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Companies now rely on the World Wide Web for communication with their customers.   As reliance 
on web servers grows, the need for companies to better understand the workload placed upon these 
servers also increases.  The session workload unit is a popular unit of measurement used to analyze 
recorded information from server logs.  In fact, many web applications, from shopping carts to online 
banking systems, require session information to function correctly.  Web data mining is also 
dependent on session workload information.  However, the distributional properties of this session 
workload are not understood.  Whether the session workload can be described as a short-tailed or 
heavy-tailed distribution is a fundamental question for the investigation of the session workload unit.  
This paper empirically explores claims that the session workload can be described using a heavy-
tailed distribution.  The paper concludes that, for the samples used in this paper, a method to 
accurately determine whether the session workload is drawn from a heavy-tailed distribution does not 
exist.  Hence, the conclusion that they are drawn from such a distribution cannot be made. 
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1    Introduction 

The World Wide Web is now the most popular component of the Internet [2].  The Web can be 
utilized for many purposes ranging from information retrieval to fully interactive e-commerce 
stores.  Companies increasingly use the Web to reach their customers.  As the Web’s popularity 
increases, so does the need for companies to better understand the workloads placed upon their 
servers.  Web mining allows companies to further understand their users’ behavior and 
demographic information, which in turn allows the organization to maximize sales.  It can also 
provide critical workload information, such as hits per user or session, enabling system 
administrators to improve usability, availability and reliability of their websites.  One of the most 
popular units used to analyze traffic, workload and user behavior is the session workload unit.  
Many researchers have investigated the session workload.  However, previous studies have used 
very short (duration) data sets and many have not considered data from commercial websites, 
especially mission-critical websites.   

Furthermore, the investigations into the distributional properties of the session workload lack 
rigorous analysis.  In fact, Goševa-Popstojanova et al. [24] is the only known study to provide a 
detailed analysis of the measure’s characteristics. However, this study only considers “are sessions 
lengths sampled from a heavy-tailed distribution” without convincing evidence that this 
characterization is definitive.  The implications of whether the session length is heavy-tailed can 
have a significant impact on the formulation of many website models.  For example, Tian et al. 
[47] proposed a reliability model for websites based on a short-tailed distribution which would be 
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invalid if the session length is heavy-tailed.  Furthermore, let’s consider constructing a simple 
reliability model of a website. If we assume that the probability of any software failure per input or 
hit is constant, p, we have a simple binomial process. The number of failures fn after n inputs is 
given by the binomial distribution: 
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Therefore, the probability of the system failing after n hits occurs whenever fn  >0. Hence, 
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The system administrator might want to think about the defect rate of the system as a function 

of time rather than as a function of the number of inputs or hits.  

      Atn pp )1(1)1(1 −−=−−                      (3) 
 
where A is the average inputs per time unit (t). Further, considering the data presented in the 

previous sections, p is obviously small and n is obviously large allowing our binomial process to 
be approximated by an exponential distribution. 

        Atpe−−=1                                                        (4) 
If the distributional property is heavy-tailed, this model would be invalid because the average 

inputs per time unit A is infinite. These types of models are neither new nor unique to reliability. 
Many dynamic characteristics of websites may be approximated by such models.  However, if the 
workloads are heavy-tailed, many of these models will be invalid because either the mean or the 
variance is infinite.  That is, they require an estimation of one of the moments of the workload 
variable; yet, the moments are infinite in heavy-tailed distributions.   

The session workload unit has also been used to mine web usage for web personalization 
[16][37].  This personalization process allows websites to customize themselves to match the 
users’ usage patterns.  For example, Amazon.com uses web mining data from user sessions to 
recommend books to their customers.  Jasen and Spink  [32] examined user sessions to determine 
how web search engines are utilized and which search results are being viewed by the users.  
Cherkasova and Phaal [10] proposed a session-based load management for commercial websites to 
improve quality of service; they utilized a simulation to model the session workloads in their 
study.  All approaches mentioned are dependent on the session workload model.  Hence, the 
acceptance of the conjecture that workloads are sampled from heavy-tailed distribution has serious 
ramifications for future research and analysis of the “behavior” of websites. Therefore, this paper 
re-evaluates the results presented by Goševa-Popstojanova et al. [24] which concludes that session 
length data is sampled from a heavy-tailed distribution.  The conclusion was based on results from 
the analysis of the log-log complementary distribution plots (LLCD) and the Hill estimator.  
However, we believe a more rigorous empirical investigation into session length and its potential 
distributional properties can be performed.   

This paper extends Goševa-Popstojanova et al. [24] by applying the evaluation to two new 
websites.  One of which is a mission-critical commercial website.  The logs investigated for this 
commercial website cover a 27 month period, an extensive time period. Other investigations are 
“focused” on high throughput web sites for a short period. However, the authors believe that 
examining a website over a long calendar period is essential as many “external actions” which 
impact the characteristics of the site happen infrequently as hence a true sense of the historical 
norm of a website’s characteristics is only available over an extended period. Furthermore, 
additional tests, such as the Heavy-tailed Autocorrelation Function (ACF) method, “wobble 
analysis” and Q-Q plots (Q stands for quantile), are performed to determine if session length can 
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really be modeled by a heavy-tailed distribution.  The results from this paper show that, for the 
samples used in this paper, a method to determine whether the session workload can be modeled 
by a heavy-tailed distribution does not exist.   

The remaining sections of this paper are organized as follows:  Section 2 describes the data 
analysis step and provides a brief description of the websites under investigation.  Section 3 re-
evaluates the heavy-tailed property of session lengths.  It investigates the validity of using log-log 
complementary distribution (LLCD) plots and the Pareto distribution to model the session length 
as presented by Goševa-Popstojanova et al. [24].  Section 4 discusses the results from this study 
versus the previous study.  Finally, Section 5 presents our conclusions. 
 

