
Journal of Web Engineering, Vol. 7, No. 3 (2008) 200–219
c© Rinton Press

SUPPORTING DIFFERENT PATTERNS OF INTERACTION
THROUGH CONTEXT-AWARE DATA MANAGEMENT

MICHAEL GROSSNIKLAUS and MOIRA C. NORRIE

Institute for Information Systems, ETH Zurich

8092 Zurich, Switzerland

{grossniklaus,norrie}@inf.ethz.ch

Received November 11, 2007

Revised May 13, 2008

Ubiquitous and mobile computing often introduce novel modes of interaction with differ-

ent interaction patterns than those typical of traditional desktop applications. Therefore,

there is a need to extend general models and systems for context-awareness to include
adaptation of interaction styles to context. We present an object-oriented data manage-

ment system that supports context-awareness through a notion of multi-variant objects

and describe how it was used to implement context-aware interaction patterns. Our
approach was motivated by our experiences of developing a mobile application that of-

fered an interface based on a set of interactive paper documents alongside a regular web

interface and we use this example to explain the issues and our solution in detail.

Keywords: Context-Awareness, Patterns of Interaction, Multi-Channel Access, Mobile
Tourist Information Systems, Version Models

1 Introduction

Developments in ubiquitous and mobile computing have led to challenges of how to support
a wide variety of novel forms of user interaction. A general aim is to minimise explicit user
interactions to allow users to focus on the task at the hand. This can be done by using implicit
actions such as user motion or changes in the environment to control or influence system
operation. At the same time, the limitations of mobile devices in supporting traditional
styles of interaction based on keyboard, mouse and visual display, have driven researchers
to investigate other forms of interaction for users on the move. Our experiences have shown
that supporting mobile and ubiquitous applications often involves working with, not only
new modes of interaction, but also radically different patterns of interaction. In contrast
to traditional interfaces, input data may be assembled from various sources and in different
orders rather than being specified either in a single step or a well-defined sequence of steps.
Thus, there is a tendency to move from linear to non-linear interaction patterns.

Context-awareness has become a common feature of ubiquitous and mobile applications to
allow them to adapt to user situations. Most of the applications, however, have requirements
that surpass the forms of adaptation that can be done statically or on a per request basis.
Often, these applications need to be able to dynamically adapt over a series of requests as the
interaction pattern between client and server can also depend on the user, their environment
and the task at hand. Yet this is an aspect of context-awareness that has received little

200

M. Grossniklaus and M. C. Norrie 201

attention so far. Web technologies have been widely adopted as a platform for the development
of ubiquitous and mobile applications. Correspondingly, web engineering no longer deals
only with methods and tools to support the development of applications accessed through
traditional desktop browsers, but also with issues such as multi-channel access and context-
dependent adaptation.

Adaptation of hypertexts [5] in terms of content, structure and presentation is a well-
researched topic in web engineering. At the level of models and frameworks to support web
engineering, several generic approaches have been proposed to empower application develop-
ers to determine what notions of context and adaptation are relevant to specific applications.
General context models have been developed that can cater for various forms of adapta-
tion that correspond to personalisation, internationalisation, multi-channel access, location-
awareness etc. The need to adapt processes consisting of several interaction steps is also
widely recognised by the web engineering community [34] and several conceptual and model-
driven approaches exist that support this form of adaptation. In these approaches, different
styles of user interaction are often addressed by adapting the structure or navigation to the
different context factors that are relevant to an application. Motivated by the requirements
for context-awareness that have been identified at the conceptual level, we have addressed the
issue of how these can be supported at the implementation level. In this paper, we present a
solution based on previous work on context-aware data management [19].

Some model-based approaches already offer support for implementing context-aware ap-
plications by means of an integrated implementation platform tailored to the capabilities and
requirements of the respective model. Most approaches, however, rely on standard compo-
nents such as application servers, content management systems or relational databases to
implement the modelled specifications. Unfortunately, as we will see, these implementation
platforms do not provide native support for context-awareness. As a consequence, this func-
tionality has often to be implemented over and over again leading to poor reuse of code and
maintainability. This shortcoming is especially visible at the level of data management as ap-
plication data models often become obfuscated with context-related concepts. We, therefore,
decided to investigate how an object-oriented data management system extended to support
context-aware applications could be used to support all required forms of adaptation in an
elegant way. In previous work, we have already demonstrated how such a database system can
be used to adapt the content of a web application to context [3]. In this work, we will show
how dynamic adaptation of the structure or navigation of an application at the conceptual
level can be mapped to context-aware database operations to support different interaction
patterns at the implementation level.

We use an example of a mobile tourist information system that we developed in a previous
project to motivate the need for context-aware interaction patterns and to describe how these
could be implemented using our data management system. Alongside more traditional web
interfaces, the system offers a set of interactive paper documents that can be used to access
information about festival events and venues using digital pen and paper technology and an
audio output channel. A complex transaction such as reserving tickets for an event requires
several data parameters to be selected and it would be too restrictive to insist that this
be done in a particular order. Without a visual display, users need to be carefully guided
through the interaction so that they are aware of the current interaction state and therefore

202 Supporting Different Patterns of Interaction through Context-Aware Data Management

an important factor was to supply users with context-dependent help information according
to the interaction state.

We begin in Section 2 with a discussion of related work and a motivation of our approach.
Section 3 gives an overview of context-aware data management and how it can be realised
by extending an object-oriented database system with the notion of multi-variant objects.
In Section 4, we introduce the idea of context-aware patterns of interaction that we propose
as an implementation level concept to realise the kind of adaptive and non-linear navigation
that is often required in mobile or multi-channel systems. As a motivation, we use the well-
known example of a ticket reservation process and present how this process was realised
within a mobile tourist information system that uses paper as an input channel. In Section 5,
we present the general implementation of this tourist information system and then discuss
specifically how the mechanisms used to provide context-aware data management can be
applied to support context-aware interaction patterns. Section 6 provides a general discussion
of the approach and some of the outstanding issues. Finally, concluding remarks are given in
Section 7.

2 Related Work

The need for context-awareness is well documented in the field of web engineering. Its impact
can be witnessed in several model-based approaches and a few recently proposed implemen-
tation platforms. For example, the Web Modelling Language (WebML) [8] has been extended
with primitives that allow adaptive and context-aware sites to be modelled [7]. To manage
context information, the data model is extended with a context model. Two additional units
have been introduced to gather context information. Each context-dependent page is asso-
ciated with a context cloud that specifies the adaptation operations. When a context-aware
page is requested, the corresponding operations are executed and the page is adapted accord-
ingly. However, in order to adapt the content itself, the context-dependent entities in the
data model have to be associated with entities representing the relevant context dimensions.
Depending on the complexity of the application, this can lead to a very cumbersome data
model that is no longer true to the orthogonal nature of context.

