
Journal of Web Engineering, Vol. 9, No. 3 (2010) 243–265
c© Rinton Press

TOWARD SEMANTIC WEB SERVICES AS MVC APPLICATIONS:

FROM OWL-S VIA UML

CÁSSIO V. S. PRAZERES, MARIA DA GRAÇA PIMENTEL

Departamento de Ciências da Computação, Universidade de São Paulo

Av. Trabalhador São-carlense, 400 - São Carlos, São Paulo, Brazil
prazeres@icmc.usp.br, mgp@icmc.usp.br

ETHAN V. MUNSON

Dept. of EECS, University of Wisconsin - Milwaukee

Milwaukee, WI, 53201, USA
munson@uwm.edu

CESAR A. C. TEIXEIRA

Departamento de Ciências da Computação, Universidade Federal de São Carlos

Rod. Washington Luis, Km 235 - São Carlos, São Paulo, Brazil

cesar@dc.ufscar.br

Received June 21, 2009

Revised January 6, 2010

OWL-S is an application of OWL, the Web Ontology Language, that describes the seman-
tics of Web Services so that their discovery, selection, invocation and composition can be

automated. The research literature reports the use of UML diagrams for the automatic
generation of Semantic Web Service descriptions in OWL-S. This paper demonstrates

a higher level of automation by generating complete complete Web applications from

OWL-S descriptions that have themselves been generated from UML.
Previously, we proposed an approach for processing OWL-S descriptions in order to

produce MVC-based skeletons for Web applications. The OWL-S ontology undergoes

a series of transformations in order to generate a Model-View-Controller application
implemented by a combination of JavaBeans, JSP, and Servlets code, respectively. In

this paper, we show in detail the documents produced at each processing step. We

highlight the connections between OWL-S specifications and executable code in the
various Java dialects and show the Web interfaces that result from this process.

Keywords: Design, Implementation, UML, XMI, MVC, Model-View-Controller, OWL,

OWL-S, Semantic Web Services

1 Introduction

OWL, the Web Ontology Language, has been developed by the World Wide Web Consortium
as a semantic markup language for publishing and sharing ontologies on the World Wide
Web [11]. It has been applied in several areas, for instance for defining ontologies for Legal
Case-based Reasoning (LCBR) systems [34], and to describe a chemical knowledge repre-
sentation enabling precise molecular descriptions upon which reasoning can be applied in a
logically valid manner [22].

243

244 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

Semantic Web Services offer the opportunity to enhance the automation of Web Services
discovery, selection, invocation and composition. The Ontology Web Language for Services
(OWL-S) is designed to allow rich semantic specifications to be associated with Web Services
by formalizing three essential types of knowledge about a service: “what the service does”,
“how the service works” and “how to access the service” [27]. However, the deployment of
semantic-rich description languages such as OWL-S is not trivial [32], since developers must
learn how to formally describe service semantics using three classes: the Service Profile class
describes “what the service does”; the Service Model class describes “how the service works”;
and the Service Grounding class describes “how to access the service” [27].

Given the substantial learning curve for OWL in general, and for OWL-S in particular,
some researchers have proposed that Semantic Web Services descriptions be generated auto-
matically from UML diagrams (e.g. [20]). If it were also possible to generate Web applications
directly from OWL-S descriptions, then it might be possible to generate complete applications
directly from the widely understood UML representation.

From a Web engineering perspective, results reported by Garćıa et al. [13] and Distante
et al. [12] are representative of efforts supporting the separation of concerns demanded in the
design of applications which exploit the Model-View-Controller (MVC) architectural patterna

in Smalltalk [23]. The use of MVC is not recent, in fact it has been widely used in the
construction of Web applications in the last decade (e.g. [8, 16, 21]).

In previous work we have proposed an approach for producing MVC-based skeletons for
Web applications from OWL-S descriptions [31]. Our approach requires that the Semantic
Web Service was originally modeled with UML diagrams and is based on the following:

• the UML diagrams, represented as XMI (XML Metadata Interchange)b, are used to
generate OWL-S descriptions by applying XSLT transformations;

• the OWL-S Service Model class is translated, via the OWL-S API, into Servlets that
correspond to the mapping of Web Service composite processes to an MVC Controller;

• the OWL-S Service Profile class is translated, again via the OWL-S API into XML
Schemas corresponding to the Web Service inputs and outputs. These Schemas are
used to generate: (a) JavaBeans classes that correspond to an MVC Model; and (b)
JSP code generating HTML that corresponds to an MVC View.

We illustrate our approach by showing, in detail, the generation of the JavaBeans, Servlets
and JSP code for a fictitious airline site that is a standard example in the OWL-S literature.
In this paper, we extend our previous work [31] by discussing an extensive set of documents
produced as part of the generation of the MVC-based application.

This paper is organized as follows. In Section 2 we review the main concepts of the
Ontology Web Language for Services (OWL-S). In Section 3 we outline related work that
presents approaches for generating Semantic Web Services Descriptions from UML diagrams.
In Section 4 we review our preliminary efforts toward exploiting XSL Transformations from
XML Schemas to Web-based user interfaces. In Section 5 we detail our approach to the
generation of MVC Web applications from OWL-S descriptions. In Section 6 we situate our
aOriginally deployed http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
bhttp://www.omg.org/technology/documents/formal/xmi.htm

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 245

proposal with respect to related work. We present our final remarks and discuss future work
in Section 7.

2 Semantic Web Services and OWL-S

In this section we present OWL-S concepts that are relevant to our approach. Figure 1
(adapted from [27]) shows the upper-level OWL-S ontology for services.

Figure 1: OWL-S Ontology for Services (adapted from [27]).

The OWL-S upper ontology for services is designed to provide three essential types of knowl-
edge about a service, each represented by a class: the ServiceProfile, the ServiceModel and
the ServiceGrounding classes [27]. In OWL-S, the knowledge about a service must be for-
mally specified by the developer as follows: (a) the class Service Profile must describe “what
the service does” by formalizing the inputs, outputs, preconditions and effects of the service;
(b) the class Service Model describes “how the service works” by formalizing the composi-
tion of the service based on processes and control constructs such as sequences; (c) the class
Service Grounding describes “how to access the service” by specifying information such as
communication protocols (e.g. SOAP) and message formats (e.g. WSDL) [27].

The ServiceProfile class is the superclass of every type of high-level description of the
service and is used by providers to publish services and by requesters to discover services.
The OWL-S Profile focuses on two aspects of the service functionality: (a) inputs and outputs
represent information transformation; (b) preconditions and effects represent state changes
produced by the execution of the service. Together, these four elements of the ServiceProfile
are referred to as the IOPE.

