
Journal of Web Engineering, Vol.9, No.2 (2010) 116-131

© Rinton Press

SCHEMA-BASED CACHE VALIDATION OF DYNAMIC CONTENT TO IMPROVE QUERY

PERFORMANCE OF WEB SERVICES

A. RAGHUNATHAN K. MURUGESAN

Bharat Heavy Electricals Limited, Trichy, India National Institute of Technology, Trichy, India
raghu@bheltry.co.in murugu@nitt.edu

Received June 19, 2008

Revised January 7, 2010

Web services play a crucial role in e-business, providing application integration within and across

enterprises and platforms. Hence there is an increasing need to make web services more efficient and

perform better. Caching of data is a vital factor in improving the QoS and query performance of

web-based applications. Invalidation mechanisms are used to refresh cache when accessing dynamic

data from backend data sources. Time or expiry-based cache validation is suitable for enterprise

applications where the data does not change very frequently. However, existing expiry-based caching

solutions act at the URL/query level, thus increasing access to the data source and hence the response

time. In this paper, we propose a time-based caching technique based on the schema of the data

source. Our method performs cache validation at the levels of tables and columns, thus minimizing

database access. Moreover, the column level granularity avoids database visits for queries that do not

access expired columns. We have used simulations to test our design and the results show a

significant improvement in reduction of database accesses for web applications thereby reducing

bandwidth usage, server load and network traffic.

Key words: Web services, QoS, performance, caching, database, schema, queries.

Communicated by: B. White & Y. Deshpande

1 Introduction

Web services technology plays a crucial role in e-business today, providing application integration

across enterprises and platforms. Quality of Service (QoS) is a significant factor in the performance of

web applications [10] and there is an increasing need to improve the efficiency, performance and

reliability of web services. One of the key QoS aspects of web services is response time to user

requests. Several techniques could be used for the purpose, both at the service level and server level

[6]. Techniques used for improving web server performance include caching [1]. Caching of data is a

critical performance factor in web-based applications. Caches help to effectively answer queries from

locally saved copies instead of fetching them all the time from the originating source, thereby

minimizing access time, bandwidth usage, server load and network traffic [31]. Caching can be done at

several stages – browser, proxy server, web server or database server. Cache settings are generally

made in HTTP headers [7,16]. However, these are effective only for static content like web pages or

documents. Web applications also access data from dynamic backend data sources, such as RDBMS

and XML, through queries. The tricky problem with caching of such dynamic data is consistency

between cache and the database, as queries would have to get the latest content from the data source.

However, it is known that not all the data used in e-Business applications vary frequently. Data such as

A. Raghunathan and K. Murugesan 117

product catalogs, vendor and customer information do not change for a long time, and, even when they

do, it may not be required to provide the updates immediately for viewing. Hence it would make sense

to provide the data from a local cached copy, although a bit stale, rather than from the original data

source every time. This would save database access time for web applications, which is quite

expensive due to network traffic and latency.

 In e-business web sites the queries that fetch dynamic content from a backend data source are

usually fired in the form of URLs provided on the web sites with or without parameters either as

hyperlinks or as forms submitted by users. The web (application) server passes on the queries to the

backend database, fetches the query results and stores the cacheable results in its cache [17]. It then

formats the results as HTML web pages and returns them to the client which displays them on the

browser. When the same query is fired by the client, the (web) application server tries to return query

results from the cache, after checking that the data has not changed meanwhile at the database. In case

the data has changed, the server executes the query again at the backend and fetches the fresh results

into the cache and returns them to the client. A typical web cache architecture is depicted in Figure 1.

Figure 1 Web cache architecture.

1.1 Cache Validation Methods

In caching dynamic data the cache contents have to be invalidated when the backend data changes.

This cache invalidation is generally done through two methods – automatic and expiry-based.

In an automatic invalidation method, whenever the data changes, the database server sends a

message to the application server to invalidate the cache portion that contains the changed data. This

method is usually implemented through database triggers. While this method ensures cache currency,

its implementation using trigger-like mechanisms is expensive and best reserved only for very

frequently changing data.

In an expiry or time-based method, a validity time interval is specified for each query or URL

whose results are cached. Upon expiry of this time the cache entry for this query is invalidated. When

the query is fired again, the web server checks the data source to see if the data has changed, a process

called revalidation. If the data has not changed, the server returns the existing cached results to the

client without re-executing the query. If the data has changed, the server re-executes the query at the

backend and reloads the contents into the cache. Expiration settings give more control over and

flexibility in presenting data to the web clients since they interact with the data source only when

required. This method is suitable for more predictable, less frequently changing data such as product

information in e-business applications.