2    Data Analysis 

2.1. Description of the Websites under Investigation 

Server logs from two websites are investigated in this paper.  The first website (Site A) is a 
website for a company that specializes in online databases.  This is a commercial website that is 
critical to Company A’s operation.  The website charges customers for the time used to access its 
online database; hence an outage means that revenue will be lost. This website represents one of 
the core revenues streams for this organization.  The PHP (http://www.php.net) scripting language, 
MySQL (http://www.mysql.com) database and Apache HTTP Daemon are technologies used by 
the website.  27 months of operation from December 2004 to February 2007 are examined in order 
to observe potential trends and patterns for this mission critical website.  The website is dynamic – 
the pages are generated dynamically depending on the customers’ inputs; its users are customers 
who are either looking to purchase a product or to register for a training course.  For the 27 months 
covered, Site A received approximately 3.6 million hits and 117,246 “unique” visitors.  The site 
transferred 67 Gbytes of data.  It is believed that this log represents the longest period of capture 
and the only truly “mission critical” log reported within the research literature. 

The second website is the website for the Department of Electrical and Computer Engineering 
at the University of Alberta.  Although the site is important to the organization, it is non-
commercial and not mission critical.  This website is also dynamic and utilizes the ColdFusiona 
scripting language and the Apache HTTP Daemon (http://httpd.apache.org).  To investigate the 
data, the log files were chosen to cover 11 months of data.  For this period, the ECE website 
received approximately 2.42 million hits, 203,896 “unique” visitors and transferred a total amount 
of 22.6 Gbytes of data.  The data from this website is served as a cross reference to ensure that the 
trends observed are not unique to one particular website. 

The log files are stored in the Combined Log Formatb for Site A and the Common Log Format 
(CLF)c for ECE.  The approach used to extract the data can be seen as a deep log analysis 
technique [35][36][37].  Since the session length estimation requires at least two requests: one to 
mark start time of the session and one to mark the end time of the session, all users with only one 
request are removed from the log files. 

2.2 Comparison of the log data versus previous studies 
Table 2.1 provides a summary of the data used in previous studies and this study.  Websites with 
an asterisk(*) are commercial websites. 

Although the websites examined by previous studies have higher traffic intensity, the periods 
covered are shorter.  In fact, this table shows that the longest period this study examined is 27 
months, whereas the longest period previous studies have performed is 7 months.  Furthermore, 
the periods covered for commercial websites are extremely short, 1 to 2 weeks.  This study 

                                                 
a http://www.macromedia.com/software/coldfusion 
b http://httpd.apache.org/docs/1.3/logs.html#combined 
c http://httpd.apache.org/docs/1.3/logs.html#common 
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investigates the log file from a commercial website for a much longer period (27 months).  This 
long data period provides several benefits over short data periods.   

 
Table 2.1. Overview of the log data used in previous studies and this study 

  Log duration Requests Bytes Transferred 
NASA-Pvt1 20 weeks 23 thousands 0.5 GB 
NASA-Pvt2 20 weeks 92 thousands 0.2 GB 
NASA-Pvt3 20 weeks 489 thousands 2.2 GB 
NASA-Pub1 20 weeks 93 thousands 9 GB 
NASA-Pub2 20 weeks 732 thousands 6.7 GB 
NASA-Pub3 20 weeks 108 thousands 4.6 GB 
CSEE 6 weeks 5.8 millions 80.9 GB 
WVU 3 weeks 37.9 millions 97 GB 
ClarkNet* 2 weeks 3.3 millions 27.6 GB 
NASA-KSC 2 months 3.5 millions 62.5 GB 

Goševa-
Popstojanova et 
al. [24] 

Saskatchewan 7 months 2.4 millions 12.3 GB 
WVU 1 week 15.8 millions 34.5 GB 
ClarkNet* 1 week 1.7 millions 13.8 GB 
CSEE 1 week 397 thousands 10.1 GB 

Goševa-
Popstojanova et 
al. [25] 

NASA-Pub2 1 week 39 thousands 0.3 GB 
Site A* 27 months 3.6 millions 67 GB This study 
ECE 11 months 2.4 millions 22.6 GB 

 
• An organization’s behavior also affects its website traffic patterns.  Advertising campaigns, 

various public announcements will often increase the amount of traffic.  For example, 
GoDaddy.com’s website experienced a 1500 percent increase in traffic following its Super 
Bowl ad campaignd.  Other websites advertised during Super Bowl Sunday also had their 
traffics increased.  Short term collection either overstates these actions if it is performed 
near a major activity or understates them if performed far from the activity.   

• Well known trends and periodic patterns such as the “weekend effect” will distort short 
term collection resulting in skewed data.  In fact, Arlitt and Jin [1] have demonstrated that 
websites have very different workload intensities on weekdays versus weekends.  Although 
“weekend effects” are short, seasonal effects such as holiday seasons can last much longer.  
Hence, if the data period is short, the analysis will be skewed by such effects. 

• Major web events will also affect the data sets gathered within a short time frame.  For 
example, popular YouTube videos are known to result in millions of hits to YouTube’s 
website within a short period of time before the site’s traffic returns to normal.  A website 
being mentioned on another popular website such as Slashdot will also cause the website’s 
traffic to increase.  This is commonly known as the Slashdot-effecte.  

• Short collection periods can experience distortion due to either higher than normal or lower 
than normal activities from robots.  For example, attackers directed thousands of bots to 
access Facebook; and hence, they created a denial of service attackf.  The number of 
requests made is large enough to deny normal users from accessing the website.  Although 
the attack only lasted several hours, the data generated from the attack will have an effect 
on the short term data due to the large data size. 

• Users have very low brand loyalty. If quality of service (such as response period) is poor, 
users leave quicker than normal (the inverse will be at some-level true) – this impacts 
session statistics and again short-collection periods can get skewed because of the quality of 
service differing from the long-term norm.  For example, a user may visit a website during 
maintenance which may cause the website to response much slower than usual.  The quality 

                                                 
d http://ir.comscore.com/releasedetail.cfm?releaseid=245204, last visited September 2, 2009 
e http://hup.hu/old/stuff/slashdotted/SlashDotEffect.html, last visited September 2, 2009 
f http://news.cnet.com/8301-27080_3-10305200-245.html, last visited September 2, 2009 
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of service during this maintenance period cannot be considered as the normal QoS for the 
website. 

