
Journal of Web Engineering, Vol. 10, No.1 (2011) 021-047
© Rinton Press

OFFLINE WEB BROWSING FOR MOBILE DEVICES

YUNG-WEI KAO

Department of Computer Science and Information Engineering, National Chiao Tung University,
Taiwan

ywkao@cs.nctu.edu.tw

TUNG-HING CHOW

Department of Computer Science and Information Engineering, National Chiao Tung University,
Taiwan

kenn.iit96g@nctu.edu.tw

SHYAN-MING YUAN

College of Computer & Informatics, Providence University, Taiwan

Department of Computer Science and Information Engineering, National Chiao Tung University,
Taiwan

smyuan@cis.nctu.edu.tw

Received May 23, 2010
Revised December 10, 2010

Based on the advancements of mobile device, mobile platform, and wireless network technology, browsing
Web pages on mobile devices have become more popular. However, with its difference from the Web
browsing behaviour on desktop, mobile Web browsing suffers from more environmental challenges.
Traditionally, Web pages can only be viewed with stable telecom or wireless network connection. In
recent years, Google Gears has been proposed to enable the offline Web browsing on mobile devices.
However, the Google Gears mechanism can only be used with the server-side library supported by Web
Servers. The authors proposed a Web content middleware with personalized interest list to support offline
Web browsing on mobile devices, even though the selected Web servers do not support the server-side
Google Gears mechanism. Finally, we compare other offline Web browsing solutions with ours and
evaluate the offlineable rate of our framework.

Key words: Mobile device, offline web browsing, intermittent network handling
 Communicated by: D. Schwabe, G. Rossi, and J. Vanderdonkt

1 Introduction

Nowadays, the population of mobile device users is growing fast. With the advancements of mobile
device, mobile platform, and wireless network technologies [1][2][3], browsing Web pages on mobile

22 Offline Web Browsing for Mobile Devices

devices has become more popular. More mobile versions of Web applications are developed for
mobile devices and there are many researches [4][5][6] that propose solutions to assist mobile users in
browsing Web pages more efficiently on mobile devices. Browsing Web pages has become a crucial
functionality of mobile devices.

However, in the wireless environment, there are many issues that should be considered when
developing a mobile Web application:

1. Capability of target mobile browser: Due to the difference between mobile and desktop
browsers, mobile browsers are usually designed to support only a subset of JavaScript functions,
CSS stylesheets, or HTML tags. The degree of support of JavaScript/CSS/HTML is different
from other mobile browsers. Mobile Web application developers have to select a target mobile
browser, and test their products in different execution environments.

2. Unstable Connectivity: The mobility feature enables mobile devices to be used without fix
location. It is difficult to guarantee a stable network connection for mobile devices. There will be
no network signal received in closed spaces, such as basements, tunnels, or elevators. Also, the
connections may be interrupted by surrounding buildings, or high-speed transportation.

3. Cost of packet transmission: Usually, the connection is charged based on the number of
transmitted packets. If there is a mobile Web application that requires plenty of packet
transmissions, users may not be willing to use it again.

For those limitations listed above, many researchers [7][8][9] have already developed different
solutions to solve these problems. In our system, we mainly focus on the second problem. Web
browsing depends on internet connection; without internet connection, Web browsing no longer works.
Such a problem can be solved by the offline Web page cache solution partially. Although most Web
browsers are able to cache a part of Web pages which have been browsed, it cannot keep specific Web
pages under users demands. Latest information will be cached and those older information which you
need may be replaced. On the other hand, offline Web page saving is usually not convenient on mobile
devices. Take Mobile IE for example; Mobile IE doesn’t support “Save As” function for Web page
backup. It is difficult for users to download and manage Web pages on mobile devices. Traditionally,
if user wants to browse a Web page on his/her mobile device, he/she has to download the page to PC,
transfer all the related documents and images to the device, and then try to find out where are the
documents on the device when offline browsing. It is very inconvenient.

Google Gears [10] is one of solutions for offline Web page storage, which enables Web
applications to be executed offline, no matter it is on PCs or mobile devices. Web pages can be pre-
fetched and stored locally when the stable network connection exists. If there is no network
connection, users can still access the Web pages via local storage. Therefore, the second problem can
be solved by this mechanism. Moreover, there will be no packets transmitted for these local pages; as a
result, the cost of the third problem listed above can be eliminated.

However, the prerequisites of using Google Gears are that mobile browsers should be installed
with a client-side Google Gears plug-in for Web browser, and the visited Web sites should support
server-side Google Gears library as well. Currently, the Web sites which support server-side Google
Gears library are mainly Google Services, i.e. Gmail, Google Reader, etc. In general, most of Web

Y. W. Kao, T. H. Chow, and S. M. Yuan 23

sites do not support this function. Until we can make sure all of the Web sites which users are
interested in support Google Gears, this problem exists.

Gears-Monkey [11] is a solution for offline Web page storage based on Google Gears. It has an
implementation on PCs. Gears Monkey is a kind of script for Greasemonkey [12], a Firefox plug-in,
which can execute user defined JavaScript codes on Firefox. Users can develop their own Gears
Monkey scripts, which enable Google Gears to work for particular Web sites, even though, those sites
do not support server-side Google Gears library. However, there are some disadvantages of Gears
Monkey:

1. Gears Monkey is not supported by any mobile Web browser.

2. A high level of scripting technique is required for users to achieve their goals.

3. There is no batch process supported; therefore, users must visit all Web sites which they are
interested in to prepare for complete offline data.

Another solution for providing offline Web browsing is the HTML5 standard [13]. Web Browsers
following the HTML5 standard should provide local space for offline storage and database. Even the
Google Gears is not maintained by Google anymore because this offline Web browsing functionality
can be replaced by HTML5. Since the offline capability will be provided as default function of Web
browsers supports HTML5, no more plug-in is needed to be installed. However, similar to the server-
side library problem of Google Gears, offline Web browsing cannot be provided without the support of
server-side Web applications which utilizes the functionalities of HTML5.

Although it seems that HTML5 is a better solution than Google Gears to solve the offline
browsing problem, HTML5 is still not supported by many Web browsers, especially by mobile Web
browsers, until now. It is difficult to develop HTML5-based system for current needs. Therefore, we
decide to choose Google Gears in our current implementation, and hope to replace it with HTML5 in
the future if HTML5 is widely supported by mobile Web browsers.