 A query accessing an RDMS contains references to one or more tables and their columns

along with optional clauses for retrieving select rows and columns. On a web site hosting database

applications, each query application or URL is invoked repeatedly. When the same query is fired

several times, the web server returns the cached results for that query, after ensuring consistency of the

cached data with the data source. Thus the existing solutions perform cache validation on a URL or

application basis, and tend to access the database for every URL or query, which increases the

response time. In practice, however, several applications query a common database table, retrieving

Client

Browser Database

Web

server

Web

Application

server

HTTP

Cache

118 Schema-based Cache Validation to Improve Query Performance of Web Services

multiple columns using various selection criteria. In such cases, it would be desirable to perform cache

validation on a table/column basis so that all queries based on that table/column are validated. In this

way, the database is visited only once for each table/column combination rather than for each query,

thereby saving access time and increasing web service performance. In this paper, we propose a cache

management scheme that combines an expiry-based method with a cache structure that leverages the

schema of the data source. Our design uses cache invalidation at both table and column levels, by

storing a copy of the schema of the data source in the cache. We used simulations to test our design

and the results show a significant reduction in database accesses resulting in improved response times

of dynamic e-applications over current schemes.

2 Related Work

Extensive work has been published on web caching in respect of consistency and performance.

Commercial products such as Oracle Application Server Web Cache 10g and IBM WebSphere are also

available. Caching of pages is done at various levels – proxy, mid-tier (web server) or database (called

backend). A variety of techniques have been proposed for caching dynamic web pages at all these

levels. A summary of these is given in [25]. An active query caching scheme [21] is proposed for

proxy servers accessing database backends by using a query applet which runs in the proxy and helps

to process queries on the cache contents, thus increasing cache hits and reducing accesses to web and

database servers. Extension of active caching to HTML form-based queries is discussed in [22] based

on semantic caching [11]. A proxy caching technique is described in [14] where both content and

layout can be dynamic, with significant reductions in bandwidths and response times. DBProxy [3,4],

an edge semantic data cache for web applications, combines a flexible query answering technique with

efficient techniques for storage and cache replacement. Middle-tier database caching has also evolved

as an effective approach to improve scalability and performance. A scheme for database caching for

database2 relational database, known as DBCache, has been described in [20,2] for web application

servers. This caches entire or part of tables or materialized views based on declarative specification,

with updates being propagated through asynchronous data replication. A similar product has been

developed in SQL server called MTCache [19] whose caching is transparent to applications. The

cached data is maintained as a collection of materialized views. In order to reduce delays in caching

entire dynamically generated pages, Datta [13] has proposed identifying and caching fragments of

them, so that the static part in those pages can be cached, with the dynamic part alone being replaced.

Kossman [18] presents an integrated approach to caching with query optimization, which helps to

generate optimal query execution plans leading to long-term caching decisions. The Weave System

[30] offers customizable caching at different levels. However, it uses a scripting language for

declarative specifications of caching rules, and does not specify methods for cache validation on expiry

but only cache replacement. A middleware layer that uses hashing techniques to detect similarities

with previous cached query results is described in [29]. It thus seeks to avoid transmissions of

redundant fragments, thus improving performance.

 For less predictable, more frequently changing content, consistency is usually maintained

between cache and database by mapping and data update propagation. A Data Update Propagation

algorithm is used in [9] to identify changed and obsolete pages in the cache for replacement. Using

Object dependence graphs, a dependency mapping is maintained between cacheable data items and the

corresponding cached pages. Database triggers are invoked whenever changes are made to database

which in turn propagate the changes to the cache. Triggers help to synchronize data updates with

generated web pages. The main drawback of this technique is use of request URL to identify pages in

cache for retrieval. But the same URL can produce different pages of dynamic output, and this may

lead to retrieval of incorrect pages. Also, this uses proxy caching of full HTML pages, and this may

incur a lot of space overhead. Degenaro [12] improved the techniques to selectively invalidate cache

objects in case of database updates. Candan [8] use sniffer and invalidator modules to invalidate stale

cached pages. Sniffer creates a mapping between the web pages identified by URLs and the underlying

queries, and invalidator discards the cached pages dependent on queries affected by updates. As

triggers used to sense updates introduce a lot of load on the database, the authors use off-line policies

A. Raghunathan and K. Murugesan 119

in order to select the query types and URLs for invalidation. The DBCache [20] also uses triggers on

their database to track changes. Database change notifications are also used to invalidate the cache in

case of updates, and Galindo-Legaria [15] describe the mechanism implemented in SQL server 2005 to

communicate to the application through subscriptions regarding database changes for taking action for

invalidation. Subscriptions are also used by DBProxy [4] for synchronizing cache with database for

consistency. Amza [5] also propose a similar technique for automatic cache invalidation both at table

and column levels with a dependency mapping built between database items and cached objects. Of

the commercially available web application servers, OracleAS Web Cache [27] features both time-

based and automatic invalidation. However, it does not specify a mechanism for automatically

invalidating and updating cached pages upon database changes. IBM WebSphere Application Server’s

Caching Proxy [28] has very similar features. In all, current time-based web caching solutions use a

declarative specification of expiry settings and validation for each web application/URL. However, in

our approach, we have attempted to validate the cache based on expiration settings at a table/column

level so as to benefit other queries based on the same table/column. Our schema-based technique helps

to minimize database access for revalidation.

