
Journal of Web Engineering, Vol. 9, No. 2 (2010) 095–115
c© Rinton Press

COMPARISON OF COMMON XML-BASED

WEB USER INTERFACE LANGUAGES

MIKKO POHJA

Department of Media Technology, Aalto University

P.O. Box 15400, FI-00076 Aalto, Finland

mikko.pohja@hut.fi

Received August 1, 2009
Revised February 25, 2010

In addition to being a platform for information access, the World Wide Web is increas-
ingly becoming an application platform. While web applications have several benefits
compared to desktop applications, there are also some problems. With legacy HTML,
for example, one cannot produce user interfaces such as those that users have become
accustomed to with desktop applications. What worked for static documents is not suf-
ficient for the complicated web applications of today. Several parties have addressed
this problem by defining a specific UI description language. In addition, the renewal of
HTML aims to enhance support for web applications. This study evaluated five XML-
based UI description formats, including HTML 5, in order to determine which language
is best suited for modern web application development. The study also assessed what
kind of applications are suited to each format. The requirements for a Web UI descrip-
tion language from the literature were revised and three use cases were defined, through
which the languages are evaluated. The paper also presents the model differences of the
languages.

Keywords: Web User Interface Description Language, Web Application

Communicated by : D. Lowe & O. Pastor

1 Introduction

Commerce and communication tasks, such as the use of e-mail, are common today on the

World Wide Web (WWW), as is a trend towards realizing higher interaction tasks, such as in-

formation authoring. The WWW has transformed, therefore, from a platform for information

access into a platform for interactive services. The User Interface (UI) of an application was

traditionally programmed as a stand-alone client using an imperative programming language,

such as Java or C++ and component toolkits. The WWW changed that; web browsers can

now be used as the client for applications on the Web, with the application UI written in

HTML.

Moving applications to the WWW can bring many benefits. Such applications automat-

ically become cross-platform applications, there is no need to install them, and a developer

can add new features and bug fixes to a running application [1]. Unfortunately, however,

some web technologies are now outdated and, in fact, were not even originally designed for

the complex use cases of today’s applications. HTML forms, for instance, define the main

interaction of the web applications, even though they were not designed to describe com-

plex, higher-interaction UIs. Their usage, along with client-side scripting, has led to poor

95



96 Comparison of Common XML-Based Web User Interface Languages

usability, maintainability, re-use, and accessibility. In order to address those problems, many

organizations have developed a declarative User Interface Description Language (UIDL).

The Web’s success is partially due to the fact that anyone can create and publish a

website. This, in turn, is largely due to declarative languages. The main difference between

imperative and declarative languages is the control of the program. In a declarative language,

a programmer only provides the logic of the program, with control left to the language.

Leaving the control to the language means that there must be a predefined set of functions

that the author can use. The programmer of an imperative language must also implement the

control. These languages are more powerful, therefore, but also harder to learn. It has been

said that people who are not familiar with programming can generally still utilize declarative

languages.

Declarative languages, in addition to being modality- and device-independent, are more

easily processed by accessibility and other tools, which serves to fix many of the problems

found in the approaches with semantically lower levels (such as HTML forms and scripting).

A language can either be declarative or imperative, or a combination of the two [2]. The

declarative part of the language usually has functional elements, which reduce the need for

the imperative part. On the other hand, the lack of functional elements makes the imperative

part more important. For practical reasons, it is essential to find a balance between the level

of semantics and expressiveness.

Examples of so-called hybrid UI languages include MXML [3], LZX [4], XAML [5], and

XUL [6]. They all contain a declarative UI description part, which is complemented by a

dedicated programming language. The World Wide Web Consortium (W3C), among others,

started working on a declarative web application format. The abovementioned formats mo-

tivated this work and there seemed to be a demand for the ultimate standardized format.

As it transpired, however, the industry at large was not ready for a completely new formata,

preferring instead to start developing HTML in a backward compatible mannerb, using the

work done in WHAT WGcas a starting point. The development is still in progress, with one

of its main goals being to enhance HTML support for the web applications.

This paper assesses whether such a goal is attainable by evaluating the suitability of

HTML 5 [7], along with four other languages, to modern web applications. The other formats

are XForms, which is an open standard from W3C, and three proprietary formats: LZX,

XAML, and XUL. The main criteria for the selected languages were their declarative UI

description models, their potential as competitors of HTML 5, their ability to build cross-

platform applications, and the existence of several and widespread implementations. The

research-oriented UI languages are beyond the scope of this paper.

The research work was conducted by performing a study of the related literature and

revising the requirements of a UI description language. In addition, the paper defines use

cases, which contain user interaction usually found in desktop applications. The use cases

were implemented with the selected languages and had two main purposes: to expose the kind

of flaws that the languages might have in terms of implementable features, and to identify

aDeclarative Formats for Applications and User Interfaces, W3C Working Group Note,
http://www.w3.org/TR/dfaui/
bArchitectural vision for HTML/XHTML2/Forms Chartering, http://www.w3.org/2007/03/vision
cWeb Hypertext Application Technology Working Group (WHAT WG) is a community that further develops
HTML.



M. Pohja 97

usability problems that the languages caused.

The usability of the use cases was evaluated through heuristic analysis [8]. The evaluators

went through the applications and evaluated them against 10 usability heuristics. This is

a light-weight evaluation method that is believed to identify the vast majority of usability

problems [8]. In short, usability is a quality attribute that relates to how easy something is

to use [9]. Web usability is an approach with which the usability guidelines are applied to

websites. The web usability guidelines focus on how, for instance, layout, navigation, and

user interaction methods (such as forms) should be used and how browser chrome must be

taken into account when designing a website. [10] Some aspects of web usability also apply

to web applications, as well as websites. This paper takes those aspects into account in the

form of the usability heuristics and requirements of a UI description language.