In order to solve the above problems, we propose a Web content middleware with personalized
interest lists to support offline Web browsing on mobile devices, with Google Gears as temporarily
implementation, even though the selected Web servers do not support the server-side Google Gears
mechanism. There are three objectives of the proposed system:

1. Provide mobile offline Web browsing capability, even for those Web sites which do not support
server-side Google Gears library

2. The operations of defining interest lists and offline browsing should be convenient for users.

3. Batch processing for multiple specified Web pages

Although there are still some limitations of the proposed system, such as limited storage, limited
real-time information, personalized Web pages, and limited protocol supported, these problems also
exist in other offline Web content storage solutions. Some of them are physical constrains which are
very difficult to be solved; even though, our system is still very useful to users.

The research contains six sections. In Section 2, we introduce some related works, backgrounds,
and limitation analysis of our system. In Section 3, we propose the architecture of our system, and
discuss the role and functions of each component. We describe a system implementation and detailed

24 Offline Web Browsing for Mobile Devices

system design in Section 4. Also, we demonstrate our system to present its results in Section 5. System
evaluations will be presented in Section 6. Finally, we end up with a conclusion and discuss the future
works about our system in Section 7.

2 Related Works, Background, and Limitation Analysis

2.1 Offline Desktop Application

J. Kistler et al. [14] have made a research in this topic. They proposed CODA, a distributed file system
that allows transparent disconnected file operations, continued operation during partial network
failures and a conflict resolution system via file merging. High performance is achieved via persistent
caching in client side. Its merge system is similar to what an offline Web application will need, but it is
built only for files and directories, with well known semantics. This wouldn’t fit in a data intensive
application, where several domain-specific conflicts must be handled.

Apollo is another solution for handling offline desktop application. Apollo can be used to transfer
a whole, full Web application to the desktop, being able to operate without the need for a remote
server. It also breaks the browsing experience, since the user gains a new application desktop.

As we know, mobile devices are not capable of storing a whole desktop application as Apollo
does. The approach of CODA is rather preferable, since there is only the interface of CODA that will
be chosen to transplant into the mobile devices. It sounds more possible and feasible.

Edgar Gonzales et al. [15] suggested a new methodology for the development of workflow-
enabled Web applications containing certain functionalities that may be usable while offline. A Web
application specification shall include a workflow description of all its functionalities; each task may
have a personalized user interface, as well as an associated behavior. A development framework will
automatically produce both offline and online programs for these tasks descriptions. The programmer
will also be able to specify both task and domain model restrictions (e.g., forcing given information to
be accessed in the server, only). Finally, the programmer may have to define strategies to allow a user
to recover from a conflict in the synchronization stage. These strategies will be associated with the
domain model contents and/or with specific workflow tasks. This step may not be fully automated by
the framework, since each conflict type is generally application specific. The remaining steps of the
development process using the proposed methodology shall not differ from the development of current
Web applications. To successfully implement such methodology, three important research topics must
be addressed:

A. Offline module identification

B. Offline application creation

C. Changes synchronization

However, there is too much work to bring up the solutions for the two big open issues. Those are
“How can both online and offline versions of a functionality be generated from a single source?” and
“How will the offline application save its alterations to be synchronized later?” Once these issues have
not yet been solved, it is hard to realize any practical works by this new methodology. For current
system architecture here, the first point of idea would be considered.

Y. W. Kao, T. H. Chow, and S. M. Yuan 25

2.2 Offline Web Execution

Offline execution is not a new concept. More than one decade ago, there were multiple solutions
[16][17] proposed to enable offline Web browsing. However, their approaches mainly focus on
semantic information retrieval, in which the browser pre-fetch Web data upon the searching made by
the user. The Web data, therefore, are available on local computer, although which is disconnected
from network. J.Pitkow et al. [18] showed that the user experience will be enhanced when the Web
data which user needs are pre-fetched automatically (i.e., without user action) based on automatically
detected usage pattern of user. This fetching was carried out by a background agent, and helps user
keep searching normally.

Ganesh Ananthanarayanan et al. [19] described a readily deployable system designed for Web
browsing over slow intermittent networks called OWeB. It subscribes to RSS from Web server and
pre-fetches all new content to partially update the old pages. Besides, the interrupted downloads are
always resumed and not restarted. HTTP’s byte-range request format is utilized for this purpose.

The above approaches provide helpful hints for the implementation of Offline Browsing System.
In our system, offline Web execution is implemented; Web pages can be viewed even there is no
network connection. In such system, documents which user needs should be pre-fetched before the loss
of network connection. Similar to OWeB, a pre-fetch agent is also designed to download offline data in
background. However, in order to support more generic Web applications, not only RSS information is
considered, but also general raw Web contents (including pictures and JavaScript files) are considered
to be browsed or executed offline in our system.

2.3 Intermittent Network Handling

Ganesh Ananthanarayanan et al. [19] considered that intermittent network handling is an important
research for their offline Web browsing systems. Typically, problems would be overcome by using
techniques like queuing and periodic re-trials into system. Some systems provide mechanism to
recover and resume downloads in case of interrupted data transfers. Client-pull based techniques [20]
try to intelligently predict the time of change of data at the server and pull the data. Also, intelligence
is needed to pull only the “relevant and useful” data.

Notification systems were part of solution but push-based techniques faced an important issue of
not being scalable. Both push and pull based techniques faced the important problem determining the
importance of the content.

Intermittent network can also be solved by distribution of data from the content server to
geographically distributed caches. These caches reduced the access time from the server to the clients
resulting in lower latency and better experiences. Caches needed to maintain coherency and also and
relevant data. Replication in Web content also needed to conserve bandwidth by “intelligently” pulling
only the “useful has problems and issues associated with it [21].

2.4 Web Crawler

Web crawler [22] is a kind of program which browses the World Wide Web in an automated manner.
Other terms for Web crawlers are ants, automatic indexers, bots, and worms or Web spider, Web robot.
The process on how Web crawler works is called Web crawling or spidering. Many server sites, in

26 Offline Web Browsing for Mobile Devices

particular search engines, use spidering as a means of providing up-to-date data. Web crawlers are
mainly used to create a copy of all the visited pages for later offline processing. Crawlers can also be
used for automating maintenance tasks on a Web site, such as checking links or validating HTML
code. Also, crawlers can be used to gather specific types of information from Web pages, such as
harvesting e-mail addresses for spam. In general, it starts with a list of URLs to be visited, called the
seeds. As the crawler visits these URLs, it identifies all the hyperlinks in the page and adds them to the
list of URLs to be visited.

Teleport Pro [23] is a Web crawler for getting data from the Internet. Launch up to ten
simultaneous retrieval threads, access password-protected sites, filter files by size and type, search for
keywords, and much more. Teleport Pro is capable of reading HTML 4.0, CSS 2.0, and DHTML, it
searches all of the files on server sites, such as sites with Java Applet. Teleport Pro can download all or
part of a Web site to your computer, search a Web site for files of a certain type and size, and
download a list of files at specified URLs.

