
Journal of Web Engineering, Vol. 7, No.3 (2008) 220-238
© Rinton Press

 A MIGRATION PLATFORM BASED ON WEB SERVICES

 FOR MIGRATORY WEB APPLICATIONS

 FABIO PATERNÒ CARMEN SANTORO ANTONIO SCORCIA

 ISTI-CNR, Via G.Moruzzi, 1 Pisa (ITALY)
 {fabio.paterno, carmen.santoro, antonio.scorcia}@isti.cnr.it

Received November 11, 2007

Revised March 9, 2008

In this paper we present a new environment for supporting Web user interface migration through different
devices. The goal is to furnish user interfaces that are able to migrate across different devices, in such a
way as to support task continuity for the mobile user. This is obtained through a number of transformations
that exploit logical descriptions of the user interfaces to be handled. The migration environment supports
the automatic discovery of client devices and its architecture is based on the composition of a number of
software services required to perform a migration request.

Key words: User Interface Migration, Adaptation to the Interaction Platform, Ubiquitous
Environments.

1 Introduction

One important aspect of pervasive environments is the possibility for users to freely move about and
continue interacting with the services available through a variety of interactive devices (i.e. cell
phones, PDAs, desktop computers, digital television sets, intelligent watches, and so on). Many
interesting issues are related to such new environments, even for Web applications. Indeed, the W3C
Consortium has started a new working group on Ubiquitous Web Applications, with the focus to
extend the Web to all kind of devices including effectors and sensors (http://www.w3.org/2007/uwa/).
In this area, one important goal is to support continuous task performance, which implies that
applications be able to follow users and adapt to the changing context of users and the environment
itself. In practise, it is sufficient that only the part of an application that is interacting with the user
migrates to different devices.

In this paper, we present a new solution for supporting migration of Web application interfaces
among different types of devices that overcomes the limitations of previous work [2] in many respects.
Our solution is able to detect any user interaction performed at the client level. Then, we can get the
state resulting from the different user interactions and associate it to a new user interface version that is
activated in the migration target device. In particular, we present how the solution proposed has been

F. Paternò, C. Santoro and A. Scorcia 221

encapsulated in a service-oriented architecture and supports Web interfaces with different platforms
(fixed and mobile) and modalities (graphical, vocal, and their combination). The new solution also
includes a discovery module, which is able to detect the devices that are present in the environment
and collect information on their features. Users can therefore conduct their regular access to the Web
application and then ask for a migration to any device that has already been discovered by the
migration server. The discovery module also monitors the state of the discovered devices,
automatically collecting their state-change information in order to understand if there is any need for a
server-initiated migration. Moreover, we show how the approach is able to support migration across
devices that support various interaction modalities. This has been made possible thanks to the use of a
logical language for user interface descriptions that is independent of the modalities involved, and a
number of associated transformations that incorporate design rules and take into account the specific
aspects of the target platforms.

In the paper, after discussing related work, we provide an overall introduction of the environment,
followed by a discussion on device discovery mechanisms used in the environment. Next, we focus on
the logical descriptions used by the migration environment and how they are created by a reverse
engineering process starting with the source desktop Web pages. Then, we provide the description of
the semantic redesign module, explain how the migration environment functionalities have been
incorporated. Lastly, we present an example application describing a migration through desktop,
mobile and vocal, and draw some conclusions.

2 Related Work

The increasing availability of various types of electronic interactive devices has raised interest in
model-based approaches, mainly because they provide logical descriptions that can be used as a
starting point for generating interfaces that adapt to the various devices at hand. In recent years, such
interest has been accompanied by the use of XML-based languages, such as UsiXML [5] and TERESA
XML [7] for representing the aforementioned logical descriptions. The research in this area has mainly
focused on how to help designers efficiently obtain different versions of an application that adapt to the
various interaction features of the different devices, but also contributions for runtime support have
started to be proposed. For example, the Personal Universal Controller [8] automatically generates user
interfaces for remote control of domestic appliances. The remote controller device is a mobile device,
which is able to download specifications of the functions of appliances and then generate the
appropriate user interface to access them. The architecture is based on a bidirectional asynchronous
communication between the appliance and the remote controller. However, the process of discovering
the device is far from automatic as the user needs to manually enter the device’s network address in the
remote control application before any other action can be performed. ICrafter [11] is a more general
solution for user interaction in ubiquitous environments, which generates adaptive interfaces for
accessing services in such environments. In ICrafter, services signal their presence by periodically
sending broadcast messages. A control appliance then requests a user interface for accessing a service
or an aggregation of services by sending its own description, consisting of the user interface languages
supported (i.e. HTML, VoiceXML) to an entity known as the Interface Manager, which then generates
the user interface and sends it back to the appliance. However, ICrafter does not support the possibility
of transferring the user interface from one platform to another, while the user is interacting with it,
maintaining the client-side state of the interface.