This paper is an extension of a conference article [11] that evaluated XForms and XUL.

The present paper includes three more formats to the comparison. The paper makes the four

main contributions:

• Based on literature, a set of requirements for a Web UI description language is derived.

• Three descriptive use cases are designed and implemented in five different languages,

HTML 5, XForms, XAML, LZX, and XUL.

• The languages are evaluated based on the derived requirements and the use case imple-

mentations.

• UI development and communication model differences of the languages are presented.

The paper is organized as follows. Sections 2 and 3 provide background information on

the topic and review the related work. Section 4 discusses the research scope and reviews

the research steps, followed by an introduction to UI development models of the languages

in Section 5. The results of the work are presented in Section 6 and discussed in Section 7.

Finally, Section 8 concludes the paper.

2 Background

Declarative user interface descriptions date back to before the advent of the WWW and

HTML. They are used as part of a model-based UI design, in which the UI is built on a

certain model. The model can be a description of tasks, data, or a presentation, among

other things. The aim is to identify reusable components of the UI and to capture more

knowledge in the model [12]. The author can specify what features the interface should have,

rather than write programs that define how the features should work, which saves them from

writing a lot of procedural code [13]. One study showed that an average of 48 percent of an

application’s code is devoted to the user interface portion [14]. Enhancing UI development

may considerably boost the application development process.

W3C has recently formed an incubator group in order to determine whether there should

be a specification of model-based UIs for web applicationsd. In addition, the ACM Trans-

actions on Computer-Human Interaction journal recently published a special issue on User

Interface Description Languages for Next Generation User Interfaces [15] that introduces novel

dhttp://www.w3.org/2005/Incubator/model-based-ui/



98 Comparison of Common XML-Based Web User Interface Languages

UIDL approaches. This paper evaluates how existing declarative user interface description

approaches suit Web UI design.

Draheim et al. divided declarative UI description languages into four categories [16].

The first category includes traditional code-based description of UIs, in which the application

logic embeds the UI description. The second category is a GUI-oriented document like HTML.

Most of the languages discussed in this paper belong to the third category, which includes

document-based GUIs. The difference between the second and third categories is the main

purpose of a language. Languages that belong to the second category tend to be document

description languages. In the third category, languages are tailored to the domain of GUIs,

and the fourth category is a document-oriented approach. Draheim et al. introduced a UI

description format, which belongs to the last category.

The present paper focuses on GUI-oriented documents and document-based GUIs. It also

studies languages whose cross-platform implementations are readily available. This rules out

some research-oriented UI languages, which are reviewed in the next Section. Popular Web

toolkits such as Dojoeand Google Web Toolkitfare not included since their outcome is usually

HTML + Javascript, which is naturally fairly close to HTML 5.

2.1 XForms

XForms 1.0 Recommendation [17] is the next-generation Web forms language, designed by

the W3C. It solves some of the problems found in the HTML forms by separating the purpose

from the presentation and using declarative mark-up to describe the most common operations

in form-based applications [18]. It can use any XML grammar to describe the content of the

form (the instance data). This also enables the creation of generic editors for different XML

grammars with XForms. It is possible to create complex forms with XForms using declarative

mark-up without resorting to scripting.

XForms is an abstract user interface description language and one of its design goals was

to avoid mandating a certain modality. This means that it can be suited to describing user

interfaces, which are realized in different modalities, such as the GUI and Speech.

Several XML vocabularies have been specified in W3C. Typically, an XML language is

targeted for a certain purpose (e.g., XHTML for content structuring or SVG for 2D graphics).

Moreover, XML languages can be combined. A compound document, which is an XML

document that consists of two or more XML languages, can specify the user interface of an

application. In this paper, XForms is combined with XHTML+CSS level 2 to realize the use

cases. XForms 1.0 directly includes the following W3C specifications: XML Events, XPath

1.0, XML Schema Datatypes, and XML 1.0.

2.2 XUL

Mozilla has developed a UI description language called XML User Interface Language (XUL)

[6]. The mark-up consists of widget elements like buttons, menus, etc. XUL applications,

which are based on several W3C standards, include HTML 4.0, Cascading Style Sheets (CSS)

1 and 2, Document Object Model (DOM) Levels 1 and 2, JavaScript 1.5 (including ECMA-262

Edition 3 (ECMAScript)), and XML 1.0.

eDojo Toolkit, http://dojotoolkit.org/
fGoogle Web Toolkit, http://code.google.com/webtoolkit/



M. Pohja 99

The goal of XUL is to build cross-platform applications. The applications can be ported to

all of the operating systems on which Mozilla runs (for example, Linux, Windows, Windows

CE, and Mac OS X). The layout and appearance of XUL applications are separated from

the application definition and logic. Moreover, the application can be localized for different

languages and regions independently of its logic or presentation.

XUL can be complemented by some of the technologies that Mozilla has introduced. The

eXtensible Bindings Language (XBL) is a mark-up language that defines new elements for

XUL widgets. Overlays are XUL files used to describe extra content for the UI. XPCOM and

XPConnect make it possible to integrate external libraries with XUL applications and, finally,

XPInstall provides a way to package XUL application components with an install script [19].

2.3 HTML 5

HTML 5 [7], the successor to HTML 4.01, is currently a work-in-progress at W3C. HTML 5

aims to fix errors and problems on the previous version and add new features especially for

web applications. In addition to HTML 4.01, HTML 5 includes new versions of XHTML 1

and DOM2 HTML API, which were previously defined in separate specifications.

HTML 5 defines two syntaxes, HTML 5 syntax and XML syntax, both of which result in

a DOM presentation of a document. While earlier versions of HTML were based on SGML

and used SGML parsing rules, HTML 5 has its own parsing rules.

HTML 5 introduces a number of new elements and attributes while removing many pre-

sentational elements and attributes. In addition, some elements will have new semantics [20].