3 Outline of Existing and Proposed Methods

3.1 Existing Method

In existing time-based caching methods, expiry times are specified for each URL/database query that is

invoked by a web application (see Table 1). When the web application server receives a URL/query, it

tries to return cached results for the query, provided the query has not expired. If the query has expired,

it is validated against the data source to check if the data has changed. If there was no change, the

query is revalidated. If the data has changed, then the query is re-executed and new (fresh) results are

fetched. The cache is refreshed with the new results which are then returned to the client through the

application server. We refer to this common query processing technique as Query-based Caching (See

Algorithm A). Thus existing web caches perform validation for each URL on expiry. In practical

applications, however, several queries may access the same database table (or materialized view). For

each of these queries, the database is accessed during every revalidation and re-execution, contributing

to a cumulative increase in the response time. The cache structure for a typical query-based caching

method is shown in Table 1.

URL/

Query (Q)

Validity Period

(VP)

Query Level Validity

flag (VQ)

Timestamp of last

validation (TS)

Query Result

(QR)

…

Table 1 Cache data structure in a typical time-based caching scheme.

Algorithm A: Query-based Caching. Process query and return result.

Input: Query Q, Cache Table 1.

Output: Query Result QR.

Method:

// When a query is received, it is checked to see if it already exists in the cache Table 1.

// A background process traverses the cache entries and, based on the timestamp field TS,

// marks any expired queries as Invalid. (ie., sets VQ = False.)

 if Q Table 1 then // query is already cached in Table 1

 if VQ = True for Q in Table 1 then // if query is valid i.e., not expired
 return existing cached QR

 else

120 Schema-based Cache Validation to Improve Query Performance of Web Services

 //perform revalidation

 if Q-related data has changed in the database then

 execute Q

 store new query result into QR

 return QR

 else

 // related data has NOT changed in the database

 return existing cached QR

 end if

 set VQ = True

 set TS = current time

 end if

else //new query

 add Q to Table 1

 initialize VP, TS

 execute Q

 store new query result into QR

 return QR

end if

3.2 Proposed Method

In our proposed caching method, we define expirations at table/column levels rather than at query

levels. This way queries that do not access expired columns need not be revalidated or re-executed.

Moreover, any action taken to revalidate a query is propagated to the other cached queries that also

access the same tables and columns, thus minimizing access to the data source. To enable this, we

maintain a copy of the schema of the data source in the cache. This schema copy contains the names of

all the database tables and columns that are accessed by the web site. Expiry settings are set at each

table level as well as at each column level, and any revalidation action is taken at these levels. A

detailed discussion of our proposed method follows.

4 Design of the Proposed Caching Scheme

4.1 Cache Schema management

For our schema-based cache invalidation scheme, we store in the cache a copy of the objects in the

database schema. Table 2 stores table names (including materialized view names), validity periods for

each table, a table level validity flag (VT), an aggregate column validity flag (VC) and the timestamp of

the last revalidation / re-execution of any of the queries. The flags are initialized to True, and are then

set to False (Invalid) by a background process based on query expiration times. When VT expires, the

cache contents are replaced when there are table level changes in the database such as insertions and

deletions. VC is used for revalidation in case of updates to any of the columns in the table. Table 3

stores similar data for each column of each table in Table 2 - column names, expiry time intervals

(validity period) for each column, and a column level validity flag (vC). When vC becomes False on

expiry of any column in Table 3, the flag VC is also set to False by the background process.

Table name

(T)

Validity

period

(VPT)

Table level

validity flag

(VT)

Aggregate column

validity flag

(VC)

Timestamp of

last (re)validation

(TST)

…

Table 2 Proposed cache schema structure (Table level).

A. Raghunathan and K. Murugesan 121

Table

name

(T)

Column name

(CC)

Validity

period

(VPC)

Validity flag

(vC)

Timestamp of

last (re)validation

(TSC)

Table 3 Proposed cache schema structure (Column level).

4.1.1 Cache Schema Management Algorithms

4.1.1.1 Schema Creation

1. Initialise schema in cache - store table/column names T and CC from database schema in

cache schema tables 2 and 3.

2. Set appropriate validity periods for tables and columns (VPT , VPC). (A table may become

invalid upon row insertions/deletions, independent of any column-level updates.)

3. Set the three validity flags (VT, VC and vC) to True (Valid) and set the timestamp columns

(TST and TSC) to the current date/time.

4.1.1.2 Schema Invalidation (executed by a background process)

// Loop through the table and column entries in Tables 2 and 3 at regular intervals.

for each table T in Table 2 do

 compare VPT and TST

 if T has expired, set VT = False // Invalid

end do

for each table T in Table 3 do

 for each column CC in T do

compare VPC and TSC

if CC has expired then

 set vC = False

set Vc=False for corresponding T in Table 2

 end if

 end do

end do

4.2 Cache Query Management

We now describe how the web application server processes an input query using the cache and the

cache schema and returns the query results. Our scheme considers caching of read (select) queries only

- queries performing insert, delete and update operations are directly run on the backend database. We

define a modified cache data structure as in Table 4 (compare Table 1) to store the input query entries.

For each query, the names of the tables (TQ) and columns (CSQ) involved are also entered. The flag,

Rx, indicates whether the query needs to be re-executed if the database contents have changed prior to

revalidation.