222 A Migration Platform Based On Web Services For Migratory Web Applications

SUPPLE [4] generates adaptive user interfaces taking functional specifications of the interfaces, a
device model and a user model as input. The remote solver server that acts as the user interface
generator is discovered at bootstrap by the client devices, and they can thus request rendering of
interfaces to it once it is discovered. However, discovery is limited to the setup stage of the system,
and it does not monitor the runtime status of the system, thus loosing some of the benefits that could
arise from a continuous monitoring activity. SUPPLE does not support the migration of a user interface
from one device to another, but only adapts it to different types of platforms.

Luyten and Coninx [6] present a system for supporting distribution of the user interface over a
federation or group of devices. Migratability, in their words, is an essential property of an interface
and marks it as being continuously redistributable. These authors consider migration and distribution
of only graphical user interfaces, while we provide a new solution supporting graphic, vocal and even
multimodal user interface migration. A general reference model for user interfaces aiming to support
migration, distribution and adaptation to the platform is proposed in [1], without providing specific
architectural solutions for such issues. Our system, in particular, proposes a concrete software
architecture that is able to support migration of user interfaces, associated with Web applications
hosted by different application servers, among automatically discovered devices.

3 Overall Description of the Environment

The main characteristics of migration are: device change, adaptation, and continuity. The basic idea is
that people would like to freely move and still be able to continue to perform their tasks and thus the
interactive part of an applications should be able to follow them and adapt to the changing context of
use.

Figure 1 Migration Scenario.

Figure 1 provides an overview of the system through an example from the user viewpoint. First,
there is a dynamic discovery of the new user device as it enters the environment. This is performed
thanks to a small piece of software that has to be loaded onto the devices and through which the clients

F. Paternò, C. Santoro and A. Scorcia 223

are able to announce their presence in the migration environment. Then, the environment may suggest
migration to a nearby device (automatic migration), or the user can explicitly request a specific
migration. In the latter case, the user can select the target device either from a list of available devices
or by pointing it with a RFID reader. Lastly, the user interface migrates to the target device with the
mediation of the migration server. In the example in Figure 1, we consider a user-initiated migration,
with a user using a PDA equipped with an RFID reader, which detects the tagged projector, which is
associated with a PC that will be considered the target device.

Our migration environment is based on a service-oriented architecture involving multiple clients
and servers: the architecture aims at providing interoperability between the different services, which
can be also combined for delivering composite services, as it happens in the migration support. We
assume that the desktop version of the considered applications already exists in the application servers.
In addition, we have a migration platform, which is composed of a proxy service and a number of
specific services and can be hosted by either the same or different systems.

Figure 2 shows the six main web services that have been identified to compose the migration
platform:

• the Discovery Manager, which includes the functionalities for discovering the available
devices and update the device list accordingly;

• the Migration Manager is the core of the system: it handles the communication with the other
modules, and also includes proxy functionalities;

• the Reverse Engineering, is in charge of reversing the desktop implementation into a logical
user interface description;

• the Semantic Redesign module, which transforms the logical description of the user interface
designed for the source platform into a logical description of the user interface for the target
migration platform;

• the State Mapper, which updates the final user interface with the values of the current state,
which have been saved at the time the request of migration occurred;

• The UIGenerator, which reifies the logical concrete description into an implementation
language for the target platform.

Figure 2 represents with UML interaction diagrams the main communication among the migration
services. The process starts with the source and target devices notifying their presence to the Discovery
Manager, which is in charge of discovering the available devices and updating the list of devices
accordingly. Indeed, in order to allow for a good choice of the target device, information about the
devices that are automatically discovered in the environment is saved. Such information mainly
concerns device identification and interaction capabilities and, on the one hand, it enables users to
choose a target migration device with more accurate and coherent information on the available targets
and, on the other hand, it enables the system to suggest or automatically trigger migrations when the

224 A Migration Platform Based On Web Services For Migratory Web Applications

conditions for one arise. Thus, both the system and the user have the possibility to trigger the migration
process, depending on the surrounding context conditions.

Figure 2 Main communication among the migration services.

The migration clients are supposed to access the various applications through the proxy available
within the Migration Server. This means that this module is in charge of intercepting the clients’
request of accessing a page, retrieving such a page from Internet and saving it locally together with the
referred entities (images, CSS files, etc.). Afterwards, the Migration Server receives from the source
device the request for migration (which specifies the source device, the target device, and the URL of
the page that has to be migrated), and it triggers the sequence of actions needed for fulfilling such a
request.

The Migration Server, after receiving the request of migration by the source device, interrogates
the target device asking about its availability/willingness for accepting a migrating user interface: if the
migration is accepted, the environment detects the state of the application modified by the user input
(elements selected, data entered, …) and identifies the last element accessed in the source device. This
is obtained by JavaScript functions that are automatically inserted by the proxy server and are in
charge of collecting the information that describes the state of the migrating page by accessing its

Pda Desktop Discovery
Manager

Migration
Manager

Reverse
engineering

Semantic
Redesign

Clients Migration Services
UI Generator State

Mapper

 Announcing presence

 Announcing presence

Reverse Html into Cui

Get Source Platform Info

Get Target Platform Info

Redesign From Desktop To Target Platform

IdentifyTargetPresentation

Adapt & Associate State

Load Page

 Migration Request

Discovery New Device and Update Device List

Discovery New Device and Update Device List

Send DOM

Generate Presentation

F. Paternò, C. Santoro and A. Scorcia 225

DOM. The information is collected into a string formatted following a XML-based syntax and
submitted to the server together with the IP of the target device. This information is sent to the server
through an AJAX script. The reason for this is that only the application running on the client device
can access the DOM and the AJAX callback can transmit the data without requiring any additional
explicit action from the user.