To understand how a service operates, the service is better viewed as a process. So, OWL-S
defines a subclass of ServiceModel, the ProcessModel. A process in OWL-S has two functions.
One is to produce a data transformation from a set of inputs to a set of outputs. Second, to
produce a transition in the world from one state to another. This transition is described by
means of the preconditions and the effects of the process. Clearly, there is a close relationship
between a service’s process model and its profile.

The Process class has three types of process sub-classes: Atomic, Simple, and Composite.
Atomic processes are directly invocable (by passing them the appropriate messages), have no
subprocesses, and from the perspective of the service requester, execute in a single step. An
Atomic process connected to real operations by a Service Grounding. Simple processes are
not invocable and are not associated with a grounding, but like atomic processes, they are
conceived of as having single-step executions. They are container processes that represent

246 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

an abstraction with only one sub-process. Composite processes are decomposable into other
(non-composite or composite) processes. Their decomposition can be specified by using con-
trol constructs such as Sequence and If-Then-Else [27]. Like Simple processes, Composite
processes are not grounded and are not invocable.

To generate Web applications in a MVC architecture, we map the constructors of OWL-S
(e.g. inputs, outputs, process and control constructs) to Java code.

3 From UML to OWL-S

Grønmo et al. [15] propose a UML profile for semantic Web service composition, with the goal
of supporting transformations both ways between UML and OWL-S. Their work is represen-
tative of efforts that claim that UML can be used as an integration platform and to support
developers in the description and composition of Web services.

Research exploring the use of UML in the development of Semantic Web Service can
be divided into two types: (a) research that uses UML to model Semantic Web Services
applications [1, 5, 6], and (b) research that uses UML diagrams to automatically generate
Semantic Web Services descriptions [20, 24, 32, 36]. It is the second type that is particularly
relevant to the research presented in this paper.

Kim and Lee [20] proposed that UML class diagrams could represent a domain ontology,
and that a UML sequence or activity diagrams could represent the behavior of a business
process. They introduced a method to generate OWL-S descriptions by applying XSLT
transformations to UML diagrams represented by XMI.

Yang and Chung [36] presented a methodology for the automatic generation of OWL-S
descriptions from UML diagrams. They proposed that information about atomic services
and their properties could be extracted from UML class diagrams as IOPE classesc and that
information about composition of services could be extracted from UML statechart diagrams.

Lee et al. [24] presented a framework to support the evolution of Web applications based
on Semantic Web Services that includes a method to derive service descriptions from UML
use-case diagrams.

Timm and Gannod [32] presented an automated software tool that uses model-driven
architecture techniques to generate an OWL-S description of a Web Service from a UML
diagram.

In the research presented here, we generate OWL-S specifications from UML diagrams
using techniques similar to those of Kim and Lee [20]. These OWL-S specifications are then
used to generate MVC-structured Web applications.

4 From XML Schemas to Web-based User Interfaces via XSLT

In order to generate the MVC-Views for Web applications in the MVC architecture (as shown
in detail in Section 5.4), our proposed approach builds upon our previous work in which we
used XSLT style sheet transformations for the design of Web-based interfaces to WebLabs [29].
WebLabs are laboratories that allow resources to be remotely accessed by means of experi-
ments controlled via a computer network in general, and making use of Web based interfaces
in particular.

c OWL-S classes for Web Service inputs, outputs, preconditions and effects.

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 247

Since a wide variety of WebLabs and experiments can be built, we have designed an
approach that facilitates the extension and customization of Web-based applications according
to the requirements of WebLabs. This has been achieved by extensive use of XML Schemas to
structure both the a priori information applicable to the entire WebLabs application domain
and the specific, on-the-fly information that accommodates the unique characteristics of each
lab.

Support for the on-the-fly document-based specification is achieved by XSLT transfor-
mations that allow the generation of the required presentation documents. The on-the-fly
processing of documents is implemented within document-processing flows involving XML
Schema specifications, XSLT transformations and form-based presentation documents, as
shown in Figure 2.

Figure 2: Document-based flow for WebLab registration (adapted from [29])
.

In Figure 2, the flow starts with the processing of an XML Schema containing information
common to most WebLabs; the result is the generation of a form to be completed by the
WebLab administrator with the information corresponding to his lab. Once the form is
completed, the corresponding lab specification is validated in order to guarantee conformance
with data types and structure. More specifically, in Figure 2:

• the XML Schema is indicated by WLC: Web Lab Concept;

• the transformation document is indicated by WLC2FORM: WLC to Form;

• the form presented to the WebLab Administrator is indicated by WLDF: WebLab De-
scription Form;

• the completion of the form by the user is indicated by MEP: Manual Editing Process;

• the instance document produced as a result of the edition is indicated by WLD: WebLab
Description;

• the validation of the information provided by the user is indicated by VC: validation
check;

248 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

• the provision of an alternative instance document, possibly from reuse, is indicated by
IWLD: Imported WLD;

• the selection between the IWLD document or the information provided manually (via
the manual filling of the forms MEP) is indicated with the MUX: multiplex selector.

The XML Schema presented below in Document 1 illustrates, as an example, the type of
information that must be specified for each lab (WLC: Web Lab Concept in Figure 2). The
processing of this document with an appropriate XSLT transformation (WLC2FORM in Fig-
ure 2) generates the form presented in Figure 3 (WDLF in Figure 2).

0 <!-- Document 1 -->
1 <!-- A segment of the WLC XML-Schema -->
2
3 <?xml version="1.0" encoding="ISO-8859-1" ?>
4 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
5 <xsd:simpleType name="nameType">
6 <xsd:restriction base="xsd:string">
7 <xsd:maxLength value="20" />
8 </xsd:restriction>
9 </xsd:simpleType>
10 <xsd:simpleType name="descriptionType">
11 <xsd:restriction base="xsd:string">
12 <xsd:maxLength value="400" />
13 </xsd:restriction>
14 </xsd:simpleType>
15 <xsd:complexType name="webladType">
16 <xsd:sequence>
17 <xsd:element name="name" type="nameType" minOccurs="1" maxOccurs="1"/>
18 <xsd:element name="url" type="urlType" minOccurs="1" maxOccurs="1"/>
19 <xsd:element name="description" type="descriptionType" maxOccurs="1"/>
20 </xsd:sequence>
21 <xsd:attribute name="WebLabId" type="xsd:ID" use="required" />
22 </xsd:complexType>
23 <xsd:element name="WebLab" type="webladType" />
24 </xsd:schema>

This section has shown how we used XSLT transformations for the design of Web-based inter-
faces to WebLabs. In the following sections, we build upon this transformation approach to
generate JSP code implementing the MVC-View component of Web applications by processing
OWL-S specifications.

