitLink {
2 from
3 matched : GroovyMM ! Scriptlet (
4 matched . recursiveStatements ()−>exists (s |
5 s . oclIsKindOf (’ GroovyMM ! MethodInvocation ’) and
6 s . name=’ printRaw ’ and
7 s . arguments−>exists (e |
8 e . oclIsKindOf (’ GroovyMM ! MethodInvocation ’) and
9 e . name=’ executeTemplate ’ and

10 e . arguments−>at (2) . oclIsKindOf (’ GroovyMM ! Map ’) and
11 e . arguments−>at (2) . elements−>exists (t |
12 t . key=’ templateType ’ and
13 t . value . oclIsKindOf (’ GroovyMM ! String ’) and
14 t . value . value=’ unit ’
15))))
16 to
17 div : GroovyMM ! Tag (
18 name <− ’ DIV ’ ,
19 attributes <− Sequence{id } ,
20 children <− Sequence{ matched }
21) ,
22 id : GroovyMM ! TagAttribute (
23 name <− ’id ’ ,
24 value <−’ testUnit_id : <%= unitId %> _name : <%= unitName %>_ ’
25)
26 }

The HOT rule matches any Groovy scriptlet in the generator. To check that the scriptlet

triggers the expansion of the unit content, the rule calls the recursiveStatements() helper,

which returns the sequence of statements contained into the scriptlet. To have a match,

one of these statement has to print to the output (by the printRaw method) the result of

an executeTemplate call to a unit template. Hence the filter checks for a nested call to

executeTemplate with a parameter templateType = ’unit’. This ensures that only the portion

of T1 that deals with the transformation of a WebML content unit into some JSP code

fragment of the View is actually detected. Notice that the matching part of the rule is

designed to be robust to code-generation changes, as long as they do not affect the syntax

of the call to the content unit template that generates the JSP code, which is an unlikely

occurrence.
The output pattern of the rule is a Tag named DIV containing a TagAttribute named id

representing an encoding of the traceability link. The encoding exploits some environment
variables of the code generation platform, namely <%=unitId%> and <%=unitName%>, which are
computed at code-generation time by the Groovy interpreter. The matched scriptlet is finally
copied as a child of this Tag.

Similar HOT rules have been developed to address the other kinds of traceability links,
for tracing attribute values, input fields and links. The rules have the same structure as
the previous one, and they differ only for the type of call they match (e.g., t.value.value =

’attribute’} at line 14) and the kind of id they generate (e.g., value <- testAttribute_id:<%

12 Using Traceability Links and Higher-Order Transformations for ...

= attr["id"]%>_name:<%= attr["name"]%>_type:<%=attr["type"]%>_unitName:<%unitName%>).

5 Test Session Recording

The modified T2 transformation produces traceability links in the generated code, so that the
resulting application can be exploited to record model-aware testing sessions.

For recording the test sessions, a Navigation Recorder has been designed, by extending
the TestGen4Web Firefox add-on [33], so to recognize the trace links in the page presentation
and save them in the final test script automatically, without any user’s intervention.

With respect to the vanilla TestGen4Web tool, the script produced by the Navigation
Recorder contains, besides the usual Canoo tags, additional information coming from the
trace links. The Navigation Recorder:

• implements all the standard steps (actions and assertions) relying uniquely on the
stylesheet-independent traceability ids for identifying the platform independent page
elements; concretely, element identification exploits only XPath expressions that do not
depend on presentation markup;

• introduces a testInfo tag that memorizes useful information about a test step, e.g.,
the traceability link pointing towards the related model element (denoted by the trace
attribute) or a readable identifier for recalling the user choices that have been used to
compose the test session, e.g., the selection of an item from an index (denoted by the
input attribute);

• uses the echo tag to print a sequence of human-readable descriptions of steps as the test
result, which provides a human-intelligible trace of the performed test session.

All this information is both recorded in the script and communicated back to the modeling
environment during the test replay.