Then, the Migration Manager gets information about the source device and builds the logical
descriptions of the corresponding desktop page by invoking the Reverse Engineering service of our
system. At this point, the Migration Manager asks the Discovery Manager information about the target
device in order to understand for which platform the redesign process has to be carried out. Indeed, the
result of the reverse engineering process, together with information about target platform is used as
input for the Semantic Redesign service, in order to perform a redesign of the user interface for the
target platform. This part of the migration environment transforms the logical description of the
desktop version into the logical description for the new platform. This solution allows the environment
to exploit semantic information contained in the logical description and obtain more meaningful results
than transformations based only on the analysis of the specific implementation language used for the
final UI.

Afterwards, the Migration Manager has to identify on the target device the logical presentation to
be activated. In this case the problem to solve is that in some cases there is no one-to-one mapping
between the pages in the source and the target device: for example one desktop page can be mapped
onto multiple mobile pages in case of a desktop-to-mobile migration. In such cases the page activated
on the target platform is the one that supports the last user input in the source device in order to allow
the users to continue from the point they left off. Once such a presentation has been identified on the
target device, the Migration Manager asks the State Mapper to adapt the state of the concrete user
interface with the values that have been saved previously. Then, once the concrete user interface
adapted with the new values has been obtained, the reification of such a logical description towards the
final user interface for the target platform is delivered by the UIGenerator module and finally, the
resulting page is sent to the target device.

Users have two different ways of issuing migration requests. The first one is to graphically select
the desired target device in their migration client. Users only have the possibility of choosing those
devices that they are allowed to use and are currently available for migration. The second possibility
for issuing migration requests occurs when the user is interacting with the system through a mobile
device equipped with an RFID reader. In this case, users could move their device near a tagged
migration target and keep it close from it for a number of seconds in order to trigger a migration to that
device. In this case, in addition to a spatial threshold used to indicate when the user is sufficiently
close to trigger a migration, a time threshold has been defined in order to avoid accidental migration,
for example when the user is just passing by a tagged device. This second choice offers users a chance
to naturally interact with the system, requesting a migration by just moving their personal device close
to the desired migration target, in a straightforward manner.

Migration can also be initiated by the system skipping explicit user intervention in critical
situations when the user session could accidentally be interrupted by external factors. For example, we
can foresee the likelihood of having a user interacting with a mobile device that is shutting down

226 A Migration Platform Based On Web Services For Migratory Web Applications

because its battery power is getting too low. Such situations can be recognised by the system and a
migration is automatically started to allow the user to continue the task from a different device,
avoiding potential data loss.

Alternatively, the server can provide users with migration suggestions in order to improve the
overall user experience. This happens when the system detects that in the current environment there are
other devices that can better support the task being performed by the user. For example, if the user is
watching a video on a PDA and a wide wall-mounted screen, obtained through connecting a projector
to a desktop PC, is detected and available in the same room, the system will prompt the user to migrate
to that device, as it could improve his performance. However, the user can continue to work with the
current device and refuse the migration. Receiving undesired migration suggestions can be annoying
for the user, thus users who want to receive such suggestions when better devices are available must
explicitly subscribe to allow for this mixed-initiative migration activation service. In any case, once a
migration has taken place, nothing prevents the user or the system from performing a new migration to
another available device.

4 Device Discovery

Device discovery is another important aspect in migratory user interface environments. It allows the
system to identify potential migration-source and migration-target devices. The technology that
enables this discovery in our migration architecture is a custom discovery protocol explicitly created at
the Internet Protocol (IP) level. The protocol is implemented as a module in the server, and as a client
application on each of the devices. The design of this protocol provides multicast mechanisms for peer-
to-peer device and service discovery, using well-known UDP/IP mechanisms. Once the module and
the user devices have discovered each other, they make use of reliable unicast TCP/IP connections to
provide service description and service monitoring primitives to the system. The implementation and
use of the description capabilities of our discovery protocol provides means for the system to gather a
rich set of information from the devices that are present in the environment, regarding both their
interaction and communication capabilities as well as their general computational ones.

The device discovery of our migration infrastructure is based on multicast datagrams using
UDP/IP. When one device enters the network, it issues a discovery message to a well-known multicast
address to which all existing devices must subscribe. Subscription to multicast groups is handled by the
network equipment and usually limited to the current subnet. In any event, when this discovery
message is received by the other network peers, they respond by sending a unicast message to the
issuer of the discovery request. In this way, all active migration clients and servers found in the
network discover each other via a minimal exchange of network packets. At this point, the discovery
algorithm changes depending on the nature of the migration application running on that particular
device. If the device is to act as a server, then a unicast description request will be sent to all the
discovered devices, requesting them to present themselves by sending an XML description file to the
server device. This description will be saved in the server for future reference. If, on the other hand, the
device is to act as a client to the migration infrastructure, then it will wait until a server is found and a
description file is requested by it. Once this state is reached, the system is configured and fully
functional. In order to guarantee consistency, keep-alive multicast messages are sent by all parties
every second. When no keep-alive is received from a given device for a configurable amount of time,

F. Paternò, C. Santoro and A. Scorcia 227

the device is deemed as having departed the network and no further communications are allowed with
it until proof of its re-activation is gathered, in the manner of new multicast keep-alive messages. The
periodicity of the keep-alive datagrams is low enough to ensure no considerable network traffic will be
generated.

