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Modern Web development is more and more moving towards the production of full-
fledged, complex Web applications, possibly equipped with active and/or adaptive be-
haviors. On the one side, this evolution implies higher development costs and times; on
the other side, such implications are contrasted by the dynamics of the modern Web,
which demands for even faster application development and evolution cycles.

In this paper we focus on the above problem, considering adaptive Web applications.
We defined an Event-Condition-Action (ECA) rule-based approach aimed at facilitating
the management and evolution of adaptive application features and we developed an en-
gine, namely Bellerofonte, to process ECA rules. In our approach, we decouple the active
logic (i.e. the adaptivity rules) from the execution of the actual application by means
of a decoupled rule engine capturing events and autonomously enacting the adaptivity
actions.

Keywords: Adaptive Web applications, Context-aware Web applications, Adaptivity,
Context-awareness, ECA rules, ECA-Web

1 Introduction

Adaptability (the design-time adaptation of an application to user preferences and/or device
characteristics [17]) and adaptivity (the run-time adaptation of an application to a user profile
or a context model [17]) have been studied in the last years by several authors in the field of
Web engineering. Adaptability is intended as the capability of the design to fit an application
to particular needs prior to the execution of the application. Adaptivity is intended as the
autonomous capability of the application to react and change in response to specific events
occurring during the execution of the application, so as to better suit dynamically changing
execution conditions. Recently, adaptivity has been extended to the case of context-aware
Web applications [12], where adaptivity is based on a dynamically updated context model
upon which the adaptive application is built.

Characteristic of the Web engineering discipline, the previous approaches to adaptability,
adaptivity, and context-awareness primarily focus on the definition of design processes to
achieve adaptation, thereby providing efficient methods and tools for the design of such a class
of applications. For instance, model-driven methods [17, 12], object-oriented approaches [22],
aspect-oriented approaches [5], and rule-based paradigms [18, 19] have been proposed for the

179



180 Managing Runtime Adaptivity through Active Rules: the Bellerofonte Framework

specification of adaptation features in the development of adaptive Web applications. The
resulting specifications facilitate the implementation of the adaptation requirements and may
also enhance the coherence and readability of the resulting code. Unfortunately, in most
cases during the implementation phase all the formalizations of adaptivity requirements are
lost, and the adaptivity features become buried in the application code. This aspect implies
that changes and evolutions of adaptive behaviors after the deployment of the application are
difficult, unless a new version of the application is implemented and released.

Based on our experience in the model-driven design of adaptive/context-aware Web ap-
plications [12, 11], we are convinced that the next step in this research area is to support a
dynamic management of adaptivity features. We indeed believe that a decoupled paradigm
for adaptivity rule specification, deployment, and administration can make rule management
easier, especially after the implementation and deployment of the application. On the one
hand, this will require proper design time support (e.g. languages or models), on the other
hand this will require suitable runtime environments where adaptivity specifications can be
easily administered.

In [15] we already outlined a first conceptual framework for this approach. We now focus on
the evolution of that work, describing a rule-based language (ECA-Web) for the specification of
adaptive behaviors, orthogonally to the application design, and its concrete implementation.
The resulting framework provides application designers with the ECA-Web language, and
application administrators with the possibility to easily manage ECA-Web rules (inserting,
dropping, and modifying rules) at runtime. As envisioned above, with the described approach
we enable the decoupled management of adaptivity features at both design- and run-time.

This paper is organized as follows. Section 2 discusses related works on adaptivity in the
Web. Section 3 provides an overview of the design concerns tackled in this paper. Section 4
introduces the ECA-Web rule language for the specification of adaptive behaviors for Web
applications and, then, shows how ECA-Web rules can be executed by a proper rule engine
and integrated with the execution environment of the adaptive Web application. Section 5
discusses the prototype of an adaptive Web application supported by ECA-Web rules and
shows the usage of the active rule language. Section 6 describes the implementation of the
overall system and reports on first experiences with the rule-based adaptivity specification and
the runtime management of adaptivity rules. Section 7 discusses termination and confluence,
which are relevant topics of any active system, for ECA-Web rules. Finally, Section 8 concludes
the paper and discusses future work.

2 Related Work

Conceptual modeling methods provide systematic approaches to design and deploy Web appli-
cations. Several well-established design methods have been so far extended to deal with Web
application adaptations. In [17] the authors extend the Hera methodology with two kinds of
adaptation: adaptability with respect to the user device and adaptivity based on user profile
data. Adaptation rules (and the Hera schemas) are expressed in RDF(S) (Resource Description
Framework/RDF Schema), attached to slices and executed by the AHA engine [7]. The UWA

Consortium proposes WUML [21] for conceptual hypertext design. Adaptation requirements
are expressed by means of OCL-based customization rules, referring to UML class or package
elements. In [9] the authors present an extension of WSDM [23] to cover the specification of
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adaptive behaviors. In particular, an event-based Adaptive Specification Language (ASL) is
defined, which allows designers to express adaptations on the structure and the navigation of
the Web site. Such adaptations consist in transformations of the navigation model, which can
be applied to nodes (deleting/adding nodes), information chunks (connecting/disconnecting
chunks to/from a node), and links (adding/deleting links). In [5] the authors explore Aspect-
Oriented Programming techniques to model adaptivity in the context of the UML-based Web
engineering method UWE. Recently, WebML [13] has been extended to cover adaptivity and
context-awareness [12]. New visual primitives cover the specification of adaptivity rules to
evaluate conditions and to trigger some actions for adapting page contents, navigation, hyper-
text structure, and presentation. Also, the data model has been enriched to represent meta
data supporting adaptivity.