5 From OWL-S to an MVC-based Web Application

In a MVC architecture, the core business model functionality is separated from the presen-
tation and control logic. This architecture allows the same enterprise data model to have
multiple viewsd. The goal is to decouple the graphical interface from the navigation and
behavior of the application. This decoupling promotes easier maintenance and greater reuse.

There are several variations of the MVC architecture in the literature: we use the approach
that does not permit direct interaction between View and Model.

5.1 OWLS2MVC processing overview

Figure 4 presents the workflow for generating MVC-based Web applications from OWL-S
descriptions. As shown in Figure 4, the generation process includes four steps including OWL-
S Generation, Ontology Data Extraction, Schema Data Extraction and XSLT Transformation.
dhttp://java.sun.com/blueprints/patterns/MVC-detailed.html

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 249

Figure 3: Sample WebLab Description Form (WLDF).

Figure 4: OWLS2MVC generation overview

In the first step of the process, we use the approach proposed by Kim and Lee [20] to automat-
ically generate OWL-S descriptions from UML diagrams by applying XSLT transformations
to XMI documents. However, the OWLS2MVC processing can also be initiated directly from
OWL-S descriptions, which corresponds to the second step in our approach, without needing
to use Kim and Lee’s approach.

250 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

In the process’s second step, data from OWL-S descriptions is extracted using the OWL-S
APIein order to generate two documents: the Servlets that implements the MVC Controller
(Figure 4(a)), and XML Schemas that correspond to the inputs and outputs of a service in
OWL-S.

In the third step, these XML Schemas are transformed into JavaBeans that correspond to
the Model component of the MVC architecture (Figure 4(b))

The fourth step involves the generation of JSP code that renders HTML documents that
map to the View components of the MVC architecture (Figure 4(c)).

Table 1 shows the mapping relationships between OWL-S and Java code. All composite
processes in OWL-S generate a Servlet class for the Controller components in our MVC ar-
chitecture: the Servlet Controller as explained in Section 5.2. Atomic processes that compose
the composite process are mapped into methods inside the Servlet Controller. The workflow
of each Servlet or each method is generated by the control constructs (such as If-Then-Else
and Repeat-While detailed in Table 1) of OWL-S.

Table 1: OWL-S to Java Mapping
Type OWL-S Java Code

Process composite Servlet Class

atomic Method

Control Construct Sequence sequence of code

If-Then-Else if-then-else

Choice switch

Repeat-While while

Rapeat-Until do-while

Parameter Input MVC Model

Output MVC Model

parameterType type of attributes

Table 1 also shows that the Models in our MVC architecture are generated from the service
inputs and outputs. These inputs and outputs become the arguments to a Java method in
the Servlet Controller. Their generation is explained in Section 5.3.

Sections 5.2, 5.3 and 5.4 describe how each file of the MVC architecture is generated using
the classic example of OWL-S: Bravo Airf— a fictitious airline site.

5.2 Controller

The second step of our OWLS2MVC flow generates Java files that are Servlets classes. These
Servlets are the Controller components in our MVC architecture. The Controller is gener-
ated by extracting information about the composite and atomic processes from the OWL-S
specification.

Document 2 presents the composite process BravoAir Process in OWL-S. This process is
composed of a sequence of two atomic process (lines 8 and 9 in Document 2) and a composite
process (line 10 in Document 2). The composite processes are mapped into Servlet Controllers

ehttp://projects.semwebcentral.org/projects/owl-s-api/
fhttp://www.daml.org/services/owl-s/1.0/examples.html

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 251

and the atomic processes are mapped into Java methods in the Servlets as detailed in sections
5.2.1 and 5.2.2.

In other words, the BravoAir service is defined by means of three processes as follows:
the first, GetDesiredFlightDetails, is responsible for searching flights based on the information
provided by its users, the second, SelectAvailableFlight, selects one flight among those avail-
able; and the third service, BookFlight, is responsible for the scheduling of the selected flight.

0 <!-- Document 2 -->
1 <!-- The main composite process in the BravoAir Service -->
2
3 <process:CompositeProcess rdf:ID="BravoAir_Process">
4 <rdfs:label> This is the top level process for BravoAir </rdfs:label>
5 <process:composedOf>
6 <process:Sequence>
7 <process:components rdf:parseType="Collection">
8 <process:AtomicProcess rdf:about="#GetDesiredFlightDetails"/>
9 <process:AtomicProcess rdf:about="#SelectAvailableFlight"/>
10 <process:CompositeProcess rdf:about="#BookFlight"/>
11 </process:components>
12 </process:Sequence>
13 </process:composedOf>
14 </process:CompositeProcess>

5.2.1 BravoAir Servlet

The composite process BravoAir Process presented in Document 2 is the main process of the
Bravo Air Service. In our OWLS2MVC approach, the composite process BravoAir Process is
mapped into a Servlet Controller as follows.

Document 3 presents the definition of the atomic process GetDesiredFlightDetails. This
process is one of the three processes that form the composite process BravoAir Process. Lines
4 to 8 of Document 3 describe the inputs for the atomic process. This atomic process will be
mapped into one Java method in the Servlet Controller as shown in Document 5 (line 23).

0 <!-- Document 3 -->
1 <!-- The atomic process GetDesiredFlightDetails -->
2
3 <process:AtomicProcess rdf:ID="GetDesiredFlightDetails">
4 <process:hasInput rdf:resource="#DepartureAirport_In"/>
5 <process:hasInput rdf:resource="#ArrivalAirport_In"/>
6 <process:hasInput rdf:resource="#OutboundDate_In"/>
7 <process:hasInput rdf:resource="#InboundDate_In"/>
8 <process:hasInput rdf:resource="#RoundTrip_In"/>
9 </process:AtomicProcess>

Document 4 presents the definition of the atomic process SelectAvailableFlight. This process
is one of the three process that form the composite process BravoAir Process. Lines 4 and 5 of
Document 4 describe the inputs for the atomic process. This atomic process will be mapped
into one Java method in the Servlet Controller as shown in Document 5 (line 26).

0 <!-- Document 4 -->
1 <!-- The atomic process SelectAvailableFlight -->
2
3 <process:AtomicProcess rdf:ID="SelectAvailableFlight">
4 <process:hasInput rdf:resource="#PreferredFlightItinerary_In"/>
5 <process:hasOutput rdf:resource="#AvailableFlightItineraryList_Out"/>
6 </process:AtomicProcess>

252 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

As indicated in Document 5, a Servlet extends the HttpServlet class and implements the
Servlet interface. The document also shows that the Servlet implements the methods doGet
and/or doPost. These methods can be invoked when a HTTP request is made by the client
browser.