2.5 HTML5

HTML5 [13] is a new Web standard, designed to take the place of existing HTML 4.01, XHTML 1.0
and DOM Level 2 HTML standards. It aims at reducing the need for browser plug-in-based Rich
Internet Applications, such as applications based on Adobe Flash [24], Microsoft Silverlight [25], and
Sun JavaFX [26]. Web Storage and Web SQL Database are two new APIs provided in HTML5. They
are described below:

Web SQL Database: The browsers which support HTML 5 have a local database supported, which is
a local SQLite database. With this database, client side applications can store the information what
they need via standard SQL communications.

Web Storage: A Name-Value-based data storage is supported for storing HTML or JavaScript data.
The stored information is non-volatile; even though the browser or the phone is turned off, the data
will still remain in the storage.

2.6 Google Gears

Google Gears is an open source browser extension which supports Web applications to be executed
offline. It is applicable on personal desktops, laptops and handheld devices. It can store and serve
application resources locally, and run asynchronous JavaScript to improve application responsiveness.
Google Gears consists of many components which enable more powerful Web applications on
browsers. Three major components are listed as followings:

A. LocalServer caches and serves application resources (HTML, JavaScript, images, etc.) locally

B. Database stores data locally in a fully-searchable relational database

C. WorkerPool makes your Web applications more responsive by performing resource-intensive
operations asynchronously

In fact, Google Gears is no longer developed by Google, since its functions can be covered by
HTML5, which provides similar functionalities of offline data storage. However, HTML5 is not
widely supported yet, especially by the browsers of mobile devices nowadays. Therefore, we decide to

Y. W. Kao, T. H. Chow, and S. M. Yuan 27

adopt Google Gears as our local storage implementation temporarily, and wish to replace it with the
HTML5 standard when most of browsers of mobile device support HTML5 in the future. At that time,
the problem of local plug-in installation prerequisite will be solved.

2.7 Gears Monkey

Gears Monkey is a technique for browsing offline, it works based on Google Gears and
Greasemonkey. Greasemonkey is a user script manager. It is an extension for the Mozilla Firefox Web
browser, which allows users to customize the way a Web page displays using JavaScript. By using
Google Gears with Grease Monkey, Google Gears related code can be inserted into any downloaded
Web page. Therefore, those users’ favorite Web sites can be browsed offline.

2.8 Rich Internet Applications

Rich Internet Applications (RIAs) [27][28] are Web applications that have many of the characteristics
of desktop applications, typically delivered either by way of a site-specific browser, via a browser
plug-in, or independently via sandboxes or virtual machines. Adobe Flash [24], Sun JavaFX [26], and
Microsoft Silverlight [25] are currently the three major platforms of RIA. Other popular RIA
techniques also include Adobe AIR [29] and AJAX [30]. RIAs are usually designed to improve the
richness of data, business logic, communication, and presentation of Web pages.

Although RIAs can also be designed for offline Web data management, it is not the main purpose
of RIA platforms. On the other hand, in the perspective of offline data management, Google Gears
focuses on it, and provides a better solution for handling offline issues (e.g. providing well-established
offline data pre-fetch mechanism). Therefore, we choose Google Gears to be our current
implementation of client-side offline data management platform.

2.9 Mobile Content Adaptation and Personalization

Mobile content adaptation [7][31][32] is an important issue when browsing Web sites. In general, Web
pages are designed for PC users with large screens. In this way, as these Web pages are browsed on
mobile devices, which usually provide only small screens, the display results are usually very not user
friendly. Therefore, mobile content adaptation technologies are proposed to solve this problem. The
challenges of mobile content adaptation include different device profiles and different user
preferences. Especially for multimedia content, mobile devices usually are not as powerful as PCs,
thus only support a part of multimedia formats. In general, there are three categories of mobile content
adaptation [33]: client-based application adaption, client-server application adaption, and proxy-based
application adaption. In client-based adaptation, client-side application performs content transcoding
according to the profile of device which it is deployed on; in server-side adaptation, the server decides
which kind of content should be delivered to clients according to their profiles; in proxy-based
adaptation, contents are transcoded on-the-fly during the delivery from server to client.

Although mobile content adaptation and mobile offline browsing both deal with contents between
Web servers and mobile clients, they can belong to two different conceptual layers; the mobile content
adaptation mainly focus on data representation, while offline Web browsing focus on data
management. In our previous work [5], we designed a proxy-based mobile adaptation system together

28 Offline Web Browsing for Mobile Devices

with an authoring tool. Users can specify which part of Web page they are interested in by our
authoring tool, and the other parts of the Web page will be filtered out automatically by our content
adaptation proxy. In order to make our offline browsing system compatible with this previous work,
we decide not to include the content adaptation issues into the offline browsing system. Since our
previous work is a proxy-based adaptation, it is very easy to use these two systems at the same time for
both content adaptation and offline browsing. During the online stage, the mobile device retrieves the
adapted contents via the proxy, and stores them locally. In this way, users can directly access adapted
Web contents offline.

2.10 Limitation Analysis

After the review of related works, several limitations of mobile devices could be analyzed, including:

A. Limitation of storage on mobile device: there are too many Web contents all over the world; it
is impossible to store all of them into a mobile device with limited storage provided nowadays.
Storage designed for mobile device is usually no more than 50GB until now, but there are at
least billions of pictures on the Internet. Even for a single Web site, the amount of its Web
contents could be too huge to be stored locally. Even if there is enough storage for those
contents, it also requires a lot of time for transferring data. Therefore, the most efficient way to
manage limited storage is to make users able to define their own interest lists. Also, the depth of
specified address should be limited.

B. Limitation of real-time information: the term “offline” in this paper implies not only telecom
or wireless LAN connection, but also any form of connection between mobile device and the
Internet doesn’t exist. Thus, if any real-time information presents on the Internet, an offline
mobile device is impossible to be aware of this change. As a result, many real-time applications
such as real-time News, streaming multimedia content, or online chat room are difficult to be
implemented under offline scenario.

C. Personalized Web pages: Nowadays, many Web pages are provided in the form of personalized
pages; different user will have different Web content even though the URL of page is the same.
This service usually requires users to login first. However, different authentication mechanisms
are provided by different Web sites; it is difficult to automatically login for users during data
pre-fetch.

D. User participation: In the Web 2.0 era, user participation of Web content is emphasized.
However, user participation is usually provided when user is online with his/her account login;
therefore, it has the same limitation as described in C.