The previous works benefit from the adoption of conceptual models, which provide design-
ers with powerful means to reason at a high-level of abstraction, independently of implemen-
tation details. However, the resulting specifications of adaptivity rules have the limit of being
embedded inside the design models, thus raising problems in the maintenance and evolution
of the adaptivity features, once the application is released.

Recently, active rules, based on the ECA (Event-Condition-Action) paradigm, have been
proposed as a way to solve the previous problem. Initially exploited especially in fields such as
content evolution and reactive Web [1, 6, 2], ECA rules have been recently adopted to support
adaptivity in Web applications. In particular, the specification of decoupled adaptivity rules
provides a way to design adaptive behaviors along an orthogonal dimension. Among the
most recent and notable proposals, the work described in [18] enriches the OO-H model with
personalization rules for profile groups: rules are defined in PRML (Personalization Rule
Modeling Language) and are attached to links in the OO-H Navigation Access Diagram.
The use of a PRML rule engine is envisioned in [19], but its real potential for adaptivity
management also at runtime remains unexplored.

Different transcoding solutions also adopt active rules for adapting Web pages. Most of
them however focus on the presentation layer and provide mechanisms to transform HTML

pages according to (possibly limited) device capabilities [20] or users’ visual disabilities [24].
Moreover, they typically support only adaptability and modify Web pages in relation to a
static set of user or device parameters. In [16] authors adopt the transcoding paradigm for the
development of the Generic Adaptation Component (GAC). GAC provides a broad range of
adaptation behaviors, especially supporting run time adaptivity. An RDF-based rule language
is used for specifying both content adaptation and context data update rules. A collection of
operations implementing these rules is provided. A notable feature, promoting portability, is
that GAC can be integrated as a stand-alone module into the Web site architecture.

In line with the previous works, the approach we describe in this paper proposes a rule-
based language adopting the ECA paradigm. We call the language ECA-Web, emphasizing
that it is able to express events and actions that may occur in a Web environment. Although
the proposed language allows one to reference elements of a conceptual specification of an
applicationa, it is a self-sufficient language for the specification of adaptivity rules. The strength
of our work is however the development of a decoupled environment for both the execution
and administration of adaptivity rules, which allows the management of adaptivity features

aIn this paper we shall briefly show how the language can be bound to WebML [13].



182 Managing Runtime Adaptivity through Active Rules: the Bellerofonte Framework

Context 
Model

Adaptive 
Hypertext
Adaptive 
Hypertext

Application 
Data

C
on

te
xt

 A
cq

ui
si

tio
n

Hypertext

Web Browser

Context 
Sensing 
Devices

Fig. 1. Context data in adaptive Web applications. Gray shaded boxes correspond to conventional,
non-adaptive parts; white boxes correspond to extensions required to support adaptivity; dashed
arrows indicate the source of possible context data.

to be kept totally independent of the application execution. This aspect introduces several
advantages in terms of maintainability and evolvability.

3 Design Concerns for Adaptive Web Applications

Developing adaptive Web applications typically requires some additional development steps
compared to the development of traditional, non adaptive Web applications, as adaptive
applications present some distinguishing characteristics that need to be taken into account.
Figure 1 shows our interpretation of adaptive or context-aware Web applications: The overall
application is composed of adaptive and non-adaptive parts. The non-adaptive hypertext
leverages application data for the rendering of the hypertext pages; the adaptive hypertext
also leverages a context model, which contains the execution context data that are at the basis
of the adaptive behaviors of the application (e.g. user profile data or environmental context
data). In order to always have an up-to-date picture of the application’s context, a suitable
context acquisition mechanism continuously updates the context model with fresh data.

According to this interpretation, enabling adaptivity requires suitable solutions addressing
the following design concerns:

• Context model definition and representation in an application-accessible format. Con-
text properties that are required to support the application’s adaptivity features need
to be identified and modeled as data objects that build up the context model.

• Context model management, consisting of:

– Context data acquisition by means of acquisition of user data that are either explic-
itly specified by the user or implicitly captured during user interaction by track-
ing the user’s navigations [10] or by means of measures of real-world, physical
context properties, characterizing the usage environment. This activity is highly
application-dependent and requires the design of suitable mechanisms and sens-
ing infrastructures for capturing context data, possibly on both the client and the
server side.
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– Context data monitoring to detect those variations in context data that trigger
adaptivity [11]. Any variation may cause a context-triggered, adaptive behavior
of the Web application. This activity abstracts the dynamics of context data and
specifies which variations of the data require an adaptation of the application.

• Hypertext adaptation. If context monitoring detects a situation demanding for adapta-
tion, then suitable adaptation operations need to be enacted, in order to translate the
detected context state into visible effects or operations that augment the effectiveness
and usability of the application.

So far, our work on adaptivity [12, 11] has been conceived in the context of a model-driven
methodology for the development of Web applications, which is based on the adoption of the
WebML conceptual model [13]. WebML proposes some modeling abstractions for data and
hypertext design. Data design is based on the well-know Entity-Relationship (ER) model.
Hypertext design, instead, exploits some original conceptual primitivies that are able to cover
a large set of requirements arising in the design of Web applications.

According to the proposed approach for the design of adaptive Web applications, the
specification of adaptivity actions is tightly coupled with the design of the hypertext, and
consists in “attaching” suitable adaptive behaviors to those pages that are part of the adap-
tive hypertext. Actually, not only pages but also areas (i.e., clusters of pages) and entire
hypertexts (site views in WebML terminology) may be tagged as adaptive and associated
with a chain of WebML operations, representing the adaptivity logic associated to them and
executed each time context monitoring (restricted to the currently viewed page) demands
for an adaptation. The modeling of adaptive actions leverages existing WebML operation
units, but also a set of newly introduced, adaptivity-specific units, especially related to the
acquisition and management of context data. For more details on such new units the reader
is deferred to [12, 11, 14, 10].