The specification of adaptation is an integral part of the Hera methodology [23]. Hera
distinguishes between static design-time adaptation called adaptability and dynamic run-time
adaptation called adaptivity. All design artefacts can be adapted by annotating them with
appearance conditions. Web sites designed with Hera are implemented by using the models
to configure a run-time environment. The Hera Presentation Generator (HPG) [17], for
example, combines the data stored as RDF with the models represented in RDFS to generate
a presentation that is adapted at design-time according to user preferences as well as device
capabilities. An alternative implementation platform for Hera is based on the AMACONT [15]
project. Using a layered component-based XML document format [16], reusable elements of
a web site can be defined at different levels of granularity. Adaptation at run-time is realised
by allowing components of all granularities to have variants.

In UML-based Web Engineering (UWE) [25], adaptation is based on the Munich Refer-
ence Model [26] for adaptive hypermedia applications. The architecture and concepts of this
reference model are based entirely on the Dexter [22] and AHAM [9] reference models. The
use of UML, however, offers both a graphical representation and a formal specification using

M. Grossniklaus and M. C. Norrie 203

the Object Constraint Language (OCL). The Munich Reference Model distinguishes three
forms of rule-based adaptation—adaptive content, adaptive links and adaptive presentation.
A shortcoming of this rule-based approach is that the rules exist outside the model and thus
have no graphical representation. A possible solution to this problem has been proposed
through the use of aspect-oriented modelling techniques [1].

The Web Site Design Method (WSDM) [11] emphasises audience modelling to classify
and identify the different kinds of users of the web site. In WSDM, all models are built on
audience classes to adapt the web site for different kinds of users. Adaptive behaviour in
WSDM [6] is specified using the Adaptation Specification Language (ASL) that allows the
structure of web sites to be influenced at run-time. Based on audience modelling, WSDM can
also be used to design localised web sites [10]. Although localised features can be specified
quite easily at the conceptual level, things become complicated as the development process
moves to the implementation phase. From the point of view of data modelling, the different
localities have to be mapped onto a standard database schema. De Troyer and Casteleyn [10]
discuss, as an example, labelling the columns or tables of a relational database with the name
of the corresponding locality. While such an approach might be sufficient if very few localities
need to be supported, it scales poorly in the case of several potentially overlapping localities,
and even becomes infeasible if additional dimensions other than language are required.

As previously mentioned, we believe that adaptive navigation specified at the concep-
tual level translates to context-aware patterns of interaction at the implementation level.
The concept of volatile functionality [36, 18] that comprises volatile content, navigation and
presentation, is related to our work in the sense that volatile navigation also deals with fre-
quently changing styles of how content is accessed. The object-oriented design methodology
OOHDM [37] has recently been extended to allow the modelling of volatile requirements at
the conceptual level and an implementation platform called CAZON is provided that builds
on JSP tag libraries and traditional databases to integrate volatile functionality. As a con-
sequence of using these existing technologies that are not aware of context, similar issues as
the ones discussed for localised sites in WSDM arise at the implementation level.

Another group of web-based systems that provide more complex forms of interaction are
Rich Internet Applications (RIA). The need for design methodologies that allow such appli-
cations to be specified and implemented has been identified [35] and corresponding proposals
based on several existing modelling methods have been made. For example, WebML has been
extended [4] with additional units at the conceptual level. At the implementation level, the
WebRatio CASE tool was modified to support the generation of client-side code. Another
approach with the same goal is the Rich User Experience (RUX) model [27]. RUX models
are implemented using the RUX-Tool that generates the client-side functionality. As the im-
plementation platforms of these approaches are again built on standard technologies that are
oblivious to the requirements of context-awareness, they suffer from the already described
drawbacks. However, these approaches are intended to support the generation of advanced
client-side user interfaces, rather than the dynamic adaptation of navigation and interfaces
to a context. Therefore, the requirement for context-aware patterns of interaction is less
pronounced in these systems.

So far, we have looked at the most influential conceptual models for web engineering and, in
some cases, their underlying implementation platform. Apart from these, general technologies

204 Supporting Different Patterns of Interaction through Context-Aware Data Management

to support context-awareness and adaptation haven been developed. An example of such a
solution is the web authoring language Intensional HTML (IHTML) [44]. Based on version
control mechanisms, IHTML supports web pages that have different variants and adapts
them to a user-defined context. The concepts proposed by IHTML were later generalised to
form the basis for the definition of Multidimensional XML (MXML) which in turn provided
the foundation for Multidimensional Semistructured Data (MSSD) [42]. Similar to semi-
structured data that is often modelled using the Object Exchange Model (OEM), MSSD is
represented in terms of the Multidimensional Object Exchange Model (MOEM). Based on this
representation, the Multidimensional Query Language (MQL) [43] allows the specification of
context conditions to formulate queries that process data across different contexts.

A general and extensible architecture that supports context-aware data access is proposed
in [12]. In this approach, profiles are used to describe the context in which a request has
been issued to the web information system and are expressed according to the General Profile
Model (GPM) [13]. Additionally, configurations express how the response should be generated
and consist of three parts that match the general architecture of web information systems in
terms of content, structure and presentation. A matching process compares client rules to
adaptation rules consisting of a parametrised profile, a condition and a parametrised configu-
ration [14]. If the client profile matches the parametrised profile of the rule and the specified
values fulfil the condition, the parametrised configuration is instantiated and applied.

It is apparent that numerous proposals for context-dependent adaptation of web applica-
tions have been made in the past. While these approaches differ in terms of the form and scope
of adaptation that they support, most of them address the problem of adaptive web sites at
the conceptual level. Model-driven methodologies provide comprehensive support to design
context-aware web applications and are, therefore, of paramount importance in the develop-
ment of such systems. Nevertheless, we feel that the functionality specified at the conceptual
level should also be supported by adequate technologies at the implementation level. As we
have seen in this section, some model-driven approaches provide their own implementation
platforms. For the lack of better alternatives, these platforms are built on traditional tech-
nologies that feature no native support for context-awareness. This often makes it necessary
to either build a layer of indirection on top of these technologies or to distort the models
with context information that should be managed elsewhere. In the remainder of this paper,
we will present our approach to implementing adaptive systems and, in particular, context-
dependent interaction processes based on previous work in context-aware data management
that is summarised in the next section.

3 Context-Aware Data Management

In this section, we will present an overview over context-aware data management at the level of
a database system that we have developed in previous work [21, 19]. At the heart of our solu-
tion stands an object-oriented version model that supports the notion of multi-variant objects
and that was implemented within a database system developed at our institute [45]. As this
database management system is built on the concepts defined by the OM [29] model, we have
decided to define our model as an extension of OM. OM is a rich and flexible object-oriented
data model that features multiple instantiation, multiple inheritance and a bidirectional as-
sociation concept.

