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Understanding the characteristics of Internet services workloads is a crucial step to im-
prove the Quality of Service (QoS) offered to Web users. Moreover, studying and model-
ing the user behavior is important to analyze the performance and the scalability of web
servers. This knowledge may be used, for instance, to build workload generators that
help evaluating the performance of those servers. Current workload generators are typ-
ically memory-less, being unable to mimic actual user interaction with the system. As
the basis of this work, we propose a hierarchical characterization and simulation model
focused on the user behavior, named USAR.

In fact, there is strong evidence that a significant part of the user behavior depends
on its satisfaction. Users reactions may affect the load of a server, establishing successive
interactions where the user behavior affects the system behavior and vice-versa. It is
important to understand this interactive process to design systems more suited to user
requirements. In fact, the user reactivity, that is, how the users react to variable server
response time, is usually neglected during performance evaluation. In this work we study
and explain how this reactive interaction is performed by users and how it affects the
system’s performance.

Web applications demand requirements, such as performance and scalability, in order
to guarantee QoS to users. Due to these requirements, QoS has become a special topic
of interest and many mechanisms to provide it have been proposed. In this work, we
address the use of reactivity to improve Internet services. We propose and evaluate
new admission control and scheduling mechanisms. We designed and implemented the
USAR-QoS simulator that allows the evaluation of the new strategies considering the
dynamic interaction between client and server sides in Internet services. We simulate the
new strategies using a TPC-W-based workload. The experiments show the benefits of
the reactive policies which can result in better QoS for Internet Services, improving the
user satisfaction. We also propose a hybrid admission control and scheduling mechanism
that combines both reactive approaches. The results show benefits in terms of response
time and user satisfaction.
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1 Introduction

Understanding the nature and characteristics of Internet services workloads is very important
to design systems with better performance and scalability, which are features that affect
directly the Quality of Service (QoS) experienced by the users. Workload characterization
techniques, such as [34], are popular strategies for this task.

Workload characterization may also be the starting point to build synthetic workload
generators. These generators are an effective way for exercising the system’s capabilities
through the request of operations that are similar to actual workloads. Nevertheless, most
of the Web-related workload generators do not take into consideration systems variations in
terms of QoS to reproduce the users requests, generating the same workload despite the server
response time.

Accounting for user behavior is expected to aggregate valuable information to the modeling
and generation of workloads through the analysis of criteria such as navigational patterns,
actions requested, and the inter-arrival time (IAT) between requests. From the server or proxy
perspective, the user behavior may be observed through the sequence of actions (i.e., clicks
of a link or requests for web pages) performed by a user. Although desirable, it is not usually
possible to observe other criteria such as the user activities between his actions. Characterizing
and replicating the user behavior-related criteria is a challenge that we address in this work.
In particular, we focus on the relation between IAT and the server latency (response time),
i.e. the time to process and answer a request, for each action.

In the first part of this paper we describe USAR, a hierarchical workload characteriza-
tion model. The model also comprises a validation methodology through simulation of user
reactions. As mentioned, we consider behavior as how the interaction of users with web ap-
plications is affected by variable latencies. In order to demonstrate and validate the USAR
model, we present its application and validation using actual data from a proxy-cache server.

Workload generators so far have been based on several aspects of Web workloads such
as arrival process and resource popularity. However, there is one aspect that has not been
considered: how users react to the performance of the system, that is, how the behavior of
the user changes as a function of the response of a server. Previous work [37] presents a
characterization methodology for reactive workloads and demonstrates that users do behave
reactively. Nevertheless, it is not clear how the changes in user behavior affect the workload
submitted to the server, and how the process iterates, when the server, answering to a reactive
behavior, changes again the user behavior and so on. Considering these aspects, reactivity
in Web server performance analysis raises new challenges, in terms of both realistic workload
generation and scalability mechanisms.

The second part of this paper addresses the issue of generating reactive workloads and
evaluating its impact on the server performance. To achieve this goal, we extend httperf [35],
a well-known workload generator, so that it simulates the reactions of users according to the
response time to their requests. The model used to replicate user reactions is based on [37].
It makes possible to reproduce user behavior patterns that represent how a user reacts to
the QoS perceived. Our improved version of httperf is used to generate workloads based on
the TPC-W benchmark [22]. These workloads are applied to a server in order to assess the
impact on its performance.

There is strong evidence that a significant part of the user behavior is reactive, that is,
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the user reacts to the instantaneous conditions at the action time. As a consequence, user
behavior varies according to some factors related to the server and the application provided.
In this context, one important aspect to evaluate is how users react to the performance of
the system, that is, how the behavior of the user changes as a function of the response of a
server.

In the third part of this work we study and explain how this reactive interaction affects
the system’s performance. Moreover, we evaluate how different user profiles affects the sys-
tem’s load, changing the performance and defining different characteristics to this reactive
environment.

Once we have studied and understood the impact of reactivity in the system’s performance,
we investigate how the reaction of users to QoS measures such as response time may be
exploited for sake of designing novel and more effective QoS strategies. Several schemes to
deliver desirable QoS have been proposed but they fail to capture the actual dynamics between
users and the service. Mechanisms such as admission control and scheduling, commonly used
in Internet servers, do not care about the different characteristics of users. For example,
scheduling policies generally adopt a simple First-In First-Out (FIFO) approach, without
considering that users have different levels of tolerance to the Internet QoS [10]. First, we
propose and analyze the use of admission control techniques based on user reactivity to
guarantee QoS in Internet services for workloads with different characteristics. We present
the USAR-QoS simulator that allows the evaluation of the proposed QoS strategies considering
the dynamic interaction between client and server sides in an Internet service scenario. The
experiments show the gains obtained by the reactive strategies, demonstrating the benefits
and drawbacks of the reactive admission control approach.