HTML 5 is intended to be a complement for CSS and ECMAScript, which are also used in

this paper.

2.4 XAML

EXtensible Application Markup Language (XAML) is a user interface mark-up language for

Windows Presentation Foundation (WPF), which is a graphics subsystem of the Windows

Vista operating system. XAML consists of features from both Microsoft Windows applications

and web applications. In WPF, the application UI can be defined with a programming

language (such as C#, C++, Visual Basic, etc.) or by XAML [5]. In other words, a developer

can use XAML instead of C# or the equivalent to create the UI elements. Using XAML, it is

possible to use specialized tools for application development. The tools generate XAML code

to run on WPF.

2.5 LZX

LZX is the UI description language of the OpenLaszlo platform for creating web applications.

OpenLaszlo is an open source project that consists of LZX and the OpenLaszlo Server, a

Java Servlet that compiles LZX applications into either Flash or DHTML depending on the

targeted run-time environment. LZX is an XML format that also includes ECMAScript

snippets to describe the application logic. In LZX, the UI is described with concrete UI

components, which can be tied into a data model.

3 Related Work

While there are a number of research-oriented UI languages, such as XIML [21] and UIML [22],

these are outside of the scope of this paper and many of them have been examined in related



100 Comparison of Common XML-Based Web User Interface Languages

research. Souchon and Vanderdonckt reviewed XML-compliant user interface description

languages [23], comparing the general properties and the UI description capacities of the

languages. They found XIML to be the most expressive language, whereas UIML was found

to have the best software support. XUL was found to be less expressive.

Trewin et al. examined four XML languages UIML, XIML, XForms, and Alternative In-

terface Access Protocol (AIAP) [24] intended for abstract user interface representation [25].

They defined the requirements for the representations, which include high-level requirements

like applicability to any target and any delivery context, personalization, flexibility, exten-

sibility, and simplicity. They also defined technical requirements, most of which have been

collected from the literature [26, 27]. The technical requirements consist of separating purpose

from presentation, characteristics of interface elements and functions, flexibility in inclusion

of alternate resources, compatibility with concrete user interfaces, support for different in-

teraction styles, and support for remote control. XForms and AIAP were found to fulfill

the requirements most fully, especially in terms of separating data from presentation and

flexibility in resource substitution.

The requirements for a generic user interface description format are discussed in [28],

which also presents an implementation of an integrated description of user interfaces for both

graphical and voice modality. The proposed requirements are device independence, modality

independence, and customizability concerning layout without restricting device independence.

Finally, there are numerous XML-based languages for the desktop GUI, including Glade,g

while InfoPath addresses office applications [29]. Several proprietary formats are also avail-

able, including XALhand IDEAL [30]. Finally, W3C’s Device Independent Authoring Lan-

guage (DIAL) [31] is close to the XForms + XHTML compound, which is evaluated in this

paper.

4 Research Scope and Steps

The research area of the paper is web application user interface technologies, while the scope

for the research is desktop-style user interfaces in the WWW environment. The following list

enumerates the research steps, while the scoping, defined above, applies to all of the research

steps:

1. The web application use cases are selected

2. Requirements of a UI description format from literature are collected

3. The selected languages are evaluated against the requirements

4. The use case implementations are evaluated through heuristic analysis [32]

The requirements for UI description languages are collected from different sources and

have been assessed as being suitable for the Web context. In addition to requirements from

the literature, a set of requirements were defined, which were considered to be important for

Web UI description formats. These requirements are discussed in more detail in Section 4.2.

The evaluation of the requirements is based on documented features of the languages and on

gGlade. Available at: http://glade.gnome.org/
hXAL, http://www.openxal.org/



M. Pohja 101

an implementation experience gained during the study. In the heuristic analysis, the use case

implementations are examined with 10 recognized usability principles. The analysis reveals

possible usability problems in the languages.

4.1 Use cases

The selected use cases are from an existing content management system of an Internet mag-

azine. The application is used on the WWW and is originally implemented with HTML 4.01

and CSS. Three user interfaces were selected from the system, each of which is difficult to re-

alize properly with HTML 4.01. Firstly, the wire frame models of the use cases were designed,

using general usability guidelines without considering possible restrictions of the languages.

Users of the system are mainly journalists, who have experience using word processing pro-

grams and are familiar with concepts like copy-paste. Since file system operations are not

within the focus of the paper, interfaces for saving and loading files have not been included

in the user interface designs.

The design of the user interfaces in this paper is based on usability best practices [33] and

user interface design patterns [34, 35, 36]. The usability of the interfaces has been validated

by usage simulation [37] and heuristic analysis [8, 32].

Document Editor. The purpose of this user interface is to create and modify simple struc-

tural documents that could be web pages. The data in the document is limited to text,

pre-existing images and pre-existing tables (created, for example, by the Table Editor user

interface). Figure 1 shows a wire frame model of the Document Editor.

The structure of the document can be modified by marking text blocks with different

existing styles (for example, heading 1, heading 2, text paragraph, notice, etc.). The marking

is targeted to a selected text box. For simplicity, all styles are block-level styles, that is, they

are always attached to the whole text block.

In order to keep the focus on the structure of the document in the interface, the images

and tables cannot be modified in the document editor interface. A possible use case for the

document editor is a journalist who reviews a laptop and completes it with images of the

laptop and a table of its features.

Table Editor. This user interface creates and modifies simple tabular data, which can be

displayed, for example, in a web page. The type of data in the table is limited to characters

and numbers. Figure 2 shows a wire frame model of the Table Editor.

The user can also edit the structure of the tabular data by marking some of the columns

or headers as headings and by entering header text for the entire table. The number of rows

and columns in the table is user-editable. For simplicity, table cells are not allowed to span

multiple columns or rows.