The experience of extending WebML for adaptivity allowed us to identify advantages and
drawbacks of the tight integration of application and adaptivity logics. Despite the multiple
advantages offered at design time by the adoption of a conceptual model, we in particular
observed that the management and evolution of the adaptivity rules after the application
deployment is cumbersome, since it requires the modification of the design schema and a
new deployment of the application. This motivation led us to develop a decoupled paradigm
for the specification of adaptivity rules, which addresses the previous design concerns from
a slightly different perspective. In the following, we describe the result of this effort, the
Bellerofonte framework for the dynamic management of adaptivity features.

4 Enabling Dynamic Adaptivity Management

The runtime management of an application’s adaptive behaviors is articulated in two comple-
mentary features: a design component (the ECA-Web language) and a runtime component
(the rule execution environment). The design component enables the specification of adaptive
behaviors, while the runtime component supports the execution and dynamic management of
the specified behaviors in Bellerofonte.
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<rule name="...">
    <scope>

...
    </scope>
    <events>

...
    </events>
    <conditions>

...
    </conditions>
    <action>

...
    </action>
    <priority>

...
    </priority>
</rule>

Optional binding of the rule to hypertext elements. If no 
scope is defined, the rule is considered of global scope 
and thus applied to all hypertext pages.
Mandatory specification of the events that trigger the 
rule (Web events, data events, temporal events and 
external events).

Optional condition to check the status of session 
variables or database content.

Mandatory action to be enacted to adapt the application 
in response to the event that triggered the rule.

Optional priority to resolve conflicts among 
concurrently actived rules over the same scope.

Fig. 2. Structure of ECA-Web rules.

4.1 The ECA-Web Language

ECA-Web is an XML-based language for the specification of active rules, conceived to manage
adaptivity in Web applications. The syntax of the language is inspired by Chimera-Exception,
an active rule language for the specification of expected exceptions in workflow management
systems [8]. ECA-Web is an evolution of the Chimera-Web language we already proposed
in [15], and it is equipped with a proper rule engine for rule evaluation and execution. The
general structure of an ECA-Web rule is summarized in Figure 2. A typical ECA-Web rule is
composed of five parts: scope, events, conditions, action, and priority.

4.1.1 Scope

The scope defines the binding of the rule with individual hypertext elements (e.g. pages, links,
contents inside pages). In line with the classification of the application’s pages into adaptive
and non-adaptive as described in Figure 1, the definition of a suitable scope for adaptivity
rules allows one to couple the respective adaptivity logic with individual hypertext elements.
If the definition of the scope is omitted, the rule has a global scope, i.e., the rule is applied to
all the pages of the application.

When specified for a rule, the definition of the <scope> element requires the indication of
the hypertext elements the rule must be applied to. For example, the following XML code
fragment specifies a scope where a <page> element contains the name of the page (PageX)
that is affected by the rule.

<scope>

<page>PageX</page>

</scope>

The scope can bind a rule also to multiple pages; as also shown in the case study description
(see Section 5), this is achieved by considering page containers (e.g., areas or entire hypertext
structures) as scope elements, but the scope may also be specified by simply listing the pages
that are part of the scope.b At the current stage of Bellerofonte, the finest granularity level

bThe scope elements depend on the abstractions provided by the adopted modeling language.
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is however the page, since it is the lowest-level hypertext element that can be addressed
by adaptivity actions with conventional Web technologies. We are however planning some
extensions, based on Rich Internet Applications - RIA - technologies, to be able to address
even single content chunks inside pages, thus providing a finer level of granularity for the
rules.

4.1.2 Events
By means of events we specify how the rule is triggered in response to user navigations or
changes in the underlying context model. ECA-Web provides support for the following kinds
of events:

• Data events refer to operations on the application’s data source, such as create, modify,
and delete. In adaptive Web applications, such events can be monitored on user,
customization, and context data to trigger adaptivity actions with respect to users and
their context of use.

• Web events refer to general browsing activities (e.g. the access to a page, the submission
of a form, the refresh of a page, the download of a resource), or to events generated by
the Web application itself (e.g. the start or end of an operation, a login or logout of the
user).

• External events can be configured by a dedicated plug-in mechanism in form of a Web
service that can be called by whatever application or resource from the Web. An external
event could be for example a notification of news fed into the application via RSS (Really
Simple Sindacation).

• Temporal events are subdivided into instant, periodic, and interval events. Interval
events are particularly powerful, since they allow the binding of a time interval to
another event (anchor event). For example, the expression “five minutes after the
access to page X” represents a temporal event that is raised after the expiration of 5
minutes from the anchor event “access to page X”.

The following code lines exemplify the definition of a data event:
<events>

<event>

<class>bellerofonte.events.DataEvent</class>

<params>

<param name="type">modify</param>

<param name="table">Position</param>

<param name="attr">latitude</param>

</params>

</event>

</events>

Events are specified by referencing their class names in the Bellerofonte framework (see
element <class>). Data events further require the definition of three parameters in input (by
means of the <params> and <param> elements): the type of data event, i.e., create, modify, or
delete, and the table and the attr(ibute) of the context model to be monitored. Web events,
external events, and temporal events are specified analogously; a complete discussion of the
event specification syntax would however be out of the scope of this paper.