The new admission control approach based on the reactivity is effective for controlling the
response time, but the rejection of requests causes an increase in the impatience of users. In
order to reduce the impatience of users, we propose new scheduling techniques based on user
reactivity. We present two different approaches that prioritize users with different profiles of
reactive behavior: the Patient-First Impatient-Next (PFIN) and the Impatient-First Patient-
Next (IFPN), both with two different configurations. We evaluate them using the USAR-
QoS simulator that allows the simulation of the proposed QoS strategies considering the
dynamic interaction between client and server sides in an Internet service scenario. For sake
of reproducing representative workloads, our experiments use the TPC-W-based reference
benchmark. The results show the benefits obtained by the reactive scheduling approach that
is effective to reduce de bursts expired rates due to the impatient behavior.

Finally, we also propose a hybrid admission control and scheduling mechanism that com-
bines both reactive approaches, optimizing the advantages of each one. The mechanism based
only on reactive scheduling achieves the best burst lost rate, since its mechanism gives prior-
ity to requests classified with impatient classes. The mechanisms that adopt the admission
control are effective to reduce the response time, but may cause the increase in the burst
lost rate, due to the increase in the amount of users rejecting bursts or sessions. The hybrid
mechanism presents an equilibrium, reducing both the response time values and the burst
lost rate.

The contributions of this work are the formalization of reactivity concept, the specification
of a multi-level reactivity model, elaboration of characterization methodologies for modeling
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user reactivity, and the validation of the model and methodology applying them to relevant
scenarios, such as Web services.

The paper is organized as follows. In section 2, we present an overview of the related work.
Section 3 presents USAR and defines the model to characterize and generate the user behavior
simulation. Moreover, we discuss how to use the model and its validation, presenting a case
study. Section 4 assess the impacts of the reactivity in a experiment using a reactive version of
httperf workload generator. Section 5 presents our experimental study, that complements the
evaluation of the reactivity impact. Section 6 provides some QoS background and describes
our new admission control and scheduling approaches. It also explains the experimental
simulation, presenting the simulator implemented, the methodology of analysis, and the case
study. Finally we present our conclusions in Section 7.

2 Related Work

This section describes related works to the main subjects of our paper. First, we present
some workload characterization. Next, we focus on the user behavior and the influences of
the service performance on it. Then, we discuss the problem of generating realistic workloads.
Finally, we describe works related to aspects of performance and Quality of Service, including
analysis and characterization studies.

2.1 Workload Characterization

The characterization and generation of workloads are essential to the evaluation of Internet
systems, motivating several studies over the last few years. These works[6, 18, 32] analyze
some of the characteristics of workloads of web servers, and Jussara Almeida et. al and
Eveline Veloso et al.[5, 41] analyze streaming media workloads. Daniel Menasce et al. and [34]
propose hierarchical methodologies to characterize workloads based on a multi-level strategy:
request, function, and session. Nevertheless none of these works models the Web systems
characteristics related to the interaction of the users with them. Additional related work to
workload characterization is described on the next subsection with focus on the user behavior
analysis.

2.2 User Behavior

The user behavior can be analyzed using several variables observed in a Web server log. One
may analyze the list of requests submitted, navigational patterns, types of services (functions
[31]) accessed, think-times, among other information. However, in these cases, aspects related
to the Quality of Service provided are not considered.

Henderson [24] uses the latency to study the user behavior in the specific context of a game
application, detecting that network delay has effects on players’ behavior, causing users to quit
the service. Cristiano Costa et al. [17] study the correlation between requests in streaming
media applications, trying to determine trends in the user interaction process. This work [14]
tried to model the click-stream in the context of Web advertising. Anand Balachandran et
al. [8] characterize the user behavior in a public wireless network, considering distribution
of the users, session duration, data rates, application popularity and mobility. The author
intends to optimize the quality of access provided by wireless services. Helmut Hlavacs et
al. [26] proposed a user behavior model framework, built in a top-down manner, consisting
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of various layers and based on mathematical models. This work is used to produce a user
oriented workload generator [25].

However, these studies fail to model the behavior of users to the performance provided by
the service. They do not capture aspects related to the reactivity of users to the quality of
service. Despite the importance of this subject, it has not been completely studied, demanding
works to understand and use it to develop techniques to deploy services with better quality
of service.

2.3 Web Workload Generation

Workload generators are tools designed to generate synthetic logs composed of requests that
simulate real user requests. Workload generation is fundamental to evaluate Web systems
since they allow us to experiment different scenarios of load. SPECweb99 [1], WebBench [3]
and TPC-W [22] are benchmarks for evaluating the performance of Web Servers. They provide
representative benchmark for measuring a system’s ability to act as a Web server. SURGE
[9] and httperf [35] are workload generators, developed to exercise Web servers through the
submission of a set of requests with different characteristics of load.

These workload generators are powerful tools, but they are not capable of simulating user
behavior patterns related to the reactions of users according to the performance provided
by the service. They adopt an arrival process independent of the performance perceived,
generating the same workload, despite the variations observed in the Quality of Service.
Their request generation strategy considers neither the performance of the server nor the user
reaction to it, that is, the workload generated has always the same arrival process, regardless
on how the server answers the requests. Therefore, the study of techniques to fill this gap is
important to improve existing workload generators and to provide the possibility to conduct
more precise evaluation of Web servers.

2.4 Performance Evaluation

Performance evaluation is a very important subject in order to verify the quality of service
provided by a Web site when different workloads are applied to it. Many works address this
problem, studying many related aspects.

Some works evaluate the response time impact on users behavior, such as [40].David Ol-
shefski et al. [36] present a mechanism for Web servers to measure the response time perceived
by the clients, using a model of TCP that analyzes the broken connections. Other works such
as [29] analyzes the connectivity of the clients in order to take actions to improve the re-
sponse time provided. Dror Feitelson et al. [19] shows that performance of a computer system
depends on the characteristics of the workload it must serve. Therefore performance eval-
uations require the use of representative workloads in order to produce dependable results.
Martin Arlitt et al. [7] present a workload characterization study of six different data sets
with different characteristics, discussing performance issues and suggesting enhancements for
Web servers, focusing on caching strategies.