Document 2 describes a composite process as a sequence of three process (two atomics
and one composite). This sequence is mapped into a sequence of two Java methods (the
atomic process) and one Servlet (the composite process), and is located inside the methods
doGet and doPost of the Servlet Controller (lines 11 to 13 and 18 to 20 in Document 5).
Lines 23 to 27 in Document 5 correspond to the atomic processes in the Servlet Controller:
getDesiredFlightDetails and getDesiredFlightDetails (Documents 3 and 4).

0 <!-- Document 5 -->
1 <!-- Servlet Controller for the composite process: BravoAir_Process -->
2
3 public class BravoAirServletController extends HttpServlet implements Servlet {
4
5 public BravoAirServletController() {
6 super();
7 }
8
9 protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {
10 // process Sequence of OWL-S
11 getDesiredFlightDetails(request, response);
12 selectAvailableFlight(request, response);
13 response.sendRedirect (request.getContextPath() + "/BookFlight");
14 }
15
16 protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {
17 // process Sequence of OWL-S
18 getDesiredFlightDetails(request, response);
19 selectAvailableFlight(request, response);
20 response.sendRedirect (request.getContextPath() + "/BookFlight");
21 }
22
23 private void getDesiredFlightDetails (HttpServletRequest request,

HttpServletResponse response) throws ServletException {
24 }
25
26 private void selectAvailableFlight (HttpServletRequest request,

HttpServletResponse response) throws ServletException {
27 }
28 }

As illustrated in Document 5 (lines 13 and 20), the workflow of the Servlet Controller is
redirected to another Servlet: BookFlight. This Servlet corresponds to the composite process
described in Document 2 (line 10). The BookFlight Servlet should be mapped into another
Servlet Controller as described in Section 5.2.2.

5.2.2 Book Flight Servlet

The BookFlight process presented in Document 2 is a sub-process of the composite
BravoAir Process. In OWLS2MVC, the BookFlight process is mapped into a Servlet Con-
troller as follows.

Document 6 presents the BookFlight composite process in OWL-S. BookFlight is composed
of a sequence of two atomic processes (lines 7 and 31 in Document 6). The ConfirmReserva-
tion process, referred to on line 31, only executes if (constructor If-Then-Else on line 9) the

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 253

Login process was successfully executed. The BookFlight process is mapped into a Servlet
Controller, while its sub-processes are mapped into Java method calls inside the Servlet, be-
cause they are atomic and are grounded to those Java methods. The type of each process is
specified explicitly by the type of tag used to define each process (shown in Document 6, 7,
and 8). The resulting Java code is shown in Document 9.

0 <!-- Document 6 -->
1 <!-- The composite process BookFlight -->
2
3 <process:CompositeProcess rdf:ID="BookFlight">
4 <process:composedOf>
5 <process:Sequence>
6 <process:components rdf:parseType="Collection">
7 <process:AtomicProcess rdf:about="#Login"/>
8
9 <process:If-Then-Else>
10 <process:ifCondition>
11 <expr:SWRL-Condition>
12 <rdfs:label>LoggedIn(AcctName)</rdfs:label>
13 <rdfs:comment>
14 This condition will be true if the previous PerformLogIn operation was succesful
15 </rdfs:comment>
16 <expr:expressionBody rdf:parseType="Literal">
17 <swrl:AtomList>
18 <rdf:first>
19 <swrl:ClassAtom>
20 <swrl:classPredicate rdf:resource="#LoggedIn"/>
21 <swrl:argument1 rdf:resource="#CompleteReservation_AcctName"/>
22 </swrl:ClassAtom>
23 </rdf:first>
24 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
25 </swrl:AtomList>
26 </expr:expressionBody>
27 </expr:SWRL-Condition>
28 </process:ifCondition>
29
30 <process:then>
31 <process:process rdf:resource="#ConfirmReservation"/>
32 </process:then>
33 </process:If-Then-Else>
34 </process:components>
35 </process:Sequence>
36 </process:composedOf>
37 </process:CompositeProcess>

Document 7 shows the atomic Login process that is part of the composite BookFlight process.
LogIn requires two inputs as shown in lines 4 and 5 of Document 7. The process is mapped
into one Java method call in the doPost and doGet methods of the Servlet corresponding to
the BookFlight process as shown in Document 9.

0 <!-- Document 7 -->
1 <!-- The atomic process LogIn -->
2
3 <process:AtomicProcess rdf:ID="LogIn">
4 <process:hasInput rdf:resource="#AcctName_In"/>
5 <process:hasInput rdf:resource="#Password_In"/>
6 </process:AtomicProcess>

Document 8 shows the atomic ConfirmReservation process. ConfirmReservation needs two
inputs and provides three outputs as shown in lines 4 and 8 of Document 8. Like the previous
Login process, ConfimReservation is mapped into one Java method call in the doPost and
doGet methods of the Servlet shown in Document 9.

254 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

0 <!-- Document 8 -->
1 <!-- The atomic process ConfirmReservation -->
2
3 <process:AtomicProcess rdf:ID="ConfirmReservation">
4 <process:hasInput rdf:resource="#ReservationID_In"/>
5 <process:hasInput rdf:resource="#Confirm_In"/>
6 <process:hasOutput rdf:resource="#PreferredFlightItinerary_Out"/>
7 <process:hasOutput rdf:resource="#AcctName_Out"/>
8 <process:hasOutput rdf:resource="#ReservationID_Out"/>
9 </process:AtomicProcess>

Document 6 describes the composite process BookFlight as a sequence of two atomic process.
This sequence is mapped into a sequence of two Java methods, and is located inside the meth-
ods doGet and doPost of the Servlet Controller (lines 11 to 15, and 21 to 25 in Document 9).
Lines 28 to 39 in Document 9 correspond to the atomic processes in the Servlet Controller:
LogIn and ConfirmReservation (Documents 7 and 8).

0 <!-- Document 9 -->
1 <!-- Servlet Controller for the composite process: BookFlight -->
2
3 public class BravoAirServletController extends HttpServlet implements Servlet {
4
5 public BookFlightServletController() {
6 super();
7 }
8
9 protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {
10 // process Sequence of OWL-S
11 login(request, response);
12 // To Do: defines LoggedIn
13 if (LoggedIn) {
14 confirmReservation(request, response);
15 }
16
17 }
18
19 protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {
20 // process Sequence of OWL-S
21 login(request, response);
22 // To Do: defines LoggedIn
23 if (LoggedIn) {
24 confirmReservation(request, response);
25 }
26 }
27
28 private void login (HttpServletRequest request,

HttpServletResponse response) throws ServletException {
29 }
30
31 private void confirmReservation (HttpServletRequest request,

HttpServletResponse response) throws ServletException {
32 }
33 }

According to the code shown in Document 6, the process ConfirmReservation is executed
only if the atomic process LogIn is successfully concluded, in other words only if the user is
logged in the service. Note that lines from 13 to 15 and from 23 to 25 in the Servlet presented
in Document 9 contains the a conditional if(LoggedIn), which corresponds to the constructor
OWL-S If-Then-Else shown in line 9 of Document 6.