In order to supply the migration server with information about the devices that are present in the
environment, XML-based device description files have been used. These files include all the relevant
information the migration server needs in order to identify the device and find out its capabilities and
features. The description files also provide an efficient way to monitor the state of the devices
available in the environment by allowing the migration server and other interested parties to subscribe
to certain events in order to receive a notification message each time a device state-change occurs. This
has improved the support for automatic migration through richer and more accurate monitoring of the
environment and the user interactions with it. The use of our custom discovery protocol in combination
with these XML description files has proven to be successful and addresses our objectives and goals.
In our new discovery-enabled prototype, users do not need to manually specify the IP address of the
migration server, since the middleware automatically discovers it for them. Neither do they need to
login their personal interaction device into the migration environment, as their devices are
automatically detected by the system both when connecting to it and when disconnecting from it. Thus,
the new migration architecture offers an increased robustness and better consistency over the previous
versions of our migration prototype, without increasing the prototype’s complexity from the
development point of view, and keeping things transparent and simple for the end user.

5 The User Interface Logical Descriptions Supported

Our migration environment considers different logical views of the user interface, each one giving a
different level of abstraction of the users’ interactions with the system:

• The task level, where the logical activities are considered.

• The abstract interface level, consisting of a platform-independent description of the user interface,
for example at this level we can find elements such as a selection object.

• The concrete interface level, consisting of a platform-dependent but implementation language
independent description of the user interface, for example in the case of a graphical user interface, the
abstract selection object can become a radio button, a list or a pull-down menu.

• The final user interface, the actual implemented user interface.

The abstract description level represents platform-independent semantics of the user interface and
is responsible for how interactors are arranged and composed together (this will also influence the
structure of the final presentations). In this case the semantics refers to the type of effect that the user
interface element is expected to support.

The concrete description represents platform-dependent descriptions of the user interface and it is
responsible for how interactors and composition operators are refined in the chosen platform with their
related content information (text, labels, etc.).

The concrete description adds information regarding concrete attributes to the structure provided
by the abstract description. The abstract description is used in the interface redesign phase in order to

228 A Migration Platform Based On Web Services For Migratory Web Applications

drive the changes in the choice of some interaction object implementations and their features and
rearrange their distribution into the redesigned pages. Both task and logical interface descriptions are
used in order to find associations between how the task has been supported in the original interface and
how the same task should be supported in the redesigned interface, and associate the runtime state of
the migrating application. To provide an example of what such abstraction levels represent, we can
consider the task of setting the temperature in a room. Such task is an interaction editing task (since it
allows for modifying a value), which can be supported in abstract terms by an interactor through which
it is possible to edit a quantity within a predefined range (numerical_edit_in_range). At the concrete
level, depending on the considered platform, such interactor can be rendered through a vocal command
(on a vocal platform) or a graphical gauge (on a graphical platform).

Figure 3 The specification of the abstract user interface language used in our migration approach

We have used TERESA XML for the logical description of the structure and interface elements
[7]. The logical description of the user interface is organised in presentation(s) interconnected by
connection elements (see Figure 3). Connections are defined by their source and target presentations,
and the particular interactor in the source presentation in charge of triggering the activation of the
target presentation. Thus, connections are used to define the navigation model. Presentations are made
up of logical descriptions of interaction objects called interactor elements. Interactors are composed by
means of composition operators. The goal of such composition operators is to identify the designers’

F. Paternò, C. Santoro and A. Scorcia 229

communication goals, which determine how the interactor should be arranged in the presentation.
Thus, we have a grouping operator indicating that there is a set of elements logically connected to each
other, a relation operator indicating that there is one element controlling a set of elements, a hierarchy
operator indicating that different elements have different importance for users, and an ordering
operator indicating some ordinal relation (such as a temporal relation) among some elements.

6 From Web Pages to Logical Descriptions

The main purpose of the reverse engineering service is to capture the logical design of the interface (in
terms of basic tasks and ways to structure the user interface), which is then used to drive the generation
of the interface for the target device. In order to support the automatic redesign for migration
purposes, we need to access the relevant abstract descriptions. Thus, the reverse engineering module of
our migration environment is able to take Web pages and then provide the necessary corresponding
abstract logical descriptions.