Tree Editor. The purpose of this user interface is to create and modify a tree structure for

which the nodes of the tree have multiple editable attributes. The nodes are used in this paper

to represent website areas for the site of a certain magazine, although they could represent

anything. The Tree Editor is depicted in Figure 3.

Users can create new nodes, edit attributes, move nodes around in the tree, and delete

nodes. A possible use case for the tree editor would be to manage the structure of an online

magazine.



102 Comparison of Common XML-Based Web User Interface Languages

Fig. 1. Wire frame model of the document editor.

Fig. 2. Wire frame model of the table editor. (1) The active column is color coded to match the
coloring of the buttons for manipulating the column. (2) The active row is color coded to match
the coloring of the buttons for manipulating the row.

4.2 Requirements of a UI Description Language

The languages were evaluated against the requirements found from the literature, the results

of which are shown in Tables 1-3 and discussed in the following subsections. The evaluation



M. Pohja 103

Fig. 3. Wire frame model of the tree editor. (1) Creates a new area as a child of the currently
selected node. Data for the newly created area is entered from the form on the right. (2) Nodes
in the tree are moved by dragging-and-dropping them. (3) Opens a calendar widget to select the
date. (4) Opens the URL in a browser.

was conducted on a three-level scale, using the following levels and corresponding markers:

++ A built-in property. A language supports the property natively.

+ Possible to add or implement with another technology, such as scripts.

- Not possible with the language.

4.2.1 General Requirements

The general requirements in Table 1 are device and modality independence and customizability

[28]. In other words, the UI representation must be generic and independent of any specific

client device technology. The UI description format shall not restrict the modality and the

format must provide a high degree of control over layout and graphical appearance. While

all the languages meet the requirements, they do so on different levels.

By design, XForms is device and modality independent. XForms has an abstract UI

description that makes it device independent, and it also uses data types, which makes it

easy to utilize different modalities [38] because a user’s input can be handled more specifi-

cally. In voice modality, for instance, grammar-based recognition can be made more accurate.

Otherwise, the expected type of input must be defined for each modality separately.

While the UI description of other formats does not restrict the selection of devices, a

developer must consider the target devices and implement respective UI versions. Other

languages’ UI elements can be transferred to other modalities, but a lack of data types requires

extra work from a developer.



104 Comparison of Common XML-Based Web User Interface Languages

Every format provides control over layout and graphical appearance. In XForms, the UI

elements are abstract, whereas the other formats have specific UI elements that are easier to

customize.

Table 1. The general requirements of the UI description language [28].

Requirement XForms XUL HTML 5 XAML LZX

Device Independence ++ + + + +
Modality Independence ++ + + + +
Customizability + ++ ++ ++ ++

4.2.2 Technical Requirements

Trewin et al. introduced universal usability and technical requirements for abstract UI rep-

resentations [25]. In their paper, XForms is evaluated against these requirements among

three other languages. XForms and AIAP most closely met the requirements defined in the

paper, particularly with regard to the separation of data from presentation and flexibility in

resource substitution. With regard to the languages evaluated in this paper, all of the formats

met the requirements of universal usability. The differences were identified in the technical

requirements, which are as follows:

Separation of Interface Elements from their Presentation: Data and presentation in-

formation must be separated.

Interface Elements: The ability to define dependencies between interface elements: a UI

description must enable automatic UI generation for any target environment and it must

support data types.

Presentation Related Information: There must be a method for logically grouping the

elements of a presentation. The presentation information must include resources such

as labels and help text. To allow presentation replacement, it should be possible to

share the core UI description between alternative UIs.

Run Time and Remote Control: Local computation reduces the latency of a network

communication. The current state must be explicitly available at run time. Finally,

there must be two-way communication between the target and the controller.

The evaluation against the technical requirements is shown in Table 2. The interface

elements are not separated from their presentation in any format besides XForms, in which

the data model can be accessed through a separate binding layer. While the interface elements

can have dependencies in all formats, only in XForms and XAML is it a well built-in property.

In other formats, the dependencies have to be realized through scripts. XForms is also easier

to use in any target since its UI description is more abstract. HTML 5 and XForms support

data types, whereas others do not.

The presentation can be grouped well with all languages. XForms provides an explicit of

including labels and help texts, while in other formats they can be realized with normal text.

All formats make it possible to provide an alternative presentation.



M. Pohja 105

Table 2. The technical requirements [25].

Requirement XForms XUL HTML 5 XAML LZX

Separation of Interface Elements from Presentation
Separation of Data/Pres. ++ - - - -

Interface Elements
Dependencies ++ + + ++ +
Any Target ++ + + + +
Data Types ++ - ++ - -

Presentation Related Information
Logical Groupings ++ ++ ++ ++ ++
Labels & Help Text ++ + + + +
Presentation Replacement + + + + +

Run Time and Remote Control
Local Computation ++ + + + +
Serialization ++ + + ++ ++
Synchronization + + + + +

Local computations (such as data validation) can be realized with scripts in all formats.

In addition, XForms provide native features for local computation. The state of the UI can

be stored in a data instance in XForms, XAML, and LZX. LZX has some flaws when using

multiple pointers for a single data instance. With these languages, the state of the UI is

always available. In XUL and HTML 5, the state must be stored and queried separately.

These differences are discussed in more detail in Section 5.

While two-way communication and synchronization between a target and controller is

possible with all the formats, it is not actually a format dependent problem. In particular,

server push, which would provide updates from a controller to a target, is more an issue with

current Internet protocols than with the formats. However, HTML 5 defines a feature called

Server Sent Events, which enables information push. In addition, the server push can be

emulated, for instance, by Comet [39].

In summary, XForms most closely meets the requirements for universal interaction, while

HTML 5 and XAML qualify slightly better than LZX and XUL.

4.2.3 Additional Requirements

The requirements in the literature were extended with a more detailed typical interaction

patterns requirement set from the application scenario [11]. The additional requirements are:

Paging & Dialogs: A large UI is considered more usable if it is divided into smaller sections.