M. Grossniklaus and M. C. Norrie 205

To support multiple instantiation, i.e. the ability of a single object to have multiple in-
stances that exist on different paths along the inheritance graph, an object in the original OM
model is represented by a number of instances—one for every type of which the object is an
instance. For the purpose of multi-variant objects, we have broken this relationship between
the object and its instances and introduced the additional concept of a variant. As shown
in the conceptual data model represented in Figure 1, in the extended OM model, an object
is associated with a number of variants which in turn are each linked to a set of revisions.
Finally, each revision is connected to the set of instances containing the actual data. As can
be seen from the figure, our model supports two versioning dimensions. Variants are intended
to enable context-aware query processing while revisions support the tracking of the develop-
ment process. However, for the scope of this paper we will focus on variants exclusively and
neglect the presence of revisional versions in the model. Note that all versions of an object
still share the same object identifier tying them together as a single conceptual unit. As in the
traditional OM model, objects can be instantiated with multiple types and therefore revisions
can be related to any number of instances.

(1:1) (1:1)

(1:*)

(1:*)(1:*) (1:1)
object

Objects

instance

Instances

HasVariants
variant

Variants

(1:1)
Has

Revisions
revision

Revisions
(1:1)

HasInstance
(1:1)

Latest
Revision

(1:1)

Default
Variant

Fig. 1: Conceptual data model of an object

Before presenting how context-dependent queries are evaluated by our system, it is nec-
essary to briefly introduce the notion and representation of context that we are using. In the
setting of our context-aware information system, context information is regarded as optional
information that is used by the system for augmenting the result of a query rather than
specifying it. As a consequence, such a system also needs a well defined default behaviour
that can serve as a fall-back in the absence of context information. In our approach, context
information is gathered outside the information system by the client application. Therefore,
it is necessary that client applications can influence the context information that is used
during query processing by the information system. To support this, a common context rep-
resentation that is shared by both components is required. The following definitions specify
the notion and representation of context as used by our system. We will use the given sets
NAMES and VALUES to denote the sets of legal context dimension names and context values,
respectively.

Definition 1 A context space represented by S denotes which context dimensions are relevant
to an application of the version model for context-aware data management. It is defined as
S = {name1, name2, . . . namen} such that ∀ i : 1 ≤ i ≤ n ⇒ namei ∈ NAMES and therefore
S ⊆ NAMES.

Each context dimension name can be associated with a value to form a context value c =
〈name, value〉.
Definition 2 A context value c is defined as a tuple c = 〈name, value〉 where name ∈
NAMES and value ∈ VALUES.

206 Supporting Different Patterns of Interaction through Context-Aware Data Management

Then, a context C(S) is a set of context values for the dimensions specified by S.

Definition 3 C(S) denotes a context for a context space S and is represented as an unordered
set of context values

C(S) = {〈name1, value1〉, 〈name2, value2〉, . . . , 〈namem, valuem〉}
= {c1, c2, . . . , cm}

such that ∀ i : 1 ≤ i ≤ m⇒ namei ∈ S and ∀ ci, cj ∈ C : i 6= j ⇒ namei 6= namej.

Finally, a context space denoted by C?(S) is a special context that contains exactly one value
for every context dimension of S.

Definition 4 A context state denoted by C?(S) is a special context, where ∀ name ∈ S :
∃ 〈name, value〉 ∈ C?(S).

While contexts are used to describe in which situation a particular variant of an object is
appropriate, the current context state of the system governs how context-dependent queries
are evaluated. To evaluate context-aware queries over multi-variant objects, the matching
algorithm shown in Figure 2 is used. Whenever the query processor accesses an object, the
object variant that best matches the current context state of the system C?(S) is selected by
the algorithm based on the values returned for each variant by the scoring function fs.

match(o, C?(S))
1 V0 ← rng(HasVariants dr({o}))
2 V1 ← V0 ∝ (x→ (x× rng(HasProperty dr({x}))))
3 V2 ← V1 ∝ (x→ (dom(x)× fs(C?(S), rng(x))))
4 smax ← max(rng(V2))
5 V3 ← V2 % (x→ rng(x) = smax)
6 if |V3| = 1 ∧ smax ≥ smin

7 then v ← V3 nth 1
8 else v ← rng(DefaultVariant dr({o})) nth 1
9 return v

Fig. 2: Matching algorithm

Our system allows the default scoring function to be substituted with an application-
specific function. To give an overview of what is involved in designing a scoring function, we
will describe the general scoring function, as specified in Definition 5, that is used in our system
as a default. The general scoring function allows for situations where more complex context
descriptions are required. Greater flexibility in specifying the current system context as well as
to describe object variants is achieved by partitioning the above mentioned given set VALUES.
Based on these subsets, the value field of a context value c can be used to specify more than
one value such as set, range or wildcard values. For context values specified using these given
sets, a condition (∼=) has been defined that determines if two values match. Additionally,
the general scoring function also supports two mechanisms that have been introduced to give
more control over the matching process. First, an application can assign weights to each of
its context dimensions that will then be used by the system when it computes the score of

M. Grossniklaus and M. C. Norrie 207

an object variant. Second, required and illegal matches can also be specified by prefixing the
corresponding context value with + or −, respectively. To compare such prefixed context
values, a second matching condition (∼=±) has been introduced that also takes required and
illegal values into consideration.

Definition 5 The general scoring function fs takes two contexts C1 and C2 as arguments
and returns a scoring value representing the number of matching context dimensions of the
two contexts normalised by |N |. It is defined as

fs(C1, C2) =
1
|N |

∑
n∈N

(w(n)× fi(n, C1, C2))×
∏
n∈N

f±(n, C1, C2)

where N denotes the union N1 ∪N2 of the sets of all names of context values specified either
by C1 or C2, respectively. The indicator function fi is defined as

fi(n, C1, C2) =

 1 ∃ c1 ∈ C1, c2 ∈ C2 :
name1 = name2 = n ∧ value1

∼= value2

0 otherwise.

The context dimension weight function w returns a weight w(n) ∈ R+ for every name n ∈ N ,
where N represents the set of the names of all context dimensions. Finally, the matching
function for prefixed values f± is defined as

f±(n, C1, C2) =

 1 ∃ c1 ∈ C1, c2 ∈ C2 :
name1 = name2 = n ∧ value1

∼=± value2

0 otherwise.

4 Context-Aware Patterns of Interaction

As presented in Section 2, the need to alter the sequence of steps required to complete a
process is often mapped to adaptation of the structure or navigation of a web site to the
requirements of a client. Several approaches that deal with this issue at the conceptual level
have already been proposed. In this section, we return to the well-known example of a ticket
reservation process that can either be completed in one step or with multiple intermediate
steps. However, in contrast to conceptual and model-driven approaches discussed before, we
will focus exclusively on the implementation of processes that can have an arbitrary number
steps. We introduce the idea of context-aware interaction patterns that we propose as an
implementation technique for adaptive navigation. Further, by presenting the paper-based
user interface of a mobile tourist information system, we will make a case for non-linear
interaction processes, a concept that has received little attention to date. As we will show,
context-aware patterns of interaction also provide an elegant solution for implementing non-
linear interaction processes.