E. Limited protocol: In general, Web pages are not only provided though HTTP, but also HTTPS.
Usually, HTTPS is utilized after user login; therefore, it also has the same limitation as described
in C. Moreover, even if the user login could be executed during data pre-fetch, a Web
application should be implemented in the local server for performing offline
encryption/decryption processes with private key, which is usually regarded as a secret for user
authentication of Web sites.

Although offline Web browsing has so many limitations, it can also be very attractive to users. To
those public information or articles, they are suitable to be browsed offline on mobile devices. For

Y. W. Kao, T. H. Chow, and S. M. Yuan 29

example, applications such as online novels, online News (maybe one or two days delay is acceptable),
weather information, time of movie, address of restaurant, are all very useful to mobile users in the
offline environment.

3 System Architecture

3.1 Overview

Traditionally, Web pages will not be available without network connection; it is very inconvenient for
users. In this research, we propose a framework, which makes Web browsing possible on mobile
devices without any available network to the Internet. The overview of our framework is shown in
Figure 3-1. There are three main components in our system: Original Web Sites (OWS), Offline Data
Pre-Fetcher, and Mobile Device with Local Server. Web pages can be pre-fetched by Offline Data Pre-
Fetcher, downloaded to mobile device when network connection still exists, and browsed by user even
if there is no network connection anymore.

Figure 3-1 Overview of System Framework

Original Web Sites

Original Web Sites are content providers providing Web page services on the Internet. Web
documents provided by Original Web Sites can be either browsed from mobile device directly or pre-
fetched by Offline Data Pre-Fetcher.

Offline Data Pre-Fetcher

The Offline Data Pre-Fetcher is responsible for offline data organization. It provides a
management interface for users to specify which Web pages they are interested in. Based on the users’

30 Offline Web Browsing for Mobile Devices

interests, the Offline Data Pre-Fetcher pre-fetches Web documents and related data and stores them for
cache purpose. It also allows users to define how frequent these Web pages should be updated. After
all, those organized Web pages are re-published for mobile device to access.

Mobile Device with Local Data Provider

When there is a network connection available, for example, if a user is going to leave his home, he
can download the organized Web pages through Offline Data Pre-Fetcher. After that, even if there is
no network connection on his way to office, Web pages are still accessible which are provided by the
Local Data Provider on his mobile device.

Instead of preparing offline data directly by mobile devices, there is an Offline Data Pre-Fetcher
playing the rule of Web Proxy. There are several advantages of this design; first, users do not have to
visit each original Web site respectively each time; it can be performed in a batch way; second, pre-
fetched data can be updated more frequently even if there is no connection of mobile device; finally,
the Offline Data Pre-fetcher can be accessed and managed not only through mobile device, but also via
desktop PC.

3.2 System Architecture

Figure 3-2 System Architecture

The system architecture is shown in Figure 3-2. Based on the user preferences stored in Database,
Offline Data Pre-Fetcher downloads the specified Web pages from Original Web Sites by Web
Crawler, and stores the cache data into Database. On the other hand, the cache data is be re-published
by Re-Publisher for mobile device to access. The most convenient way to browse Web pages on
mobile device is via mobile Web browser, which employs client-side offline data managers for offline
data management.

Y. W. Kao, T. H. Chow, and S. M. Yuan 31

The Data Source Switcher is responsible for choosing the data source based on current network
status. When a mobile device is connected to the Internet, the data source will be the Internet, which is
the same as traditional Web browsing; otherwise, if there is no connection, the local data will be
provided by Local DB with the same URL of Web page.

The most important factor of offline Web browsing is offline data management, including
specifying data source, pre-fetching offline data, offline storage management, and offline data
presentation. Since the size of local storage on mobile device is usually small, it is important to decide
which content should be kept. Under this limitation, we should maintain an Interest List for user to
maximize the storage utilization. The Interest List information is stored in the Database of Offline Data
Pre-Fetcher and managed by the Preference Manager which processes personalized information. Users
can manage their Interest Lists through the Preference Agent on their Mobile devices or the Preference
Manager directly by the Web browsers of their PCs. After the Offline Data Pre-Fetcher finishes
preparing Web cache, Re-Publisher will re-publish this data by maintain a Web server for Offline Data
Agent to access, and then store it to the Local DB on mobile device. Finally, offline Web pages can be
presented by the Offline Web Page Viewer.

Figure 3-3 Component Diagram of System Architecture

The detailed design of the system architecture is represented as a component diagram shown in
Figure 3-3. Local DB and Server Database are managed through the local_data_managent and
server_data_management interfaces; The Re-Publisher invokes the Web Crawler to crawl Web pages
through the crawl_web_page intergace; The offline data can be acquired through the get_republished
_data interface; Also, preference data can be managed thought the manage_preference interface.

32 Offline Web Browsing for Mobile Devices

In the proposed Offline Browsing framework, there are four states defined: Online State,
Subscription State, Pre-Fetch & Re-Publish State, and Offline State. They will be explained
respectively as follows.

Online State

Under the online operation state, users have normal network connection, so the way of Web
browsing in the system will not be different with the one in general. Due to the mobility, it is difficult
to ensure that a normal connection is kept stable. For instance, going down to the basement, walking
through the tunnel, or staying inside an elevator, etc. These circumstances lead intermittent connection
unstable to obtain network resources. In the majority of Web browsers, when there isn’t any network
connection available, Web browsers mostly would not be able to go on browsing Web pages.
Therefore, a stable online state is not guaranteed.

Subscription State

During the subscription state, users can specify which Web pages they are interested in. After that,
Offline Data Pre-Fetcher will access these Web pages, download the webpage data, and store the data
based on the specified Interest Lists.

Pre-Fetch & Re-Publish State

On the other hand, Offline Data Pre-Fetcher performs a service as a Web server for Web browsers
to retrieve information. Once all the data needed from OWSs has already been downloaded and well
prepared, mobile devices can obtain these Web pages by Offline Data Agent.

Offline State

Finally, when mobile devices lose network connections, Web browsers can still browse these
offline Web pages through the Offline Web Page Viewer.

4 System Implementation and Detailed System Design

4.1 System Implementation

The system implementation is shown in Figure 4-1, the Web Crawler, Re-Publisher, and Preference
Manager of Offline Data Pre-Fetcher, are all implemented as PHP programs executed on Apache
HTTP Server. At the client side, Google Gears is used to play the role of Data Source Switcher and
Offline Data Agent. Moreover, Google Gears, Preference Agent, and Offline Web Page Viewer are all
plug-ins of Mobile IE, which is deployed on the Windows Mobile 5 Operating System.