Our study uses the response time to analyze the impact of the server performance on the
reactions of users, correlating it to the inter-arrival time between requests. This is the basis
of the model presented in Section 3, that is implemented on a workload generator and used in
experiments to analyze the impacts of the new approach on the performance of a Web server.
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2.5 Quality of Service

Improving QoS has been a challenging task addressed by many works in diverse research areas.
QoS for Internet servers has evolved significantly and most of the works in this area proposes
architectures and strategies, such as admission control, load balancing, resource allocation,
and scheduling. Ludmila Cherkasova et al. [16] develop a session-based admission control
that rejects new customers during overload periods. Tarek Abdelzaher et al. [4] proposes a
mechanism to adapt the content provided instead of rejecting requests to decrease the server
load. Nina Bhatti et al. [11] discuss classifying web requests into three levels of priority using
information as IP address and requested web sites.

Integrated Services (IntServ) [13] put applications into two classes based on timeliness
requirements. IntServ aims to provide per flow QoS by reserving bandwidth along a source-
destination path to assure timeliness of data delivery. Differentiated Services (DiffServ) [12]
mark data on the edge of a network with two classes of priority, which have different priorities
of being serviced. For IntServ and DiffServ frameworks, many scheduling and admission con-
trol mechanisms have been proposed. Tiziana Ferrari [20] investigates the effect of aggregation
on the performance using Priority Queuing (PQ) and Weighted Fair Queuing (WFQ) schedul-
ing algorithms. Huamin Chen et al. [15] exploit the dependence among session-based requests
and propose a scheduling algorithm to control overload in web servers. Nong Ye et al. [43] use
only one queue for all web requests with an advanced scheduling rule to differentiate services.

Nevertheless, these solutions fail to provide a robust solution for the Internet QoS, since
they do not consider user reactivity. We believe that the use of user-reaction-based information
is an effective way to design QoS strategies more suitable to user demands, improving Internet
QoS.

3 The USAR Characterization Model

In this section we present the USAR characterization model and its validation strategy.

3.1 Workload Characterization Model

As described in Section 2, previous efforts employed hierarchical methodologies to characterize
workloads, considering user-side and server-side metrics, but ignoring the correlation between
them. In order to fill this gap we propose a new characterization model, named USAR
which is capable of identifying and modeling the reactivity that represents the way a user
behaves according to the Quality of Service provided. The model provides a characterization
methodology based on a hierarchical and multiple time scale approach to characterize Web
services workloads [32, 34]. We divide the methodology into four levels: User, Section, Action,
and Request. Within each layer, an analysis across several time scales and criteria has to be
conducted. Each level is described as follows:

User (U): This level models the user behavior considering the offered Quality of Service,
abstracting from the operations performed by him/her.

Session (S): This level models the user interaction that occurs within a time interval, that
is, the actions of the user that are apart less than a pre-defined threshold τ composes
the session. The characterization considers the following criteria: session length, session
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duration, session composition in terms of actions, bytes transferred per session, and IAT
between sessions.

Action (A): This level models the actions performed by the user which are usually clicks
that activate a link or requests for a web page. Besides characterizing the probability
distribution of the action types, we also characterize the correlation between response
time and IAT.

Request (R): This level models the objects associated with a user action. We study the
request arrival process and the probability distribution of its features.

The idea of the hierarchy of levels (see Figure 1) is to guide the analysis of the workload
into different perspectives. This eases the characterization process, once it may be done
according to different views associated to each level. Therefore this process becomes clear
and produces a more detailed characterization.

Session (S)

User (U)

Action(A)

Request (R)
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n Sim
ulation

Fig. 1. The USAR Hierarchy of Characterization Levels

In the context of this work our main objective is to describe the characterization at the
user level. As mentioned, this level intends to model the user behavior, more specifically the
reactions of the user to variable latencies, that is, how the Quality of Service affects the user
actions. Next we describe the 8-step methodology we propose to analyze and characterize
this level.

1. Prepare log: Generate a temporary log Lu by putting together the sessions of each
unique user;

2. Analyze users from the following perspectives: IATs between requests of the same user,
latency associated with requests of the same user, IAT and latency ratio, and IAT and
latency difference;

3. Discretize IAT and latency measures using a function that correlates them. In our
case, the function takes into consideration the ratio and the difference between them,
clustering user actions that are similar in terms of the two measures;

4. Transform user sessions into sequences of user action classes using the aforementioned
discretization criterion;

5. Evaluate the sequences in order to group them according to a similarity criteria;

6. Process the log Lu applying a function f(Lu), which maps sequence of classes to the
groups defined in the last step;
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7. Apply a clustering technique such as K-Means [23] to determine clusters of similar user
sessions;

8. Analyze the clusters and classify them according to the probability associated with user
action, concluding the user behavior analysis.

3.2 Validation

In order to validate the characterization model, we present our validation methodology, which
is based on generating a synthetic log that mimics the behavior of a user. The characteristics
of generated log is matched with the characteristics of the actual log so that we are able to
verify the precision of the modeling process. The generation of latency-aware logs enables the
enhancement of workload generators such as SURGE [9] or httperf [35], so that they generate
Web workloads considering the interaction between the users and the system.

Current workload generators [9, 35] do not allow the simulation of user reactions and
we believe that this innovation may provide significant improvement in the quality of the
workload generated. Therefore, a major goal of the USAR validation strategy is to be the
starting point for the construction of a simulator that mimics actual user reactions, based on
the relation between IAT and latency.

To capture and replay the properties of the user behavior, we model and implement an
user action simulator, parametrically defined, as shown in Figure 2, that deals with three
types of data:

1. Input data: specify the characteristics of the users that interact with the system. The
input data defines the types of users, their behaviors, the user profiles that compose
each behavior, and the following distributions for each USAR level:

• User: we define the probability distribution of user types, the probability distri-
bution of behaviors that compose each type and the probability distribution of
user profiles (groups obtained in step 6 of the characterization methodology) that
compose each behavior.

• Session: the probability distribution of session length is defined. This distribution
will be used to determine the number of user actions in each user session.

• Action: we determine the distribution of the user action classes in sequences that
are directly related to the user profiles. As a result, we specify the popularity of
the actions in each profile.