Different navigation structures that are defined for a process at the conceptual level can
also be witnessed by examining the sequence of requests and responses between client and
server. As an example, two communication patterns that result from different navigation
structures are shown in Figure 3. The sequence of requests and responses that is generated
by a one-step navigation is depicted in Figure 3(a), whereas the communication pattern of the

208 Supporting Different Patterns of Interaction through Context-Aware Data Management

?anchor=setReservation

?anchor=setReservation&id=309&event=o747
&date=2005-08-24&tickets=3&confirmed=true

Client Content
Server

(a) One-step process

?anchor=setReservation

?anchor=setReservation&id=309

?anchor=setReservation&id=309&event=o747

?anchor=setReservation&id=309&event=o747
&date=2005-08-24

?anchor=setReservation&id=309&event=o747
&date=2005-08-24&tickets=3

?anchor=setReservation&id=309&event=o747
&date=2005-08-24&tickets=3&confirmed=true

Client Content
Server

(b) Multi-step process

Fig. 3: Communications patterns of a reservation process

same process when completed in multiple steps is given in Figure 3(b). As can be seen in the
figure, completing the reservation process in one step results in two request and response pairs
where the first retrieves the initial response and the second uploads all values to the server for
processing. The picture in the case of the multi-step process is quite different, as each data
value required to process the reservation request is sent to the server encoded in an individual
request. A well-known issue that arises with multi-step processes, is the fact that either the
client or server needs to manage a session to keep track of the parameters that have already
been set. Depending on the capabilities of the client device, this session can be managed on
the client which would result in the communication pattern shown in Figure 3(b). If the client
browser does not support sessions, as is often the case in mobile devices, the server has to
manage the session. In this case, it is necessary to rewrite the links contained in the server’s
responses to include a session identifier. The requests of the communication pattern in this
case would then only carry information about the session and the current value.

From an implementation point of view, supporting multiple navigation structures in a web
application at the same time can be quite challenging. Handling intermediate steps introduces
an overhead in terms of application code as the server component that handles the requests
has to check which parameters have already been set and update the the application database
accordingly. Also, intermediate steps require additional error checking and handling routines
as values are no longer validated at the end of the process but after each step. In summary,
before the server can respond to a request, the code that implements a certain process first
has to figure out at which intermediate step of the process the client is. As the current step of
the process is determined based on the parameters that are passed to the server, these values
can be seen as contributing to the context in which the functionality was called. The solution
for context-aware data management presented in the previous section has specifically been
designed to address this problem of matching a context state to a set of alternative versions and
to resolve the best matching variant. We, therefore, propose to take advantage of this existing

M. Grossniklaus and M. C. Norrie 209

solution for context-awareness to factor out the server code that deals with analysing the
transmitted parameters to determine what needs to be done. The OMS database management
system [45] that we have extended with the notion of multi-variant objects represents both
data and metadata as objects. As a consequence, it is possible to define object methods as
well as database macros that have multiple implementation variants, each for a given step in
the process. At runtime, the context resolver will then take care of selecting the appropriate
version of the multi-variant operation that implements the update functionality.

As mentioned above, we have used context-aware interaction patterns to implement the
reservation functionality in the EdFest tourist information system [41, 31, 40]. The tourist
information system was designed to assist visitors to the city of Edinburgh during the art
festivals held each year during the month of August. In contrast to other tourist information
systems that attempt to replace existing delivery channels, such as newspaper listings, festival
brochures and flyers, with one device that integrates all functionalities, our system aims at
recognising the reasons why these channels have been established. Our approach is, therefore,
rather based on augmenting and consolidating existing means of conveying information to
tourists than replacing them with new delivery channels. The EdFest mobile information
browser is based on the interactive paper technology described by Norrie et al. [30]. To
interact with digital paper an electronic pen is required that determines its position on the
paper and sends information requests to the content server. Since digital paper technologies
capable of dynamically displaying information on paper are currently not readily available,
the result of a user interaction can generally not be displayed on paper but has instead to be
delivered through another channel.

Existing multi-channel information systems that support clients, such as web browsers,
mobile phones, media phones or PDAs have addressed the requirement of making all aspects
of the content delivery context-dependent. Although these traditional delivery channels differ
substantially in their capabilities, the way in which users interact with them is rather similar.
All of these devices display information graphically, use links for navigation and forms for
data acquisition. The addition of interactive paper to the set of delivery channels invalidates
this property of multi-channel information systems. In the case of interactive paper, the
communication patterns between client and server, as well as the application logic required to
process the interaction on the server, diverge considerably from traditional delivery channels.

To substantiate this claim, Figure 4 shows the paper interfaces of reservation process
within the EdFest system. As can be seen from the figure, the reservation process involves
multiple documents, a bookmark shown in Figure 4(a) and a brochure containing events as
the one presented in in Figure 4(b). The reservation process is started when a tourist points
with the digital pen to the icon labelled Start reservation, triggering a voice response from
the server asking them to select the event. Events can be selected in the brochure document
by touching the icon below the event title with the pen. The tourist is then prompted to
specify the date of the performance that they would like to book tickets for. The date is also
selected in the brochure by pointing into the timeline at the bottom of the corresponding event
description. Then, the tourists are asked to select the number of tickets on the bookmark.
After they have done so, a summary of their reservation is read to them, which they can
acknowledge by clicking on the reserve icon on the bookmark. The booking is then processed
and a voice confirmation is sent to the client.

210 Supporting Different Patterns of Interaction through Context-Aware Data Management

Booking

Start reservation

reserve

Number of tickets

(a) Bookmark

POOL OF LIFE Rating

Big Value Comedy

Café Royal Fringe Theatre, 17 West Register Street, 0131 556 2549
Grid Ref: D5

Following his critically successful show of 2003, Keith Carter returns as alter-ego 'Nige'. With new characters, a
show celebrating Liverpool's capital of culture. 'Nige thinks he's a superhero. In comedy terms he already is ****'
Evening News.
Aug 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28: 21.20 (60mins) £7.00 (£6.00)

Dates:

(b) Brochure

Fig. 4: Paper interface of the reservation process

To conclude this section, we will have a look a some of the considerable differences in
both requirements and properties between the paper channel and more traditional delivery
channels in more detail. One such issue is the way in which the different channels handle
and check for errors. In a traditional form-based interface, a user is free to input any values
they like. As a consequence, the server implementation needs to parse the values, check them
and, if necessary, engage in error handling. In the case of interactive paper, the situation is
quite different. Since all values that can be selected by the user have been preauthored and
printed as physical documents, it is virtually impossible to select illegal values. However, the
digital paper presents other challenges that might not be apparent at first sight. A minor
issue is the fact that links cannot be rewritten once the physical documents have been printed.
This fact limits the number of choices available to implement session management between
client and server as described above. A more serious problem is the possibility of non-linear
navigation processes. To guide a user through a multi-step process, a traditional user interface
can display a sequence of pages that are interlinked to take the user from one step to the next
or, in the case of an error, to the faulting step. This constitutes a considerable amount of
control over the user as the only thing they can do is follow the process step by step or abort
it prematurely. With interactive paper, the users have the whole user interface including all
links readily available in the form of the physical documents and are free to point their pen
wherever they choose. As a consequence, there is almost no control over the user’s navigation
process as they can step through the interface in any order. For example, in the reservation
process described above it would also be possible to select the number of tickets before the
actual event has been selected. This depart from linear interaction patterns is, however, not
restricted to interactive paper applications. In the fields of mobile and ubiquitous computing,
user studies carried out with other pervasive and ambient interfaces have indicated that
interaction processes might divert more fundamentally from the ones known from desktop
applications. In the next section, we will discuss how these additional challenges of context-
aware interaction patterns have been implemented with multi-variant operations.