This can be achieved, for instance, with wizard-type paging or with tabs.

Repeating constructs: Helps a developer to manage large data sets on the UI.

Nested constructs: The data sets are typically structured data, such as XML. Nested con-

structs help when presenting them on the UI.

Copy-paste: Helps users to edit content in an application.



106 Comparison of Common XML-Based Web User Interface Languages

Undo-redo: Users must be able to withdraw their actions.

Drag-and-drop: Direct manipulation interfaces are considered easy to use [40].

The results of evaluation against the additional requirements are shown in Table 3. Re-

peating structures, paging, and dialogs are natively supported by XForms and XAML, while

XUL also supports paging. Implemention requires some script programming with other for-

mats. Nested constructs are supported by all formats, while XUL, XAML, and LZX provide

them natively, as does XForms, as long as a proposed XForms tree module is used [11]. HTML

5 requires scripting in order to complete the nested constructs.

Table 3. The additional requirements proposed in [11].

Requirement XForms XUL HTML 5 XAML LZX

Paging & Dialogs ++ ++ + ++ +
Repeating constructs ++ + ++ ++ ++
Nested constructs ++∗ ++ + ++ ++
Copy-paste + + ++ ++ ++
Undo-redo + + ++ ++ +
Drag-and-drop + ++ ++ ++ ++

∗ Using the proposed tree extension.

Copy-paste can be used with all of the formats. HTML 5, XAML, and LZX support it

natively (LZX only for text), whereas it can be implemented in XForms and XUL. Undo-redo

and drag-and-drop have native support in HTML 5 and also in XAML with certain elements,

while they can be implemented in XForms, XUL and LZX. For XForms, a developer must

alter the data model accordingly, which makes it harder than with the other two. In summary,

XAML handles the typical interaction patterns best. However, all formats qualify well from

these requirements, even XForms, which is the most abstract of the formats covered here.

4.3 Use Case Implementations

The use case implementations are discussed below. Heuristic analysis was also conducted for

the implementations according to the heuristics defined by Nielsen and Mack [32]. No major

problems were found from the interfaces, mainly because the wire frame models were already

designed according to the heuristics.

4.3.1 XForms

The XForms implementation of the use cases was done using the XForms 1.1 Working

Draft[41] (W3C Work In Progress), which is implemented in the X-Smiles browser [42].

XForms1.1 has several features that make it possible to minimize scripting. The main features

utilized from XForms 1.1, to avoid the need to use scripting, are duplicate and destroy actions

and media type-aware output rendering.

The XForms language was extended with a tree module [11], since there is no way in

XForms 1.1 to select nodes from a recursive structure. It is implemented, as a proof of

concept, in the X-Smiles XForms implementation.



M. Pohja 107

The user interface state is completely contained in the XForms model, and can therefore

be automatically serialized and submitted to a server without any additional scripting.

Document Editor: The document editor relies on XForms repeat and dynamic UI

bindings. It requires a few XForms 1.1 features, namely destroy and duplicate and out-

put@mediatype, which it utilizes heavily. This UI has no scripting.

Tree Editor: The tree editor uses the proposed XForms Tree extension. All other dy-

namic features are done using XForms UI bindings. This UI has no scripting.

Table Editor: This table editor UI (cf. Figure 4) is written in XForms 1.1, but it has

a small script for inserting, deleting and moving columns. This could be avoided if XForms

had repeating and conditional action containers (such as for and if ).

Fig. 4. XForms Table Editor.

4.3.2 XUL

In addition to the wire frame model designs, XUL made it possible to use context menus

in Document and Tree Editors. In addition, Document Editor has a real-time preview of

a document. XUL interfaces require a lot of scripting; all the button functions, drag-and-

dropping, and focusing of elements has to be realized through scripts. It was possible to

implement use cases with XUL and, for instance, drag-and-drop was straightforward to realize.

The XUL Document editor is depicted in Figure 5.

4.3.3 XAML

The XAML implementations were compiled to XAML Browser Applications (XBAP). XBAP

applications are web applications that are run on Internet Explorer. XAML was used to

describe the UIs of the use cases and the functionality was implemented in C#. The UI

development was straightforward with XAML because it provides a wide set of UI compo-

nents that sped up implementation of the use cases. Implementing the functionality with C#

was also easy because XAML elements are effectively C# objects. Drag-and-drop is natively

supported only for selected elements; authors must implement it for other elements by them-

selves. In addition, it is practically impossible to use it with elements that are created from

a data model because the system cannot direct the drag operation to a correct element. The

Document Editor in XAML is depicted in Figure 6.



108 Comparison of Common XML-Based Web User Interface Languages

Fig. 5. XUL Document Editor.

Fig. 6. XAML Document Editor.

4.3.4 LZX

The LZX implementations ran on an OpenLaszlo platform version 4.0.2 and the programs

were compiled to DHTML. The Flash compilations differ to some degree from DHTML. For

instance, it is not possible to access the local file system from a Flash application, while the

UI controls are naturally different.

Even though LZX provides a data instance for an application, its usage is not straightfor-

ward. The data instance can provide data for an input element but it will not be updated

automatically when a user modifies the data. An author must create a handler to update the

data instance. In addition, the tree editor (cf. Figure 7) had to be implemented with two

data instances. The tree editor form could not utilize the data instance of the tree, instead it

had to have a data instance of its own that was updated along with the focus changes.



M. Pohja 109

Fig. 7. LZX Area Editor.

There were also some difficulties implementing drag-and-drop functionality and the HTML

preview of the document editor. While the UI elements can be dragged, dropping them at

certain locations and moving other elements accordingly is not easy and authors must imple-

ment these actions themselves. HTML previews are possible, but LZX supports a minimal

set of embedded HTML elements, which means that an author must define the appearance

of most of the elements.

While the overall concept of LZX is good, the implementation is not very sophisticated.