As an example, consider the testing session of Section 2. Once the recording is stopped,
the navigation is saved in an XML file compliant with the syntax of Canoo WebTest, shown
below:

1 /*step 1*/
2 <testInfo type="trace" info=" page1"/>
3 <echo message ="Go to the URL: http ://www.acme.org/page1.do"/>
4 <wrInvoke url="http ://www.acme.org/page1.do"/>
5

6 /*step 2*/
7 <testInfo type="trace" info=" dau16"/>
8 <echo message =" Verify the xpath of the attribute:’name ’ of the unit ’Product of the day

’"/>
9 <verifyXPath description =" check the xpath" regex ="true" text =".* Lucid .*" xpath ="// div[@id

=’testUnit_id:dau16_name:Product of the day_ ’]// div[@id=’testAttribute_id:att10_name:
name_type:string_unitName:Product of the day_ ’]"/>

10

11 /*step 3*/
12 <testInfo type="input" info=" username"/>
13 <testInfo type="trace" info="enu2"/>
14 <echo message ="Fill the field ’username ’ with the value ’manager ’"/>
15 <setInputField description ="set input field fld3" name="fld3" value=" manager"/>
16

17 <testInfo type="input" info=" password"/>
18 <testInfo type="trace" info="enu2"/>
19 <echo message ="Fill the field ’password ’ with the value ’manager ’"/>
20 <setInputField description ="set input field fld4" name="fld4" value=" manager"/>
21

22 <testInfo type="trace" info="ln17"/>
23 <echo message ="Click the button with the label ’Enter ’"/>
24 <clickButton description =" click button" label ="Enter"/>

P. Fraternali and M. Tisi 13

25

26 /*step 4*/
27 <testInfo type="input" info="name"/>
28 <testInfo type="trace" info=" enu10"/>
29 <echo message ="Fill the field ’name ’ with the value ’Aladdin ’"/>
30 <setInputField description ="set input field fld38" name=" fld38" value=" Aladdin"/>
31

32 <testInfo type="input" info=" price"/>
33 <testInfo type="trace" info=" enu10"/>
34 <echo message ="Fill the field ’price ’ with the value ’3000’"/>
35 <setInputField description ="set input field fld40" name=" fld40" value ="3000"/ >
36

37 <testInfo type="input" info=" highlighted "/>
38 <testInfo type="trace" info=" enu10"/>
39 <echo message ="Set the radio button ’highlighted ’ to ’yes ’"/>
40 <setRadioButton description ="set radio button fld12" name="fld12" value="yes"/>
41

42 <testInfo type="trace" info="ln86"/>
43 <echo message ="Click the button with the label ’Create ’"/>
44 <clickButton description =" click button" label =" Create"/>
45

46 /*step 5*/
47 <testInfo type="trace" info="ln33"/>
48 <echo message ="Click on the link with label Logout"/>
49 <wrClicklink description =" Click the link with the label Logout" label =" Logout" exactmatch

="true"/>
50

51 /*step 6*/
52 <testInfo type=" trace" info=" dau16"/>
53 <echo message =" Verify the xpath of the attribute:’name ’ of the unit ’Product of the day

’"/>
54 <verifyXPath description =" check the xpath" regex ="true" text =".* Aladdin .*" xpath ="// div[

@id=’testUnit_id:dau16_name:Product of the day_ ’]// div[@id=’testAttribute_id:
att10_name:name_type:string_unitName:Product of the day_ ’]"/>

55

56 /*step 7*/
57 <testInfo type=" input" info=" Aladdin"/>
58 <testInfo type=" trace" info="ln30"/>
59 <echo message ="Click on the label More ... of Aladdin"/>
60 <wrClicklink fieldIndex ="0" label ="More ..." exactmatch ="true" description ="Click on the

label More ... of Aladdin"/>
61

62 /*step 8*/
63 <testInfo type=" trace" info="dau1"/>
64 <echo message =" Verify the xpath of the attribute:’price ’ of the unit ’Product details ’"/>
65 <verifyXPath description =" check the xpath" regex ="true" text =".*3000.*" xpath ="// div[@id=’

testUnit_id:dau1_name:Product details_ ’]// div[@id=’testAttribute_id:att11_name:
price_type:float_unitName:Product details_ ’]"/>

In the following paragraphs, we describe the example script reported above, addressing
each feature separately.

Trace links. Each step of the script is automatically annotated by the ID of the model
element it refers to (e.g., as in <testInfo type="trace" info="page1"/> in Step 1). The ele-
ments mentioned in the test step can be: pages, for direct page access, links, for hypertext
navigation (e.g., in Step 5), or WebML units, for assertions on the displayed content or actions
performed on the unit (e.g., filling an input field of an entry unit, as in Step 3 and 4).