5 Implementation

Having introduced the idea of context-aware patterns of interaction and their mapping to
multi-variant operations, we will discuss their implementation in detail in this section. We
start with a brief discussion of the overall implementation of the EdFest mobile tourist infor-

M. Grossniklaus and M. C. Norrie 211

mation system followed by an in-depth presentation of the implementation of context-aware
interaction patterns. An overview of the architecture of the EdFest system is given in Figure 5.
The server component of the tourist information system is shown on the right-hand side of
the figure, whereas the range of currently supported clients is shown on the left. The server
module consists of three major components. Communication with clients is handled by a web
server that retrieves and renders content in the appropriate format. The content is stored on
an application data server shown on the far right-hand side of the figure, whereas publishing
metadata such as presentation templates as well as structural and navigation information are
stored on a metadata server.

PDA Client

Paper Client

Paper Publisher

Client Server

GPS
Sensor

Weather
Sensor

WLAN
Sensor

Client
Controller Web and

Application
Server

Kiosk Client

Metadata
Server

Context
Database

Application
Data Server

Fig. 5: Overview of the EdFest architecture

On the left-hand side of the figure, the clients for which the system currently provides
support are listed. The Kiosk Client shown at the top represents the traditional access
channel of browsing tourist information using an HTML browser on a stationary computer.
Through the kiosk web site, all functionality of the EdFest system can be accessed. Below
the kiosk client, the two output channels for the interactive paper client are listed. The Paper
Publisher client is responsible for creating and printing interactive paper documents based on
a specific XML format. The rendering of this XML is then done by the paper publisher when
it generates a printable document. More detailed information about the publishing process
of interactive paper as used in the EdFest system can be found in Norrie et al. [33, 32]. At
run-time, the Paper Client uses a cross-media information server [39] to access the digital
content managed by the server whenever tourists interact with the augmented paper using
their digital pen. A tourist pointing to a particular area on the paper triggers the retrieval
of content from the server. As mentioned before, it is currently not possible to display the
response of such a request on paper. The EdFest system, therefore, uses voice output to
deliver information to the tourist. As an alternative to the interactive paper client, a mobile
PDA Client can be used in the scope of the EdFest project. As most PDAs are capable of
rendering content formatted with HTML, the required delivery channel is very similar to the
one used for the kiosk computers. To account for the reduced screen size of these devices,
minor adaptations in terms of how information is presented are however necessary.

As shown in Figure 5, both the PDA client as well as the paper client connect to the
content management system through a proxy that runs on each client device. Since context

212 Supporting Different Patterns of Interaction through Context-Aware Data Management

gathering, augmentation and processing have been explicitly excluded from our solution for
context-aware data management, this functionality has to be provided by another component
of the EdFest system. In the present architecture, this function is fulfilled by a proxy server
that appends context information to every request which passes through. For the management
of context on this server, a dedicated context database [2] is used. This so-called context
engine allows sensor and context types to be defined in a database. It then accesses the
physical sensors which are represented as instances of the defined sensor types. The data
gathered from the sensors is processed and stored as high-level context information based
on the context types specified by the application. Apart from physical context information
that is gathered from these physical sensors, the context engine also manages logical context
information about the client. For example, it also records which user is currently interacting
with the system and what delivery channel is currently being used.

5.1 Realising a Mobile Multi-Channel Information System

In the following, we will discuss how the information services of the EdFest tourist informa-
tion system have been implemented based on existing technologies as well as the presented
solution for context-aware data management. In Figure 6, a detailed architecture of the pre-
viously introduced server component is shown. For reasons of space, we have simplified the
figure to only include one of the two database servers that are shown in Figure 5. From an
implementation point of view both servers share the same architecture and it is, therefore,
not necessary to include both in the figure. As can be seen from the figure, the web server
component of the content server has been implemented using standard technologies such as
Java Server Pages (JSP) and Java Servlets. The database server component is built based on
the OMS object-oriented database management system developed at our institute and that
has been extended with the presented concepts for context-aware data management.

Java Server
Pages

Java
Servlets

Tag
Libraries

Java API
OMS

Database
OML

OMSjp

Web and
Application Server OMS Database Server

Fig. 6: Server architecture

A sequence diagram detailing the interactions between the different components of the
content server is shown in Figure 7. The task of the web server component is to accept
incoming requests from the clients of the system and extract the current context information
from the request. It then invokes the Java Servlet that handles the information service
corresponding to the client’s request. The Servlet first consults the metadata server for
structure information that determines how to construct a response to the current request. The
response is then assembled using content provided by the application data server. In the final
step, the response is transformed using presentation information from the metadata server and

M. Grossniklaus and M. C. Norrie 213

sent back to the client. Since both the metadata and application data servers are managed
by a database system that supports context-awareness, all aspects of the delivery process
can be dynamically adapted to context as all queries issued by the web server component
return context-dependent results. More information about the information concepts that are
managed by the metadata server and the generation process used to render responses is given
in Grossniklaus and Norrie [20].

Web and
Application Server

Metadata
Server

Application Data
Server

HTTP Request

extract request context

HTTP Resonse

get content and
structure metadata

retrieve or update content data

get view and layout metadata

compose and
transform response

Information
Service Servlet

invoke requested Servlet

Fig. 7: Interactions between the components of the content server

Applications that need to interface with an OMS database have a choice of two different in-
terfaces. Programmatic access to a database is given through a Java application programming
interface that follows the specification of OMSjp [24], a Java library that provides uniform
access to heterogeneous OMS database implementations. Within the family of OMS database
systems, the OMSjp library plays the same role as Java Database Connectivity (JDBC) does
for relational databases. We will see an example of how OMSjp is used to access a database
later in this section. As an alternative to OMSjp, an OMS database can be accessed by
issuing query statements to the database server. Since OMS databases are object-oriented
databases, these queries are expressed using the Object Model Language (OML) [28] rather
than SQL. OML is also the language used in OMS databases to implement object methods
and database macros and thus we will discuss an OML example later on when presenting the
implementation of the reservation functionality at the database level.