 
Table 2.2. Traffic by month for Site A 

Month Requests Bytes Transferred 
2004-12 99 thousands 1.77 GB 
2005-1 122 thousands 2.30 GB 
2005-2 110 thousands 2.05 GB 
2005-3 137 thousands 2.59 GB 
2005-4 120 thousands 2.34 GB 
2005-5 115 thousands 2.21 GB 
2005-6 123 thousands 2.42 GB 
2005-7 108 thousands 2.16 GB 
2005-8 116 thousands 2.17 GB 
2005-9 114 thousands 2.08 GB 
2005-10 120 thousands 2.27 GB 
2005-11 125 thousands 2.28 GB 
2005-12 110 thousands 2.14 GB 
2006-1 152 thousands 2.86 GB 
2006-2 137 thousands 2.78 GB 
2006-3 164 thousands 3.30 GB 
2006-4 138 thousands 2.67 GB 
2006-5 148 thousands 2.72 GB 
2006-6 134 thousands 2.41 GB 
2006-7 128 thousands 2.48 GB 
2006-8 144 thousands 2.69 GB 
2006-9 149 thousands 2.52 GB 
2006-10 146 thousands 2.76 GB 
2006-11 144 thousands 2.81 GB 
2006-12 115 thousands 2.28 GB 
2007-1 171 thousands 3.05 GB 
2007-2 181 thousands 3.20 GB 

 
Analysis of the Site A data set shows that data traffic does change.  Table 2.2 shows the monthly 
traffic for the 27 months examined.  This table shows an increase in traffic starting in January 
2006.  This was when an advertising campaign was launched for Site A.  In fact, the average 
number of requests is increased from 118,453 in 2005 to 141,668 in 2006.  In January 2007, 
another advertising campaign was launched and the increase in traffic can be seen again.  The 
seasonal effect is also quite evident here.  Traffic in December (2004, 2005, 2006) are lower than 
normal traffic for the other months.  
 
3    Investigation of the Distributional Characteristics of Session Length 

Goševa-Popstojanova et al. [24][25] put forward the conjuncture that session length data is 
sampled from a heavy-tailed distribution. In this section we empirically examine this conjecture. 

3.1. Discussion of the STT  
This study uses a Session Timeout Threshold to determine the sessions.  A session is defined as a 
sequence of actions taken by a user within a period of time.  Sessions offer much finer grained 
information than the standard number of users metric.  However, because the Hyper Text Transfer 
Protocol (HTTP) is a stateless protocol, session information cannot be easily captured.  Hence, 
web applications often use session-based technology such as cookies [33] to simulate a stateful 
connection to the user.  In order to determine when a session ends and the next one begins, a 
session timeout threshold (STT) is often used.  In other words, a STT is a pre-defined period of 
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inactivity that allows web applications to determine when a new session occurs.  That is, let s be a 
set of sessions:  
 

∀s∈SessionsFor(user) • (session_time_start(si+1) – session_time_end(si)) ≥ STT 
 
Goševa-Popstojanova et al. [24][25] assign STT to 30 minutes,  because it is a common value used 
by other researchers [6][35][36][46].  This 30 minute figure is a value rounded up based on a mean 
value of 25.5 minutes determined by Catledge and Pitkow [8].  Catledge and Pitkow [8] estimate 
STT to be 25.5 by claiming that the most statistically significant events occurred within 1.5 
standard deviations (25.5 minutes) from the mean between each user interface event which was 9.3 
minutes.  However, no definition of these “significant events” was given; and why 1.5 standard 
deviations is selected is never discussed.  Hence, this paper also uses a model proposed by Huynh 
and Miller [30] to determine the STT.  By applying the model, the STT is found to be 5 minutes 
for Site A and 11 minutes for ECE.  As a cross-check, the results presented in this paper were 
replicated using STT = 30 minutes for both sites; and while the numerical values clearly changed 
the basic interpretation of the results remained constant. 

3.2. Estimating the Tail Index α with LLCD plot 
Under the assumption that the data comes from a Pareto distribution, Goševa-Popstojanova et al. 
[24][25] estimate the tail index of the distribution using a log-log complementary distribution 
(LLCD) plot.  This approach has also been used in many studies which concentrate on other 
workload metrics for web servers [1][2][11].  LLCD plots produce an estimate of the tail index 
using the property 

                      α−=
∂

>∂
x

xXP
log

])[log(
                                       (7) 

However, the approach does not utilize the entire distribution.  The estimation of the index is only 
over the range [xi, xi+j]; and the approach simply fits an ordinary least-squares linear regression 
model to estimate α from the small set of values ([xi, xi+j]) which are assumed to represent the 
majority of the tail. 

Downey [13][15] has shown that the LLCD plot is an ineffective mechanism at discovering 
long-tailed distributions.  Basically, the technique cannot adequately distinguish between long-
tailed distributions, such as the Pareto distribution, and “similar looking” short-tailed distributions 
such as lognormal distributions.  Figueiredo et al. [18] further support this viewpoint and provide 
an extensive analysis demonstrating the inadequacy of this approach; they demonstrate that the 
discovery of the appearance of a linear region in a LLCD plot is by itself insufficient evidence to 
conclude that long-range dependence exists within a data set.  Finally, Goldstein et al. [21] 
empirically demonstrate that the LLCD plot and associated techniques are ineffective approaches 
to fitting power-law distributions to experimental data and conclude that the approach should be 
avoided. 