• Request: the last level involves the generation of the requests that compose the Web
workload. For a precise workload generation, we must determine the popularity
of the objects and their size probability distribution. These distributions are not
used in the generation of user action classes, but are important to transform these
classes into real requests.

2. Execution parameter: parameter that are set in a per execution basis, such as number
of sessions that must be simulated.
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Fig. 2. The USAR Simulator

3. Output data: a log file composed of user sessions. Each session is composed of classes of
user actions that simulates accurately the user behavior. The log file can be applied to
a workload generator to produce Web workloads that are representative for evaluating
the performance of the server and the network.

3.3 Applying USAR: A Real Case Study

This section presents a case study that demonstrates the effectiveness and applicability of
the characterization model presented in previous subsections and its validation strategy. We
focus on the innovative features of the model, more specifically the user level characterization.
Further, we will just evaluate basic aspects and explain the main results related to the other
levels.

Our characterization is based on one month data collection from the Squid proxy-cache
server of the Federal University of Minas Gerais (UFMG). The log files obtained contains
an entry to each request containing the following information: request timestamp, latency to
obtain the resource, requester IP, object status in cache and HTTP status code, object size
(bytes transferred), method (GET, POST), URL of the resource requested, peer status and
host (for caches that participate in a hierarchy), and mime type.

We start by performing a detailed analysis of this workload in order to determine the
diversity of the user population, the variety of Web sites being accessed, the latency variation
that the users experience, among other information.

3.3.1 Workload Characterization Model

In this section we present the resulting characterization of our case study from the request
to the user level. We used just four weeks in our characterization, since our initial analysis
showed that the amount of information given by these four weeks is similar to the information
given by the whole period.

Request level characterization

In the request level characterization we focus on the requests regardless of the action, session,
and user associated. The log L records the accesses of users from one of the biggest federal
universities in Brazil and it has a considerable number of requests per day.

We apply the methodology at the request level, analyzing about 9 million requests issued
from about 500 unique IP addresses statically assigned, generating a traffic of almost 90
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Table 1. General information about the workload

Week
Attribute 1 2 3 4
# Requests (x106) 2,44 2,10 2,15 2,08
MegaBytes (x103) 34,4 19,9 16,8 20,7
# Unique IPs 488 485 497 507
# Sessions 6952 6979 7369 7756
# Unique Obj. (x105) 4,82 4,13 4,29 3,97
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Fig. 3. Total number of requests arriving at proxy-cache at various time scales

Gbytes. As expected, 98% of the requests are for HTTP objects and the remaining requests
are either for FTP or HTTPS objects. Table 1 presents general information about the log,
which contains more than two million requests per week, a significant number of unique
objects, unique IPs, and user’s sessions.

This analysis demonstrates that traditional characterization dimensions, such as object
size, object popularity, and request arrival distribution, match previous characterizations of
the same type of traffic [9, 34].

Figure 3 shows three graphs that plot the request arrival process at three different time
scales, nominally, one hour, five minutes and five seconds.

The analysis of the graphs show clearly that the arrival process of requests presents a
self-similar characteristic. A self-similar object is exactly or approximately similar to a part
of itself (i.e. the whole has the same shape as one or more of the parts).

Figure 4 presents two graphs that show the probability distributions of objects and object
sizes. In both cases, we can clearly see that both distributions are quite skewed, as observed
in other characterizations of Web-related traffic.

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Object Popularity
Lognormal

Pareto

 1e−06

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1e+06  2e+06  3e+06  4e+06  5e+06  6e+06

Object Size
Lognormal

(a) Popularity of Objects (b) Object Size

Fig. 4. Request Level Characterization



A. C. M. Pereira, L. A. Silva, W. Meira Jr., and W. D. S. Filho 103

Action level characterization

The action level characterization demands the generation of a temporary log with the relevant
requests, that is, requests that are directly associated with actions. The characterization
consists of the identification of the action types, which are directly related to the functions
provided by the application, and the multi-scale analysis of the actions, among other relevant
analysis.

Since our analysis is based on a proxy log, it is not possible to determine the type of the
user action by simply analyzing its URL and other data that composes the log, since we do
not have contextual information about the service being provided. Therefore, in the context
of our case study, the action types are not as relevant as for other application domains, such
as an E-business service.

Considering only the requests to HTML objects, the total number of user actions is 160585.
We modeled the probability distribution of the action latencies and found that it fits a log-
normal distribution, as shown by graph in Figure 5(a). This fitting demonstrates the high
variability of the observed latencies, which gives room to investigate the correlation between
the server response time and the user reaction.
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Session level characterization

Considering just the requests to the 62770 unique HTML objects and using a threshold of
1800 seconds for session duration, we identified 14352 user sessions associated with 518 unique
IP addresses. One initial step of the session level characterization is to generate a log Ls for
each session s.

We then analyze the session length (Figure 5(b)), in terms of number of requests, and
notice that more than 90% of the sessions are composed by at most 26 requests, the average
and the maximum session lengths are 12.2 and 1105 requests, respectively. The analysis of the
session duration shows that most of the sessions (almost 80%) last for less than 1800 seconds
and the average session duration is 1172 seconds. We also observe a significant variation in the
distribution of requests among sessions. Note that the observed average session length shows
the suitability of the log to our work, since short sessions do not provide enough information
to model user behavior.
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User level characterization

This subsection describes the user level characterization performed for the case study accord-
ing to the proposed methodology. The first step is to generate a temporary log Lu by putting
together the sessions of each user u, although the session identifiers are kept.

We then analyze the user data from the following perspectives: IATs between consecutive
requests, latency associated with user requests, IAT-latency ratio, and IAT-latency difference.