5.2 Supporting Context-Aware Patterns of Interaction

As discussed in Section 4, we propose to support context-aware interaction patterns based
on multi-variant operations. This solution was inspired by the method dispatching strate-
gies found in object-oriented programming languages. Many object-oriented languages allow
methods to be overloaded, i.e. support the definition of multiple versions of the same method
with different sets of arguments. At run-time, they select the so-called most specific method
from the set of applicable methods, based on the number and type of arguments given by the
caller of the method. In its basic nature, virtual method dispatching is not unlike selecting the
best matching variant of an object. Figure 8 gives a graphical representation of the versioned
object that handles the reservation process. As shown, for each context state that occurs in
the process shown in Figure 3(b), an alternative version of the object has been defined. As the
context values that will be sent by the client cannot be known beforehand, the context states
describing the variants use the value +∗ which indicates that a value for the corresponding
context dimension has to be set but the actual value is not important. Variant o369@0[0]

214 Supporting Different Patterns of Interaction through Context-Aware Data Management

is responsible for starting the reservation process by generating a reservation number and
initiating a session on the client. All other variants of the object extract the provided context
data, update the application database accordingly and send back a response that guides the
visitor to the next step, except for variant o369@5[5] that informs the tourists that they have
completed the reservation process successfully.

setReservation

<id, +*>
<event, +*>

o369@0[0] o369@1[1]

<id, +*>

o369@2[2]

<id, +*>
<event, +*>
<date, +*>

o369@3[3] o369@4[4] o369@5[5]

<id, +*>
<event, +*>
<date, +*>
<tickets, +*>

<id, +*>
<event, +*>
<date, +*>
<tickets, +*>
<confirmed, true>

Fig. 8: The setReservation operation object

A one-step reservation process would only need to access the default variant and the
variant shown on the far right in the figure. In the case of a multi-step process, however, the
reservation process runs through all variants of the objects before completing. In Figure 9,
the OML implementation for one of the variants of the database macro that handles the
reservation process is shown. As shown in Figure 7, this macro is invoked by the information
service Servlet to update the content of the application database. This implementation has
been designed for the context state Cv(S) := {〈id, +∗〉, 〈event, +∗〉, 〈date, +∗〉} and thus
the code can safely assume that the parameter values for id, event and date have all been
set. The reservation object that corresponds to the given identifier is retrieved on line 4. If
it does not exist, the implementation has to assume that it was called in a non-linear way
and creates a new reservation object with the given identifier in the database on lines 5–9.
It then associates the reservation with the given event on line 10–11 and updates the date of
the reservation on line 12. As the reservation object is defined to be the output parameter of
the macro on line 2, the object is returned to the caller of the macro.

1 macro setReservation($id: integer, $event: string, $date: date)

2 ($reservation: reservation)

3 begin

4 $reservation := first(all $r in Reservations having ($r.id = $id));

5 if ($reservation = null) begin

6 $reservation := create object;

7 dress $reservation with reservation (id = $id);

8 insert into Reservations: [$reservation];

9 end;

10 $eventObj := first(all $e in Events having ($e.id = $event));

11 insert into ForEvent: [($reservation, $eventObj)];

12 $reservation.date := $date;

13 end;

Fig. 9: Variant o369@3[3] of macro setReservation

As can be seen from the sequence diagram given in Figure 7, the caller of the macro is the
web server component, more specifically the Java Servlet that handles the request to process

M. Grossniklaus and M. C. Norrie 215

a reservation step. The Java implementation of the corresponding handler method is given
in Figure 10 and uses the OMSjp interface to access our extended object-oriented database
system. On lines 2–3, the method obtains a reference to the extended database concept
of OMSjp and uses it on lines 4–6 to influence the current context state of the database.
Note that the new context state is a combination of the current context state and the macro
parameters given to the handler method. The method then executes the setReservation macro
on lines 7–8 and retrieves the associated presentation information on lines 9–11. In a final
step, the macro result and the presentation information are combined and rendered in XML
on line 12 before they are returned to the client. It is important to note that the setting of
the context on line 6 has an influence on all subsequent database operations on lines 7–10 as
well as on the query executed on line 11.

1 public Node setReservation(final Object... params) {
2 final OMSDatabaseExt db =

3 (OMSDatabaseExt) DatabaseManager.instance().getDatabase();

// Set the database context

4 final Context context =

5 ContextManager.instance().getCurrentContextState();

6 db.setContext(this.merge(params, context));

// Retrieve and execute the database macro

7 final OMSMacro macro = db.getMacro("setReservation");

8 final OMSValue[] result = db.executeMacro(marco, params);

// Retrieve the template for the macro

9 final OMSBinaryCollection hasStyle =

10 ((OMSBinaryCollection) db.getCollection("hasStyle");

11 final Template template = (Template) hasStyle.dr(marcro).range().first();

// Render and return the result

12 return XMLRenderer.instance().render(result, template);

13 }

Fig. 10: OMSjp code to invoke macro setReservation

From both the code of the database macro and the handler method it is apparent that
there is no overhead to determine at what step of a process the client currently is. This
concern is handled entirely by the context-aware database system using the matching algo-
rithm presented in Section 3. The only additional overhead required by our approach is to set
the context before accessing the database. Naturally, this reduced implementation overhead
comes at the price of lower performance in terms of how fast requests can be handled. At the
moment, the implementation of the matching algorithm is very inefficient in the sense that
it needs to compare all variants of an object to the current context state to select the best
matching alternative. Thus, it is easily outperformed by an implementation that checks the
provided parameters directly to determine what it should do. However, user studies with the
EdFest prototype at the Edinburgh Festivals in 2005 have also indicated that the performance
achieved by our approach is satisfactory as responsiveness has never been an issue mentioned
by the test users.

An interesting aspect of implementing processes in this way is how non-linear navigation
processes can be handled. If a user deviates from the intended process by prematurely selecting
parameters that will only be gathered in a later step, the value will nevertheless be stored in
the client’s session but the response will be the same as before, asking the tourist to select

216 Supporting Different Patterns of Interaction through Context-Aware Data Management

the value corresponding to the current step. When this value is finally selected by the user,
all steps that have been executed out of order are skipped automatically as those values have
already been stored in the session on the client. Preliminary feedback from test users at the
Edinburgh Festivals in 2005 has shown that this rather resilient way of handling the stepping
through a process can be a feasible and comprehensible form of interaction. Apart from
non-linear navigation processes, value checking and error handling in multi-step processes has
been a further motivation for implementing context-aware interaction patterns using multi-
variant operations. The logic to check whether all values provided by the user are correct
could be implemented on the client-side using a scripting language. However, this solution is
not always possible on all required delivery channels, as scripting capabilities, if present at
all, vary substantially. Our approach is already able to handle cases where a user has failed
to specify a required value. Even if they are not required in situations where all values are
correct, in the case of an error, the additional variants defined for the multi-step process can
be used for error handling in the single-step process. Although context matching can provide
a solution to missing values, it is not capable of addressing the problem of handling errors
caused by incorrect data. To also implement this functionality, traditional parsing and error
handling techniques have to be applied.