Some work in this area has been carried out previously. For example, WebRevEnge [9]
automatically builds the task model associated with a Web application, whereas Vaquita [3] and its
evolutions build the concrete description associated with a Web page. The reverse transformation can
reverse Web sites implemented in (X)HTML, including those which have associated CSS stylesheets.
A Web site is reversed considering one page at a time and reversing it into a concrete presentation.
When a page is reversed into a presentation, its elements are reversed into different types of concrete
interactors and combination of them by recursively analysing the DOM tree of the X/HTML starting
with the body element and going in depth. For each tag that can be directly mapped onto an interactor a
specific function analyses the corresponding node and extracts information to generate the proper
interactor or composition operator.

In order to get the DOM tree, well formed X/HTML files are needed. However, since many of the
pages available on the Web do not satisfy this requirement, before reversing the page, the W3C Tidy
parser is used for correcting features like missing and mismatching tags and returns the DOM tree of
the corrected page, which is analysed recursively starting with the body element and going in depth.
After the first generation step, the logical description is optimised by eliminating some unnecessary
grouping operators (mainly groupings composed of one single element) that may result from the first
phase. Each logical presentation can contain both elementary interactor objects and composition
operator elements, allowing for combining objects in structured expressions. The composition
operators can contain both simple interactors and multiple composition operators. Our reverse
engineering transformation identifies the corresponding logical basic tasks [10]. This is useful for two
main reasons: the interface on the target device should be activated at a point supporting the last basic
task performed on the source device in order to allow continuity, and in the redesign phase it is
important to consider whether the type of tasks to support is suitable for the target device.

Three basic cases can be identified (the algorithm is summarised in Figure 4) depending on the
node analysed:

• The XHTML element is mapped onto a concrete interactor. This is a recursion endpoint. The
appropriate interactor element is built and inserted into the XML-based logical description.
For example, DOM nodes corresponding to the tags , <a> and <select> cause the

230 A Migration Platform Based On Web Services For Migratory Web Applications

generation of concrete objects of type respectively image, navigator and selection. The
properties of the objects in the source page considered are also used to fill in the attributes of
the corresponding concrete user interface elements, out of the peculiarities used in the specific
final language used for implementing the page of the source device. For instance, the italic
attribute of a text concrete element is set to true although in the HTML implementation it
might appear as either <i> or .

• The XHTML node corresponds to a composition operator. In this case, after creating the
proper composition element, the function is called recursively on the XHTML node subtrees.
The subtree analysis can return both elementary interactors and composition of them. In both
cases the resulting nodes are appended to the composition element from which the analysis
started. For example, the node corresponding to the tag <form> is reversed into a Relation
composition operator, into an Ordering, into a Grouping. Depending on the
considered node to be reversed, appropriate attributes are also stored in the resulting element
at the concrete level (e.g. typical HTML desktop lists will be mapped at the concrete
level in a grouping expression using bullets listed following a vertical positioning).

• The node does not require the creation of an instance of an interactor in the concrete
specification (for example, if in the Web page there is the definition of a new font, no new
element is added in the concrete description). On the one hand, if the node has no children, no
action is taken and we have a recursion endpoint (this can happen for example with line
separators like
 tags). On the other hand, if the node has children, each child subtree is
recursively reversed and the resulting nodes are collected into a grouping composition which
is in turn added to the result.

Figure 4: The Reverse Engineering Algorithm.

F. Paternò, C. Santoro and A. Scorcia 231

Our environment is able to reverse engineer, redesign, and migrate Web sites implemented with
XHTML and CSS. All the tags of these standards can be considered and manipulated.

An algorithm has been developed for handling code in Web pages that is implemented in different
languages, for instance applets and Flash applications, which are generally identified by <object> tags
with further attributes in their specification (e.g. title, etc.). The algorithm aims to map applets/flash
elements to concrete (simpler) elements, taking into account the provided specification of such
elements and also the capability of the target platform considered. For instance, if an applet/flash
element has no siblings and there is no further data in its specification, the algorithm simply removes
the corresponding node, otherwise it can map it into a e.g. textual string whose label is derived from
the title attribute within the specification of the flash/applet code.

7 Semantic Redesign for Different Types of Platforms

The redesign transformation aims at changing the design of a user interface. In particular, we propose a
redesign for identifying solutions suitable for a different platform, which is performed automatically by
exploiting semantic information contained in the logical description of the user interface (created by
the reverse process). Given the limited resources in screen size of mobile devices (such as cell phones
or PDAs), desktop presentations generally must be split into a number of different presentations for the
mobile devices. The logical description provides us with some semantic information that can be useful
for identifying meaningful ways to split the desktop presentations along with the user interface state
information (the actual implemented elements, such as labels, images, etc.).

The Redesign Service analyses the input from the desktop logical descriptions and generates an
abstract and concrete description for the target platform from which it is possible to automatically
obtain the corresponding user interfaces. The redesign module also decides how abstract interactors
and composition operators should be implemented in the target mobile platform. In order to
automatically redesign a desktop presentation for a different platform we need to consider semantic
information and the limits of the available resources. Indeed, if we only consider the physical
limitations we may end up dividing large pages into small pages which are not meaningful. Previous
approaches to semantic redesign [2] were not able to dynamically calculate the cost sustainable by the
target device and that of the Web pages under consideration, thus providing rather limited results in
terms of adaptation.