Query

(Q)

Table referenced

in query (TQ)

Columnset referenced

in query(CSQ)

Re-execute query

flag (Rx)

Query Result

(QR)

…

Table 4 Proposed cache structure (Query results).

122 Schema-based Cache Validation to Improve Query Performance of Web Services

A typical database query involves the selection of one or more rows from one or more tables,

each row containing one or more columns, to be displayed in a particular ordered fashion. A query

may be contained in a URL or a web application written using JSP, ASP, CGI or any other script

hosted on a web site. Each query result may be an HTML page parts of which are dynamically fetched

from the database.

4.2.1 Cache Query Processing

When a query is invoked, the server inspects the schema entries for the referenced table and columns

in Tables 2 and 3 to see if these objects have expired (Invalid). If the flags VT and VC are both True,

then the cached query results are returned. If VT = False, then the query has expired, and the database is

checked for any changes at the table level (inserts or deletes). If there are changes, then the query is re-

executed, and the results are cached and returned. All other queries in Table 4 which refer to the same

database table/columns are then marked for re-execution, indicating that when these queries are

invoked again by the application, they will be automatically re-executed without an additional visit to

the database to check for changes.

If VT in Table 3 is True, but the column level flag VC is False, it means that one or more of the

columns of the table in Table 2 have expired. If it is a column in the input query, this column is

checked in the database for changes, and the query revalidated or rerun. All the other queries in Table

3 which also refer to the same database columns are then marked for re-execution, similar to above.

This technique of automatic re-execution without having to revalidate against the database is found to

reduce the number of effective visits to the database. Future discussions will refer to this technique as

Schema-based Caching (Algorithm B).

Algorithm B: Schema-based Caching. Process query using a cached schema and return result.

Input: Query Q, Cache Tables 2-4.

Output: Query Result QR.

Method: //When a query is received, it is first checked to see if it already exists in the cache.

if Q Table 4 then // query exists in Table 4

 if Rx = True for Q in Table 4 then

 if VT = False or VC = False for any of Q’s tableset in Table 2 then

 // Either Table-level or Column-level Flag is Invalid

 execute Q

 store new result into QR

 set Rx = False

 if VT = False then

 set VT = True

 reset TST to current time

 end if
 // Reset timestamps of this query’s columns and mark the columns

 // as Valid in Table 3

 for all CC CSQ for query Q in Table 4 do

 set vc = True

 reset TSC

 end do

 end if

 return QR

 else // Rx = False

 // revalidate query

A. Raghunathan and K. Murugesan 123

 if VT = True then // Table level flag in Table 2 is valid

 //means no row additions or deletions but column updates may have occurred

 // check column valid flag of Table A

 if VC = True then // Aggregate column validity flag in Table 2

 // is valid

 return QR

 else

 // Aggregate Column Validity flag of Table 2 VC is Invalid.

 // Means that one or more columns in Table 3 are invalid.

 // Take action if the column is part of the query Q. For each

 // of the columns marked Invalid in query’s columnset

 // take action.

 for each column CC in Table 3 where vc = False and

 CC CSQ for Q in Table 4

 do
 if CC has been updated in database then

 // need to re-query

 set Rx= True

 for all other queries in Table 4 that

 depend on CC and whose Rx = False

 set Rx = True

 end if

 end do

 if other than columns in this CSQ no other column is invalid

 then
 set VC = True

 reset TST

 end if

 if Rx = True for query = Q in Table 4 then //column changed

 execute Q

 store new result into QR

 set Rx = False

 return QR

 else

 //columns expired and marked False (invalid)

 // have not changed – detected on revalidation,

 // no need to re-execute

 return QR

 end if

 // Mark Valid and reset timestamps of query’s columnset

 // in Table 3

 for each CC CSQ do

 set vc = True

 reset TSC

 end do

 end if

 else

 //’Table valid’ Column VT in Table 2 is ‘Invalid’

 // rows or columns may have been deleted or added

 if table TQ in Q is updated in database then

 execute Q

 store new result into QR

 for all queries in Table 4 that depend on TQ and whose

124 Schema-based Cache Validation to Improve Query Performance of Web Services

 Rx = False do

 set Rx = True

 end do

 return QR

 end if

 // Mark valid the relevant flags as entire table has changed and reloaded

 for all TQ in Tables 2 and 3 do

 set VT = True, VC = True, vC = True

 reset TST , TSC // Reset timestamps for this table

 end do

 end if

 end if

else // new query
 add Q to Table 4

 execute Q

 store new result into QR

 add Q’s tables and columns to Table 2 and 3 from database schema, if not already cached

 set VT,= True, VC = True, vc = True

 set TSC, TST to current timestamp

 return QR

end if

5 Comparison of the Algorithms

We illustrate the working of our proposed web-caching scheme with a practical example and compare

it with an existing standard web query caching scheme. For simplicity we use a relational database

accessed with SQL queries, although our scheme is valid for any data source such as an XML database

accessed by using XQuery or XPath[23].

As an example, consider a company’s web site giving information about its products through

a set of URLs/queries. The data is extracted from a relational database table called Products with the

following structure:

Products(ProdID, Name, Type, Description, Price)

Most companies have a fixed product profile, and so all the columns in Products table except

Price are not expected to vary much over time. Even when the price changes, it may be tolerable for

some applications to provide a stale view of the existing price for some short period.