3.2.1. Discussions of the LLCD Plot Results 
This paper uses three definitions of the tail as presented by Hernandez-Campos et al. [27].  The 
extreme tail is the part of the tail that is beyond the last data point (xn), hence no information is 
available for this part.  The far tail is the part of the tail where some data is present, but the 
distributional properties cannot be understood because of the minimal information available 
(around xi+j).  The moderate tail is the part of the tail that contains “rich” (by comparison) 
distributional information ([xi,xi+j]).  Clearly, the definitions are heuristics because the boundary 
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between the moderate tail and the far tail cannot be defined accurately.  However, the definitions 
are required for discussions of the results in this section.   

Goševa-Popstojanova et al. [24][25] have estimated α using LLCD plots. Figures 3.1, 3.4, 3.7 
and 3.10 display the LLCD plots for ECE and Site A with each having two different STT values.  
This paper utilized Huynh and Miller [30] dynamic STT estimation model and the commonly used 
30 minute constant STT value approach used by Goševa-Popstojanova et al. [24][25] to investigate 
if the value of STT was a covariant of the distributional characteristics of the session length.  
Hence, LLCD plots were created for both the dynamic model’s STT values and the constant STT 
value.  These figures show that for values below –1 on the vertical axis the distribution is generally 
linear until the far tail is reached.  Although, linear least squares fitting can be applied to estimate 
α, this paper uses a numerical differential equation to estimate α at all possible data points.  
Figures 3.2, 3.5, 3.8 and 3.11 show results of this estimation.  These figures show that α does not 
stabilize in the moderate tail in any of the LLCD plots. The variations are consistently too large to 
be explained by numerical differential estimation error.  To further confirm this observation, the 
box plot for α for all LLCD plots are shown in Figures 3.3, 3.6, 3.9, and 3.12, and the descriptive 
statistics for α are shown in Table 3.1.  Box plots are used in this paper for their ability to visually 
display different types of populations without any dependency on the statistical distribution of the 
data.  These figures show that the range for the non-outliers varies considerably; furthermore, the 
outliers are numerous.  Figures 3.2 and 3.8 perhaps provide the clearest evidence of α failing to 
stabilize within the tail of the distribution. These figures can be approximated as:  

1. estimates for α are relatively “well-behaved” in the pre-tail; 
2. estimates for α vary wildly in the moderate tail; and 
3. estimates for α seem to be almost random values in the far tail. 
Because the type of distribution for the data sets is unknown, Table 3.1 displays the statistics 

for both parametric and non-parametric distributions.  This table can be seen as an exploratory tool 
to aid the data examination process.  The table and box plots further confirm that α is not stable 
enough for the least-squares linear regression model.   
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Figure 3.1. ECE 11m STT – LLCD 
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Figure 3.2. ECE 11m STT – α 

 
  Figure 3.3. ECE 11m STT- Box plot of α 
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Figure 3.4. Site A 5m STT – LLCD 
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Figure 3.5. Site A 5m STT – α 

 
Figure 3.6. Site A 5m STT – Box plot for α 
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Figure 3.7. ECE 30m STT – LLCD 
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Figure 3.8. ECE 30m STT – α 

 

 
Figure 3.9. ECE 30m STT – Box plot for α 
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       Figure 3.10. Site A 30m STT – LLCD 
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Figure 3.11. Site A 30m STT – α 

 
Figure 3.12. Site A 30m STT – Box plot for α 
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Table 3.1. Statistics for α 

 ECE 11m Site A 5m ECE 30m Site A 
30m 

Mean 49.87 2.49 35.92 2.50 
Mean 95% Confidence (Lower bound) 24.60 2.27 18.43 2.33 
Mean 95% Confidence (Upper bound) 75.14 2.71 53.41 2.67 
Median 1.04 1.54 1.20 1.53 
Variance 867872 33.61 578953 31.95 
St.Dev 931.60 5.80 760.89 5.65 
Minimum 0.06 0.12 0.06 0.10 
Maximum 59851.53 159.08 59851.53 287.50 
 
The figures and table show that data obtained from the proposed dynamic STT model behave 
similarly to the data obtained from the commonly used 30 minute STT.  Hence, further data 
analysis methods in this paper will only explicitly examine the data set generated from the 
dynamic STT model as it is believed to represent the state of the art in estimating STT. 

3.2.2 “Wobbles” in the Distribution 
During the investigation of the session length per month plots, two interesting observations can be 
seen. 

1. The distributions, at this level of granularity, appear to be stable.  Hence, the observable 
phenomenon seems to repeat in a deterministic fashion. 

2. The distributions are not smooth; they include several points of inflection or “wobbles”.  
While it might initially seem reasonable to dismiss these “wobbles” as noise, the fact that 
they repeat across most of the monthly patterns argues that they are more likely to be 
signal than noise.  This “wobbling” effect has been noted by several other authors 
investigating related phenomenon [14][34][43]. 
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Figure 3.13.  Session length by month for ECE 
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Figure 3.14. Session length by month for Site A 

 
Figures 3.13 and 3.14 display the session length by month graphs for ECE and Site A.  For the 
ECE site, the points of inflection can be seen at approximately 2.6, 3.4 and 3.3.  For Site A, two 
points of inflection happen in quick succession, as can be seen by the smaller graph in Figure 3.13.  
This figure shows the points of inflection occur at approximately 2.16, 2.18 and 2.5. 

This “wobbling” phenomenon argues simple distributions such as Pareto or lognormal 
distributions cannot be used to model the session workload.  Hence, attempting to fit the session 
length into the Pareto distribution will lead to the wrong conclusion.  Various researchers have 
investigated a range of more complex models to fit this phenomenon: 

• Arlitt et al. [1][3], Barford et al. [4][5] and Downey [13][14] have all investigated hybrid 
models that combine a lognormal distribution with a Pareto tail; 

• Mitzenmacher [34] investigate, amongst others, a double Pareto distribution; 
• Reed and Jorgensen [43] investigate a double Pareto-lognormal distribution. 
While all of these models can provide a superior fit to the “wobbling” phenomenon, there 

exists no real causal theory that they are an accurate model of the general phenomenon.  The 
alternative argument is that the superior fit is simply the consequence of the greater number of free 
variables they possess compared to the simpler distributions. 