Figure 5 shows the various phases of semantic redesign in the case of desktop-to-mobile
transformations. There are three main phases: transforming the desktop logical interface into a mobile
logical interface, calculating the cost of such a new user interface in terms of resources, and splitting
the logical interface into presentations that fit the cost sustainable by the target device. The first phase
mainly changes the concrete elements of the desktop description into concrete elements that are
supported by the mobile platform (for example a radio-button with several elements can be replaced
with a pull-down menu that occupies less screen space). In this phase the images are resized according
to the screen size of the target devices, keeping the same aspect ratio. In some cases they may not be
rendered at all because the resulting resized image would be too small or the mobile device does not
support them. Text and labels can be transformed as well, since they may be too long for the mobile
devices. In converting labels we use tables able to identify shorter synonyms.

232 A Migration Platform Based On Web Services For Migratory Web Applications

Figure 5 Desktop-to-Mobile Semantic Redesign

In order to automatically redesign a desktop presentation for a mobile device we need to consider
semantic information and the limits of the available resources. If we only consider the physical
limitations we may end up dividing large pages into smaller ones that are not meaningful. To avoid
this, we also consider the composition operators indicated in the logical descriptions.

To this end, our algorithm tries to maintain interactors that are composed together through some
composition operator in the same final presentation, thus preserving the communication goals of the
designer and obtaining consistent interfaces. In addition, the page splitting requires a change in the
navigation structure with the need for additional navigator interactors that allow for accessing the
newly created pages.

The algorithm for calculating the costs and splitting the presentations accordingly is based on the
number and cost of interactors and their compositions. The cost is related to the interaction resources
consumed, e.g.: number of pixels of images, font sizes. After the initial transformation, which replaces
the desktop concrete elements with mobile concrete elements (for example, a text area for the desktop
platform could be transformed into a simpler text edit on the mobile platform), the cost of each
presentation is calculated. If it fits the cost sustainable by the target device, then no other processing is
applied. Otherwise, the presentation is split into two or more pages following this approach: the cost of
each composition of elements is calculated. The one with the highest cost is associated to a newly
generated presentation and it is replaced in the original presentation with a link to such a new
presentation. Thus, if the cost of the original presentation after this modification is less or equal the
maximum cost that can be supported by a single mobile presentation then the process terminates,
otherwise the algorithm is recursively applied to the remaining composition of elements. In case of a
complex composition of interface elements that cannot be entirely included in a single presentation
because of its high cost for the target device, the algorithm aims to equally distribute the interactors
amongst two corresponding presentations of the mobile device.

More specifically, the transformation follows the subsequent main criteria:

• The implementation of the logical interactors may change according to the interaction
resources available in the target platform (for example an input desktop text area, could be
transformed into an input mobile text edit or also removed, because writing of long text is not
a proper activity for a mobile device).

• The images should be resized according to the screen size of the target devices, keeping the
same aspect ratio. In some cases they may not be rendered at all because the resulting resized
image is too small or the mobile device does not support them.

F. Paternò, C. Santoro and A. Scorcia 233

• Text and labels can be transformed as well because they may be too long for the mobile
devices. In converting labels we use tables able to identify shorter synonyms.

• The presentation split from desktop to mobile takes into account the composition operators
because they indicate semantic relations among the elements that should be preserved in the
resulting mobile interface.

• Another aspect considered is the number and cost of interactors. The cost is related to the
interaction resources consumed, so it depends on pixels required, size of the fonts and other
similar aspects.

• The connections of the resulting interface should include the original ones and add those
derived from the presentation split.

With reference to the last bullet (connections that might be added after a presentation split), the
following rules have been applied for creating the new connections:

• Original connections of desktop presentations are associated to the mobile presentations that
contain the interactor triggering the associated transition. The destination for each of these connections
is the first mobile presentation obtained by splitting the original desktop destination presentation.

• Composition operators that are allocated to a new mobile presentation are substituted in the
original presentation by a link to the new presentation containing the first interactor associated with the
composition operators.

• When a set of interactors composed through a specific operator has been split into multiple
presentations because they do not fit into a single mobile presentation, then we need to introduce new
connections to navigate through the new mobile presentations.

As we said before, in the transformation process we take into account semantic aspects and the
cost in terms of interaction resources of the elements considered. The cost that can be supported by the
target mobile device is calculated by identifying the characteristics of the device through the user agent
information in the HTTP protocol, which can be used to access more detailed information in its
UAProfile, when available. Examples of elements that determine the cost of interactors are the font
size (in pixels) and number of characters in a text, and image size (in pixels), if present. One example
of the costs associated with composition operators is the minimum additional space (in pixels) needed
to contain all its interactors in a readable layout. This additional value depends on the way the
composition operator is implemented (for example, if a grouping is implemented with a fieldset or with
bullets). Another example is the minimum and maximum interspace (in pixels) between the composed
interactors. After such considerations, it is easy to understand that each mobile presentation could
contain a varying number of interactors depending on their consumption of interaction resources.