Human-readable descriptions. For each step a message is echoed to a log file (e.g., as
in <echo message="Fill the field ’username’ with the value ’manager’"/> in Step 3). This
human-readable description, automatically generated by the Navigation Recorder, is used in
our toolsuite for two purposes:

• to obtain a log-file composed by a sequence of these descriptions, as a human-readable

14 Using Traceability Links and Higher-Order Transformations for ...

trace of the test (this is particularly useful in case of errors, to clearly identify the steps
the lead to it, even without looking at the model);

• to show the description during the test replay, as an additional information for the
model debugging.

Dynamic Information. Trace links are also enhanced with dynamic information about
the objects appearing in the navigated page. For instance, step (7) shows the case of the
navigation of a link, where the <testInfo type="input" info="Aladdin"> annotation stores
the name of the object that is associated with the navigated link as a parameter. In this way,
session recording can take advantage of the dynamic information coming from the objects of
the data model, and blend it with the information on the user’s interactions with the page
widgets (e.g., single or multiple selections from indexes, selections from combo boxes, and so
on).

Use of external names for objects. While the Navigation Recorder tool is able to auto-
matically detect the values passed as parameters during the navigation, these values are most
of the times internal identifiers (e.g., database OIDs); in many cases, it would be more conve-
nient to use in the test trace object external names, to provide a more descriptive denotation
of the object associated with the parameter. For instance, Step (7) could pass a numerical
identifier for the product to show and this information would probably be less useful in the
testing session. In our example the tester would need to look at the database to verify that
the numerical id actually corresponds to the ‘Aladdin’ product. To support the use of exter-
nal names, the implemented recording tool allows the tester to manually override the default
dynamic information stored into the testInfo tag. The overriding is performed directly in
the browser by highlighting a label on the page and inserting it into the trace by means of a
new ad hoc command added to the Canoo contextual menu (shown in Figure 1), called Set
input.

Assertions Creation and Usability of the Navigation Recorder. Assertion steps, e.g.,
step (2), are expressed by means of XPath expressions that do not depend on the graphical
layout, but only on the identifiers of the model elements. If the code is regenerated with a
different style or layout, the assertion remains valid.

The Navigation Recorder currently enables the verification of equality predicates over the
strings contained within the generated code of a WebML element. Such assertions can be
expressed at two levels of granularity:

• The basic level corresponds to testing a single value (e.g., a unit attribute, in the WebML
jargon) in the page. For instance Step 2 and 6 check that the name attribute of the
Product of the day WebML unit has been updated from ‘Lucid’ to ‘Aladdin’. The control
is performed by retrieving the element code, using an XPath expression, and checking
that it contains the required string. The XPath expression matches DIV elements with
the specific id (contained into the right unit). The verification is performed by comparing
the content of the DIV under test with a regular expression obtained by stripping the
original DIV from any tag (e.g., ".*Aladdin.*").

• A second level of granularity is provided for testing entire units with one command.
When a WebML unit is selected in an assertion step, a unit-level assertion can be
declared. Such a command produces a textual assertion over the unit’s name and

P. Fraternali and M. Tisi 15

analyzes the unit’s structure to identify any internal attribute; for each detected unit
attribute, an attribute assertion is automatically created.

The creation of assertions during the test recording session can be simplified by providing
an easy way to select directly in the browser the WebML elements to test. To make the
Navigation Recorder more usable, we have extended the HOT illustrated in Section 4, so
to produce not only traceability clues but also recording usability links. The modified code
generator produced by the HOT creates, for each WebML element, special-purpose usability
links with a dedicated id at the beginning of the DIV element. For example, the augmented
presentation code of the Product of the day unit is:

1 <div id=" testUnit id:dau16 name:Product of the day">Test
2 <table >
3 <tr> <td><div id=" testAttribute id:att10 name:name
4 type:string unitName:Product of the day">Test
5 Lucid
6 </div ></td> </tr >
7 <tr> <td><div id=" testAttribute id:att11 name:price
8 type:float unitName:Product of the day">Test
9 1500

10 </div ></td> </tr >
11 <tr> <td><div id=" testAttribute id:att12 name:thumbnail
12 type:blob unitName:Product of the day">Test
13
14 </div ></td> </tr >
15 </table >
16 </div >

Fig. 8. Links for recording assertions.

A click on any of these recording usability links is caught by the Navigation Recorder and
triggers the addition of an appropriate assertion step for the associated WebML element.