We will set a relatively shorter validity period of 1 day for the Price column compared to the

other columns for which we use a longer interval of 90 days. We have a time frame of 200 days for

Products table itself for revalidation.

Now consider the following web queries on the Products table:

Q1 -> Select * from Products order by ProdID;

Q2 -> Select Name, Type, Price from Products where ProdID=’P12345’;

Q3 -> Select Name, Description from Products where Type=’Valve’;

Let us illustrate both the Algorithms A and B with this example.

5.1 Algorithm A (Existing Scheme)

Table 5 shows the cache entries for this example with algorithm A in the format of Table 1. As noted

above, Q1 and Q2 are set to expire after 1 day on account of the Price column, and Q3 is set to expire

after a longer period of 90 days as its columnset does not include Price.

After day 1, Q1 and Q2 expire and are set to Invalid (QV = False) by the caching process. If

Q1 is fired on, say, Day 3, and if Price has changed within that period, Q1 is re-executed and QR1

replaced. If Price has not changed, then Q1 is merely revalidated with a new timestamp and the

existing QR1 is returned. If Q2 is now invoked on Day 5, it has expired as well and is processed for

validation - database is checked and, depending upon whether Price has changed, Q2 is re-executed.

A. Raghunathan and K. Murugesan 125

Let Q3 be invoked on Day 100, after it has expired and become Invalid. It too is checked for validation

against the database. Since Q3 does not involve Price, there is no change in its results and Q3 is

revalidated. The contents of Table 5 after processing queries are shown in Tables 6 and 7. The last two

columns in these tables, shown with a *, are not part of cache structure but are included to indicate

whether the database is checked for revalidation and, if the query-related data has changed in the

database, whether the data is re-fetched from the database. Tables 6 and 7 depict the cases without and

with the data change, respectively. The re-fetched data from the database replaces the existing cached

query result.

Query Validity Period

(Days)

Query Validity

Flag (QV)

Timestamp of last

validation

Query Result

Q1 1 True day 1 QR1

Q2 1 True day 1 QR2

Q3 90 True day 1 QR3

Table 5 Cache table structure for example to use with Algorithm A.

Query /

URL

Validity

Period

(Days)

Query

Validity Flag

(VQ)

Timestamp of

last validation

Query

Result

Database

Checked*

Database

Fetched*

Q1 1 False day 3 QR1 Y N

Q2 1 False day 5 QR2 Y N

Q3 90 False day 100 QR3 Y N

Table 6 Cache entries after processing of queries – when query-related data has not changed in database.

Query /

URL

Validity

Period

(Days)

Query

Validity

Flag (VQ)

Timestamp of

last validation

Query

Result

Database

Checked*

Database

Fetched*

Q1 1 False day 3 QR1 Y Y

Q2 1 False day 5 QR2 Y Y

Q3 90 False day 100 QR3 Y N

Table 7 Cache entries after processing of queries – when query-related data has changed in database.

5.2 Algorithm B (Proposed Scheme)

The initialized data structures for the example queries are shown in Tables 8-10.

In this case the expiry periods are set at the table and column levels, instead of setting them at

the query level. If Price expires after 1 day, vC for Price column in Table 9 is set to False. Flag VC in

Table 8 is also set to False (Invalid). If Q1 is fired afterwards, and Price has changed meanwhile, Q1 is

re-executed and the results re-fetched into QR1. Hence database checked=Y, and database fetched=Y.

This re-execution action is also propagated to Q2 in Table 10 since Q2 involves Price as well. Q2’s

Re-execute query flag is thus set. (Note: Only the flag is set, Q2 is not re-executed unless it is

invoked.). When query Q3 is invoked, it, however, does not involve Price, and hence all its columns

are valid in Table 9. Hence Q3 is answered with existing QR3 cached result. Tables 11 and 12 show

the Table 10 cache entries after processing of the above queries by Algorithm B. Again the last two

columns are not part of the cache structure but included for clarity.

A comparison of performance of algorithms A and B in terms of database visits during a

single query validation is shown in Table 13. We note from the last column that algorithm B has better

success in reducing database access. The main factor behind this saving is the fact that the proposed

method provides granularity in setting validity periods for a query down to its column level rather than

126 Schema-based Cache Validation to Improve Query Performance of Web Services

stop at the query or table level. Therefore queries not containing a column are not affected by updates

to that column and the cached results for such queries could be reused without revalidating against the

database. The second factor is the propagation of a data change to other cached queries in Algorithm B

enabling queries to be re-executed right away without performing additional checks for consistency.

Moreover, since expiry periods are usually set with reference to the contents of the data, when they are

set at the query level they will have to be set for each query executed against the same table. This may

lead to inconsistent expiry settings across a set of queries accessing the same table. In our proposed

scheme however, since expiry periods are set at the table and column levels they are set just once when

the schema information is loaded into the cache.

Table

name

(TT)

Validity

period

(VPT)

Table Level

Validity flag

(VT)

Aggregate Column

Validity flag

(VC)

Time stamp of last

(re)validation

(TST)

Products 200 True True day 1

Table 8 Table level cache schema entry for the example queries.