6 Discussion

The ticket reservation process in the EdFest system has been used to show how novel modes
of interaction can affect not only the way in which content is accessed and delivered, but
also the nature of the interaction process. User studies carried out with the system actually
indicated that, within the field of ubiquitous computing, the divergence from traditional
linear interaction patterns typical of desktop applications is likely to be much greater than
we anticipated. Users not only selected data parameters in different orders, skipping those
considered to be irrelevant, but they also wanted to be able to select the data outside of the
document areas that we considered as defining the transaction context. For example, to select
the date of the reservation, instead of selecting the date in the event entry of the brochure,
they would try to specify a date value by selecting a date from anywhere that dates appeared
within any of the documents. One can envisage future scenarios where a user could select the
date of a reservation by simply pointing to a date in the calendar on their wall.

The multi-step interaction processes have additional interesting characteristics. Looking
back at the communication pattern between client and server given in Figure 3(b), we can
observe a similarity to modern web applications. In order to prevent page reloads and provide
immediate feedback to the user, many web sites nowadays use a technique called Asynchronous
JavaScript and XML (AJAX). In AJAX, a web page uses client-side scripting to connect to a
server and to transmit values without refreshing the whole page. Web applications based on
AJAX communicate with the server at a finer level of granularity that is not unlike multi-step
interaction processes. The solution presented here to handle such processes could therefore
form the basis for integrating delivery channels that support AJAX with those that do not.

As a result of our efforts to support context-aware interaction processes, we asked ourselves
the question of whether it would be sensible to apply the same mechanisms to programs as well
as data. We have conducted preliminary research into this direction with the implementation
of a prototype language that supports multi-variant programming [38]. The language is an

M. Grossniklaus and M. C. Norrie 217

extension of Prolog that allows predicate implementations to be defined for a given context
state. The current context state of the system is managed by library predicates that allow
context values to be set and removed. Before a context-aware Prolog program can be executed,
it needs to be loaded by a special parser that replaces all predicate calls in the program with a
call to a dispatching predicate that takes context into consideration. Experiences gained from
a set of example programs have shown that the approach has its merits even though writing
context-aware programs can be quite challenging, especially if context-dependent predicates
are allowed to modify the context state. Naturally, our prototype implementation suffers
from a few limitations and problems such as poor performance. Also, it is still unclear how to
combine context-dependent predicate invocation with the backtracking mechanism of Prolog.
Nevertheless, we believe that the potential benefits of this approach outweigh these challenges.

7 Conclusions

In this paper we have motivated the need for implementation platforms that allow context-
aware applications to be implemented in a flexible and elegant way. In previous work, we have
extended a database system with the concept of multi-variant objects that form the basis for
context-aware data management and query processing. The most ambitious system imple-
mented based on this extended database system so far is a mobile tourist information system
targeted at visitors to the Edinburgh art festivals. Apart from traditional client devices, this
EdFest system also supports a mobile paper-based client. In contrast to supporting conven-
tional delivery channels where it is sufficient to adapt the content, structure and presentation,
a paper-based interface also requires that the interaction process is adapted dynamically. In
order to address this requirement, we have created context-dependent interaction processes.
Technically, these interaction processes were realised through different implementation vari-
ants of the database macro implementing the corresponding application logic. In this setting,
context has been used to dispatch the request made by the client to the desired implementa-
tion similar to object-oriented programming languages that dispatch a call to an overloaded
method dispatching based on the parameters provided by the caller.

References
1. H. Baumeister, A. Knapp, N. Koch, and G. Zhang. Modelling Adaptivity with Aspects. In

Proceedings of International Conference on Web Engineering, July 27-29, 2005, Sydney, Australia,
pages 406–416, 2005.

2. R. Belotti, C. Decurtins, M. Grossniklaus, M. C. Norrie, and A. Palinginis. Modelling Context
for Information Environments. In Proceedings of International Workshop on Ubiquitous Mobile
Information and Collaboration Systems, June 7-8, 2004, Riga, Latvia, pages 43–56, 2004.

3. R. Belotti, C. Decurtins, M. Grossniklaus, M. C. Norrie, and A. Palinginis. Interplay of Content
and Context. Journal of Web Engineering, 4(1):57–78, 2005.

4. A. Bozzon, S. Comai, P. Fraternali, and G. Toffetti Carughi. Conceptual Modeling and Code
Generation for Rich Internet Applications. In Proceedings of International Conference on Web
Engineering, July 10-14, 2006, Menlo Park, CA, USA, pages 353–360, 2006.

5. P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Modeling and User-
Adapted Interaction, 6:87–129, 1996.

6. S. Casteleyn, O. De Troyer, and S. Brockmans. Design time support for adaptive behavior in web
sites. In Proceedings of ACM Symposium on Applied Computing, March 9-12, 2003 Melbourne,
FL, USA, pages 1222–1228, 2003.

7. S. Ceri, F. Daniel, M. Matera, and F. M. Facca. Model-driven Development of Context-Aware

218 Supporting Different Patterns of Interaction through Context-Aware Data Management

Web Applications. ACM Transactions on Internet Technology, 7(2), 2007.
8. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-

Intensive Web Applications. The Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann Publishers Inc., 2002.

9. P. De Bra, G.-J. Houben, and H. Wu. AHAM: A Dexter-based Reference Model for Adaptive
Hypermedia. In Proceedings of ACM Conference on Hypertext and Hypermedia: Returning to Our
Diverse Roots, February 21-25, 1999, Darmstadt, Germany, pages 147–156, 1999.

10. O. De Troyer and S. Casteleyn. Designing Localized Web Sites. In Proceedings of International
Conference on Web Information Systems Engineering, November 22-24, 2004, Brisbane, Australia,
pages 547–558, 2004.

11. O. De Troyer and C. J. Leune. WSDM: A User-Centered Design Method for Web Sites. Computer
Networks and ISDN Systems, 30(1-7):85–94, 1998.

12. R. De Virgilio and R. Torlone. A General Methodology for Context-Aware Data Access. In
Proceedings of ACM International Workshop on Data Engineering for Wireless and Mobile Access,
June 12, 2005, Baltimore, MD, USA, pages 9–15, 2005.

13. R. De Virgilio and R. Torlone. Modeling Heterogeneous Context Information in Adaptive Web
Based Applications. In Proceedings of the International Conference on Web Engineering, July
11-14, 2006, Palo Alto CA, USA, pages 56–63, 2006.

14. R. De Virgilio, R. Torlone, and G.-J. Houben. A Rule-based Approach to Content Delivery
Adaptation in Web Information Systems. In Proceedings of the International Conference on Mobile
Data Management, May 9-13, 2006, Nara, Japan, pages 21–24, 2006.

15. Z. Fiala, M. Hinz, G.-J. Houben, and F. Frăsincar. Design and Implementation of Component-
based Adaptive Web Presentations. In Proceedings of Symposium on Applied Computing, March
14-17, 2004, Nicosia, Cyprus, pages 1698–1704, 2004.