The trigger of a rule may also consist of more than one event. In this case, the <events>
element will contain one <event> element for each basic event. Multiple events follow a



186 Managing Runtime Adaptivity through Active Rules: the Bellerofonte Framework

disjunctive execution logic, i.e., in order for the respective rule to be triggered, it suffices
that one of the declared events is fired. This policy is inherited from the Chimera-Exception
language [8].

4.1.3 Conditions
The condition part evaluates the state of user-specific application data and decides whether a
rule’s action is to be executed or not in response to the triggering of the rule’s event. Specifying
a condition corresponds to the specification of a query over a user’s context, profile, or session
data. For example, in the condition part of an ECA-Web rule we can specify parametric
queries over the application’s data source, where parameters can be filled by values coming
from session variables (referring to a specific user) or to page parameters.

By means of the shortcut Rule.VarName it is possible to directly access the user’s personal
session variables (e.g. VarName), while the access to database content is supported via the
<object> element, which allows the definition of an object structure over entities (<table>
element) in the underlying database. The object specification supports the use of a dot
notation for accessing the values of the attributes of the object. Note that if an object
definition returns more than one instance, in our current implementation only the first item is
selected to populate the object structure. The following code snippet exemplifies the definition
of an object P over a data entity Position:

<conditions>

<object>

<name>P</name>

<table>Position</table>

<requirements>

<eq><value>P.user_id</value><value>Rule.currentUser</value></eq>

</requirements>

</object>

<notnull>

<value>P.latitude</value>

</notnull>

</conditions>

The <requirements> construct allows one to define a selector condition over the entity,
which is based on a few operators: equal to <eq>, less than <lt>, greater than <gt>, less
than or equal to <leq>, greater than or equal to <geq>, not null <notnull>, different from
<diff>. In the code lines above, the selector condition selects the object with user id equal
to Rule.currentUser (the id of the current user).

The only definition of objects does not yet fully specify a condition definition. A condi-
tional statement over one of the object is required.This final conditional statement represents
the actual value of the condition. For instance, the code lines above check whether the value
of P.latitude is not null.

It is worth noting that in ECA-Web time-based conditions are expressed as time events,
in the form of “an amount of time expired since the occurrence of an anchor event”: as an
example, a temporal event may allow one to express the condition “if 5 minutes elapsed since
the page X has been visited”. As for more complex conditions, further details can be found
in [8, 10].

4.1.4 Actions
The action specifies the adaptation action that is to be performed in response to a triggered
event and a true condition. Typical adaptive actions in the Bellerofonte framework are:
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1. Adaptation of visualized contents or delivered services, for example to take into account
the preferences specified in a user profile or the properties of the current context of use
(e.g., geographical location, environmental conditions, system status, etc.).

2. Automatic navigation actions toward another page of the same application, which is bet-
ter suited to the current context conditions, for example to enable (or disable) functions
and contents depending on the current situation of use.

3. Adaptation of the whole hypertext structure for supporting coarse-grained adaptation
requirements, for example due to changes of the user’s device, role or activity within a
multi-channel, mobile environment.

4. Adaptation of presentation properties, in order to provide more fine-grained adjustments
of the application’s presentation layer.

5. Modifications to the underlying database content, e.g. to update a counter variables.

6. Execution of back-end operations, e.g. to enact external application logics.

Similarly to events, also the definition of the action of an ECA-Web rule requires the
referencing of the respective class in the Bellerofonte framework, and the passing of suitable
parameter values, as exemplified in the following code lines that redirect the user to another
page of the application:

<action>

<class>bellerofonte.actions.Showpage</class>

<params>

<param name="redirectURI">NewPageName</param>

</params>

</action>

We observe that the interpretation of actions in ECA-Web distinguishes the rule lan-
guage for adaptive Web applications from the original rule language for exception handling
in workflow management systems, Chimera-Exception. In fact, the set of available actions in
ECA-Web extends the original set by adding actions such as the above mentioned ones, while
ECA-Web does not include pure exception handling actions.

4.1.5 Priorities
The priority defines an execution order for rules that are concurrently activated over the same
scope. If no priority is specified, a default priority value is assigned. The highest priority is
represented by 0 (zero), and priorities decrease with the growing of the priority value (up to
a maximum value of 255). Priorities are specified as follows:

<priority>10</priority>

In Section 7 we shall show how a sensible use of priorities allows the application designer
to control the execution order of multiple concurrently activated rules.

4.2 The Integrated Runtime Architecture

The execution of ECA-Web rules demands for a proper runtime support, which is offered by
the Bellerofonte framework. Figure 3 summarizes the functional architecture of the system,
highlighting the two main actors: the Rule Engine and the Web Server hosting the Web
application. The Rule Engine is equipped with a set of Event Managers to capture events,
and a set of Action Enactors to enable the execution of actions. The communications among
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Fig. 3. Functional architecture of the integrated execution environment for adaptive Web appli-
cations.

the single modules are achieved through asynchronous message exchanges (Message-Oriented
Middleware).

4.2.1 Event Managers
Each type of ECA-Web event is supported by a suitable event manager [15]:

• Data events are managed by the Data Event Manager, which runs on top of the appli-
cation’s data source.

• Web events are raised in collaboration with the Web application and captured by the
Web Event Manager. Since adaptivity actions are typically performed for each user
individually, Web events are also provided with a suitable user identifier (if any).

• External events are captured by means of the External Event Manager. When an
external event occurs, the name of the triggering event and suitable parameters are
forwarded to the rule engine.

• Temporal events are managed by the Temporal Event Manager, based on interrupts and
the system clock.