Table name

(TT)

Column

name

(CC)

Validity

period

(VPC)

Validity flag

(vC)

Timestamp of last

(re)validation

(TSC)

Products Name 90 True day 1

Products Type 90 True day 1

Products Description 90 True day 1

Products Price 1 True day 1

Table 9 Column level cache schema entries for the example queries.

Query Table

referenced in

query

Columnsets referenced in query Re-execute

query flag

Query

Results

Q1 Products ProdId, Name, Type, Description, Price False QR1

Q2 Products Name, Type, Price False QR2

Q3 Products Name, Description False QR3

Table 10 Initial cache entries for the example queries.

Query Table ref.

in query

Columnsets referenced in

query

Re-execute

query flag

Query

Results

Database

Checked*

Database

Fetched*

Q1 Products ProdId, Name, Type,

Description, Price

False QR1 Y N

Q2 Products Name, Type, Price False QR2 Y N

Q3 Products Name, Description False QR3 N N

Table 11 Cache entries after processing of queries – with no data change in database.

Query

Table ref.

in query

Columnsets referenced

in query

Re-execute

query flag

Query

Results

Database

Checked*

Database

Fetched*

Q1 Products ProdId, Name, Type,

Description, Price

False QR1 Y Y

Q2 Products Name, Type, Price True QR2 N Y

Q3 Products Name, Description False QR3 N N

Table 12 Cache entries after processing of queries – when data has changed in database.

A. Raghunathan and K. Murugesan 127

Database has

changed?

Algorithm

used

Number of times

database is

checked

Number of times

data is fetched

Total number of

times database is

accessed

Yes A 3 2 5

B 1 2 3

No A 3 0 3

B 2 0 2

Table 13 Comparative performance of algorithms A and B in terms of database visits for query validation.

6 Simulation and Results

The algorithms were compared by implementing a simulation of the cache manager using Oracle

PL/SQL language. This cache manager, a process run by the web application server, received queries

from the server and returned the query results. The query applications were written in Java Server

Pages (JSP) that used ODBC calls for database access. [24].

The hardware setup consisted of a desktop client with a dual core processor, 2GB memory

running Windows XP. The web server was Apache Tomcat running on an Intel Xeon 2-way processor

with 8 GB RAM, cache size 250K, running under Linux. The database was Oracle 10g running on

AIX OS. The database server used was an IBM Xeon 4-way processor with 8 GB RAM, with storage

of 1000 GB.

 A decision whether to fetch a query result from the cache or from the database depends on

several conditions under which the query executes. The following factors were considered in

simulating the various conditions for comparing algorithms A and B:-

 whether the query contains and is affected by the expiry/invalidation of one or more particular

columns

 whether the query or the underlying table/columns have expired, requiring revalidation

 whether query-related data has changed in the database, requiring replacement

 whether the query is to be directly re-executed (without revalidation) due to change of related data

in the database.

0

20

40

60

80

100

0 2000 4000 6000 8000 10000
No. of Queries

D
a

ta
b

a
s
e

 C
h

e
c
k
s
 (

%
)

No. of Checks (%) - alg. A

No. of Checks (%) - alg. B

Figure 2 Cache utilization by algorithms A and B. Figure 3 No. of database checks as percentage of no.

of queries. Schema-based caching performs about

40% fewer checks on average than query-based

caching.

128 Schema-based Cache Validation to Improve Query Performance of Web Services

Figure 4 No. of database fetches as a

percentage of no. of queries. Schema-based

caching performs about 11% fewer fetches on

average than query-based caching.

Figure 5 No. of database accesses as a

percentage of no. of queries. Schema-based

caching performs about 56% fewer accesses on

average than query-based caching.

Figure 6 Database checks vs. fetches for query-

based caching (algorithm A) as percentage of total

no. of queries invoked

Figure 7 Database checks vs. fetches for

schema-based caching (algorithm B) as

percentage of total no. of queries invoked

 Each simulation run consisted of passing to each algorithm identical query scenarios at

identical random intervals. Each query scenario was a random sample from a population of all possible

combinations of the above factors. The algorithm outputs were checked to see if and why the database

was accessed and statistics were computed on the results using various criteria - number of database

checks performed (for revalidation), number of database fetches carried out (for cache replacement),

total number of database accesses made, etc.

A. Raghunathan and K. Murugesan 129

Figure 2 shows the cache utilization of both the algorithms as a percentage of total number of

queries. Query-based caching, on an average, uses the cache only 34% of the time whereas schema-

based caching is more efficient by using it 45% of the time.

Figures 3 and 4 compare both the caching methods in terms of database checks and fetches as

a percentage of total number of queries invoked during the simulation. The schema-based caching has

fewer checks and fewer fetches than query-based caching. Figure 5 shows the overall comparison in

terms of total number of database accesses made, where we note that schema-based caching performs

about 56% fewer accesses than query-based caching.