We discretized IAT and latency measures using functions that correlates them, more specif-
ically the ratio (RAT) and the difference (DIF) between them. These metrics are defined as:

DIF (k) = I(k, k + 1) − L(k), ∀ k ∈ Lu;

RAT (k) =

⎧⎨
⎩

I(k,k+1)/L(k) , DIF(k)> 0
L(k)/I(k,k+1) , DIF(k)< 0

1 , DIF(k)= 0
;

where k is a user request, I(k, k + 1) is IAT between request k and k + 1, and L(k) is the
latency associated to the request k.
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Figure 6 depicts the discretization model based on the two functions. The x axis is
associated with the DIF function and the y axis with the RAT function. The model defines
seven user action classes (A to G), using two limit values for each axis. Values k1 and k2

divide the positive and negative sides of DIF function, defining a zone close to zero, where we
can not say much about the user behavior. This zone represents values of IAT and latency
very close to each other, which can represent situations such as: users who request objects
and ask another one few seconds before the first request answer arrives; and users who request
objects and do not process the answer, since they request another object immediately after
the request answer arrives. As shown in Figure 6, we define an interval D between k1 and k2,
which comprises all values of RAT, motivated by the fact that the value of the RAT function
does not affect it. Values k3 and k4 break the vertical scale in three different zones, according
to RAT function that quantify the correlation between IAT and latency. We then define three
classes (A, B and C) for DIF values that are less than k1. These classes represent behaviors
where users do not wait for the answer to their requests before asking another object. The
same strategy is applied to the actions that have a DIF greater than k2, that is, we define
three classes (E, F and G) that represent behaviors where users wait for the answer to their
requests before asking another one. The boundaries of these classes is defined by two other
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constants: k5 and k6. For instance, Class E represents actions where the user request a new
object a short time after receiving the previous object. On the other hand, class C represents
users who do not receive the object within the expected delay, but wait a significant amount
of time, considering the object’s latency. We plot the points’ histogram and decide the values
that divide the classes. (k1 and k2 are assigned to the values -0.1 and 1, respectively. The
values of k3 and k4 are 2 and 4, respectively, for the discretization of classes A, B and C. For
the delimitation of classes E, F, and G we choose the values 4 and 8 for k5 and k6).

We then transform user sessions into sequences of user action classes using this discretiza-
tion strategy. This transformation is a direct map one-to-one from application of functions
RAT and DIF to each request of user session, defining a user action class. As a result, we
define, for each action, a pair u(DIF ((k), RAT (k)) of user request, where k is the current
request in the user session. This pair corresponds to a location in the discretization model,
defining the user action class for each of his or her actions. The total number of user actions
is 160585. Table 2 presents the frequency of user actions.

Table 2. Distribution of User Action Classes

User Action Classes(%)
A B C D E F G
1.56 1.47 2.45 3.80 8.40 8.97 73.35

A B C E F G +− D
0

Fig. 7. User Profile Tendency - Patience Scale

Considering the scale presented in Figure 7, we define six user profile trends, each of them
representing a user behavior trend in the patience scale, with the following characteristics.

Impatient: The sequence of actions are in the negative side of the scale, including zero (e.g.,
C → A → B, or A → C → B, or C → D → B, or C → C → C, or A → A → A).
Represents a variation in the user behavior, keeping the impatient tendency.

Patient: The sequence of actions are in the positive side of the scale, including zero (e.g.,
E → G → F , or G → E → F , or F → D → G, or E → E → E, or G → G → G).
Represents a variation in the user behavior, keeping the patient tendency.

Continuous: The sequence of actions shows low variability, staying in fixed class at zero
(e.g., D → D → D). It represents a fixed tendency, situations where the latency of the
requested object and the IAT are very close. This is a typical web robot behavior or
users whose tendency is not well-defined.

Impatient tendency: The sequence of actions represents a impatience tendency (e.g., G →
D → A, or C → B → A, or G → F → E, or G → A → C, or E → B → C, F → G → A,
or E → G → B).

Patient tendency: The sequence of actions represents a patience tendencies that usually
move right in the scale (e.g., A → D → G, or A → B → C, or E → F → G, or
B → G → F , or C → F → E, or B → A → E, or C → B → F ).
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Irregular: The sequence of actions that move from the negative (positive) side to the positive
(negative) side and return to the negative (positive) side or zero - and sequences that
move from the negative side or zero to the positive side and return to the negative side.
(e.g., C → E → B, or A → G → D).

We then translate the user session log into a sequence of user profiles. The new user
session representation consists of sequences of actions, where each tendency fits to a patience
scale variation.

We use a Java-based tool for machine learning and data mining [23], which implements
regression, association rules and clustering techniques. More specifically, we use the algorithms
K-Means (KM) and Expectation Maximization (EM) [28] to perform clustering.

We finally got the results with K-means, that show interesting conclusions related to
the user behavior. Adopting within cluster sum of squared errors we identify 7 as the best
configuration for the number of clusters. The distribution of user profiles for each cluster is
presented in Table 3. It shows the identification of clusters, the percentage of user sessions
and the distribution of user actions according to user profiles, in each cluster.

Table 3. Distribution of Sessions and User Profiles (clusters)

Sess User Profile (%)
Id (%) 1 2 3 4 5 6
1 50 0.01 99.34 0.01 0.21 0.37 0.06
2 17 0.57 67.69 0.86 14.92 10.14 5.81
3 3 31.41 0.48 33.77 0.88 6.17 27.28
4 4 0.2 0.6 0.0 97.63 1.48 0.09
5 11 1.28 36.28 0.56 41.65 13.86 6.37
6 11 0.27 50.04 0.14 6.96 40.16 3.44
7 4 0.0 0.03 0.13 1.22 98.11 0.24

Analyzing the clusters, we can describe them as:

Cluster 1: Almost all users clustered in this group presents a Patient profile during their
sessions.

Cluster 2: Presents a significant occurrence of two profiles (Patient Tendency and Impatient
Tendency), a little of Irregular, and the majority of Patient profile.

Cluster 3: Represents a balanced occurrence of three profiles (Impatient, Continuous, and
Irregular).

Cluster 4: Almost all users clustered in this group presents a Impatient Tendency profile
during their sessions.

Cluster 5: The profiles Patient and Impatient Tendency have been identified in this cluster
as the most significant. Also there is a considerable amount of Patient Tendency in this
group.

Cluster 6: The profiles Patient and Patient Tendency have been identified in this cluster.
It is a group of typical patient users, that maintain a strong patient tendency under
some variation.
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Cluster 7: Almost all users clustered in this group presents a Patient Tendency profile.