The managers for external and temporal events are general in nature and easily reusable.
The Data Event Manager is database-dependentc. The Web Event Manager requires a tight
integration with the Web application.

cIn our current implementation we support PostgreSQL. Modules for other database management systems are
planned for future releases.
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4.2.2 Action Enactors

While some actions can easily be implemented without any explicit support from the Web
application (e.g. the adaptation of page contents may just require the setting of suitable
page parameters when accessing the page), others may require a tighter integration into the
application’s runtime environment (e.g. the restructuring of the hypertext organization). The
level of application support required for the implementation of the adaptivity actions thus
heavily depends on the actual adaptivity requirements. However, application-specific actions
can easily be integrated into the ECA-Web rule logic and do not require the extension of the
syntax of the rule language (an example of the use of actions is shown in Figure 8).

As depicted in Figure 3, the execution of adaptivity actions is performed by means of
three action enactors: Web Action Enactor, External Action Enactor, and Data Action En-
actor. Web actions need to be provided by the application developer as Java classes; they are
performed by the Web Action Enactor, which is integrated into the application runtime envi-
ronment, in order to guarantee access to the application logic. External actions are enacted
through a dedicated Web service interface. Data actions are performed on the database that
hosts the application’s data source.

The enactor for external actions is general in nature and easily reusable, the Data Ac-
tion Enactor is database-dependent, the Web Action Enactor is integrated with the Web
application.

4.2.3 Rule Engine

In the architecture depicted in Figure 3, the Rule Engine is in charge of identifying the ECA-
Web rules that correspond to captured events, of evaluating conditions, and of invoking action
enactors – in case of conditions evaluating to true.

In the rule engine, a scalable, multithreaded Rule Evaluator evaluates conditions to de-
termine whether the rule’s action is to be performed or not, depending on the current state
of the application.

The rule engine also includes a Rule Registry for the management of running, deployed
ECA-Web rules. Deployed rules are loaded into the Rule Registry, a look-up table for the
efficient retrieval of running rules, starting from captured events. The internal execution logic
of a triggered rule is graphically summarized in Figure 4.

4.3 ECA-Web Rule Management

While the Rule Registry contains only deployed rules for execution, the Rule Repository offers
support for the persistent storage of rules. For the management of both Rule Registry and
Rule Repository, we provide a Rule Administration Panel that allows designers to easily
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Fig. 5. The Web interface for the Rule Administration Panel of Bellerofonte.

view, add, remove, activate, and deactivate rules. Figure 5 shows a screenshot of the Rule
Administration Panel.

4.4 Deploying ECA-Web Rules

Within the Bellerofonte framework, activating or deploying an ECA-Web rule is not a trivial
task and, depending on the rule specification, may require to set up a different number of
modules. During the deployment of an ECA-Web rule, the XML representation of the rule
is decomposed into its constituent parts, i.e. scope, events, conditions, action, and priority,
which are then individually analyzed to configure the system. The scope is used to configure
the Web Event Manager and the Web Action Enactor. The events are interpreted to configure
the respective event managers and to set suitable triggers in the application’s data source.
The conditions are transformed into executable, parametric queries in the Rule Registry. The
action specification and the rule’s priority are as well fed into the Rule Registry. Each active
rule in the system is thus represented by an instance in the Rule Registry, (possibly) by a set
of data triggers in the database, and by a set of configurations of the event managers and the
action enactors.

The registry provides the concurrent access by multiple Rule Evaluators. Priorities are
taken into account in the action enactor modules, which select the action to be performed for
the pages under computation (the scope) from the queue of possible actions, based on rule
priorities.

As better illustrated in Section 7, during the deployment of an ECA-Web rule, conflict
resolution and termination analyses will be performed in line with the methods conceived and
implemented for the Chimera-Exception language [8].
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4.5 Enacting Adaptivity

External and data actions can be executed immediately upon reception of the respective
instruction from the rule engine. The enaction of Web actions, which are characterized by
adaptations visible on the user’s browser, is possible only when a “request for adaptation” (a
page request) comes from the browser. In fact, only in presence of an explicit page request,
the Web application is actually in execution and, thus, capable to apply adaptations. This is
due to the lack of suitable push mechanisms in the standard HTTP protocol.

In order to provide the application with active/reactive behaviors, in our previous works
we have studied two possible solutions: (i) periodically refreshing the adaptive page cur-
rently viewed by the user [12], and (ii) periodically monitoring the execution context in the
background (e.g. by means of suitable Rich Internet Application – RIA – technologies) and
refreshing the adaptive page only in the case adaptivity actions are to be performed [11, 15].
Both mechanisms are compatible with the new rule-based architecture and enable the ap-
plication to apply possible adaptivity actions that have been forwarded to the Web Action
Enactor by the Rule Engine.

5 Case Study

In the context of the Italian research project MAISd, we have developed a context-aware Web
application, called PoliTour, supplying information about buildings and roads within our
university campus at Politecnico di Milano. The application is accessed through a PDA
equipped with a GPS receiver for location sensing. User positioning is based on geographical
longitude and latitude. As the user moves around the campus, the application publishes
location-aware data, providing details about roads and buildings. The required adaptivity
consists of (i) adapting page contents according to the user’s position, and (ii) alerting the user
of possible low connectivity conditions, based on the RSSI (Received Signal Strength Indicator)
value of the wireless Internet connection. The alert consists in changing the background color
of the displayed page.

The application has been designed with WebML. We observe that in this paper we use the
WebML notation for two distinct purposes: (i) to easily and intuitively describe the reference
application, and (ii) to better highlight how the active rules introduced in the next section
may take advantage from a formally defined, conceptual application model for the definition
of expressive adaptivity rules. The approach we propose in this paper, however, is not tightly
coupled to WebML and can be used in the context of any modeling methodology upon suitable
adaptation.