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 255

5.3 Model

In OWLS2MVC, the inputs and outputs of an OWL-S service process are always mapped
to a Model in the MVC architecture. The Model is generated in the second and third steps
of the processing. In these steps, the inputs and outputs are extracted from the OWL-S
specification, an XML Schema is generated, and JavaBeans corresponding to the Model are
created (see Figure 4). As far as the BravoAir service is concerned, only the atomic processes
are associated with inputs and outputs, as is shown in the following sections.

5.3.1 Desired Flight Details Model

The atomic process GetDesiredFlightDetails is part of the composite process BravoAir Process
which is the main process of the BravoAir service. Document 2 shows the inputs for the OWL-
S process GetDesiredFlightDetails. For example, the input DepartureAirport In at lines 3 to
5 in Document 10 is the departure airport for the Bravo Air service.

0 <!-- Document 10 -->
1 <!-- Inputs for the process GetDesiredFlightDetails in OWL-S -->
2
3 <process:Input rdf:ID="DepartureAirport_In">
4 <process:parameterType rdf:resource="&concepts;#Airport"/>
5 </process:Input>
6
7 <process:Input rdf:ID="ArrivalAirport_In">
8 <process:parameterType rdf:resource="&concepts;#Airport"/>
9 </process:Input>
10
11 <process:Input rdf:ID="OutboundDate_In">
12 <process:parameterType rdf:resource="&concepts;#FlightDate"/>
13 </process:Input>
14
15 <process:Input rdf:ID="InboundDate_In">
16 <process:parameterType rdf:resource="&concepts;#FlightDate"/>
17 </process:Input>
18
19 <process:Input rdf:ID="RoundTrip_In">
20 <process:parameterType rdf:resource="&concepts;#RoundTrip"/>
21 </process:Input>

These inputs are defined by using XML Schemas as in Document 11. The Airport class (lines
3 to 5 in Document 11) defines the type of the input DepartureAirport In (lines 3 to 5 in
Document 10), and it has the datatype string defined by XML Schema datatypesg.

0 <!-- Document 11 -->
1 <!-- Types definition for the Inputs -->
2
3 <owl:Class rdf:ID="Airport">
4 <rdfs:subClassOf rdf:resource="&xsd;#string"/>
5 </owl:Class>
6
7 <owl:Class rdf:ID="RoundTrip">
8 <rdfs:subClassOf rdf:resource="&xsd;#boolean"/>
9 </owl:Class>
10
11 <owl:Class rdf:ID="FlightDate">
12 <rdfs:subClassOf rdf:resource="&xsd;#date"/>
13 </owl:Class>

ghttp://www.w3.org/TR/xmlschema-2/

256 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

The XML Schemas generated in the third step are used to generate the Model as JavaBeans
classes, as shown in Document 4. The lines 5 to 9 of Document 4 show some attributes of
the JavaBeans class. These attributes are generated from the inputs of the OWL-S listed in
Document 2. The XML Schema of Document 3 determines the type of each attribute in the
JavaBean class. The lines 11 to 40 of Document 4 show all the get and set methods of the
JavaBeans class.

It is important to observe that the GetDesiredFlightDetails process does not include out-
puts and, as a result, only code for one JavaBean for the specified inputs must be generated.

0 <!-- Document 12 -->
1 <!-- The JavaBeans for the Model of inputs for the process GetDesiredFlightDetails -->
2
3 public class DesiredFlightInBean {
4
5 private String departureAirport_In;
6 private String arrivalAirport_In;
7 private Date outboundDate_In;
8 private Date inboundDate_In;
9 private boolean roundTrip_In;
10
11 public String getArrivalAirport_In() {
12 return arrivalAirport_In;
13 }
14 public void setArrivalAirport_In (String arrivalAirport_In) {
15 this.arrivalAirport_In = arrivalAirport_In;
16 }
17 public String getDepartureAirport_In() {
18 return departureAirport_In;
19 }
20 public void setDepartureAirport_In (String departureAirport_In) {
21 this.departureAirport_In = departureAirport_In;
22 }
23 public Date getInboundDate_In() {
24 return inboundDate_In;
25 }
26 public void setInboundDate_In(Date inboundDate_In) {
27 this.inboundDate_In = inboundDate_In;
28 }
29 public Date getOutboundDate_In() {
30 return outboundDate_In;
31 }
32 public void setOutboundDate_In(Date outboundDate_In) {
33 this.outboundDate_In = outboundDate_In;
34 }
35 public boolean isRoundTrip_In() {
36 return roundTrip_In;
37 }
38 public void setRoundTrip_In(boolean roundTrip_In) {
39 this.roundTrip_In = roundTrip_In;
40 }
41 }

5.3.2 Available Flight Model

Similar to previous cases, the atomic process SelectAvailableFlight is also part of the compos-
ite process BravoAir Process. Document 13 presents the definition of the inputs and outputs
corresponding to the SelectAvailableFlight process. The types of the inputs and outputs are
defined by means of the constructor parameterType of OWL-S in lines 4 and 8 of Document
13. These types are used to define the corresponding types of the attributes in the JavaBeans
model corresponding to the MVC.

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 257

0 <!-- Document 13 -->
1 <!-- Inputs and outputs for the process SelectAvailableFlight in OWL-S -->
2
3 <process:Input rdf:ID="PreferredFlightItinerary_In">
4 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#FlightItinerary"/>
5 </process:Input>
6
7 <process:UnConditionalOutput rdf:ID="AvailableFlightItineraryList_Out">
8 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#FlightItineraryList"/>
9 </process:UnConditionalOutput>

The input PreferredFlightItinerary In of the process SelectAvailableFlight is mapped into one
JavaBean corresponding to the (MVC) model for the inputs of the process. However, the pro-
cess SelectAvailableFlight contains only one entry and, as a result, only this entry is declared
in the JavaBean as shown in Document 14, line 5. Moreover, lines 7 to 12 in Document 14
present the get and set methods of the JavaBean corresponding to the input PreferredFlight-
Itinerary In.

0 <!-- Document 14 -->
1 <!-- The JavaBeans for the Model of inputs for the process SelectAvailableFlight -->
2
3 public class AvailableFlightInBean {
4
5 private String preferredFlightItinerary_In;
6
7 public String getPreferredFlightItinerary_In() {
8 return preferredFlightItinerary_In;
9 }
10 public void setPreferredFlightItinerary_In (String preferredFlightItinerary_In) {
11 this.preferredFlightItinerary_In = preferredFlightItinerary_In;
12 }
13 }

The input AvailableFlightItineraryList Out of the SelectAvailableFlight process is mapped
into one JavaBean corresponding to the model (Model in MVC) of the outputs of the process.
However, the SelectAvailableFlight process contains only one output, which is declared in the
JavaBeans presented in Document 15, line 5. Also, lines 7 to 12 of Document 15 present the
get and set JavaBean methods corresponding to the output AvailableFlightItineraryList Out.