Y. W. Kao, T. H. Chow, and S. M. Yuan 33

Figure 4-1 System implementation

Google Gears

Currently, the Web browsers and operating systems which support client-side Google Gears plug-
in are listed as follows:

 Firefox 1.5+ and Internet Explorer 6.0+ (on Windows XP/Vista),

 Internet Explorer Mobile 4.01+ (on Windows Mobile 5+),

 Firefox, Safari (on Macintosh),

 Firefox (on Linux),

 Chrome Lite (on Android).

Web Crawler

The Web Crawler grabs HTML documents, images, and other files recursively from OWSs based
on each URL in the Interest lists specified by users. Moreover, the Web Crawler transforms dynamic
pages, such as PHP or ASP pages, into static pages, i.e. HTML pages, for storage. Also, external or
static links should be transformed into relative links.

Re-Publisher

There are several problems that exist when caused by using Google Gears if there is no single Re-
publisher in the middle of mobile devices and OWSs. First, the prerequisites of using Google Gears
include installing a client-side browser plug-in and providing server-side Google Gears mechanism.
Until now, most of OWSs do not support this function. One of our challenges is to store the contents of
OWSs using Google Gears, no matter OWSs support server-side Google Gears library or not. The Re-

34 Offline Web Browsing for Mobile Devices

Publisher is designed to support the server-side functionalities of Google Gears; therefore, the offline
service can be provided, even the OWSs does not support it. The Re-Publisher creates a JSON file
containing offline URL list, which will be received by the browsers with Google Gears plug-in. By
following the Google gears mechanism, the browsers can retrieve offline Web information, and store it
in the database of Google Gears locally.

Another issue is that, the URLs of the Interest List may be distributed on different domains. For
each URL domain, Google Gears will ask for a confirmation before access. If there are lots of Web
pages needed to be accessed, and all the URL domains of Web pages are different, multiple pop-up
windows will be created by Google Gears to be confirmed. These confirmations will make some
JavaScript codes be embedded for initialization. It is considerable inconvenient to users. In order to
solve this problem, all the Web cache data is re-published within a single domain, i.e., the Re-
Publisher’s domain.

Preference Manager

In our framework, each user can define his own “Interest List” (or called “Favorites”), which
contains the URLs which he or she is interested in. The Interest List will be maintained mainly in the
Offline Data Pre-Fetcher with a copy in the Local DB; therefore, users can edit their Interest Lists
anytime, anywhere, and on different platforms, such as PCs at home or office, and mobile devices
outdoors.

Preference Agent and Offline Web Page Viewer

When users enjoy their online Web browsing activities, they may want to add the URL of the
current Web page into their Interest Lists for offline Web browsing. If they have to go to another Web
page to do this edition, it will be very inconvenient. Another problem is that, since the pre-fetched data
is republished by Offline Data Re-Publisher, the URLs of offline Web pages will not be the same as
the ones of those pages provided by the OWSs; therefore, it is impossible for users to access the Web
pages through their original URLs or remember the new URLs. In order to solve these problems, the
Preference Agent and Offline Web Page Viewer are required.

The Preference Agent can be used when users want to add the current webpage URL to the Interest
List immediately. In our implementation, user can execute it through the “Add page to off-line list”
option in “Menu” function of the Mobile IE browser. During the process of Preference Agent, users
have to input their accounts and passwords, so that the Preference Agent can append the current URL
to the users’ Interest Lists. Finally, users will be redirected to the Web pages where they were before
executing it. In this way, users can continue to enjoy their original Web browsing activities.

The Offline Web Page Viewer is responsible for providing offline copy of Interest List for users.
In our implementation, user can executes it through the “View off-line pages” option in “Menu”
function of the Mobile IE browser. During the process of Offline Web Page Viewer, users only have to
input their account information, so that the Offline Web Page Viewer can generate the offline URL
based on their accounts. Finally, the offline Interest List can be displayed for users, which is similar to
the “Favorites” function in the Mobile IE browser; therefore, users can access the offline Web pages
through this list.

Y. W. Kao, T. H. Chow, and S. M. Yuan 35

4.2. System Behaviour Design

We have defined four states in our framework: Online State, Subscription State, Pre-Fetch & Re-
Publish State and Offline State. We will describe them respectively with sequence diagrams as follows.

Online State

Normally, the system is under the Online State, information is only exchanged between users and
Web sites. By using mobile devices, users browse Web pages directly through browsers. Once the user
input the URL of OWS in the address bar of browser, the browser will send request HTTP message for
acquiring the Web page. After the OWS received the message, it returns the Web page of specific URL
to the browser for the user. Hence, the content of that specific URL will be displayed on the browser.
The sequence diagram of Online State is shown below, with information exchanged between users and
Web sites.

Figure 4-2 Sequence Diagram of Online State

Subscription State

When the user proceeds to subscribe his offline Web page URLs, the Subscription State begins.
The information will be exchanged between the browser and Offline Data Pre-Fetcher. The user sends
his ID and password to the Offline Data Pre-Fetcher through the Web browser, and then, sends the
subscription message with the URL which the user wants to browse it offline. Anytime the user visits
the Offline Data Pre-Fetcher, he can review which Web pages have already been subscribed in his
account before. He can also append more records of URLs whenever he wants.

Pre-Fetch & Re-Publish State

When the user begins to acquire the offline Web page contents, the system state will change to the
Pre-Fetch & Re-Publish one. The information will be exchanged among the browser, Google Gears on
mobile device, Offline Data Pre-Fetcher, and OWSs.

36 Offline Web Browsing for Mobile Devices

Figure 4-3 Sequence Diagram of Subscription State

First of all, the user sends his id and password to the Offline Data Pre-Fetcher through the Web
browser. After he executes the “Update” option, the Offline Data Pre-Fetcher will send Web page
requests to the OWS which maintains the Web pages specified in the user’s Interest List. After that, the
OWS will return the Web page content to Offline Data Pre-Fetcher. Offline Data Pre-Fetcher will
collect all the offline Web pages based on the subscribed URLs by Web Crawler. Then, the Web
Crawler arranges all the URLs of these Web pages into a file in JSON format. This file will be sent to
the browser with Google Gears installed during the execution after the “Capture” option is selected.
When Google Gears receives the JSON file, it receives all the URLs of offline Web pages. These
URLs will be stored in one of its main component, called “LocalServer”. According to these URLs,
Google Gears requests the Re-Publisher of Offline Data Pre-Fetcher for offline Web page contents.
Finally, LocalServer receives the Web content from the Re-Publisher S. The Database of Google Gears
will keep all the offline Web page contents. The Four-way information exchange is shown in Figure 4-
4.

Offline State

During the Offline State of the system, there is no external connection for mobile devices. In this
state, all the information is exchanged only between the Web browser and Google Gears which stores
the offline Web page contents.