We also observe that the approach based on ECA-Web rules described in this paper is not
to be considered an alternative solution to the conceptual design approaches so far proposed in
the literature for Web application modeling. Rather, we believe that the best expressiveness
and a good level of abstraction for the illustrated adaptivity specification language will be
achieved by complementing the current modeling and design methods (such as WebML, Hera,
OO-H or OOHDM). In fact, in this paper we hint at the specification of ECA-Web rules on
top of WebML (both data and hypertext models), just like SQL triggers are defined on top
of relational data models. This consideration is in line with the proposal by Garrigós et.
al [19], who show how to apply their PRML rule language to several different conceptual Web
application models.

The conceptual model of the application serves as terminological and structural reference
models for the specification of adaptivity rules and, thus, allows application developers to keep

dhttp://www.mais-project.it
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Fig. 6. ER data schema of the PoliTour application.

the same level of abstraction and concepts already used for the design of the main application.
In terms of WebML, for example, this could mean to restrict the scope of individual rules to
specific hypertext elements like content units, pages, or areas, or to relate events to specific
links or units. The same holds for actions, which could for example be applied to single units
or even attributes.

5.1 Application Design with WebML

Figure 6 depicts a simplified version of the data schema underlying the PoliTour application,
expressed in the ER notation. All entities represent some context properties that underly the
adaptive features of the application and are therefore part of the so-called context model e.

The entity User stores data characterizing individual application users. The entities
Connectivity and Position are directly connected to the entity User, as they represent
context data which are individual for each user of the system. Position contains the latest
GPS coordinates for each user, Connectivity contains a set of discrete connectivity levels
that can be associated to users, based on their current RSSI. GPS coordinates and RSSI are
sensed at the client side and periodically communicated to the application server in the back-
ground [11]. The entities Area, Building, and Road provide a logical abstraction of raw
position data: buildings and roads are mapped onto a set of geographical areas inside the
university campus, which enables one to associate a user with the building or road he/she is
located in, based on the GPS position. The entity Classroom may be considered additional
application data, as the application is not able to react to that kind of granularity (the GPS
receiver works outdoors, only).

Figure 7 depicts the WebML-based hypertext schema of the PoliTour application defined
on top of the ER schema shown in Figure 6. The application hypertext is composed of
three pages: Buildings, Roads, and Classroom. Page Buildings shows a list of buildings
(BuildingsIndex unit) the user can select from. By choosing one of the buildings, the
respective details (BuildingData unit) and the list of classrooms (ClassroomsIndex unit) of
the building are shown. If interested in, the user can select one of the building’s classrooms
and navigate to the Classroom page. Similarly, page Roads shows a list of roads for selection
by the user. The details of selected roads are shown by the RoadData unit positioned in

eAs can be noticed, we use an opportunistic model, which is specific to the particular application domain.
Bellerofronte does not adopt a general context model. Also, the definition of a universal context model is not
discussed in this paper and is out of the scope of our research.
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Fig. 7. Simplified hypertext model of the PoliTour application. H stands for Home page; L stands
for Landmark page.

the middle of the page. The identifier of the selected road is further propagated to the
NearbyBuildings unit, which shows the buildings adjacent to the road and allows the user to
navigate to the Buildings page. The two pages Buildings and Roads are further tagged as
landmark pages, meaning that they can be accessed through a global navigation menu. Page
Buildings is also tagged as the home page of the application.

5.2 Defining an ECA-Web Rule

The full specification of the application’s adaptivity requires several different ECA-Web rules
to manage the adaptation of the contents in the pages Buildings and Roads, and to alert
the user of low connectivity conditions. Figure 8 shows the ECA-Web rules that adapts the
content of the page Buildings to the position of the user inside the university campus.

The scope of the rule binds the rule to the Buildings page. The triggering part of
the rule consists of two data events, one monitoring modifications to the user’s longitude
parameter, one monitoring the user’s latitude parameter. In the condition part of the
rule we check whether there is a suitable building associated to the user’s current position
(<notnull> condition), in which case we enact the Showpage adaptivity action with new
page parameters, suitably computed at runtime; otherwise, no action is performed. The
condition evaluation requires to extract from the data source two data items (<object>),
namely the position of the current user and the area in which the user is located. The
selection condition is enclosed within the <requirements> tag. In the action part of the
rule we link the bellerofonte.actions.Showpage Java class, which contains the necessary
logic for the content adaptation action. The variable building oid has been computed in
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<rule name="showBuilding">
    <scope>
        <page>/politour/building.jsp</page>
    </scope>
    <events>
        <event>
            <class>bellerofonte.events.DataEvent</class>
            <params>
                <param name="type">modify</param>
                <param name="table">Position</param>
                <param name="attr">latitude</param>
            </params>
        </event>
        ...
    </events>
    <conditions>
        <object>
            <name>P</name>
            <table>Position</table>
            <requirements>
                <eq><value>P.user_id</value><value>Rule.currentUser</value></eq>
            </requirements>
        </object>
        <object>
            <name>A</name>
            <table>Area</table>
            <requirements>
                <lt><value>A.MinLatitude</value><value>P.Latitude</value></lt>
                <gt><value>A.MaxLatitude</value><value>P.Latitude</value></gt>
                <lt><value>A.MinLongitude</value><value>P.Longitude</value></lt>
                <gt><value>A.MaxLongitude</value><value>P.Longitude</value></gt>
            </requirements>
        </object>
        <notnull>
            <value>A.building_id</value>
        </notnull>
    </conditions>
    <action>
        <class>bellerofonte.actions.Showpage</class>
        <params>
            <param name="redirectURI">building.jsp?id=<value>building_id</value></param>
        </params>
    </action>
</rule>

Binding of the rule to the Building page

The rule may be triggered by two data events, 
i.e. the modification of the current user’s latitude 
or longitude. For presentation purposes, we only 
show the event related to the latitude parameter.