16. Z. Fiala, M. Hinz, K. Meissner, and F. Wehner. A Component-based Approach for Adaptive,
Dynamic Web Documents. Journal of Web Engineering, 2(1-2):58–73, 2003.

17. F. Frăsincar, G.-J. Houben, and P. Barna. Hera Presentation Generator. In Special Interest Tracks
and Posters of International Conference on World Wide Web, May 10-14, 2005, Chiba, Japan,
pages 952–953, 2005.

18. J. Ginzburg, G. Rossi, M. Urbieta, and D. Distante. Transparent Interface Composition in Web
Applications. In Proceedings of International Conference on Web Engineering, July 16-20, 2007,
Como, Italy, pages 152–166, 2007.

19. M. Grossniklaus. Context-Aware Data Management – An Object-Oriented Version Model. VDM
Verlag, 2007.

20. M. Grossniklaus and M. C. Norrie. Information Concepts for Content Management. In Proceedings
of International Workshop on Data Semantics and Web Information Systems, December 11, 2002,
Singapore, Republic of Singapore, pages 150–159, 2002.

21. M. Grossniklaus and M. C. Norrie. An Object-Oriented Version Model for Context-Aware Data
Management. In Proceedings of International Conference on Web Information Systems Engineer-
ing, December 3-6, 2007, Nancy, France, pages 398–409, 2007.

22. F. Halasz and M. Schwartz. The Dexter Hypertext Reference Model. Communications of the
ACM, 37(2):30–39, 1994.

23. G.-J. Houben, P. Barna, F. Frăsincar, and R. Vdovják. Hera: Development of Semantic Web
Information Systems. In Proceedings of International Conference on Web Engineering, July 14-
18, 2003, Oviedo, Spain, pages 529–538, 2003.

24. Institute for Information Systems, ETH Zürich. OMSjp – A Uniform Interface to Heterogenous
OMS Platforms. http://www.globis.ethz.ch/research/oms/platforms/omsjp, 2004.

25. N. Koch. Software Engineering for Adaptive Hypermedia System. PhD thesis, Ludwig-
Maximilians-University Munich, Munich, Germany, 2000.

26. N. Koch and M. Wirsing. The Munich Reference Model for Adaptive Hypermedia Applications.
In Proceedings of International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems, May 29-31, Malaga, Spain, pages 213–222, 2002.

M. Grossniklaus and M. C. Norrie 219

27. M. Linaje, J. C. Preciado, and F. Sánchez-Figueroa. A Method for Model Based Design of Rich
Internet Application Interactive User Interfaces. In Proceedings of International Conference on
Web Engineering, July 16-20, 2007, Como, Italy, pages 226–241, 2007.

28. A. Lombardoni. Towards a Universal Information Platform: An Object-Oriented, Multi-User,
Information Store. PhD thesis, Eidgenössische Technische Hochschule, Zurich, Switzerland, 2006.

29. M. C. Norrie. An Extended Entity-Relationship Approach to Data Management in Object-
Oriented Systems. In Proceedings of International Conference on the Entity-Relationship Ap-
proach, Arlington, TX, USA, pages 390–401, 1994.

30. M. C. Norrie, A. Palinginis, and B. Signer. Content Publishing Framework for Interactive Paper
Documents. In Proceedings of ACM Symposium on Document Engineering, November 2-4, 2005,
Bristol, United Kingdom, pages 187–196, 2005.

31. M. C. Norrie, B. Signer, M. Grossniklaus, R. Belotti, C. Decurtins, and N. Weibel. Context-Aware
Platform for Mobile Data Management. Wireless Networks, 13(6):855–870, 2007.

32. M. C. Norrie, B. Signer, and N. Weibel. General Framework for the Rapid Development of
Interactive Paper Applications. In Proceedings of Workshop on Collaborating over Paper and
Digital Documents, November 4, 2006, Banff, Canada, pages 9–12, 2005.

33. M. C. Norrie, B. Signer, and N. Weibel. Print-n-Link: Weaving the Paper Web. In Proceed-
ings of the ACM Symposium on Document Engineering, October 10-13, 2006, Amsterdam, The
Netherlands, pages 34–43, 2006.

34. L. Olsina, O. Pastor, G. Rossi, and D. Schwabe. International Workshop on Web-Oriented Software
Technologies (IWWOST 2003). http://www.dsic.upv.es/~west/iwwost03/, 2003.

35. J. C. Preciado, M. Linaje, F. Sánchez, and S. Comai. Necessity of Methodologies to Model
Rich Internet Applications. In Proceedings of International Symposium on Web Site Evolution,
September 26, 2005, Budapest, Hungary, pages 7–13, 2005.

36. G. Rossi, A. Nieto, L. Mengoni, N. Lofeudo, L. Nuño Silva, and D. Distante. Model-Based Design
of Volatile Functionality in Web Applications. In Proceedings of Latin American Web Congress,
October 25-27, 2006, Cholula, Mexico, 2006.

37. D. Schwabe and G. Rossi. An Object Oriented Approach to Web-based Applications Design.
Theory and Practice of Object Systems, 4(4):207–225, 1998.

38. B. Schwarzentrub. Multi-Variant Programming. Semester project, Institute for Information Sys-
tems, ETH Zurich, 2006.

39. B. Signer. Fundamental Concepts for Interactive Paper and Cross-Media Information Spaces. PhD
thesis, Eidgenössische Technische Hochschule, Zurich, Switzerland, 2006.

40. B. Signer, M. Grossniklaus, and M. C. Norrie. Interactive Paper as a Mobile Client for a Multi-
Channel Web Information System. World Wide Web Journal, 10(4):529–556, 2007.

41. B. Signer, M. C. Norrie, M. Grossniklaus, R. Belotti, C. Decurtins, and N. Weibel. Paper-Based
Mobile Access to Databases. In Demonstration Proceedings of ACM SIGMOD International Con-
ference on Management of Data, June 27-29, Chicago, IL, USA, pages 763–765, 2006.

42. Y. Stavrakas and M. Gergatsoulis. Multidimensional Semistructured Data: Representing Context-
Dependent Information on the Web. In Proceedings of International Conference on Advanced
Information Systems Engineering, May 27-31, 2002, Toronto, Canada, pages 183–199, 2002.

43. Y. Stavrakas, K. Pristouris, A. Efandis, and T. Sellis. Implementing a Query Language for Context-
Dependent Semistructured Data. In Proceedings of East-European Conference on Advances in
Databases and Information Systems, September 22-25, 2004, Budapest, Hungary, pages 173–188,
2004.

44. W. W. Wadge, G. Brown, M. C. Schraefel, and T. Yildirim. Intensional HTML. In Proceedings of
International Workshop on Principles of Digital Document Processing, March 29-30, 1998, Saint
Malo, France, pages 128–139, 1998.

45. A. P. Würgler. OMS Development Framework: Rapid Prototyping for Object-Oriented Databases.
PhD thesis, Eidgenössische Technische Hochschule, Zurich, Switzerland, 2000.