Figures 6 and 7 summarize relative counts of checks and fetches by the two methods as a

percentage of the total number of database accesses and provide another view into the simulation

results in the form of bar charts. Note that a check need not necessarily be followed by a fetch, if for

example the database has not changed, and that, in the case of algorithm B, a fetch can take place

without a check. This enables algorithm B to be more efficient in terms of the ratio of checks to

fetches. As the charts illustrate, not only does algorithm B make fewer visits to the database to check

for cache consistency, it also follows up more of these visits by actual data fetches – i.e., a greater

percentage of database visits are made only when necessary.

Figure 8 Difference in number of database visits by algorithms A and B as percentage of total number of queries.

We generated 64 possible test scenarios and used each one to give appropriate inputs to both

the algorithms for comparison. Our analysis showed that in 32 of the cases, both the algorithms

performed equally well – each resulting in same number of database visits. In 29 scenarios, B

improved upon A in reducing the number of database accesses. In 3 cases there was a significant

improvement in B’s performance over A. These 3 cases pertained to scenarios such as one where a

column had expired and its contents had changed in the database, but, since the query did not involve

the column, the query result was not affected and therefore was returned from the cache itself.

Therefore B accessed only the cache while A still accessed the database for revalidation checks and re-

fetches. Figure 8 shows the simulation results in terms of the difference in number of database visits by

A and B. When a check or fetch is made, it is counted as one visit. In 5% of the queries, algorithm A

makes the maximum number of visits (both a check and a fetch i.e., 2 visits) to the database while

algorithm B makes no visit at all (so the difference in number of visits is 2). In 46% of the cases, B

makes 1 less visit than A (difference is 1). Thus we see the benefits when we reduce the query

processing granularity to the schema column level, when database accesses are made only when

necessary.

130 Schema-based Cache Validation to Improve Query Performance of Web Services

7 Conclusion

In this paper, we have proposed a method to improve query performance and QoS of web services by

using an enhanced caching technique. The existing time-based solutions perform cache validation on

an URL or application basis, and tend to access the database for every query, thus increasing the

response time. The proposed method leverages the schema of the data source. It uses cache

invalidation at table and column levels by duplicating the schema in the cache of the web application

server. Thus database access is minimized for tables and columns that are common to several queries.

In addition, those queries that do not access the expired columns do not visit the database at all for

revalidation or re-fetch. Simulations were used to test the proposed method and the results show a

significant reduction in database access. As the data source is usually an expensive resource shared by

both web clients and non-web clients, reducing data access traffic by web queries will result in

significant speed gains and quick response over the entire enterprise.

The proposed caching scheme could be applied to any type of data source such as an RDBMS

or XML database, by copying the schema to the cache for query processing. It could also be used for

both internet and intranet applications.

Acknowledgement

The authors are thankful to Dr. Soundar Rajan for his valuable contributions to this paper.

References

1. Adams, H. Best Practices for Web services: Web services performance considerations, Parts 1 &2.

From http://www.ibm.com/developerworks/library/ws-best9/ and

http://www.ibm.com/developerworks/library/ws-best10/. Last accessed Aug. 28, 2009.

2. Altinel, M., Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Lindsay, B.G., Woo, H. and

Brown, L. 2002. DBCache: Database caching for Web Application servers. Proc. ACM SIGMOD

2002, 612.

3. Amiri, K., Park, S., and Tewari, R. 2002. A self-managing data cache for edge-of-network web

applications. ACM CIKM 2002, 177-185.

4. Amiri, K., Park, S., Tewari, R. and Padmanabhan, S. 2003. DBProxy: A dynamic data cache for

web applications. IEEE ICDE March 2003. From https://eprints.kfupm.edu.sa/33527/1/33527.pdf.

Last accessed Oct. 20, 2009.

5. Amza, C., Soundararajan, G., and Cecchet, E. 2005. Transparent caching with strong consistency

in dynamic content web sites. ACM ICS 2005, NY, 264-273. DOI =

http://doi.acm.org/10.1145/1088149.1088185

6. Anbazhagan, M. and Nagarajan, A. Understanding quality of service for Web services. From

http://www.ibm.com/developerworks/Webservices/library/ws-quality.html. Last accessed Aug.

28, 2009.

7. Apache HTTP Server version 2.2. From http://httpd.apache.org/docs/2.2/caching.html. Last

accessed Aug. 28, 2009.

8. Candan, K.S., Li, W-S., Luo, Q., Hsiung, W-P. and Agrawal, D. 2001. Enabling dynamic content

caching for database-driven web sites.ACM SIGMOD 2001.

9. Challenger, J., Iyengar, A. and Dantzig, P. A scalable system for consistently caching dynamic

web data. 1999. Proc. IEEE INFOCOMM 99. https://eprints.kfupm.edu.sa/20773/1/20773.pdf.

Last accessed Oct. 20, 2009.

10. Chatterjee, S. and Webber, J. Developing Enterprise Web Services. Pearson Education, 2004.

11. Chidlovskii, B. and Borghoff, U. 2000. Semantic caching of Web queries.

The VLDB Journal 9, 1 (2000), 2-17. DOI = http://dx.doi.org/10.1007/s007780050080

12. Degenaro, L., Iyengar, A., Lipkind, I., and Rouvellou, I. 2000. A middleware system which

intelligently caches query results. IFIP/ACM Intl. Conf. Distributed Systems Platforms, 24-44.