3.2.3. Discussions of the Pareto Distribution 
Previous studies have demonstrated LLCD plots are not effective at discovering heavy-tailed 
distributions because of the similarity between the Pareto distribution and the lognormal 
distribution.  Hence, this paper will perform an investigation to determine the Pareto distribution’s 
effectiveness at describing the data.  Downey [13][15] and Goševa-Popstojanova et al. [25] applied 
the curvature test to explore Pareto and lognormal distribution with conclusions stating that the 
data can be either Pareto or lognormal.  Goševa-Popstojanova et al. [25] provides an explanation 
that the similarity is due to the lack of data at the far tail.  However, as discussed, the far tail of a 
heavy-tailed distribution will never contain enough data points for any reasonable analysis.  
Hence, this paper will utilize the Q-Q plot [19] to visually observe the Pareto and lognormal 
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distributions.  This is the same approach used by Hernandez-Campos [27] to investigate Pareto 
and lognormal distributions.  The Q-Q plot allows the quantiles of the data set to be graphically 
compared against the theoretical distribution (Pareto and lognormal for this investigation).  The 
horizontal axis of the Q-Q plot contains the theoretical quantiles while the vertical axis contains 
the sorted data values.  The natural log-log scale is used because of the possible large values.  The 
curve generated should follow the 45 degree line if the data quantiles are the same (or very similar) 
to the theoretical quantile. 
 

 
Figure 3.15. Pareto Q-Q Plot for ECE showing the 
observed values are not near the expected values 

 
Figure 3.16. Pareto Q-Q Plot for Site A showing 

the observed values are not near the expected 
values 

 

 
Figure 3.17. Detrended Pareto for ECE showing 
extreme deviations from the line in the Q-Q plot 

 
Figure 3.18. Detrended Pareto for Site A showing  
observed values are not near the expected values 

 
Figures 3.15 and 3.16 show the Pareto Q-Q plots for the ECE and Site A sites respectively.  

Visual observation of these figures shows that the Pareto distribution does not fit extremely well to 
the data set as the curve does not accurately match the 45 degree line. Further confirmation of this 
observation can be seen with the detrended Pareto graphs as shown in Figures 3.17 – 3.18.  If the 
plot generated by the detrended graph is not near 0 on the x-axis, then the data set is unlikely to be 
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a good match for the distribution.  Once again, these figures show that the observed values deviate 
from the Pareto distribution very quickly. 

The lognormal Q-Q plots and detrended plots for the ECE and Site A sites can be seen in 
Figures 3.19 - 3.22.  These figures show that the lognormal distribution also does not describe the 
distribution of the data accurately.   
 

 

 
Figure 3.19. Lognormal Q-Q for ECE 

showing the observed values are not near 
the expected values 

 

 
Figure 3.20. Lognormal Q-Q for Site A 

showing the observed values are not near 
the expected values 

 

 
Figure 3.21. Detrended lognormal for ECE  

showing extreme deviations from  
the line in the Q-Q plot 

 

 
Figure 3.22. Detrended lognormal for 

Site A showing extreme deviations 
from line in Q-Q plot 

 
To further examine the deviations in the detrended graphs between the lognormal and Pareto 

distributions, a statistical significance test (t-test) was conducted.  The results are presented in 
Table 3.2. Based on the results, the null hypothesis that the Pareto distribution has a smaller mean 
(closer to 0) can be rejected.  Hence, the alternative hypothesis, which is the mean for the 
lognormal distribution is “closer” to 0 than the Pareto distribution, can be accepted. 
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Table 3.2. t-Test to compare the lognormal distribution versus the Pareto distribution 
 Site A ECE 
 lognormal Pareto lognormal Pareto 

Mean 95795.9 -3.5x108 -4299959.0 -3.5x1020 
t Stat 9.3 9.9 

t Critical 2.0 2.0 
P(T ≤ t) 5.0x10-11 4.5x10-12 

 
However, one can argue that the Pareto distribution is only applied to the tail of the distribution, 
making a formal analysis difficult to generate due to the lack of definition of the range of the tail. 
Hence, we fail to find any evidence using this approach that a Pareto distribution is superior to a 
lognormal distribution in terms of fitting the underlying data. This observation is consistent with 
the findings of Downey [13][15] and Goševa-Popstojanova et al. [25]. 

3.3. Estimating the Tail Index α with the Hill Estimator 
Goševa-Popstojanova et al. [24][25] present a second alternative mechanism for estimating the tail 
index, the Hill estimator [28].  Again, the basic idea behind the Hill estimator is to assume that a 
part of the distribution is a Pareto distribution and to search for it.  That is, the algorithm searches 
for the range [xi, xi+j] once again.  The algorithm uses the estimator in conjunction with a plot to 
search for this range.  The Hill estimator uses the k upper-order statistics from nxx ≥≥K1  

and is defined as: 

                         1
1

, loglog1
+

=
−∑= k

k

i
ink xx

k
H                       (8) 

Using this estimator, Hk,n is plotted for all k: 
nk <≤1  

 
At this point, as Resnick [44] states, one would “hope that the graph looks stable so you can pick 
out a value of α.” Resnick [44] further states that “Sometimes this works beautifully but 
sometimes there are problems and it pays to be on good terms with a higher power.”  Resnick [44] 
provides a detailed discussion of the problems and issues that are encountered when using this 
approach; and finishes with the following brief summary of the difficulties: 
“…. 

1. How do you get a point estimate from a graph? What value of k do you 
use? 

2. The graph may exhibit considerable volatility and/or the true answer 
may be hidden in the graph. 

3. The Hill estimate has optimal properties only when the underlying 
distribution is close to Pareto. If the distribution is far from Pareto, 
there may be outrageous bias even for sample sizes such as 1,000,000. 