In the circumstance of unavailable network connection, the Data Source Switcher, which is
implemented as the LocalServer of Google Gears, still can process the URLs of offline Web pages.
The LocalServer in Google Gears will parse the inputted URLs and decide whether the URLs have
already been recorded in the LocalServer. Once there is no network connection, and the incoming
URLs have been recorded in the LocalServer, the LocalServer will send request messages to its
Database for receiving offline Web page contents. Similar to Online state, the LocalServer will
respond the offline Web page to the browser. After that, the browser will display the offline Web page

Y. W. Kao, T. H. Chow, and S. M. Yuan 37

contents of the offline URL. The information flow between the browser and Google Gears is shown in
Figure 4-5.

 Figure 4-4 Sequence Diagram of Pre-Fetch & Re-Publish State

Figure 4-5 Sequence Diagram of Offline State

38 Offline Web Browsing for Mobile Devices

5 System Demonstration

In this section, we will present a demonstration for our system. In this demonstration, we will describe
a general scenario with a handheld device of ASUS P535, which “Windows Mobile 5.0” is installed in
it. Moreover, there will be an evaluation of the comparison between our system and related works at
the end of this section.

Assume that the browser for the user in this scenario has already install Google Gears, Preference
Agent, and Offline Web Page Viewer. Also, the user has already subscribed for two URLs of Web
pages A and B into his Interest List. Now, the user wants to append the third URL of Web page C to
Interest List, and retrieves all data of these three Web pages into his mobile device for offline
browsing. All of these links are stored in the Mobile IE Favorite. The URLs A, B, C are listed in table
5-1.

Table 5-1 URLs in Mobile IE Favorite for demonstration
Names URLs of offline Web pages

A: Taipei Weather http://www.cwb.gov.tw/pda/observe/Taipei.htm

B: National Palace Museum http://www.npm.gov.tw/pda/new_01.htm

C: Fox News http://foxnews.proteus.com/content.html?contentId=25705

The operation sequence of the scenario is listed below:

1. The user logins to the webpage of Offline Data Pre-Fetcher by his account and password. He can
find that there will be two URL records of A and B in his Interest List.

2. The user begins to browse the webpage C. For instance, he can select the options follow the
sequence : [Start → IE → Menu → Favorite → “Fox news”].

3. The user inserts the URL of webpage C into the Interest List by using the Preference Agent. For
instance, he can select the options follow the sequence: [Menu → Tool → “Add page to off-line
list” → enter account/password], as shown in Figure 5-1 and 5-2.

4. The user logins to Offline Data Pre-Fetcher again to check whether the webpage C has already
been inserted into the List. For instance, he can select the options follow the sequence: [Go to
our Offline Data Pre-Fetcher login Web page → enter account/password].

5. The user downloads the offline data from Offline Data Pre-Fetcher to Local DB in the mobile
device. For instance, he can select the options follow the sequence: [Erase → Update →
Capture] , as shown in Figure 5-3, 5-4 and 5-5.

6. The user sets the mobile device into Offline status. For instance, he can select the options follow
the sequence: [File → Settings → Network → confirm network shutdown], as shown in Figure
5-6.

By using the Offline Web Page Viewer, the user enters an offline Web page list, and browses the Web
pages A, B and C offline. For instance, he can select the options follow the sequence: [Menu → “View
off-line pages” → enter his account → “offline pages” → choose any URL link → Browse offline
Web pages], as shown in Figure 5-7, 5-8, 5-9, and 5-10.

Y. W. Kao, T. H. Chow, and S. M. Yuan 39

Figure 5-1 Choosing the Preference Agent Figure 5-2 Login with ID and passwor

Figure 5-3 Offline Web pages update Figure 5-4 Update completion alert

40 Offline Web Browsing for Mobile Devices

 Figure 5-5 Capture Web pages Figure 5-6 Network connection terminated

Figure 5-7 Choosing the Offline Web Page Viewer Figure 5-8 Enter user’s ID

Y. W. Kao, T. H. Chow, and S. M. Yuan 41

Figure 5-9 Choosing links for offline browsing Figure 5-10 Browsing offline Web pages

6 System Evaluation

6.1. System Comparison

The comparison among our Offline Browsing System and related works is shown in Table 6-1. In
order to provide Offline Browsing Service, it is important to have a friendly way for users to browse
these pages. Due to the lack of OWSs’ support, Google Gears and HTML5 cannot provide Offline
Browsing Service for most of OWSs until now. Gears Monkey does not need any support from OWSs;
however, it requires users to have specific script file prepared for each particular OWS. Teleport Pro
can overcome these two problems above. It can also execute batch process for multiple OWSs, but it
cannot work on mobile platform.

Table 6-1 Comparison among offline browsing technologies

OWSs Should
Support

Script File
Required

Applicable on
Mobile Devices

Batch Processing
for Multiple Web

Sites

URLs of Original Web
Pages

Google Gears Yes No Yes No Remain the same
HTML5 Yes No Not Yet No Changed

Gears monkey No Yes No No Remain the same
Teleport Pro No No No Yes Changed

Our System No No Yes Yes
Changed (but a plug-in
has been provided to
solve this problem)

The proposed Offline Browsing System has most of the advantages which are not supported by
other related works. The only problem is that the URL of original Web page will be modified. It is not

42 Offline Web Browsing for Mobile Devices

user friendly, since the users have to remember what the URLs of the offline Web pages are. However,
the Mobile IE plug-in, Offline Web Page Viewer, is designed to overcome this problem; therefore,
users can browse offline Web pages more easily.

6.2 Efficiency Analysis

In order to evaluate the system efficiency, we focus on ten web sites, and measure the update time and
the capture time, which is the time users take after they click on the “Update” and “Capture” button in
the webpage provided by Offline Data Pre-Fetcher. The ten websites are listed in Table 6-2.

Table 6-2 Evaluated Web site list
Site ID Names URLs of Web pages

1 National Chiao Tung University http://www.nctu.edu.tw
2 Google http://www.google.com
3 PCWorld http://www.pcworld.com
4 Computerworld http://www.computerworld.com
5 Ask.com Search Engine http://www.ask.com
6 Wikipedia http://www.wikipedia.com
7 CNN.com International http://www.cnn.com
8 MSN.com http://www.msn.com
9 Baidu http://www.baidu.com

10 ESPN http://www.espn.com

The time consumption evaluation for the update and capture operations for each site is listed in
Table 6-3. In general, the update operation is fast enough, which takes 1.27 seconds in average. As to
the capture operation, the time consumption ranges from 9 to 13 seconds. Although it takes more time
on mobile device, the degree of increment is not much.