0 <!-- Document 15 -->
1 <!-- The JavaBeans for the Model of outputs for the process SelectAvailableFlight -->
2
3 public class AvailableFlightOutBean {
4
5 private List availableFlightItineraryList_Out;
6
7 public List getAvailableFlightItineraryList_Out() {
8 return availableFlightItineraryList_Out;
9 }
10 public void setAvailableFlightItineraryList_Out (List availableFlightItineraryList_Out)

{
11 this.availableFlightItineraryList_Out = availableFlightItineraryList_Out;
12 }
13 }

258 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

5.3.3 LogIn Model

The atomic process LogIn is part of the composite process BookFlight presented in Document
6. Document 16 details the definition of all inputs corresponding to the LogIn process. The
types of the inputs are defined by means of the OWL-S parameterType constructor in lines
from 4 to 8 in Document 16. These types are used to define the types of the attributes on
the model (that is, the JavaBeans in MVC).

0 <!-- Document 16 -->
1 <!-- Inputs for the process LogIn in OWL-S -->
2
3 <process:Input rdf:ID="AcctName_In">
4 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#AcctName"/>
5 </process:Input>
6
7 <process:Input rdf:ID="Password_In">
8 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#Password"/>
9 </process:Input>

It is important to observe that the LogIn process does not have outputs and, as a result,
only one JavaBean for the input must be generated. The two inputs of the LogIn process
are mapped into one JavaBean corresponding to the (MVC) Model of the process inputs as
stated in lines 5 and 6 of Document 17. Also in Document 17, lines from 8 t 20 show the get
and set JavaBeans methods corresponding to the inputs of the LogIn process.

0 <!-- Document 17 -->
1 <!-- The JavaBeans for the Model of inputs for the process LogIn -->
2
3 public class LogInInBean {
4
5 private String acctName_In;
6 private String password_In;
7
8 public String getAcctName_In() {
9 return acctName_In;
10 }
11 public void setAcctName_In (String acctName_In) {
12 this.acctName_In = acctName_In;
13 }
14
15 public String getPassword_In() {
16 return password_In;
17 }
18 public void setPassword_In (String password_In) {
19 this.password_In = password_In;
20 }
21 }

5.3.4 Reservation Model

The atomic process ConfirmReservation is also part of the BookFlight composite process pre-
sented in Document 6. The definition of the inputs and outputs for the ConfirmReservation
process is presented in Document 18. The types of the inputs and outputs is defined by means
of the OWL-S parameterType constructor as shown in lines 4, 8, 12, 16 and 20 in Document
18. As in the previous examples, these types are used to define the attribute types in the
model (the JavaBeans in the MVC pattern).

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 259

0 <!-- Document 18 -->
1 <!-- Inputs and outputs for the process ConfirmReservation in OWL-S -->
2
3 <process:Input rdf:ID="ReservationID_In">
4 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#ReservationNumber"/>
5 </process:Input>
6
7 <process:Input rdf:ID="Confirm_In">
8 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#Confirmation"/>
9 </process:Input>
10
11 <process:UnConditionalOutput rdf:ID="PreferredFlightItinerary_Out">
12 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#FlightItinerary"/>
13 </process:UnConditionalOutput>
14
15 <process:UnConditionalOutput rdf:ID="AcctName_Out">
16 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#AcctName"/>
17 </process:UnConditionalOutput>
18
19 <process:UnConditionalOutput rdf:ID="ReservationID_Out">
20 <process:parameterType

rdf:resource="http://www.daml.org/services/owl-s/1.0/Concepts.owl#ReservationNumber"/>
21 </process:UnConditionalOutput>

The inputs of the process ConfirmReservation are mapped into one JavaBean corresponding
to the (MVC) model of the inputs of the process, as defined in lines 5 and 6 in Document 19.
Also, the lines from 8 to 20 in Document 19 present the get and set methods of the JavaBeans
corresponding to the inputs of the process.

0 <!-- Document 19 -->
1 <!-- The JavaBeans for the Model of inputs for the process ConfirmReservation -->
2
3 public class ReservationInBean {
4
5 private int reservationID_In;
6 private boolean confirm_In;
7
8 public int getReservationID_In() {
9 return reservationID_In;
10 }
11 public void setReservationID_In (int reservationID_In) {
12 this.reservationID_In = reservationID_In;
13 }
14
15 public boolean getConfirm_In() {
16 return confirm_In;
17 }
18 public void setConfirm_In (boolean confirm_In) {
19 this.confirm_In = confirm_In;
20 }
21 }

The outputs of the process ConfirmReservation are also mapped into one JavaBean corre-
sponding to the model (Model in MVC) of the outputs of the process as declared in lines
5, 6 and 7 in Document 20. Moreover, lines 9 to 28 in Document 20 define the get and set
methods of the JavaBeans corresponding to the outputs of the process.

260 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

0 <!-- Document 20 -->
1 <!-- The JavaBeans for the Model of outputs for the process ConfirmReservation -->
2
3 public class ReservationOutBean {
4
5 private String preferredFlightItinerary_Out;
6 private String acctName_Out;
7 private int reservationID_Out;
8
9 public String getPreferredFlightItinerary_Out() {
10 return preferredFlightItinerary_Out;
11 }
12 public void setPreferredFlightItinerary_Out (String preferredFlightItinerary_Out) {
13 this.preferredFlightItinerary_Out = preferredFlightItinerary_Out;
14 }
15
16 public String getAcctName_Out() {
17 return acctName_Out;
18 }
19 public void setAcctName_Out (String acctName_Out) {
20 this.acctName_Out = acctName_Out;
21 }
22
23 public int getReservationID_Out() {
24 return reservationID_Out;
25 }
26 public void setReservationID_Out (int reservationID_Out) {
27 this.reservationID_Out = reservationID_Out;
28 }
29 }

5.4 View

Figures 5 and 6 show examples of two possible automatically generated Views. Of course,
there are many more possibilities. The Web developer can modify these Views or create other
Views from scratch. The Views are generated in the fourth step of our workflow by applying
XSLT transformations to the XML Schemas generated in the previous processing step. We
use XSLT transformations applied to the XML Schemas generated for the Models in the third
step. These transformations create JSP and HTML documents. For each Model at least one
View is generated. All Views can be generated by using the approach presented in Section 4.