….” 
Although it is not clear why this approach would be chosen, it is far from clear that this approach 
is inferior to the other alternatives.  Tsourti and Parnaretos [48] and Rezaul and Grout [45] both 
undertake empirical comparisons, by simulation, of semi-parametricg (including Hill’s) estimators 
for estimating tail indexes in heavy-tailed distributions. While they provide results which are not 

                                                 
g Semi-parametric estimators only estimate a single parameter at a time. Hence, here, they are used 
to estimate the tail index while ignoring the location parameter. 
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completely compatible, both papers imply that no single optimal approach exists; and that the 
“best estimator” tends to be dependent on the actual type of heavy-tailed distribution under 
investigation and the sample size. However, both papers imply that the Hill estimator performs 
well when the distribution is Pareto in nature and the tail index is moderate. In fact, Rezaul and 
Grout [45] recommend it as the “estimator of choice” when 20 ≤≤α and Tsourti and Parnaretos 
[48] when 10 ≤≤α . 

3.3.1. Discussions of the Hill Estimator Results 
Using the technique discussed, which is also utilized by Goševa-Popstojanova et al. [24][25], the 
Hill plots for k was created for both sites.  Goševa-Popstojanova et al. [24][25] used 10% and 14% 
of the upper tail in their Hill plot because k appears to settle to a constant value after those points.  
However, the Hill plots in this paper will be displayed across the entire tail to better display the 
stability of k.  The Hill estimator can only be performed on the tail of the distribution.  Hence, the 
tail was estimated using the method Goševa-Popstojanova et al. [24][25] proposed – even though 
Section 3.2 shows that this approach is not accurate.  In order to examine the Hill plot’s behavior , 
a smaller range (0-5) is used for the y-axis as shown in Figures 3.25 – 3.26.  These figures show 
that again α does not stabilize in any part of the graph.  In fact, it decreases as the k value is 
increased.  There does not appear to be a cut-off point as stated by Goševa-Popstojanova et al. 
[24][25].  The Hill plot results further confirms that the heavy-tailed property of the session length 
may not be an accurate model over the web sites under investigation.   
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Figure 3.25. Hill estimator for ECE at a smaller 
range for the y-axis 
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Figure 3.26. Hill estimator for Site A at a smaller 
range for the y-axis 

 

4    Results Discussion 

The results from this study show that the session length data may not fit a heavy-tailed 
distribution.  The findings do not confirm the results discovered by Goševa-Popstojanova et al. 
[24][25].  However, it should be noted that the websites used in this study have different properties 
than the websites used in the previous study. Table 2.1 shows that the durations of the log files 
used in Goševa-Popstojanova et al. [24][25] are short.  This study performs the investigation over 
a much longer period of time.  Furthermore, although Goševa-Popstojanova et al. [24] and [25] 
examined a commercial website, the duration is also very short (2 weeks and 1 week), whereas this 
study examined the commercial website for a 27 month period.   
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Besides the difference in the duration of the log files, the traffic intensity between the websites 
in this study and Goševa-Popstojanova et al. [24][25] are also vastly different.  The websites 
investigated by Goševa-Popstojanova et al. [24][25] have a much heavier traffic load than this 
study.  The busiest website for Goševa-Popstojanova et al. [24] received 37.9 millions hits and 
transferred 97 GB of data during a 3 week period.  Goševa-Popstojanova et al. [25]’s busiest 
website received 15.8 million hits and transferred 34.5 GB of data.  This study’s busiest website, 
which is ECE, received approximately 2.4 million hits and transferred 22.6 GB of data.  The 
difference in traffic intensity is another possible cause for the different results obtained in this 
study. 
 
5    Conclusions 

This study examines claims that session length data are sampled from a heavy-tailed distribution.  
The dependency of the data, the LLCD plot of the data, a QQ plot comparison of the performance 
of the Pareto distribution against the lognormal distribution in fitting the data, and a Hill estimator 
approach to estimating the tail index of the distribution are all examined in detail.  The 
investigation shows that the data may be dependent; however, the results are disputable because 
the formulation cannot be extended to cover all possible cases.  Furthermore, this study confirms 
that LLCD plots may not be ideal for investigating the heavy-tailed property of session data.  The 
α obtained from the LLCD plot does not stabilize during any part of the tail.  Additionally, the 
Pareto distribution itself is not sufficient for modeling heavy-tailed data because of the “wobble” 
effect as demonstrated.  The Hill estimator was examined and was shown that it also does not 
provide a stable α value.  In fact, α does not stabilize for any k. Finally, the QQ plot suggests that 
the lognormal is a “better” description of the entire distribution, although we cannot rule out that a 
heavy-tailed distribution may be an adequate distribution of the tail of the distribution due to the 
imprecise definition of the tail. 

Although the investigation in this study provides empirical evidence that the session data may 
not be heavy-tailed, the results can be disputed.  The methods utilized, while popular and well 
known are not entirely accurate.  However, no better alternatives exist; until accurate alternative 
approaches are presented, the heavy-tailed status of the session data is unknown.  Therefore future 
research should consider the matter as being unresolved and should still consider producing short-
tailed models to describe this phenomenon. 
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Appendix 1:    Introduction to Heavy-Tailed and Pareto Distributions 
The majority of statistical work is based on short-tailed distributions such as the normal and 
lognormal distributions. These distributions decay “quickly” (commonly exponentially) in contrast 



 

 

42     Investigating the Distributional Property of the Session Workload

 

with heavy-tailed distributions.  The rank size lawh [49] can be used to informally describe heavy-
tailed distributions.  This law states that: the second largest entity is half the size of the largest; the 
third largest entity is one third the size of the largest, etc.  That is, if the entities are ranked from 
largest (rank 1) to smallest (rank n), and  their values are denoted as: 

nxx ≥≥K1  

the rank i for an entity of value xi is proportional to the proportion of entities greater than i.  Or: 

                         
i
kxi ≈                             (9) 

 
for some constant k.  More formally, Resnick [44] states that a random variable X has a Pareto tail 
with index α, α > 0, if for x > 1 

 
α−≈> xxXP ][ 1, >x                    (10) 

 
Many authors provide a slightly more generic distribution of a Pareto distribution by incorporating 

an additional multiplicative term α
minx  (the location parameter, the actual term is L(x). For the 

Pareto distribution, L(x)= α
minx ), where α

minx  is a positive minimal value of X; i.e. 