The specification of the rule’s 
condition requires the definition of two 
data objects for the construction of the 
database query: the first one (P)
extracts the current user’s position by 
means of the Rule.currentUser
environment variable; the second one 
(A) extracts the area associated to the 
user’s current position. Finally, the 
<notnull> condition allows us to check 
the presence of a building in the 
identified area.

The adaptation of the page 
contents requires the invocation 
of the Showpage action with 
suitable parameters computed 
at runtime.

Fig. 8. The ECA-Web rule for checking the user’s current position and updating page contents.

the condition part of the rule and is here used to construct the URL query to be attached
to the automatic page request that will cause the re-computation of the page and, thus, the
adaptation of the shown content.

We observe that the scope of the previous rule is limited to one specific hypertext page.
There might be situations requiring a larger scope. For example, the rule for alerting users
about low connectivity is characterized by a scope that spans all the application’s pages; in
terms of WebML, binding an ECA-Web rule to all pages means to set the scope of the rule to
the site view, i.e. a model element (see site view PoliTour in Figure 7). The scope of the rule
is specified as follows:

<scope>

<siteview>PoliTour</siteview>

</scope>

As for the dynamic management of adaptivity rules, we could for example be interested in
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testing the two adaptivity features (location-aware contents and the low connectivity alert)
independently. We would thus first only deploy the rule(s) necessary to update the contents
of the Buildings and Roads pages and test their functionality without also enabling the alert.
Then, we could disable this set of rules and enable the rule for the alert and test it. If both
tests are successful, we finally could enable both adaptivity features in parallel and test their
concurrent execution.

6 Implementation

The proposed solution has been developed with scalability and efficiency in mind. The Web
application and the rule engine are completely decoupled, and all communications are based
on asynchronous message exchanges based on JMS (Java Message Service). The different
modules of the proposed system can easily be distributed over several server machines. The
overhead introduced into the Web application is reduced to a minimum and only consists
of (i) forwarding Web events and (ii) executing adaptivity actions. These two activities in
fact require access to the application logic. Depending on the required adaptivity support,
event mangers and action enactors may require different levels of customization by the Web
application developer. The customization consists in the implementation of the application-
specific events and of the actions that are to be supported by the adaptive application.

To perform our first experiments with ECA-Web and the rule engine, we have adapted the
PoliTour application, which we already extensively tested when developing our model-driven
approach to the design of context-aware Web applications [11]. As for now, our experiments
with a limited number of rules have yielded promising results. Experimentations with larger
numbers of active rules, different adaptive Web applications, and several users in parallel are
planned.

Also, to really be able to take full advantage of the flexibility provided by the decoupled
adaptivity rule management, a set of suitable adaptivity actions needs to be implemented.
Our current implementation provides support for data actions and a limited set of Web actions
(namely, ShowPage for adapting page contents, and ChangeStyle for adapting presentation
style properties). Data actions are currently applied only to entities and attributes that are
directly related to the user for which the action is being executed. Also, condition evaluation
is automatically confined to those context entities and attributes that are related to the
user for which the rule is being evaluated. We are already working on extending condition
evaluation to any application data, coming from the data source as well as from page and
session parameters.

In the context of WebML, the provision of a set of predefined adaptivity actions will lead
to a library of adaptivity actions, possibly integrated into the WebML runtime environment.
In the case of general Web applications, the rule engine can be still used in the same fashion
and with the same flexibility, provided that the language is adapted to take into account the
primitives underlying the application design (e.g., “slices” instead of “pages”) and that the
implementations of the required Web event managers and Web action enactors are supplied.

7 Termination and Confluence

When dealing with active software components, the designer has to pay great attention to
the characteristics of the entire set of resulting active behaviors. In particular, the designer
must study the termination and confluence properties of the set of active behaviors, in or-
der to identify possible cyclic behaviors or non-deterministic orderings of active behaviors,
respectively [8].
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7.1 Termination Analysis

Termination takes place when active rules do not trigger each other indefinitely. This, hope-
fully, means that rule processing eventually terminates or, alternatively, that rule execution
never yields infinite loops. It is possible to distinguish three different kinds of typically unde-
sired cyclic behaviors:

• Self-triggering: one rule triggers itself indefinitely. As an example, consider a rule R1

triggered by event e1 and executing action a1. Self-triggering occurs if a1 triggers e1.

• Cross-triggering: two rules trigger each other indefinitely. Imagine, for example, to have
two rules, R1 and R2, where R1 is triggered by e1 and executes a1, and R2 is triggered
by e2 and executes a2. Cross-triggering occurs if a1 triggers e2 and a2 triggers e1.

• Cascaded triggering: multiple rules trigger each other indefinitely in a cascaded fashion.
Consider, for instance, Ri with 0 ≤ i ≤ n, where ai triggers ei+1 for 0 ≤ i < n and an

triggers e0: cascaded triggering occurs.

Termination is a well studied topic in the field of active databases, mainly focused on
rules triggered by data events and performing actions that change the state of the database.
From a strict database point of view, in Bellerofonte we assume that rules execute as ACID
transactions upon the same database and their serializability is guaranteed by the underlying
database server. However, ECA-Web rules extend the strict area of the pure database field,
as actions are not limited to database changes only but also include Web actions or external
actions.