Some design decisions, such as putting the content of the UI, styling, and logic into a single

file, would require major revisions.

4.3.5 HTML 5

HTML 5 is still a work-in-progress at W3C and, understandably, no full implementations

are available yet. Nevertheless, parts of the specification have been implemented in browsers

such as Firefox, Internet Explorer, Konqueror, Opera, and Safari. Depending on the feature,

therefore, the use case implementations could be tested using several browsers. In any case,

a feature like undo-redo, for example, is verified only in the specification.

Compared to HTML 4.01, HTML 5 contains several improvements in terms of web ap-

plications, which has, of course, been the goal of the renewal campaign. In order to make

the new version backwards compatible with earlier versions, the new specification must retain

some fundamental structural choices, such as tying the data to the form elements. In addition,

HTML 5 lacks the tree element. The area editor (cf. Figure 8) is realized with div elements

and ECMAScript. Apart from this, the required features could be implemented with HTML

5.

5 Model Differences between Languages

Although usability did not differ greatly in the implementation of the selected use cases on a

desktop computer, there are differences in the languages from a developer’s perspective, most

significantly in developing the user interface design and communication between the server

and the UI.



110 Comparison of Common XML-Based Web User Interface Languages

Fig. 8. HTML 5 Area Editor.

5.1 UI Development Model

Most of the XML-based user interface definition languages, including XUL, LZX, and XAML,

are widget-based. HTML 5 can be included in this category. Being widget-based means that

they are quite concrete and authors add widgets, such as buttons and text areas, to the user

interface. This makes it easy to create a user interface layout graphically, but, depending on

the language, all or part of the user interface logic has to be programmed using a programming

or scripting language. XForms, in contrast, starts by defining an XML data model and all

operations are done to the data model using declarative actions and XPath expressions. User

interface is automatically kept up-to date with a dynamic dependency tracking.

5.2 Communication between UI and Back-end System

For the communication between UI and back-end system, the user interface state has to be

serialized for transmission. Having received a serialized reply from the server, it must then be

transformed into application state. That serialization is automatic in XForms (cf. Figure 9a),

since the data model is a live XML document object model, which is automatically serialized

and de-serialized. In addition, the submission is automated.

LZX and XAML also have data models, which means that, while serialization is automatic,

the submission must be realized through a programming language. In addition, in LZX an

author must implement a logic to keep the data model up-to-date (see Figure 9b). The data

model provides data for UI, but the UI cannot automatically update the data model; that

must be implemented separately for each case. In XAML (cf. Figure 9c), the data model

updates are automatic; otherwise, it is similar to the LZX model.

XUL and HTML 5 have no explicit data models, and communication between a backend

process and the user interface has to be re-implemented using ECMAScript for each user

interface, as shown in Figure 9d. For example, when the server sends back updated structured

content, there has to be a script that updates the corresponding DOM. This means that

authoring and maintaining XUL- or HTML 5-based applications is more complicated than it

is for others.

In summary, the more a developer has to implement logic to serialize and utilize the data,

the more difficult the whole development becomes. The automatic serialization and dynamic



M. Pohja 111

(a) XForms (b) LZX

(c) XAML (d) HTML 5 and XUL

Fig. 9. Communication between the UI and the back-end system.

bindings of XForms makes it easiest to build a UI, while the use of XAML and LZX data

models is partially automated. HTML 5 and XUL require the most work in terms of using

and serializing the UI data of an application. All the logic for handling the data must be

implemented for each application separately.

6 Result of the Evaluation

The languages were evaluated against three requirement sets. In addition, the paper assessed

the usability of the use case implementations and the communication model between the UI

and the server. The results are summarized in Table 4. The summary uses a three-level scale

with the following levels and corresponding markers:

+++ Excellent. A language qualifies well against a criterion without significant flaws.

++ Good. A language may have flaws, but still qualifies well.

+ Moderate. A language has some major problems, but it is still usable.

In conclusion, XForms and XAML were the best languages overall, despite having some

flaws. HTML 5 and LZX were the second-best options, qualifying evenly in all categories

without excelling in any. Although XUL had flaws in every category, its end result was equal

to those of the other implementations. In other words, the difference is only significant for

developers.



112 Comparison of Common XML-Based Web User Interface Languages

Table 4. Summary of results.

Criterion XForms XUL HTML 5 XAML LZX

General Requirements ++ + + + +
Technical Requirements +++ + ++ ++ +
Additional Requirements + + ++ +++ ++
Usability of the UC Implementations ++ ++ ++ ++ ++
Communication Model +++ + + ++ ++

7 Discussion

The requirement conformance also reveals what types of applications the languages suit best.

XForms copes best with the universal interaction requirements, but is weakest with typi-

cal interaction patterns, which are best fulfilled with languages targeted to application UIs.

XForms’ main target is complicated forms and, as a result, it simplifies the management of

large data set on the client-side. XForms also excels when there are accessibility require-

ments. With XForms’ abstract UI description, it is easier to develop applications for different

modalities and devices. Customizability is important when using an application in different

contexts [43], and is easiest in languages with specific UI elements, including XUL, HTML 5,

XAML, and LZX. Finally, a desktop-like UI with direct manipulation is best achieved with

XAML.

The different types of requirements are somewhat at variance with each other. For in-

stance, conforming well to technical requirements may make it difficult to implement all the

typical interaction patterns. As an example, realizing drag-and-drop with XForms’ UI inde-

pendence is rather complicated.