∀x•x> α
minx . 

Examination of the Pareto distribution (which is a commonly examined heavy-tailed 
distribution) involves analysis of the tail index α.  Hence, α is examined with the common 

approach of setting α
minx =1 and the requirement for the additional inequality (Equation 10).  

Technically, the above distribution is defined in a continuous domain; however, within this 
investigation’s domain, the estimation of values clearly has a defined resolution.  So strictly 
speaking X is a discrete random variable; and the discrete probability distribution analogue to the 
Pareto distribution applies.  Therefore, the zeta distribution, or the Zipf distribution, is the actual 
distribution under analysis.  However, the distributions only differ in their definition of the 
multiplicative term L(x) and hence the above definition resolves the issue of having a distribution 
defined in a continuous domain being applicable on a discrete random variable.  

The Pareto distribution is an example of a wider set of distributions, namely heavy tailed 
distributions.  X has a heavy tailed CDF F(x) if 

 

)(][)(1 xLxxXPxF α−=>=−      (11) 

 
where L is slowly varying; i.e.  

                  1
)(
)(lim =

∞→ tL
txL

t
                           (12) 

 The Pareto distribution is the “simplest” example of a heavy-tailed distribution and is used 
throughout this paper; and hence the more general definition can be considered solely for 
information purposes.  

                                                 
h The rank size law is a good approximation for entities of high rank, but not for the largest. 
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The implications of deciding that X is from a heavy-tailed or Pareto distribution are severe as 
the definition of the standardized moments become problematic.  For the Pareto distribution, the 
first two moments are defined as: 
 

1
)( min

−
=
α
αxXE        (13),       2

2
min

)1)(2(
)(

−−
=

αα
αxXVar     (14) 

 
This implies that, for α ≤ 1 the expected value is infinite; and for α ≤ 2 the variance infinite.  

Clearly, this demonstrates serious limitations on the types of models which can be constructed 
using Pareto distributed variables.  In addition, these definitions are unrealistic in many situations 
because the distribution of X will be bounded by physical constraints.  Hence, a more rigorous and 
realistic definition requires the above to hold over a finite range [xi, xi+j] where the distribution 
applies.  

Although this might seem an unimportant technical point, it is actually a recurring theme in 
this domain.  Basically, all common methods of exploring potentially Pareto distributed variables 
follow this pattern where the investigation is only carried out within a finite range.  Hence, the 
approaches introduce a bias because they only investigate a small component of the distribution, 
namely the “tail”.  xi is often considered to be the start of the tail, although there is no method of 
evaluating i and no definition of the term tail. xi+j is commonly considered to be near xn; i.e. the 
highest ranked point within the data set. Clearly, the points, which in theory exist with ranks 
greater than n, cannot be inferred.  It is important to note that this range only corresponds to an 
extremely finite part of the distribution; it is not uncommon for the “tail component” or Pareto 
range to be defined for less than 1% of the sampled range nxx ≥≥K1 .  Hence, it is 

exceptionally difficult to make accurate estimations and infer reliable facts across such amounts of 
data. The amounts of data are very small both in absolute terms (the raw number of points) and 
relative terms (the percentage of the total sample).  Hence, given the difficulty of accurately 
characterizing information as belonging to a heavy-tailed distribution and the significant 
consequences in terms of undefined standardized moments, one should be careful in inferring that 
a heavy-tailed distribution exists. 

It should not be inferred from this discussion that the shape of the Pareto, or heavy-tailed, 
distributions are highly distinctive from short-tailed distributions.  In fact, many heavy-tailed and 
short-tailed distributions “look” highly similar.  For example, Gong et al. [22] plot the data from 
the Crovella and Bestavros [11] paper, a time-series which contains file sizes transferred over a 
period of time.  They compare the data at the 95% confidence intervals for both Pareto and 
lognormal models; and observe that the confidence intervals of both models grow with file size; 
and, at the tail, the two confidence intervals have a “large overlap which makes it difficult to 
distinguish them”.  Mathematically, Pareto and lognormal distributions also have a lot in common. 

Adapting from Gabaix [20] and Gong et al. [22], consider a time series of i.i.d. positive 
random variables Z1, …., Zt, ….Z∞. Let Zi be defined as: 
 

ttt AZZ 1−= , t = 1,                    (15) 

 
with Z0 = 1.  Taking logarithms yields 
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i
it AZ

1
ln , t = 1,                            (16) 

 
which by the central limit theorem converges in distribution to a normally distributed random 
variable. Consequently, Zt converges in distribution to a lognormal distributed random variable.  
Now, let’s add a condition that Zt must always exceed a threshold Δ. 
 

,....1},,max{ 1 =Δ= − tAZZ ttt   (17) 

 
Gabaix [20] shows that Zt now converges to a random variable with a Pareto distribution.  That is, 
if Δ = 0, it produces a lognormal distribution, otherwise a Pareto distribution.  Because of the 
similarity between the two distributions, this paper also examines the lognormal distribution for 
the session lengths recorded. 

Appendix 2:    Independence of Data 
Extreme value analysis methods are techniques that attempt to model rare events based on limited 
data.  Heavy-tail analysis requires a dataset of unobtainable size; and hence, the analysis 
performed in this paper can be classified as extreme.  Many extreme value analysis methods 
assume that the data set is independent.  In fact, the Hill estimator is the only known estimator to 
perform accurately with dependent data [45][48].  Hence, if the data is considered as dependent, 
extreme value analysis methods need to be modified.  Therefore, in this appendix, we consider this 
question; however, in this situation, the definition and associated tests for independence is an 
extremely complex subject with no single clear answer.  Independence or randomness is one of the 
four assumptions that typically underlie all measurement processes.  The randomness assumption 
is critically important because most standard statistical tests depend on it; the validity of the test 
conclusions are directly linked to the validity of the randomness assumption. 