The most popular cluster is number 1, which corresponds to half of the number of user
sessions. The cluster number 2 has 17%, followed by clusters 5 and 6, both with 11%.
The remaining 11% is divided by clusters 4 (4%), 7 (4%), and 3 (3%). Analyzing them we
can observe the predominance of Patient profile, but the occurrence of Patient Tendency
and Impatient Tendency is either very significant. The profiles Impatient, Continuous, and
Irregular are significant in the cluster with the small popularity.

The characterization is complete and now we are going to validate it, as described in the
next section.

3.3.2 Workload Characterization Validation

In this section we present the generation of user action classes, as a strategy for validating
the characterization model and simulating the behavioral characteristics of the users of the
proxy-cache server of the Federal University of Minas Gerais (UFMG). Analyzing the results
obtained in the workload characterization (section 3.3.1), we defined the input data listed in
section 3.2 as follows:

1. One user type, seven user behaviors represented by the clusters (Table 3) and six user
profiles.

2. The probability distribution applied to the user behaviors use the values obtained in
the clusters (second column of Table 3) to determine the percentage of occurrence of
behaviors for the user.

3. The probability distribution associated with the user profiles (impatient, patient, con-
tinuous, impatient tendency, patient tendency, and irregular) uses the values listed in
Table 3 to determine the percentage of occurrence of profiles in each user behavior.

4. The session length distribution, according to the number of user action classes per
session, follows log-normal distribution (see Figure 5(b)) with σ = 1.4631 and ζ =
1.4303. The least square computed for this function is 0.02266.

5. The probability distribution of user action classes in sequences uses the percentage of
occurrence of each sequence in the real log - considering sequences of size 1, 2 and 3
- to determine weights for the further simulation. We explain how the sequences are
composed later in this section.

6. The characterization shows that the popularity of objects follows Pareto distribution
with α = 0.9803 and k = 0.1589. To certify the quality of the distribution fit, we
calculate the least square measure and obtained a value of 0.0006 for Pareto. The size
of the objects are strictly correlated to the latency observed in the server and does not
follow any known distribution (see Figure 4).

The characterization process defines seven user action classes that correlate IAT and la-
tency. To map these classes to the six user profiles, we decide to group the action classes into
sequences. Combining the seven classes we obtain 343 possible sequences of size three, 49 of
size two and 7 of size one - sequences of size 2 and 1 are used as the last sequence in case of
the session length not being multiple of 3. Each sequence has a weight, calculated according
to the absolute value of its occurrence in the real log and the percentage of sessions where
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it appears. At last, the sequences are mapped to a user profile according to a tendency, as
presented in section 3.3.1.

Using these data and considering the number of sessions informed as a parameter, the
generation process, for each session, follows these steps:

• Choose a user behavior according to the distribution given as input data (for this case
study a probabilistic distribution).

• Calculate the session length, number of user action classes, and the number of sequences
that compose the session.

• Generate the sequences of user actions following the distribution of the user profiles
that compose the chosen user behavior (see Table 3). Some sequences are more frequent
than others considering the weight calculated for each sequence.

At the end of the generation process, the output data is a synthetic log containing sessions
of user action classes that considers the Quality of Service of the system to simulate the real
interaction of users with the proxy-cache server. We should emphasize that the generation
of an accurate synthetic log is a challenge because we created a quite abstract model of a
behavior that is often highly variable. As we see next, the precision achieved by the model is
one of the contributions of this work.

The objective of the simulation is to show the applicability of the characterization model
in order to generate a synthetic log that gives the user action in response to the quality of
service provided. Using an efficient method for generating discrete random variables with
general distributions [42], we simulate the distribution of the sessions among user behaviors
accurately. Further, the simulation produces precise results in terms of the distribution of
sequences over the six user profiles observed in each cluster (see Table 3). It is hard reproduce
exactly the same sequences because the session length distribution was calculated for the whole
log.

Nevertheless, a careful analysis shows a good result regarding the frequency of occurrence
of each user action class in the synthetic log, when compared to the real one. Table 4 presents
the results for our proxy log.

Table 4. Distribution of User Action Classes

User Action Classes (%)
Log A B C D E F G
Real 1.56 1.47 2.45 3.8 8.4 8.97 73.35
Synthetic 1.54 1.44 2.4 3.76 8.38 8.95 73.51

The simulation values for all user action classes are very close to the real log character-
ization and demonstrate the feasibility of the adoption of well-defined models, based on the
user behavior, to characterize web services workloads, considering the server-side view of the
user interaction under variable latencies.

Finally, during the validation, we identify some directions to improve this work, such as
the analysis of the correlation of session length and user profile, which can minimize the
difficulty of simulating the real distribution of the sequences among user profiles.
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4 Reactive Workload Generation

This section discusses the problem of generating workloads with dynamic aspects, showing
the main changes we have made to the httperf workload generator in order to provide reactive
workloads.

The ability to generate a stream of HTTP requests that mimics a population of real users
is important for performance evaluation and capacity planning of Web servers. However,
generating representative Web reference traces is a challenging.

There are a number of workload generators (see Section 2), but they do not consider the
impacts of response time in the way users react. They generate similar workloads despite
of the response time perceived. One of the objectives of this section is to show that there
are significant differences between the workload applied to a Web server that considers the
impact of response time in user reaction.

The USAR Model [37] introduces new concepts that enable realistic modeling of user
reactions to variations in the response time. To apply these concepts, some important char-
acteristics are needed by a workload generator:

• It must be able to initiate a new request, even if the last one has not finished yet, i.e.,
the related answer has not arrived. This aspect is very important mainly when the
response time grows because some users may present an impatient behavior, without
waiting completely for the last answer.

• The inter-arrival time must not be static but may vary dynamically according to the
response time perceived and the user action class of the USAR model, that associates
to each burst a value that correlates the response time and the inter-arrival time.

Moreover, it is important to introduce the concepts of burst and session. Bursts consist of
a sequence of requests for fetching a web page with embedded objects (pictures, for example).
A burst is submitted to the server when a user clicks on a link or requests a Web page.
Bursts mimic the typical browser behavior where a click causes the browser to first request
the selected Web object and then its embedded objects. A session consists of a sequence of
bursts in which the time between any two consecutive burst is below a certain threshold.