6 Test Session Execution

The final element of the proposed regression testing environment is the Regression Testing
Plug-in, a component of the WebRatio tool suite that allow modelers to perform regression
testing from within the same tool they use for design and code generation.

The Regression Testing Plug-in executes the recorded scrips using the Canoo WebTest
platform and collects the outcome of the execution, linking each step to the model elements
it refers to.

The plug-in exploits the information stored inside the test script by the Navigation
Recorder to reflect the user’s navigation onto the WebML model, thanks to the identifier

16 Using Traceability Links and Higher-Order Transformations for ...

of the elements; the plug-in can replay a session visually and can overlay the dynamic infor-
mation on the navigated objects over the model elements, as shown in Figure 9.

Fig. 9. Visual replay of the testing session with dynamic information overlaid on the WebML

model

The replay of a testing session from within the WebRatio IDE is achieved by a client/server
connection between the WebRatio Regression Testing Plugin and the Canoo test environment.

The WebRatio plug-in acts as a server and starts the test environment as a client. The
client, in turn, opens a new socket to communicate with the server sending to it the testing
session trace. Once the test execution ends, the server collects all the identifiers of the WebML
elements that have been reached during the test execution together with the information on
the outcome of each step.

The communication between the test execution platform and WebRatio is performed with-
out an ad-hoc modification of the Canoo WebTest environment. Since Canoo supports the
insertion of arbitrary code inside a test in the form of Groovy tags, our Navigation Recorder
can easily instrument the test using tags like the following:

1 <groovy >
2 def s = new Socket (" localhost", Integer.parseInt
3 (step.project.properties.eventSocketPort))
4 s << "trace|page1_input| _
5 message|Go to the URL: http :// www.acme.com/page1.do"
6 s.close()
7 </groovy >

The WebRatio plug-in presents the regression test results in a tabular pane (see Figure 10),
where each row displays the identifiers of the WebML elements, their input and a description
in natural language of the current step

Fig. 10. Tabular representation of a test: success (top) and failure (bottom)

Using the provided visualizations, developers can monitor the regression steps and corre-
late them to the involved elements of the WebML model. In the case of a test failure, the
plug-in also catches the exceptions launched from the test environment, and reports the cause
of the errors in the debugging pane (as shown in the bottom part of Figure 10).

P. Fraternali and M. Tisi 17

7 Implementation

The HOT has been implemented using the ATL language and the AmmA [11] framework. To
integrate the Groovy language in the transformation framework, a minimal Groovy metamodel
has been developed extending the JavaAbstractSyntax metamodel provided by the MoDisco
project [1].

The Navigation Recorder has been implemented extending the Firefox TestGen4Web add-
on, using XUL and Javascript. In particular, the Javascript module that generates the output
has been modified to produce XML files compliant with Canoo WebTest. Furthermore, its
code has been refactored to manage every type of assertions in a separate sub-module.

The WebRatio Regression Testing Plug-in has been implemented by means of: 1) a Java
component that runs the Canoo WebTest environment, taking the test script as input, and
elaborates the information received from the test execution; 2) an Eclipse view that visualizes
the execution outcome.

8 Related Work

The task of optimizing the regression testing phase has been addressed in literature especially
from the point of view of selective regression testing [30], i.e. of optimizing the regression test
set removing superfluous tests. The importance of model-based specifications, for generating
and selecting test cases, is already recognized [16]. The HOT framework presented in this
paper, as a general approach to embed high-level information in low level code, can be natu-
rally used to address these concerns. In this paper we presented also an original application
of the method that facilitates the manual development of regression test cases.

Our application makes use of traceability links to connect the generated implementation
with model-based specifications. The concept of traceability links has been widely investigated
in literature. A first classification of traceability has been made between traceability in the
small and traceability in the large [8]. The former is intended to handle the trace information
between model elements, i.e. information about how different elements of source and target
models are linked together; the latter traces information between models in the whole, in
order to have information about relationships between distinct models. In some approaches
the traceability mechanism is implicitly embedded in the tool’s algorithms [12],[27], while
other approaches represent traceability relationships explicitly, e.g., [19]. In this latter case,
the location where the links are stored, can be the source and/or target model, or separate
(e.g., by means of a GUIDE in each model element and traceability information separate from
the source and target models). Our approach realizes traceability in the small representing
explicitly the traceability links in the target model.