Table 6-3 Time consumption evaluation for update and capture operations for each Web site
Time consumed on PC (Sec.) Time consumed on Mobile Device (Sec.)Site ID Update Capture Update Capture

1 1.2734778 9.68 1.2734779 9.71
2

1.273479 9.76 1.273479 9.80
3 1.2734781 9.89 1.2734781 9.91
4 1.2734783 10.20 1.2734783 10.23
5 1.2734784 10.26 1.2734785 10.29
6 1.2734784 10.28 1.2734787 10.33
7 1.2734786 11.34 1.273479 11.39
8 1.2734788 12.01 1.2734794 12.10
9 1.2734789 12.04 1.2734798 12.19

10 1.2734794 12.43 1.2734806 12.67
Total 120.6247857 121.3547893

Y. W. Kao, T. H. Chow, and S. M. Yuan 43

The incremental time consumption analysis for update and capture operations on PC and mobile
device are shown in Figure 6-1 and 6-2. The total time consumption ranges from 10 to 15. Although it
takes more time if more Web sites are selected, the update time is almost remain the same, and the
capture time increases slowly. After the batch process of our system, the total time is decreased from
about 2 minutes to about 14 seconds; the average decrease rate is 87.91%.

Figure 6-1 Incremental time consumption for update and capture operations on PC

Figure 6-2 Incremental time consumption for update and capture operations on mobile device

6.3 Coverage Analysis

In order to evaluate the offlineable rate, we conduct a preliminary survey to analyze the percentage of
offlinable Web pages which may be browsed by mobile users. It is not easy to identify which web

44 Offline Web Browsing for Mobile Devices

pages are possible to be browsed offline by mobile users. Browser bookmarks on mobile devices may
reveal the behaviour of their owners, but few people bookmark links without offlineable service
provided. In this research, we choose to analyze Web links provided by the mobile version of
del.icio.us Web site [34]. The mobile version of delicious Web site is designed especially for mobile
phone users; similar to del.icio.us [35], it provides suggested bookmarks with various tags. Since
del.icio.us has plenty of users all over the world, we assume that Web links provided on the mobile
version of it will be accessed with a high possibility by a large amount of mobile device users.

The analysis result is shown in Table 6-4. In this table, we define three categories, “R”, “E”, and
“S”, for the reasons of non-offlineable Web pages. Category “R” represents Rich Internet Applications,
such as Flash video clips on YouTube or Silverlight application. “E” means search engine page,
including Web portals and many home pages of Web sites. Finally, “S” includes Web pages which
provide server-side services, such as Google Translate or online shopping cart. There are 100
randomly-choose Web links analyzed within more than 10 tags (including education, inspiration,
money, tips, health, and so on); 82% of them are offlineable, and 18% of them are not. Among those
non-offlineable pages, the most frequently happened reason is Rich Internet Applications, which
reveals that Flash video clips provided by YouTube has been easily and widely embedded into many
Web pages nowadays. Based on the analysis result, we can conclude that solving the problem of
offline RIA browsing, especially offline YouTube video browsing, is the most important issue in our
future work.

Table 6-4 Offlineable rate of Web links provided by the mobile del.icio.us Web site

of Web pages 100

of offlinable pages 82

Percentage of offlinable pages 82%

of R pages 12

of E pages 2

of S pages 4
R: Rich Internet Applications; E: Search engine; S: Online Service

7 Conclusion and Future Work

7.1. Conclusion

Due to the limited resources supported on mobile devices, more and more applications tend to provide
information to mobile users through Internet. However, the network connection is not stable and is
easily interrupted by surrounding environment. Google Gears provides an Offline Webpage Storage
mechanism for Web applications to run offline. However, the server-side Google Gears library should
be supported on the Web servers, which is not supported on most of the Web servers nowadays. By
using Gears Monkey, users can browse the offline Web pages even if the original Web servers do not
support server-side Google Gears library. However, users have to write a script for each site by
themselves.

Y. W. Kao, T. H. Chow, and S. M. Yuan 45

In this research, we propose an offline mobile browsing framework, which enables mobile users to
define their personalized Interest List and to browse Web pages offline. Especially, our framework is
designed for those OWSs which do not support server-side Google Gears library; therefore, the offline
Web pages can be provided without the modification of Web servers.

In the following discussion, we analyzed our system based on the objectives we mentioned in
section 1. In our Offline Browsing System, we proposed a framework by client-server architecture for
users to offline Web browsing, which:

Provides the offline Web browsing capability, even for those Web sites which do not support server-
side Google Gears mechanism.

It is difficult for every Web site to support server-side Google Gears library. Instead, we supported
the server-side Google Gears mechanism on the Offline Data Pre-Fetcher. By pre-fetching the Web
pages from OWSs and republishing them, the Offline Data Pre-Fetcher provides a single entry for
users to prepare offline data.

The operations of defining Interest Lists and offline browsing should be convenient for users

We provided two Mobile IE plug-ins: Preference Agent and Offline Web Page Viewer. The
Preference Agent assists users in adding current Web page into their Interest Lists while the Offline
Web Page Viewer assists users in browsing their own offline Web pages without remembering any
new URLs or their favorite offline Web pages.

Supports batch processing for multiple specified Web pages

Users can define their own Interest Lists, which will be processed in a batch by Web Crawler. It is
no longer for users to deal with repeating tasks, when they want to update their offline Web pages.
This is more convenient and efficient for users to download their offline Web pages.

7.2. Future Work

In this research, we designed a framework to achieve the goal of providing offline browsing service.
However, there are still plenty of aspects that should be taken into consideration. Most Web pages are
designed for PC browsing. If users select these kinds of Web pages, it will consume a lot of time for
waiting the download to be completed. Moreover, sometimes our system can only offer an offline
webpage which is similar to, not exactly the same as, the one provided by OWS. Photos and texts are
usually able to be preserved. However, some kinds of multimedia data, such as flash objects, audio and
video streams (music or movie data), or interactive instant messages, are still not able to be kept or
received offline. Finally, we will replace the current implementation from Google Gears to the HTML
5 standard. These issues will be considered in our future framework design.

References
1. Yi Wang , Jialiu Lin , Murali Annavaram , Quinn A. Jacobson , Jason Hong , Bhaskar

Krishnamachari , Norman Sadeh, A framework of energy efficient mobile sensing for automatic
user state recognition, Proceedings of the 7th international conference on Mobile systems,
applications, and services, June 22-25, 2009, Kraków, Poland.