4.1 Workload Generation using httperf

In this work we use httperf as the tool for workload generation. We choose it because it
provides an effective way of generating HTTP workloads and measuring performance. We
create a modified/extended version of httperf in order to allow it to generate new workloads
and make it compatible with the USAR Model. The next paragraphs describe the new features
we have modeled and implemented.

httperf has a module called wsesslog, which submits requests based on a user session file. It
contains many aspects of user sessions, such as the number and sequence of requests, HTTP
method, think-time and burst length. In order to aggregate the reactivity model created by
USAR, we have added information about the user action class to the user session structure.

In order to determine the user action class from patience scale of the USAR model, we
need the value of the response time observed by the client (in this case, the httperf itself) and
the client think-time. A typically wsesslog file contains the think-time, so we only have to
obtain the response time.
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The value of response time can be easily obtained in httperf, since it is built around the
concept of events. For example, every time a session is created or destroyed or a request is
started or finished, a new event is triggered. These events (see Figure 8) may be captured
through call-back handles, defined using httperf API functions. There is a response time
associated to each request and another one that belongs to the burst. Basically, the values
of response time could be obtained using two events, one triggered by request start and the
other one triggered when the response completely arrives. To obtain real values of response
time, we submitted a workload file based on TPC-W [22, 33] using the original version of
httperf to the test environment.

Figure 8 shows the traditional mechanism of executing an user session through the elements
assigned with the flag 0. It represents the client and server sides and some events associated
to the execution. The vertical space represents the time. The figure illustrates the session
duration and the concepts of response time, think-time and IAT. Moreover the expected
response time and the expected IAT are represented (shapes labeled with numbers 1 and 2).
The main request of the burst is represented by a bold line and the embedded requests are
single lines.
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Session End

Fig. 8. Client-server interaction mechanism in httperf

4.2 Reactive Workload Generation

This section explains how to generate the reactive workload using the user reactivity model.
First, it is important to explain the concept of user impatience. Traditional workload gen-
erators model that a new request of the user must wait the last one to be completed before
dispatching a new one. This approach does not allow to represent the situation where the user
wants to send a new request even though the last one has not finished yet. Users would do
this because the response time for the last request is unacceptable for him/her, for example.
We name here user impatience this situation that can be modeled, demanding the ability of
the workload generator to allow non-blocking sessions, i.e., a burst of requests may begin
before the last burst has completed.

The original httperf does not consider user impatience, i.e., if a request takes a long time
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to complete, the program keeps waiting for it forever. The only httperf’s parameter close to
this concept is the time-out value, but it is a radical solution: when a request times out, the
httperf finishes the entire session.

In order to reproduce the user impatience, we changed the way httperf schedules the burst
that is submitted for each session. The original implementation waits until the last submitted
burst finishes to start a timer event that triggers the next burst. We adapted the wsesslog to
start a timer event as soon as the first request of the burst is submitted. But how long should
httperf wait before triggering a new burst? The value may be calculated using the user class
and the response time of the former request.

We instrumented httperf to record some important events. We recorded the following val-
ues for each request and burst: session identifier (SESSID), time when it was sent (SNDREQ,
SNDBUR) and received (RCVREQ, RCVBUR), response time (client perspective), bytes re-
ceived, and if the request had timed out; and for each session created or destroyed, how many
sessions were active (SESCNT).

As a result we create a new version of httperf: non-blocking and reactive. This version
supports submitting requests that time-out after a period specified by the user think-time.
This can be obtained during execution time, through these steps:

• Each session records its last response time observed, i.e., how long the last successfully
submitted burst spent up to the end, and the burst size (in bytes). These two metrics
are useful in order to estimate the next expected response time (ER) for the new burst,
i.e., the amount of time that the user expects to be served.

• Each burst has associated to it its user class and the exact moment of time when the
first request is issued.

• The Expected Inter-arrival Time (EIAT) can be computed considering the think-time
(Z).

Figure 8 shows the reactive version of the workload generator by the shapes with the
numbers 1 and 2. In this two examples the IAT is computed dynamically according to the
server response time.

5 Evaluating the Impact of Reactivity

In this section, we present the results of our experimental study to analyze the impact of
workloads that simulates the reaction of users to the Quality of Service provided.

5.1 Methodology

The simulation environment of our experiments is composed of a HTTP Server (Apache 2.0),
an application server (Apache Tomcat), a relational database server (MySQL) and a client
(httperf), each running on different machines. Each machine runs Linux with kernel version
2.4.25, having a Intel Pentium 4 1.80GHz CPU, and 1GB of main memory.

For best performance, we have turned off all unnecessary services and configured the
operating system to support a number of file descriptors that was enough for our experiments
(65000 file descriptors).
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We adapted the workload generated based on TPC-W to add the information related to
the user behavior, following the steps:

1. To obtain a synthetic workload that could follow the same navigation rules as would
a real user, we create a base workload following TPC-W recommendations and its
CBMG (from Custom Behavior Model Graph, [30]). The workload generated, wl-tpcw,
is composed of 5000 user sessions with medium session length of 124 bursts.

2. We convert the wl-tpcw workload on a new one, wl-httperf, which is compatible to the
format used by the httperf’s module wsesslog [35].

3. We submit the workload wl-httperf to our simulation environment using the original
version of httperf and record the real response times under the client’s perspective.

4. With the recorded response times and the workload wl-httperf, we apply the USAR
characterization model, obtaining the distribution of user actions for each burst of re-
quests.

5. We add to the workload wl-httperf the information obtained in the last step, obtaining
the workload wl-httperf-react that can be used by the new version of httperf to generate
workloads with reactivity.

Our main objective with these experiments is to analyze the impact of reactive and non-
reactive workload in the performance of servers. The reactive workload models users who act
dynamically according to variations in the response time.

It is important to emphasize that the number of simultaneous users is defined by the
number of active sessions over the experiment time.