Transformation frameworks can address traceability during the design of transformations
[15], either by providing dedicated support for traceability (e.g., Tefkat [24], QVT [2]), or by
encoding traceability as any other link between the input and output models (e.g., VIATRA
[36], GreAT [6]). Traceability links may be encoded manually in the transformation rules
(e.g., [24]), or inserted automatically (e.g., [2]). The HOT-based approach that we propose
can be used to add traceability support to languages like groovy, that do not provide any
built-in support to automatic or manual traceability links.

With respect to hard-coding the traceability mechanism when developing the transforma-
tion, our use of a HOT favors reusability and extension, because the feature to be weaved
into the transformation is managed separately.

A general traceability system using HOTs is already implemented in [21], where the HOT
adds to each original transformation rule the production of a traceability link in an external

18 Using Traceability Links and Higher-Order Transformations for ...

ad-hoc traceability model (conforming to a small traceability metamodel). In other analogous
solutions, such as [18], the traceability links are represented by an ad-hoc extension of a
standard metamodel for modeling correspondences, the Atlas Weaving Metamodel [17]. Our
approach differs from these in merging traceability links within the target metamodel, i.e. the
generated implementation code. We showed how this technique is useful in the Web domain
to derive model-based test cases from hypertext navigations.

Finally, an alternative way to inject traceability in the code generator could rely on typical
Aspect Oriented Development techniques. HOTs give to our approach an higher expressing
power and flexibility, allowing the definition of complex manipulation rules.

9 Conclusions

In this paper we have presented a framework for supporting regression testing in MDE en-
vironment. The framework supports the phases of: 1) recording a testing session with a
conventional Record & Play tool; 2) replaying the recorded session from within the same
IDE that is used for application modeling and code generation; 3) tracing the failures of a
test session to the model elements most related to them. The core of the approach is the
connection between the conceptual model, which the developer uses to specify and build the
application, and the generated code, which is exploited to record and play the testing session.
Such a connection is established by traceability links between the input model and the gener-
ated code, automatically inserted by a modified version of the code generator. This modified
version is itself produced automatically, by exploiting the powerful paradigm of Higher-Order
Transformation (HOT), which are transformations that operate on other transformation. The
resulting framework enables MDE developers to perform regression testing in an effective way,
without breaking the level of abstraction entailed by the use of models as the principal artifact
of design.

A validation of the framework is ongoing. A preliminary version of the tool has been used
in the WebRatio team to create regression tests for the WebRatio toolsuite itself. We are in
the process of involving industrial users of WebRatio in managing the regression testing of
their Web applications by our tool.

The future work will focus on: 1) Extending the HOT to obtain a code generator capable
of producing application code instrumented for the step-by-step debugging of the sequences
of operations, which are now executed as black boxes; 2) Structuring the HOT in a modular
way, so that it is possible to weave different orthogonal aspects in the code generator, e.g., the
insertion of performance verification code or of security code (e.g., alternative URL encoding
and encryption policies). 3) Supporting selective regression testing [26]: when a change
is made, the collaborative work function of WebRatio can be used to identify the list of
differences between the original and modified model and to select a minimal set of sessions to
execute. From an analysis of differences, it could also be possible to launch the extended code
generator and session recorder to automatically synthesize the sessions needed for covering
the new parts of the model.

Acknowledgment

We wish to thank Alessandro Baffa for the implementation work and the WebRatio Team for
the evaluation of the testing framework.

References

1. MoDisco home page. http://www.eclipse.org/gmt/modisco/.

P. Fraternali and M. Tisi 19

2. QVT 1.0. http://www.omg.org/spec/QVT/1.0/.
3. WebRatio. http://www.webratio.com.
4. Silvia Abrahao and Oscar Pastor. Measuring the functional size of web applications. Int. J. Web

Eng. Technol., 1(1):5–16, 2003.
5. Silvia Mara Abrahão, Emilia Mendes, Jaime Gómez, and Emilio Insfrán. A model-driven mea-

surement procedure for sizing web applications: Design, automation and validation. In MoDELS,
pages 467–481, 2007.

6. Aditya Agrawal, Gabor Karsai, and Feng Shi. Graph transformations on domain-specific models.
Technical report, ISIS, November 2003.

7. Stefan Baerisch. Model-driven test-case construction. In ESEC-FSE Companion ’07: 6th Joint
Meeting on European SE Conf. and the ACM SIGSOFT Symp. on the Foundations of SE, pages
587–590, New York, NY, USA, 2007. ACM.