A data model makes it easier to develop a web application because the application data

can be in the same format throughout the application, even on the server-side. On the client-

side, a single data can be used by several UI components and its modification is reflected

in all elements by which it is referenced. Unfortunately, this is the case only in theory. In

practice, the usability of the data models differs considerably among the technologies. XForms

offers a flexible data model, which can be referenced and accessed from any UI element or

binding. In addition, the submission of the data is integrated into the XForms model. LZX,

in contrast, has very limited data model usage. It cannot be utilized to a full extent, because

UI elements do not update the data model and referring is not flexible. The blinkered data

model usage vitiates a versatile UI description language design such as LZX. In fact, LZX

would notably benefit from the XForms data model; after all, XForms allows any format to

be used to describe the UI, or any modality for that matter.

Like data models, the drag-and-drop implementations vary significantly between the for-

mats. At minimum, there must be way to define draggable objects and drop spots, and

operation must reflect the serialized data structure. In HTML 5 and XUL, the data are tied

to UI elements, so the dragged element changes the order of the data automatically. In other

formats, an author must keep the data model up to date. XAML provides drag and drop

only for selected elements and, with LZX, the drop spots cannot be specified. In summary,

HTML 5 and XUL fulfilled the requirements most fully, whereas XForms did not provide any

drag and drop support.



M. Pohja 113

HTML 5 specification says in its scope definition: ”For sophisticated cross-platform appli-

cations, there already exist several proprietary solutions (such as Mozilla’s XUL and Macro-

media’s Flash).” However, in light of the results of this paper, HTML 5 can evenly compete

with the abovementioned proprietary technologies. Even though it lacks some of the features

that other formats have, a notable non-functional benefit of HTML 5 is that it is backward

compatible with HTML 4.01, the most popular UI format ever.

The level of semantics and expressiveness varies between the languages. XForms pro-

vides a rich declarative use of UI data and it is easy to define interdependencies of the data

and the UI. XAML and LZX also have data models, but dependencies must be mainly de-

fined by a programming language, especially in LZX. While HTML 5 has several declarative

functionalities compared to legacy HTML, it still relies heavily on scripting, as does XUL.

8 Conclusions

This paper studied five UI description languages, which were evaluated against a wide set

of requirements found in the literature. In addition, three use cases were implemented with

all the languages. The use cases were typical to the web application UIs, but are difficult

to realize properly with legacy HTML. Finally, the model differences of the UI formats were

compared.

XForms, HTML 5, and XAML fulfilled the requirements best, while XUL and LZX had

slightly lower compliance with the requirements. The best use case implementations were

done in XUL, HTML 5, and XAML, which were most like the original wire frame models.

Even though the XForms and LZX implementations lack some designed features, the use

cases could be realized well with them. Therefore, there is no single format that would

suit all types of applications; the choice depends on the required features and scope of the

application. XForms is best suited for data-intensive applications and applications that have

accessibility requirements. XAML is best for providing a desktop-like UI, while context-

sensitive applications are easiest to implement with HTML 5, XUL, LZX, and XAML.

The results show that developing legacy HTML incrementally has been sufficient to date,

and the work-in-progress HTML 5 can evenly compete with the other formats. Taking its

previous dominance as a web application description language into account, it is difficult to

replace by any format.

Implementation experience shows that the use of a data model eases the development of

an application. One can start designing the data model and how it is accessed, and the data

will eventually become the centerpiece of an interactive application. The data model might,

however, be difficult to integrate with the drag-and-drop functionality.

Acknowledgements

The author would like thank his co-authors of the preceding article, particularly Mikko

Honkala, who implemented the use cases in XForms and wrote half of the article, Miemo

Penttinen, who designed the wire frame models of the use cases, and Petri Vuorimaa, the

leader of the research group.

References



114 Comparison of Common XML-Based Web User Interface Languages

1. Mehdi Jazayeri. Some Trends in Web Application Development. In FOSE ’07: 2007 Future of
Software Engineering, pages 199–213, Washington, DC, USA, 2007. IEEE Computer Society.

2. Mikko Honkala. Web User Interaction - A Declarative Approach Based on XForms. PhD thesis,
Helsinki University of Technology, Finland, December 2006.

3. Adobe. Adobe Flex 3 - Developer Guide. Technical report, Adobe, 2008.
4. Laszlo Systems, Inc. OpenLaszlo Application Developer’s Guide. Technical report, Laszlo Systems,

Inc., February 2008. Available online: http://www.openlaszlo.org/lps4/docs/developers/.
5. David F. Sklar and Andy van Dam. An Introduction to Windows Presentation Foundation.

Windows Vista Technical Articles, Microsoft Developer Network (MSDN), September 2005.
6. David Hyatt. XML user interface language (XUL) 1.0. Mozilla.org, 2001.
7. Ian Hickson and David Hyatt, editors. HTML 5. W3C Working Draft, January 2008.
8. Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In CHI ’90: Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 249–256, New York, NY,
USA, 1990. ACM Press.

9. Jakob Nielsen and Hoa Loranger. Prioritizing Web Usability. New Riders, Berkeley, CA, USA,
2006.

10. Jakob Nielsen. Desinging Web Usability: The Practice of simplicity. New Riders, CA, USA, 1999.
11. Mikko Pohja, Mikko Honkala, Miemo Penttinen, Petri Vuorimaa, and Panu Ervamaa. Web User

Interaction – Comparison of Declarative Approaches. In Web Information Systems and Tech-
nologies, volume 1 of Lecture Notes in Business Information Processing, pages 190–203. Springer
Berlin Heidelberg, August 2007.

12. James Foley, Won Chul, Srdjan Kovacevic, and Kevin Murray. The User Interface Design Envi-
ronment. SIGCHI Bull., 20(1):77–78, 1988.

13. Angel R. Puerta and Pedro Szkeley. Model-Based Interface Development. In CHI ’94: Conference
companion on Human factors in computing systems, pages 389–390, New York, NY, USA, 1994.
ACM.

14. Myers, Brad A. and Rosson, Mary Beth. Survey on user interface programming. In CHI ’92:
Proceedings of the SIGCHI conference on Human factors in computing systems, pages 195–202,
New York, NY, USA, 1992. ACM.