From http://www.research.ibm.com/AEM/documents/abr_mw2000.pdf. Last accessed Oct. 20,

A. Raghunathan and K. Murugesan 131

2009.

13. Datta, A., Datta, K., Thomas, H.M., VanderMeer, D.E., Ramamritham, K., and Fishman, D. 2001.

A Comparative study of alternative middle tier caching solutions to support dynamic web content

acceleration. Proc. 27
th

 VLDB 2001, Rome, Italy. From

http://www.cse.iitb.ac.in/~krithi/papers/vldbj_chutney.pdf. Last accessed Oct. 20, 2009.

14. Datta, A., Datta, K., Thomas, H.M., VanderMeer, D.E., Suresha and Ramamritham, K. 2002.

Proxy-based acceleration of dynamically generated content on the world wide web: an approach

and implementation. Proc. ACM SIGMOD, June 2002. From

http://dsl.serc.iisc.ernet.in/pub/chutney.pdf. Last accessed Oct. 20, 2009.

15. Galindo-Legaria, C., Grabs, T., Kleinerman, C., and Waas, F. 2005. Database change

notifications: primitives for efficient database query result caching. In Proceedings of the 31st

international Conference on Very Large Data Bases. VLDB Endowment, 1275-1278. From

http://www.vldb2005.org/program/paper/demo/p1275-galindo-legaria.pdf. Last accessed Oct. 20,

2009.

16. HTTP. Hypertext Transfer Protocol -- HTTP/1.1. From

http://www.w3.org/Protocols/rfc2616/rfc2616.html. Last accessed Aug. 28, 2009.

17. Jasnowski, N. Java, XML & Web Services Bible. IDG Books India, 2002.

18. Kossmann, D., Franklin, M. J., Drasch, G., and Ag, W. 2000. Cache investment: integrating query

optimization and distributed data placement. ACM Trans. Database Syst. 25, 4 (2000), 517-558.

From http://www.dbis.ethz.ch/research/publications/27.pdf. Last accessed Oct. 20, 2009.

19. Larson, P.A., Goldstein, J., Guo, H. and Zhou, J. 2004. MTCache: Transparent Mid-tier Database

Caching in SQL Server. Proc. IEEE Intl. Conf. Data Engg. 2004, 177-189.

20. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.G., and Naughton, J. F.

2002. Middle-tier Database caching for e-Business. ACM SIGMOD June 2002. From

http://www.cse.ust.hk/catalac/papers/dbcache_sigmod02.pdf. Last accessed Oct. 20, 2009.

21. Luo, Q., Naughton, J. F., Krishnamurthy, R., Cao, P., Li, Y. 1999. Active Query Caching for

Database Servers. Webdatabase 2000: 29-34. From

https://eprints.kfupm.edu.sa/22643/1/22643.pdf. Last accessed Oct. 20, 2009.

22. Luo, Q., Naughton, J. F., and Xue, W. 2008. Form-based proxy caching for database-backed web

sites: keywords and functions. The VLDB Journal 17, 3 (May. 2008), 489-513. DOI=

http://dx.doi.org/10.1007/s00778-006-0018-x

23. Mandhani, B. and Suciu, D. 2005. Query caching and view selection for XML databases.

VLDB 2005, 469-480. From http://www.vldb2005.org/program/paper/wed/p469-mandhani.pdf.

Last accessed Oct. 20, 2009.

24. Mogha , R. and Preetham, Java Web Services Programming. Wiley Dreamtech, 2003.

25. Mohan, C. 2001. Tutorial: Caching technologies for web Applications. VLDB’01, From

http://www.almaden.ibm.com/u/mohan/Caching_VLDB2001.pdf. Last accessed Aug. 28, 2009.

26. Nottingham, M. Caching Tutorial for Web Authors and Webmasters. From http://www.web-

caching.com/mnot_tutorial/. Last accessed Oct. 20, 2009.

27. Oracle Corporation. 2005. Oracle Application Server Web Cache 10g. September 2005. From

http://www.oracle.com/technology/products/ias/Web_cache/pdf/WebCache1012_twp.pdf. Last

accessed Aug. 28, 2009.

28. Turaga, R., Cline, O. and Van Sickel, P. WebSphere Application Server Step by Step. MC Press,

2006.

29. Tolia, N. and Satyanarayanan, M. 2007. Consistency-preserving caching of dynamic database

content. ACM WWW 2007, NY, 311-320. From http://www2007.org/papers/paper120.pdf. Last

accessed Oct. 20, 2009.

30. Yagoub, K., Florescu, D., Issarny, V., Valduriez, P. 2000. Caching strategies for data-intensive

web sites. Proc. VLDB, 188-199. From http://www-roc.inria.fr/arles/doc/ps00/vldb.pdf. Last

accessed Oct. 20, 2009.

31. Zhang, L., Floyd, S. and Jacobson, V. Adaptive Web caching. In NLANR Web Cache Workshop

97. From http://citeseer.ist.psu.edu/zhang97adaptive.html. Last accessed Oct. 20, 2009.