To illustrate this issue, this paper investigates the autocorrelation function (ACF) to test for 
randomness or dependence of the data set. While we will concentrate on an autocorrelation 
approach to the question, other approaches exist (see Brockwell and Davis [7] for a discussion of 
alternatives).  The session length data can be seen as a time-series because each session length is 
recorded according to the session start time.  If the time-series is completely random then the 
entire ACF should be zero or the null hypothesis is ACF(k) = 0; where k is the lag. Examining 
ACF values, and determining if they are within the 95% confidence bounds around this central 
value is commonly utilized as a mechanism to test this hypothesis.  If there are values exceeding 
this bound, then the data is considered dependent.  Figures A2.1a and A2.1b show the ACF plots 
for ECE and Site A.   
 

 
Figure A2.1a. ACF for ECE 

 
Figure A2.1b. ACF for Site A 
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These plots also contain the 95% confidence bounds;  the plots show that 10% and 67% of the 

values exceed the upper bound for the ECE and Site A sites respectively, implying that the data 
may be dependent.  However, the analysis uses Barlett’s formula [42] to estimate the confidence 
interval.  This formula assumes that the data is normally distributed, and hence the confidence 
bounds are meaningless if the samples are drawn from a heavy-tailed distribution.  Alternatively, 
the Ljung-Box test [34] can be used to evaluate the null hypothesis.  The Ljung-Box test utilizes 
the following formula: 
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where ACFk  is the ACF value for lag k, n is the number of samples and m is the maximum lag.  Q 
is distributed as χ2 with (m-p-q) degrees of freedom.  We assume that p = q = 0; i.e. that the data 
sets have no trend or periodic information. Clearly, this assumption is invalid as web-sites clearly 
have many different types of periods with differing resolutions; e.g. day/night; weekday/weekend; 
non-holiday-period/holiday-period etc.  However, the exact nature of the periodic information is 
not understood and approaches to estimating p and q can be error prone.  Hence we choose to use 
this simplifying assumption.  This assumption effectively inflates the Type II error; which is 
considered an acceptable risk in this situation.  Using the above equation χ2 is calculated to be 
6582.68 and 586.88 for ECE and Site A respectively.  These χ2 values, with 100 degrees of 
freedom, correspond to a p-value of p < 0.001 for both websites.  Hence, the null hypothesis can 
again be rejected which means that the data set is dependent, but only if it is not sampled from a 
heavy-tailed distribution.  While this approach can be considered less distributionally restrictive 
than the previous approach, it is still, both theoretically [31] and empirically [9], not robust to 
heavy-tailed data.   

In addition, the standard ACF formula is invalid if the sample is from a heavy-tailed 
distribution as the formula basically measures deviations from the sample mean, while the sample 
mean is mathematically undefined for many heavy-tailed distributions.  Fortunately, the 
construction of a non-centered autocorrelation function is straightforward [12]: 
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Figures A2.2a and A2.2b shows the heavy-tailed ACF plots for ECE and Site A.  These plots show 
that the ACF values do not exceed 0.17 and 0.13 for the ECE and Site A sites respectively.  
However, confidence bounds estimations (or Q statistics) no longer exist; and unless specific 
information about the underlying distribution, including accurate values for its parameters, are 
known, a confidence interval cannot be defined [17].   

However, several alternative approaches still exist for evaluating the null hypothesis.  Feigin 
and Resnick [17] show that if the series can be modeled as a moving average process of lag l then 
the coefficients of the heavy-tailed ACF should decay to approximately zero beyond l; and in the 
limiting case where ∞→l , the coefficients should again all be approximately zero.  This 
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question can be investigated by asking if the co-efficients are summable.  Considering Figures 
A2.3 and A2.4, the answers appear to be negative in both cases. In addition, a more formal test can 
be constructed by forming a permutation distribution. The heavy-tailed ACF’s behavior, with 
respect to the null hypothesis, can be characterized by a summary statistic; e.g. the maximum 
absolute ACF coefficienti; this option is recommended by [17].   The p-value of the observed 
summarizing statistic is estimated by generating 999 permutations of the time-series; computing 
the statistic for each permutation and counting the number (C) of values greater than or equal to 
the actual observed statistics. The p-value is given approximately by ((1+C)/1000). Clearly, this 
approach avoids relying in the asymptotic theory or distribution for this particular summarizing 
statistic; and the test is distributionally robust for heavy-tailed situations.  Figures 3.3 and 3.4 
display the results of the permutation test. 
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      Figure A2.2a. Heavy-Tailed ACF for ECE 
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    Figure A2.2b. Heavy-Tailed ACF for Site A 

Visual inspection show that the majority of the max(ACF) of the permutations are below the 
actual max(ACF) which is represented by the horizontal line.  In fact, for the ECE site, none of the 
permutations are greater than or equal to the actual max(ACF) which means the p-value <  0.001.  
For Site A, two of the permutations are greater than or equal to the actual max(ACF); hence, the p-
value < 0.003.  Because the p-value for both websites are below the standard type I error cut-off 
values, the null hypothesis can be rejected which means that the data for both websites are 
dependent. 

While our approach is now a relatively robust examination of the null hypotheses several 
situations still exist where the validity of our approach and hence the associated results are at best 
questionable and at worst non-applicable. Feigin and Resnick [17] empirically demonstrate that 
the heavy-tailed ACF tends to exhibit erratic results in the following situations: 

• the presence of any non-linearities, such as the process being a bilinear process, 
• when the process is a moving average(l) process; if l > m, 
• the series is contaminated by (additive) outliers. 

These situations clearly represent risks to the internal validity of the results presented in this 
appendix. 
 

                                                 
i Other options include the partial or biserial autocorrelations. 



 

 

J. Miller and T. Huynh      47

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 101 201 301 401 501 601 701 801 901

permutation

AC
F

 
Figure A2.3. Permutation test for ECE 
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Figure A2.4. Permutation test for Site A 

 