If we consider redesigning for the vocal platform, there are some specific issues to be considered.
For example, in vocal platforms, it is important that the system always provides feedback when it
correctly interprets a vocal input and it is also useful to provide meaningful error feedback in the event
of poor recognition of the user’s vocal input. At any time, users should be able to interrupt the system
with vocal keywords (for example “menu”) to access other vocal sections/presentations or to activate
particular features (such as the system reading a long text). An important aspect to consider is that
sometimes users do not have an overall control of the system state, such as in graphic interfaces. In

234 A Migration Platform Based On Web Services For Migratory Web Applications

fact, short term memory can be easily disturbed by any kind of distraction. Thus, a useful technique is
to provide some indication about the interface state in the application after a period of silence
(timeout). Another useful technique for dealing with this problem can be the use of speech titles and
welcome or location sentences in each vocal presentation to allow users to understand their position
and the subject of the current presentation and what input the system needs at that point.

Another important difference between speech and graphic interfaces is that the vocal platform
supports only sequential presentations and interactions while the graphical ones allow concurrent
interactions. Thus, in vocal interfaces we have to find the right balance between the logical information
structure and the length of presentations. The analysis of the result of the reverse engineering provides
useful information to understand how to organise the vocal version (for example what elements should
be grouped) and then the arrangement is implemented using vocal constructs.

The main criteria of the redesign algorithm for the vocal platform are:

• During redesign for vocal interaction, elements regarding tasks unsuitable for the vocal platform
(for example, long text inputs) are removed and labels which are too long are modified (with the help
of a database of terms suitable for vocal activities).

• Semantic relations among interactors in the original platform are maintained in the vocal platform,
keeping interactors composed through the same composition operators in the same vocal presentation,
and implementing them with techniques more suitable for the vocal device. For example, grouping of
elements in the case of vocal interaction can be achieved by insert a delimiting sound or pause or using
some keywords or a specific volume of the voice synthesizer.

• During the redesign phase, images are removed and substituted by alternative descriptions (ALT
tag).

• The algorithm aims at providing a logical structure to vocal presentations avoiding too deep
navigation levels because they may disorient users. To this end, only the highest level composition
operators (in the case of nested operators) are used to split desktop presentations into vocal
presentations.

• Composition operators that are allocated to new vocal presentations are substituted in the main
vocal presentation that cannot contain them by a vocal link to the new presentation, which contains the
first interactor associated with the composition operator.

8 Example Application

This section presents an example application of our migration environment. In the example, John is
planning to go on vacation and would like to buy a new camera. He decides to search for a bargain on
an online auction website and accesses the “e-Bid” website through his desktop PC. He checks the
information about the available cameras by looking at item descriptions and prices. He finds an
interesting offer and accesses the page containing information about the selected camera. He then
decides to bid on this item, but discovers that he has to register first, and thus starts filling out the long
registration form required by the website. Suddenly, the alarm on the desktop reminds him about a
meeting which is going to take place this afternoon at his office, so he has to leave. The form is too

F. Paternò, C. Santoro and A. Scorcia 235

long to be completed in time on the desktop PC, thus he quickly migrates the application to his PDA
and goes out walking towards his car, while he continues filling in the form.

Figure 6 Example of migration through different devices.

236 A Migration Platform Based On Web Services For Migratory Web Applications

Figure 6 shows the desktop form partially filled in and how it is transformed for the mobile device
if migration is triggered at that time. After the reverse engineering phase, the original desktop interface
is transformed into a composition of concrete/abstract objects. Then, the composition operators
(indicating a semantic relationship among the objects involved) and the number and cost of the
interactors of the various presentations are considered in order to redesign the original desktop page for
the new device. As a result of this process, the long desktop form is split into two pages or
presentations for the PDA. Additional connections are inserted for allowing the user to navigate
from/to the two pages. Since the last input in the desktop interface was the email address then the
mobile page supporting entering this piece of information is the one activated first in the mobile
device. After completing the registration, John, with his PDA, places a bid on the camera before the
auction ends in a matter of a few minutes, and then he is redirected to the page containing the camera
description, where he can monitor the status of his bid.

In the example shown in Figure 6, two migrations occur: in the first migration (from desktop to
PDA), the user partially completes the form, by providing only some information. The last information
provided when the first migration is requested is the email address. As soon as the migration is
activated, the migration server finds where the form filling was interrupted and then shows to the user
the PDA presentation with the form partially filled (see PDA presentation on the top). Afterwards, the
user continues interacting with the application: he re-enters the email address, as requested, and moves
on the next PDA presentation (see PDA presentation on the bottom), by providing further information
(e-Beat User ID). Still interacting with the PDA the user provides the user id (Johnbet, see bottom
PDA presentation), and then a migration is requested towards to a vocal device. Indeed, while he is
keeping an eye on the bidding, he enters his car and the application automatically migrates from the
PDA to his mobile phone and can now be accessed through the vocal interface thanks to the wireless
connection to the car voice system. Thus, the environment carries out a redesign of the application for
the new platform (vocal) and therefore identifies how the user interface design should be adapted for
the new platform.