15. ACM Transactions on Computer-Human Interaction (TOCHI), 16(4), November 2009.
16. Dirk Draheim, Christof Lutteroth, and Gerald Weber. Graphical user interfaces as documents. In

CHINZ ’06: Proceedings of the 6th ACM SIGCHI New Zealand chapter’s international conference
on Computer-human interaction, pages 67–74, New York, NY, USA, 2006. ACM Press.

17. Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman. XForms 1.0. W3C Recom-
mendation, 2003.

18. Richard Cardone, Danny Soroker, and Alpana Tiwari. Using XForms to simplify web program-
ming. In WWW ’05: Proceedings of the 14th international conference on World Wide Web, pages
215–224, New York, NY, USA, 2005. ACM Press.

19. Peter Bojanic. The Joy of XUL. Available online http://www.mozilla.org/projects/xul/joy-of-
xul.html, December 2003.

20. Anne van Kesteren. HTML 5 differences from HTML 4. Working Draft, W3C, January 2008.
21. Angel Puerta and Jacob Eisenstein. XIML: a common representation for interaction data. In IUI

’02: Proceedings of the 7th international conference on Intelligent user interfaces, pages 214–215,
New York, NY, USA, 2002. ACM Press.

22. Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M. Williams, and
Jonathan E. Shuster. UIML: an appliance-independent XML user interface language. In WWW
’99: Proceeding of the eighth international conference on World Wide Web, pages 1695–1708, New
York, NY, USA, 1999. Elsevier North-Holland, Inc.

23. Nathalie Souchon and Jean Vanderdonckt. A review of XML-compliant user interface description
languages. In Proceedings of the 10th International Workshop on Interactive Systems. Design,
Specification, and Verification: DSV-IS 2003. Springer, 2003.

24. Gottfried Zimmermann, Gregg Vanderheiden, and Al Gilman. Prototype Implementations for



M. Pohja 115

a Universal Remote Console Specification. In CHI ’02: CHI ’02 extended abstracts on Human
factors in computing systems, pages 510–511, New York, NY, USA, 2002. ACM.

25. Shari Trewin, Gottfried Zimmermann, and Gregg Vanderheiden. Abstract user interface represen-
tations: how well do they support universal access? In CUU ’03: Proceedings of the 2003 conference
on Universal usability, pages 77–84. ACM Press, 2003.

26. J., Myers B., Harris T.K., Rosenfeld R., Shriver S., Higgins M., and Hughes J. Nichols. Re-
quirements for automatically generating multi-modal interfaces for complex appliances. In ICMI
’02: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, page 377,
Washington, DC, USA, 2002. IEEE Computer Society.

27. Gottfried Zimmermann and Gregg Vanderheiden. Technical Requirements for a Delivery Context
Independent User Interface Model. In W3C Workshop on Device Independent Authoring Tech-
niques, September 2002. Available online: http://www.w3.org/2002/07/DIAT/posn/trace.html.

28. Rainer Simon, Michael Jank Kapsch, and Florian Wegscheider. A generic uiml vocabulary for
device- and modality independent user interfaces. In WWW Alt. ’04: Proceedings of the 13th
international World Wide Web conference on Alternate track papers & posters, pages 434–435,
New York, NY, USA, 2004. ACM Press.

29. Michael Hoffman. Architecture of microsoft office infopath 2003. Microsoft Developer Network,
October 2003.

30. José Manuel Cantera Fonseca, Ignacio Maŕın Prendes, Javier Soriano, and Juan J. Hierro. Declar-
ative Models for Ubiquitous Web Applications. In W3C workshop on declarative models of
distributed web applications, April 2007. Available online: http://www.w3.org/2007/02/dmdwa-
ws/Papers/jose-m-c-fonseca.html.

31. Kevin Smith. Device Independent Authoring Language (DIAL). Working Draft, W3C, May 2006.
http://www.w3.org/TR/dial/.

32. Jakob Nielsen and Robert L. Mack, editors. Usability Inspection Meth-
ods. John Wiley and Sons, New York, NY, USA, 1994. Also available at
http://www.useit.com/papers/heuristic/heuristic list.html.

33. Alan Cooper. About Face: The Essentials of User Interface Design. John Wiley & Sons, August
1995.

34. Jenifer Tidwell. Common Ground: A Pattern Language for Human-Computer Interface Design.
Available online http://www.mit.edu/∼jtidwell/interaction patterns.html, May 1999.

35. Jenifer Tidwell. Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly Media,
Inc., 1. edition, November 2005.

36. Sari Laakso. User Interface Design Patterns. Available online
http://www.cs.helsinki.fi/u/salaakso/patterns/, September 2003.

37. Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction Design, chapter 13. Wiley, 1st
edition, January 2002.

38. Mikko Honkala and Mikko Pohja. Multimodal Interaction with XForms. In ICWE ’06: Proceedings
of the 6th international conference on Web engineering, pages 201–208, New York, NY, USA, 2006.
ACM.

39. Alex Russell. Comet: Low Latency Data for the Browser. Weblog, March 2006. Available online:
http://alex.dojotoolkit.org/?p=545.

40. Ben Shneiderman. Direct Manipulation: A Step Beyond Programming Languages. Computer,
16(8):57–69, 1983.

41. John Boyer, David Landwehr, Roland Merrick, and T. V. Raman. XForms 1.1. W3C Working
Draft, 2004.

42. Petri Vuorimaa, Teemu Ropponen, Niklas von Knorring, and Mikko Honkala. A Java based XML
browser for consumer devices. In 17th ACM Symposium on Applied Computing, pages 1094–1099,
Madrid, Spain, March 2002.

43. Gerti Kappel, Birgit Proll, Werner Retschitzegger, and Wieland Schwinger. Customisation for
ubiquitous web applications: a comparison of approaches. Int. J. Web Eng. Technol., 1(1):79–111,
2003.