8. M. Barbero, M. D. Del Fabro, and J. Bézivin. Traceability and provenance issues in global model
management. In 3rd ECMDA-Traceability Workshop, 2007.

9. Luciano Baresi, Piero Fraternali, Massimo Tisi, and Sandro Morasca. Towards model-driven
testing of a web application generator. In ICWE, pages 75–86, 2005.

10. J. Bézivin. On the unification power of models. Software and Systems Modeling, 4(2):171188, May
2005.

11. J. Bézivin, F. Jouault, and D. Touzet. An introduction to the ATLAS model management archi-
tecture. Research Report LINA,(05-01), 2005.

12. L. Briand, Y. Labiche, and G. Soccar. Automating impact analysis and regression test selection
based on uml designs. Software Maintenance, IEEE International Conference on, 0:0252, 2002.

13. Canoo. Canoo Web Test. http://webtest.canoo.com, 2008.
14. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-

Intensive Web Applications. Morgan Kaufmann, USA, 2002.
15. K. Czarnecki and S. Helsen. Classification of model transformation approaches. In OOPSLA03

Workshop on Generative Techniques in the Context of MDA, 2003.
16. Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test cases from

Model-Based specifications. In Proceedings of the First International Symposium of Formal Meth-
ods Europe on Industrial-Strength Formal Methods, pages 268–284. Springer-Verlag, 1993.

17. M. D. Del Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. Amw: a generic model weaver.
In 1re Journe sur l’Ingnierie Dirige par les Modles (IDM05), 2005.

18. GMT Project. Amw use case - traceability. http://www.eclipse.org/gmt/amw/usecases/traceability,
Feb. 2008.

19. A. Hartman and K. Nagin. The AGEDIS tools for model based testing. SIGSOFT Softw. Eng.
Notes, 29(4):129–132, 2004.

20. HTMLUnit Team. HTMLUnit. http://htmlunit.sourceforge.net/, 2008.
21. Frdric Jouault. Loosely coupled traceability for atl. In European Conference on Model Driven

Architecture (ECMDA) , workshop on traceability, 2005.
22. JWebUnit Team. JWebUnit. http://jwebunit.sourceforge.net/, 2008.
23. Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
24. Michael Lawley and Jim Steel. Practical declarative model transformation with tefkat. In Satellite

Events at the MoDELS 2005 Conference, pages 139–150, 2006.
25. Nuo Li, Qin-qin Ma, Ji Wu, Mao-zhong Jin, and Chao Liu. A framework of model-driven web ap-

plication testing. In COMPSAC ’06, pages 157–162, Washington, DC, USA, 2006. IEEE Computer
Society.

26. L. Naslavsky and D. J. Richardson. Using traceability to support model-based regression testing.
In ASE ’07, pages 567–570, New York, USA, 2007. ACM.

27. C Nebut, F Fleurey, Y Le Traon, and J Jezequel. Automatic test generation: A use case driven
approach. IEEE Transactions on SE, 32(3):155, 140, 2006.

28. Oscar Pastor and Juan Carlos Molina. Model-Driven Architecture in Practice: A Software Pro-

20 Using Traceability Links and Higher-Order Transformations for ...

duction Environment Based on Conceptual Modeling. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2007.

29. A. Pretschner. Model-based testing in practice. In FM, pages 537–541, 2005.
30. G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques. Software Engi-

neering, IEEE Transactions on, 22(8):529–551, 1996.
31. Mohammad Al Saad, Nicolai Kamenzky, and Jochen Schiller. Visual scatterunit: A visual model-

driven testing framework of wireless sensor networks applications. In MoDELS ’08, pages 751–765,
Berlin, Heidelberg, 2008. Springer-Verlag.

32. Selenium Project. Seleniumhq. http://seleniumhq.org/, 2008.
33. Vinay Srini. Testgen4web. http://developer.spikesource.com/ blogs/vs-

rini/2008/06/testgen4web update 10 1.html, 2008.
34. Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software Development:

Technology, Engineering, Management. John Wiley & Sons, 2006.
35. The Apache Jakarta Project. Cactus. http://jakarta.apache.org/cactus, 2008.
36. Dániel Varró, Gergely Varró, and András Pataricza. Designing the automatic transformation of

visual languages. Sci. Comput. Program., 44(2):205–227, 2002.
37. L. J. White. Software testing and verification. Advances in computers, 26:335–391, 1987.