Moreover, after having updated the new user interface with the data gathered from the user so far,
the environment identifies the point where the user was before the migration and allows not starting
from scratch but continuing the interaction from the point where it was left off. Indeed, the speaker
says “You have entered your e-Beat User ID Johnbet. If you want to check the availability of your e-
Beat USER ID say availability; if you want to enter the password say password , or say reset if you
want to reset the application”. The user replies saying “availability” and then the application makes
aware the user of the fact that the user id is not available. Then the user is asked to provide a new ID.
This time the ID is available and then John can continue his interaction with the auction system while
driving towards his office.

9 Conclusions

This paper has presented an environment supporting migration of user interfaces, even with different
modalities. The implementation of the system, from the architectural point of view, follows a service-
oriented architecture, with its corresponding benefits, both for the end user and for the developers of
the system. Our prototype of the migration platform has been implemented in Java, with Web services
used to communicate among the various parts.

F. Paternò, C. Santoro and A. Scorcia 237

The migration platform supports migration of existing Web applications, which can be developed
with any authoring environments, and dynamically generates the user interfaces for different platforms
by transforming and adapting the existing content. In addition, support for preserving the state of the
user interface resulting from the user input is provided.

The user interfaces that can be generated by the system are implemented using XHTML, XHTML
Mobile Profile, VoiceXML and Java for the Digital TV. We are now working on a new version of our
environment which is able to generate also -based user interface implementations in other languages
(for example Microsoft C#), even supporting different modalities.

The limitation of the current solution is that it is able to reverse engineer only Web pages
implemented in (X)HTML. It can maintain JavaScripts, or functionality implemented in other
languages, across the various versions automatically generated but it is not yet able to transform these
parts depending on the target device capabilities. Another potential limitation is that our environment
is not able to correct pages that were wrongly designed. Thus, when the input original interface (as it
may happens nowadays) is quite complex and logically or semantically pertaining elements are not
structurally connected, the splitting on different pages elements may not be optimal.

There are many applications that can benefit from migratory interfaces. In general, services that
require time to be completed (such as games, booking reservations) or services that have some rigid
deadline and thus need to be completed wherever the user is.

We have conducted a number of preliminary user studies with the objective of analyzing the user
perception of interface migration and we have found the first results to be encouraging. However, we
plan to carry out a further user study in the nearby future to better measure the effectiveness of the
resulting interfaces.

Acknowledgements

We thank Renata Bandelloni and Zigor Salvador for their help in the implementation of an early
version of the migration infrastructure.

References

1. Balme, L. Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a Software
Architecture Reference Model for Distributed, Migratable and Plastic User Interfaces. In:
Proceedings EUSAI ‘04, LNCS 3295, Springer-Verlag, 2004, 291-302.

2. Bandelloni R., Mori G., Paternò F., Dynamic Generation of Migratory Interfaces, Proceedings
Mobile HCI 2005, ACM Press, pp.83-90, Salzburg, September 2005.

3. Bouillon, L., and Vanderdonckt, J.: Retargeting Web Pages to other Computing Platforms. In:
Proceedings of IEEE 9th Working Conference on Reverse Engineering (WCRE'2002) Richmond,
Virginia, 2002, IEEE Computer Society Press, 339-348.

4. Gajos K., Christianson D., Hoffmann R., Shaked T., Henning K., Long J., Weld D. S.: Fast and
robust interface generation for ubiquitous applications. In: Proceedings UBICOMP’05, pages 37–
55. Springer Verlag, September (2005), LNCS 3660.

238 A Migration Platform Based On Web Services For Migratory Web Applications

5. Limbourg, Q., Vanderdonckt, J.: UsiXML: A User Interface Description Language Supporting
Multiple Levels of Independence, in Matera, M., Comai, S. (Eds.), Engineering Advanced Web
Applications, Rinton Press, Paramus (2004).

6. Luyten, K., Coninx, K. Distributed User Interface Elements to support Smart Interaction Spaces. In:
IEEE Symposium on multimedia. Irvine, USA, December 12-14, (2005).

7. Mori G., Paternò F., Santoro C.: Design and Development of Multi-device User Interfaces through
Multiple Logical Descriptions. In: IEEE Transactions on Software Engineering August (2004),
Vol 30, No 8, IEEE Press, 507-520.

8. Nichols, J. Myers B. A., Higgins M., Hughes J., Harris T. K., Rosenfeld R., Pignol M.: Generating
remote control interfaces for complex appliances. In: Proceedings ACM UIST’02 (2002) 161-170.

9. Paganelli, L., and Paternò, F.: A Tool for Creating Design Models from Web Site Code. In:
International Journal of Software Engineering and Knowledge Engineering, World Scientific
Publishing 13(2), (2003), 169-189.

10. Paternò, F.: Model-based Design and Evaluation of Interactive Applications. Springer Verlag,
ISBN 1-85233-155-0, 1999.

11. Ponnekanti, S. R. Lee, B. Fox, A. Hanrahan, P. and Winograd T. ICrafter: A service framework
for ubiquitous computing environments. In: Proceedings of UBICOMP 2001. (Atlanta, USA,
2001). LNCS 2201, ISBN:3-540-42614-0, Springer Verlag, pp. 56-75.