Figure 5 shows a form dialog that was generated by transformation from Document 10 and
corresponds directly to the model that Document 10 represents. This form would be completed
by a user who is searching for a flight and asks the user to provide information about the
desired flight itinerary. Once submitted, the user’s itinerary is automatically validated to
guarantee conformance with datatypes and structure that will conform to the interfaces of
the model generated in Document 12.

Figure 6 shows a second automatically generated form dialog through which a user could
select outbound and return flights from a set of choices. This form dialog was generated from
the Model presented in Document 13 using the same transformation approach and like the
previous example dialog is automatically validated to guarantee it conforms with the model
generated in Document 15.

6 Related Works

In the area of ontological engineering, several authors have proposed the use XSLT transfor-
mations from UML to generate ontologies, as in Cranefield’s pioneering work generating RDF

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 261

Figure 5: A View generated from a Model in our proposed method.

Schemas from XMI descriptions [10], while in Gasevic et al. propose an approach to generate
OWL from a UML model [14].

From the perspective of Semantic Web application engineering, efforts involve providing
frameworks and infrastructures to support building applications starting from formally defined
ontologies [9, 18, 25].

Several researchers investigate approaches to model Semantic Web Services by using UML
diagrams. Ha and Lee [17] use UML to model Semantic Web Service applications and to
map from OWL-S classes to WSDL abstract types in XML Schemas. Acuna and Marcos [1]
use a case study to present an approach based on Model-Driven Architecture (MDA)h for
developing Semantic Web Services. Barret et al. [5] combine MDA in UML 2.0 for modeling
and generating Web Services compositions. Bauer and Muller [6] also use MDA as the starting
point for develop Semantic Web Services. They automatically transform UML 2.0 sequence
diagrams in a Web Service composition language representation. Kapitsaki et al. [19] use
MDA to automatically generate compositions of user-centric web applications in the MVC
architecture.

Other authors [20, 24, 32, 36], like those whose work is detailed in Section 3, investigate
the use of UML diagrams for the automatic generation of Semantic Web Services descriptions,
as well as support to allow transformations both ways between UML and OWL-S [15]. In this
paper we may assume the use of one of these approaches to obtain OWL-S descriptions as a

hhttp://www.omg.com/mda

262 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

Figure 6: A View generated from a Model in our proposed method.

starting point to our OWLS2MVC processing.

Several works relate MVC and Web applications [7, 8, 12, 13, 16, 21, 33], and propose
different approaches to integrate several technologies (e.g.Java, .NET, XSLT and XForms) to
develop Web applications in MVC architecture. In this work, we also integrate some of these
technologies to provide a MVC architecture and we propose that the artifacts be automatically
generated from OWL-S descriptions.

Our work is also related to others generating Web applications via XSLT transformations.
Yan et al. [35] propose style sheets transformations (using XSLT) to design the Web GUI
for instruments in remote labs. Andrade et al. [2, 3] propose a document-based approach to
generate Web applications based on the application of successive models derived from separate
design concerns: conceptual model (using XMI), navigational model and presentation model.
Macedo et al. report the use of XSLT transformations [26] in the automatic generation of
multimedia documents as Web applications. Similarly, we use XSLT transformations to obtain
the Views of our MVC architecture.

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 263

7 Final Remarks

Built upon the OWL, the Web Ontology Language, the Ontology Web Language for Services
OWL-S has been designed to support the discovery, the selection, the invocation and the
composition of Web Services.

Considering the substantial learning curves for OWL and for OWL-S in particular, the
literature reports several efforts to support building such specifications higher level models
such as UML diagrams. However, an even higher level of automation can be achieved if
complete Web applications could be generated from OWL-S specifications. Towards this
end, we have presented an approach for processing OWL-S descriptions through a series of
transformations that produce MVC-based skeletons for Web applications. Using a starting
point a Semantic Web Service modeled with UML diagrams, the overall processing we propose
is general, and in the presentation in this paper we extend our original presentation [31]
by providing further details of the generation of the Model-View-Controller structure into
JavaBeans/JSP/Servlets code.

There are several paths to be taken to continue the work. We have discussed elsewhere
parallel efforts toward designing WebLabs as Semantic Web Services [28], as well toward
investigating problems associated with the construction of applications presenting temporal
restrictions [30], as it is the case in most WebLabs. Our current efforts investigate using the
OWLS2MVC approach to built WebLabs applications from their UML and OWL-S models.

Acknowledgments

We would like to thank FAPESP for supporting the authors in the project in which context this
work has been developed. We also thank the following organizations: CAPES, for financial
support to Cássio Prazeres; FINEP, CNPq, CAPES, RNP and the MCT for the financial
support to Maria da Graça Pimentel.

References
1. C. J. Acuna and E. Marcos. Modeling semantic web services: a case study. In ICWE ’06: Proc.

of the International Conference on Web Engineering, pages 32–39. ACM, 2006.
2. A. R. Andrade, E. V. Munson, and M. G. Pimentel. A document-based approach to the generation

of web applications. In DocEng ’04: Proceedings of the 2004 ACM symposium on Document
engineering, pages 45–47. ACM, 2004.

3. A. R. Andrade, E. V. Munson, and M. G. Pimentel. Engineering web applications with XML and
XSLT. In LA-WEBMEDIA ’04: Proceedings of the WebMedia & LA-Web 2004 Joint Conference
10th Brazilian Symposium on Multimedia and the Web 2nd Latin American Web Congress, pages
86–93. IEEE Computer Society, 2004.

4. L. Baresi, P. Fraternali, and G.-J. Houben, editors. Web Engineering, 7th International Confer-
ence, ICWE 2007, Como, Italy, July 16-20, 2007, Proceedings, volume 4607 of Lecture Notes in
Computer Science. Springer, 2007.

5. R. Barrett, L. M. Patcas, C. Pahl, and J. Murphy. Model driven distribution pattern design for
dynamic web service compositions. In ICWE ’06: Proceedings of the 6th international conference
on Web engineering, pages 129–136. ACM, 2006.

6. B. Bauer and J. P. Muller. Mda applied: From sequence diagrams to web service choreography.
In ICWE ’04: Proceedings of the 4th international conference on Web engineering, volume 3140
of LNCS, pages 132–136. Springer-Verlag, July 2004.

7. M. Brambilla and A. Origgi. MVC-Webflow: An AJAX Tool for Online Modeling of MVC-2 Web
Applications. In ICWE’08: Eighth International Conference on Web Engineering, pages 344–349,

264 Toward Semantic Web Services as MVC Applications: from OWL-S via UML

July 2008.
8. R. Cardone, D. Soroker, and A. Tiwari. Using XForms to simplify Web programming. In WWW

’05: Proceedings of the 14th international conference on World Wide Web, pages 215–224. ACM,
2005.