2. Ch. Borst, T. Wimb¨ock, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias, P. Robuffo Giordano,
R. Konietschke, W. Sepp, S. Fuchs, Ch. Rink, A. Albu-Sch¨affer, and G. Hirzinger. Rollin’

46 Offline Web Browsing for Mobile Devices

Justin - Mobile Platform with Variable Base. In Proceedings of the IEEE International
Conference on Robotics and Automation, Kobe, Japan, 2009.

3. Yung-Wei Kao, Pin-Yin Peng, Sheau-Ling Hsieh, Shyan-Ming Yuan, A Client Framework for
Massively Multiplayer Online Games on Mobile Devices, in Proc. of International Conference
on Convergence Information Technology (ICCIT2007), pp. 48-53,Nov. 21~23, 2007.

4. Han, R., Bhagwat, P., LaMaire, R., Mummert, T., Perret, V., & Rubas, J., Dynamic adaptation in
an image transcoding proxy for mobile Web browsing, IEEE Personal Comm., 5(6), 8–17, 1998

5. Yung-Wei Kao, Tzu-Han Kao, Chi-Yang Tsai, and Shyan-Ming Yuan, A Personal Webpage
Tailoring Toolkit for Mobile Devices, in Computer Standards & Interfaces (SCI), 31(2), pp. 437-
453, February 2009.

6. Y. Borodin, G. Dausch, and I. V. Ramakrishnan. TeleWeb: Accessible Service for Web
Browsing via Phone. In W4A Conference, 2009.

7. Lum, W. Y., & Lau, F. C. M., A context-aware decision engine for content adaptation, IEEE
Pervasive Computing, 1(3), 41-49, 2002.

8. Adnan Al-Bar and Ian Wakeman, A Survey of Adaptive Applications in Mobile Computing,
IEEE International Workshop on Smart Appliances and Wearable Computing, Phoenix, AZ US,
April 2001.

9. Trish Andrews, Robyn Smyth, and Richard Caladine, Utilizing Students' Own Mobile Devices
and Rich Media: Two Case Studies from the Health Sciences, in Proc. of 2010 Second
International Conference on Mobile, Hybrid, and On-Line Learning, 2010.

10. Google Gears, [online], Available: http://gears.google.com/.
11. Gears-Monkey, [online], Available: http://code.google.com/p/gears-monkey/.
12. Greasmonkey, [online], Available: https://addons.mozilla.org/zh-TW/firefox/addon/748 .
13. I. Hickson (Editor). HTML 5. Technical report, Web Hypertext Application Technology

Working Group HTML 5, 2007. Working Draft, Available: http://www.whatwg.org/specs/web-
apps/current-work.

14. James J. Kistler and M. Satyanarayanan, Disconnected Operation in the Coda File System, ACM
Transactions on Computer Systems, 10(1), 1992.

15. Edgar Gonçalves, Offline execution in workflow-enabled Web applications, in Proc. of Sixth
International Conference on the Quality of Information and Communications Technology, pp.
204-207, 2007.

16. Anupam Joshi, Sanjiva Weerawarana, and Elias N. Houstis, On disconnected browsing of
distributed information, in Proc. of Seventh IEEE Intl. Workshop on Research Issues in Data
Engineering (RIDE), pp. 101-107, 1997.

17. Ramanathan Kavasseri, Todd Keating, Mike Wittman, Anupam Joshi, Sanjiva Weerawarana,
Web Intelligent Query-Disconnected Web Browsing using Cooperative Techniques, in Proc. of
1st. IFCIS Intl. Conf. on Cooperative Information Systems, pp. 167-174, 1996.

18. James E. Pitkow and Mimi Recker, Integrating Bottom-up and Top-down Analysis for Intelligent
Hypertext, in Proc. of Third International Conference on Information and Knowledge
Management, Intelligent Hypertext Workshop, 1994.

19. Ganesh Ananthanarayanan, Sean Olin Blagsvedt, Kentaro Toyama, OWeB: A Framework for
Offline Web Browsing, Web Congress, LA-Web '06. Fourth Latin American, pp. 15-24, 2006.

20. Q. Yang and H. H. Zhang. Integrating web prefetching and caching using prediction models,
World Wide Web, 4(4), pp. 299-321, 2001.

21. Swaminathan Sivasubramanian, Michal Szymaniak, Guillaume Pierre, and Maarten van Steen,
Replication for Web hosting systems, ACM Computing Surveys (CSUR), 36(3), pp. 291-334,
2004.

Y. W. Kao, T. H. Chow, and S. M. Yuan 47

22. Allan Heydon, Marc Najork, Mercator: A Scalable, Extensible Web Crawler, World Wide Web
Journal, Volume 2, Issue 4, pp. 219-229, 1999.

23. Teleport Pro, [online], Available: http://www.tenmax.com/teleport/pro/home.htm.
24. Allaire, J., Macromedia flash MX- A next-generation rich client, Macromedia White Paper,

2002.
25. Moroney, L., Introducing Microsoft Silverlight 2.0. Microsoft Press, 2008.
26. T. Noda, S. Helwig. Rich Internet Applications, Technical Comparison and Case Studies of

AJAX, Flash, and Java based RIA, 2005. http://www.uwebc.org/opinionpapers.
27. Duhl, J., Rich Internet Applications. White Paper, IDC, November 2003.
28. Daniel Peintner, Harald Kosch, Jörg Heuer: Efficient XML Interchange for rich internet

applications, in Proc. of 2009 IEEE International Conference on Multimedia & Expo (ICME
2009), 2009.

29. Mike Chambers, Daniel Dura, Dragos Georgita, and Kevin Hoyt. Adobe AIR for JavaScript
Developers Pocket Guide. O’Reilly Media, April 2008. ISBN: 978-0-596- 51837-0.

30. J. J. Garrett, Ajax: A new approach to Web Applications, http://www.pablolfc.com.ar/leer/
Ajax.pdf, Feb. 2005.

31. A. Carreras, J. Delgado, E. Rodriguez, V. Barbosa, M.T. Andrade, H. Kodikara Arachchi, S.
Dogan, and A.M. Kondoz, A Platform for Context-Aware and Digital Rights Management-
Enabled Content Adaptation, IEEE Multimedia, Vol. 17, No. 2, pp. 74-89, April-June 2010.

32. Marcos Forte, Wanderley Lopes de Souza, Antonio Francisco do Prado, Using ontologies and
Web services for content adaptation in Ubiquitous Computing, Journal of Systems and Software,
v.81 n.3, p.368-381, March, 2008.

33. Jin Jing, Abdelsalam Helal, Ahmed Elmagarmid, Client-server computing in mobile
environments, ACM Computing Surveys 31 (2), p.117–157, 1999

34. Mobile version of del.icio.us, [online], Available: http://m.delicious.com/.
35. del.icio.us, [online], Available: http://delicious.com/.