As shown in [8], the analysis of termination is not a simple task, as it requires to detect all
those situations that may lead to the self-triggering, cross-triggering, or cascaded triggering
of active rules. For the analysis of the termination properties of ECA-Web rules, we thus
introduce a Termination Analysis Machine (TAM), similarly to [8], which allows us to discover
any possible non-termination at rule compilation time, i.e., when an ECA-Web rule is deployed,
and to generate appropriate warning messages for the developer. TAM limits its analysis to
the rules defined for single users of one single application. At present, in fact, we limit the
data actions of ECA-Web rules to each user’s personal profile data, and we do not allow two
users to share personal profile data. Web actions are limited by construction to single user
sessions only, while external actions are outside the control of the application.

For the detection of possible non-terminating behaviors, each time a new rule is deployed
for a specific user, TAM builds up an activation tree of the user’s active rules. Every node
of the tree relates to one trigger and is identified by the unique trigger name. Any action of
any trigger is depicted by one arc inside the tree, regardless of the condition of the trigger
itself. In fact, condition evaluation takes place at run-time, and the returned value cannot
be estimated in advance. If the action can, in turn, activate an event, the arc is drawn from
the trigger whose action is considered to the trigger whose event is activated by that action.
The TAM then checks whether any cycle can be individuated inside the graph: each detected
cycle may yield a non-termination, depending on the evaluation of the condition part of the
trigger.

Hence, cycles represent only potential situations of non-termination. Oftentimes, cyclic
triggering graphs are acceptable, provided that each cycle is analyzed in order to test whether
termination is in danger. In this regard, the literature considers for example semantic rule
analysis methods (e.g. [3, 4]), which can be extended to our context, even if several practical
difficulties may arise. From a practical point o view, however, it is worth noting that in our
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approach to adaptive Web applications, the user always has the possibility to simply stop
the active behavior of the application. Rule evaluation occurs at discrete time intervals only
(after each polling interval), which always guarantees the user a higher priority and prevents
the complete loss of control.

7.2 Confluence

Confluence of active behaviors means that the final effect of the processing of multiple con-
currently triggered rules is independent of the ordering by which rules are triggered and
executed.

In general, whenever a language enables the user to perform a declarative selection of a
set of elements, followed by the individual management of each element in the set, confluence
is not guaranteed. As an example, this situation typically occurs in most SQL triggers and
procedures of conventional database applications, which, thus, inherently implement non-
confluent behaviors. The same consideration applies to ECA-Web: each rule is intrinsically
nondeterministic, because it associates a set-oriented, declarative condition with a tuple-
oriented imperative action. There is no language construct for imposing a rule-internal order
on the bindings that are selected by the condition.

The complete analysis of confluence in ECA-Web requires to study also the case where
two (or more) rules react to the same event. For instance, we might have rule R1 which is
triggered by event e1, checks condition c1, and possibly executes action a1, which redirects
navigation to page p1; we might also have rule R2 which is triggered by event e1, checks
condition c2, and possibly executes action a2, which redirects navigation to page p2. The
following two situations may happen:

• c1 and c2 are mutually exclusive: If c1 = c2, we can say for sure which is the finally
displayed page, according to the result of the condition evaluation;

• c1 and c2 are not mutually exclusive: If, instead, c1 �= c2, we cannot say for sure if the
page finally displayed is p1 or p2.

In order to enable the developer to clearly state which is the desired order of rules (and of
actions), ECA-Web adopts the following policy, based on the assignment of suitable priorities
to rules (see Section 4.1.5):

• If two or more rules with the same priority can be triggered by the same event, their
conditions must be mutually exclusive. Otherwise, the rule compiler generates an error
message.

• If two or more rules with different priorities can be triggered by the same event, their
conditions not necessarily need to be mutually exclusive. However, if rules with different
priority are triggered concurrently and their respective conditions are evaluated true,
only the rule with highest priority (i.e. the one with the lowest <priority> value) is
processed, the one with lower priority is discarded and cancelled.

The described policy is a major difference with respect to [8] and, in general, to traditional
active database systems, where all the triggers, also low priority ones, are always executed
and never cancelled by higher priority triggers. However, in the specific context of adaptive
Web applications, where actions may imply the re-direction of the user to another page or the
re-arrangement of the page layout, we have opted for a simple rule execution logic, in order
to keep the resulting adaptive behaviors intuitive to users. Also, executing a rule with low
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priority immediately after the execution of a rule with higher priority may lead to obsolete or
wrong adaptive behaviors, as the execution of the high priority rule in general also changes the
actual execution context. A sensible design of ECA-Web rules thus guarantees comprehensible
application behaviors.

8 Conclusions

We believe that the decoupled runtime management of adaptivity features represents the
next step in the area of adaptive Web applications. In this paper we have therefore shown
how to empower design methods for adaptivity with the flexibility provided by a decoupled
environment for the execution and the administration of adaptivity rules. The development of
Web applications in general is more and more based on fast and incremental deployments with
multiple development cycles. The same consideration also holds for adaptive Web applications
and their adaptivity requirements. Our approach allows us to abstract the adaptive behaviors,
to extract them from the main application logic, and to provide a decoupled management
support, finally enhancing the maintainability and evolvability of the overall application.

In our future work we shall focus on the extension of the ECA-Web language to fully
take advantage of the concepts and notations that can be extracted from conceptual Web
application models (e.g. from WebML models). Extensive experimentations are planned to
further prove the advantages deriving from the decoupled approach.
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