9. O. Corcho, A. López-Cima, and A. Gómez-Pérez. A platform for the development of semantic
web portals. In ICWE ’06: Proceedings of the 6th international conference on Web engineering,
pages 145–152. ACM, 2006.

10. S. Cranefield. Networked Knowledge Representation and Exchange using UML and RDF. Journal
of Digital Information, 1(8):http://journals.tdl.org/jodi/article/view/30/31, 2001.

11. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference – W3C
Recommendation 10 February 2004, February 2004.

12. D. Distante, P. Pedone, G. Rossi, and G. Canfora. Model-Driven Development of Web Applications
with UWA, MVC and JavaServer Faces. In Baresi et al. [4], pages 457–472.

13. F. J. Garćıa, R. I. Castanedo, and A. A. J. Fuente. A Double-Model Approach to Achieve Effective
Model-View Separation in Template Based Web Applications. In Baresi et al. [4], pages 442–456.

14. D. Gasevic, D. Djuric, and V. D. Vladan. Mda-based automatic owl ontology development. Int.
J. Softw. Tools Technol. Transf., 9(2):103–117, 2007.

15. R. Grønmo, M. C. Jaeger, and H. Hoff. Transformations between uml and owl-s. In Proceedings
of the First European Conference on Model Driven Architecture - Foundations and Applications,
(ECMDA-FA 2005), pages 269–283, 2005.

16. L. GuangChun, W. Lu, and X. Hanhong. A novel web application frame developed by MVC.
SIGSOFT Softw. Eng. Notes, 28(2):7, 2003.

17. Y. Ha and R. Lee. Semantic Web Service Modeling using UML for e-business environment. In
SNPD-SAWN ’06: Proceedings of the Seventh ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pages 368–374,
Washington, DC, USA, 2006. IEEE Computer Society.

18. Y. Jin, S. Decker, and G. Wiederhold. Ontowebber: Model-driven ontology-based web site manage-
ment. In Proceedings of SWWS’01, The First Semantic Web Working Symposium, pages 529–547
http://infolab.stanford.edu/pub/gio/2001/Ontowebber01.pdf, 2001.

19. G. M. Kapitsaki, D. A. Kateros, C. A. Pappas, N. D. Tselikas, and I. S. Venieris. Model-driven
development of composite web applications. In iiWAS ’08: Proceedings of the 10th International
Conference on Information Integration and Web-based Applications & Services, pages 399–402.
ACM, 2008.

20. I.-W. Kim and K.-H. Lee. Describing semantic web services: From UML to OWL-S. In ICWS
’07: Proceedings of the IEEE International Conference on Web Services, pages 529–536, Korea,
July 2007. IEEE CS Press.

21. S. Kojarski and D. H. Lorenz. Domain driven web development with webjinn. In OOPSLA
’03: Companion of the 18th annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, pages 53–65. ACM, 2003.

22. M. Konyk, A. D. L. Battista, and M. Dumontier. Chemical Knowledge for the Semantic Web. In
DILS, pages 169–176, 2008.

23. G. E. Krasner and S. T. Pope. A cookbook for using the model-view controller user interface
paradigm in Smalltalk-80. J. Object Oriented Program., 1(3):26–49, 1988.

24. C. Lee, J. Kim, J. Lee, and B. Lee. Evolving web service applications using UML and OWL-
S. In ICCIT ’07: Proceedings of the 2007 International Conference on Convergence Information
Technology, pages 1247–1252, Washington, DC, USA, 2007. IEEE Computer Society.

25. A. López-Cima, Ó. Corcho, and A. Gómez-Pérez. Rapid Ontology-based Web Application Devel-
opment with JSTL. In Proceedings of the (SFSW 2007) Workshop on Scripting for the Semantic
Web (held with ESWC’07), 2007.

26. A. A. Macedo, L. Baldochi, J. A. C. Guerrero, R. G. Cattelan, and M. da Graça Campos Pimentel.
Automatically linking live experiences captured with a ubiquitous infrastructure. Multimedia Tools

Cássio Prazeres, Maria da Graça Pimentel, Ethan Munson, and Cesar Teixeira 265

Appl., 37(2):93–115, 2008.
27. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,

M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. W3C member sub-
mission 22 november 2004 – OWL-S: Semantic markup for web services, November 2004.

28. C. V. S. Prazeres, M. G. C. Pimentel, and C. A. C. Teixeira. Remote experiments as semantic
web services. In H. Yu, M. Naphade, and H. Koiti, editors, ICSC ’07: Proceedings of the 1st IEEE
International Conference on Semantic Computing, pages 791–798. IEEE CS Press, Set 2007.

29. C. V. S. Prazeres and C. A. C. Teixeira. A structured document-based approach for WebLab
configuration. In WebMedia ’06: Proceedings of the 12th Brazilian symposium on Multimedia and
the web, pages 1–10, Natal, Rio Grande do Norte, Brazil, 2006. ACM Press.

30. C. V. S. Prazeres, C. A. C. Teixeira, and M. da Graça Campos Pimentel. Semantic Web services
discovery by matching temporal restrictions. In SAINT ’08: Proceedings of the 8th IEEE/IPSJ
International Symposium on Applications and the Internet, pages 26–32. IEEE Computer Society,
2008.

31. C. V. S. Prazeres, C. A. C. Teixeira, E. V. Munson, and M. da Graça C. Pimentel. Semantic web
services: from OWL-S via UML to MVC applications. In SAC ’09: Proceedings of the 2009 ACM
symposium on Applied Computing, pages 675–680. ACM, 2009.

32. J. T. E. Timm and G. C. Gannod. A model-driven approach for specifying semantic web services.
In ICWS ’05: Proceedings of the IEEE International Conference on Web Services, pages 313–320,
Washington, DC, USA, 2005. IEEE Computer Society.

33. K. Watanabe, M. Imamura, K. Asami, and T. Amanuma. A Web Application Development
Framework Using Code Generation from MVC-Based UI Model, volume 5518/2009 of Distributed
Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living,
chapter 11, pages 404–411. Springer Berlin - Heidelberg, June 2009.

34. A. Z. Wyner. An ontology in OWL for legal case-based reasoning. Artif. Intell. Law, 16(4):361–387,
2008.

35. Y. Yan, Y. Liang, and X. Du. Controlling remote instruments using web services for online
experiment systems. In ICWS ’05: Proceedings of the IEEE International Conference on Web
Services (ICWS’05), pages 725–732, Washington, DC, USA, 2005. IEEE Computer Society.

36. J. H. Yang and I. J. Chung. Automatic generation of service ontology from uml diagrams for
semantic web services. In ASWC ’06: Proceedings of the First Asian Semantic Web Conference,
volume 4185 of LNCS, pages 523–529. Springer, 2006.