We execute experiments with many different workload configurations. In order to evaluate
different types of load, we present three of them:

• A: a workload with 100 sessions with a rate of 100 sessions initiated per second.

• B: a workload with 1000 sessions with a rate of 100 sessions initiated per second.

• C: a workload with 5000 sessions with a rate of 100 sessions initiated per second.

For each configuration, we have the reactive an non-reactive approaches. The experiments
evaluate a set of metrics for each scenario:

• Throughput: in our experiments we show both the output and input throughput. The
latter corresponds to the rate of requests submitted per unit of time to the server. The
former represents the rate of responses received by the client per unit of time.

• Response Time: refer to the user perceived response time, consisting of the time be-
tween the submission of the request and the time when the client finishes to receive
the response. It is important to explain the concept of response time, that is directly
related to the way user reacts. Response time is a critical factor to users of interactive
systems [30]. It is evident that user satisfaction increases as response time shortens.
Modest variations around the average response time are acceptable, but large variations
may affect user behavior.
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• Active bursts: this information capture the number of bursts requested to the server
but not yet responded, for each period of time.

• Active sessions: this information represents the number of sessions initiated but not yet
finished, i.e., that have bursts that are active or have not been submitted yet.

5.2 Results

5.2.1 Workload A Experiments

Figures 9 and 10 present the throughput (a) and response time (b) for the non-reactive and
reactive experiments using workload A, respectively.
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Fig. 9. Experiment A - Non-reactive - Bursts

The non-reactive experiment A achieves nearly 6000 bursts, with an average throughput of
9.2 bursts/second. The average response time is around 0.027 seconds. The average response
time is very small, near zero (instantaneously). This confirms the non-overloaded state.
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Fig. 10. Experiment A - Reactive - Bursts

The reactive experiment A achieves more than 10000 bursts, with an average throughput
of 16.1 bursts/second. The average response time is around 0.039 seconds. We can conclude
that throughput raises without changing the response time, achieving a better performance.
The average response time is very small, as observed by the non-reactive approach.
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The number of active bursts during the non-reactive experiment A is very low, since
the server is not overloaded. During this experiment, 85% of sessions ended, showing that
reactivity allows users to reduce the estimated session time once the response time to their
bursts of requests are very small.

The experiments for workload A show the server achieves a very good performance, guar-
anteeing that users perceives an instantaneous answer to their bursts of requests. A good
response time rate allows users from the reactive experiment to increase the burst rate of
requests. The increasing in the throughput rate without changing the response time rate
shows the server is not overloaded. The decreasing in the execution time causes the reactive
experiment to finish more sessions than the non-reactive one.

5.2.2 Workload B Experiments

Figures 11 and 12 present the throughput (a) and response time (b) for the non-reactive and
reactive experiments using workload B, respectively.
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Fig. 11. Experiment B - Non-reactive - Bursts

The non-reactive experiment B achieves 57000 bursts, with an average throughput of 92.2
bursts/second. The average response time is around 0.24 seconds. The average response
time is very small, near zero (instantaneously) with peaks under 1 second. This confirms the
non-overloaded state.

The number of active bursts during the non-reactive experiment B presents a stable be-
havior, once there are not problems with performance. There are few peaks, that can be
explained comparing it to the behavior of the response time. These peaks occur exactly when
the response time presents some delay. During this experiment 45% of the sessions ended, the
same percentage of the number of sessions that has ended in the non-reactive experiment A.

The reactive experiment B achieves 78000 bursts, with an average throughput of 114.4
bursts/second. The average response time is around 0.35 seconds. The average response
time is still small, but not instantaneously as the first experiment(A). There are response
time peaks under 2 seconds, but isolated situations that not endanger the performance of the
server. In this few situations, the users may observe a small delay in the server response.

The number of active bursts during the reactive experiment B presents variations that
can be explained comparing them to the response time behavior of this experiment. These
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Fig. 12. Experiment B - Reactive - Bursts

peaks occur exactly when the response time presents some delay, as expected. During this
experiment, 90% of sessions finished.

It is interesting to note that the throughput rate of the reactive experiment B decreases
exactly when response time rates raise, but in this case the change in the users reaction causes
the throughput rate to raise again after a short time. We observe the application server keeps
a very good response rate to the requests (around 1200/sec) without overload.

5.2.3 Workload C Experiments

Figures 13 and 15 present the throughput (a) and response time (b) for the non-reactive and
reactive experiments using workload C, respectively. In the same way, Figures 14 and 16 show
the active bursts (a) and active sessions (b).

The non-reactive experiment C executes 80000 bursts, with an average throughput of 123
bursts/second, varying from 100 to 400 bursts/second after the initial seconds. The response
time raises from few seconds to more than 120 seconds, with an average time of 40.7 seconds.

Considering the requests, the non-reactive experiment C achieves 580000 requests, with a
throughput varying from 200 to 1600 requests/second. This amount of request is only 20%
higher than the amount observed in experiment B. It is easy to observe that the server became
overloaded. After 30 seconds from the beginning, the response time has already achieved the
10-second limit.

It is important to analyze what happened near 360 seconds. The following aspects are reg-
istered: the response time begins to decrease; the throughput decreases; the number of active
bursts stabilizes; and the number of active sessions decreases fast. A detailed investigation
shows the cause of this anomaly: the TCP/IP connection has timed-out, represented by the
system error number 110 in Linux operating system. This problem has caused the following
behaviors in the experiment metrics:

• Cumulative throughput: the difference between send and receive rates is more than
20000 bursts. This occurs because these amount of bursts do not finished as connections
have closed after the TCP/IP time-out.

• Throughput - Figure 13(a): the throughput rate decreases and keeps near 100 bursts/second,
consequence of bursts of a small number of sessions that stay active after the problem.
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• Response time - Figure 13(b): the average response time decreases fast when the problem
with TCP/IP occurs. After 450 seconds, it achieves acceptable values by users.

• Active bursts - Figure 14(a): the number of active bursts continues high, as many bursts
have not finished in consequence of the time-out of TCP/IP. After 400 seconds the value
becomes balanced, with vary small variation.

• Active sessions - Figure 14(b): the number of active session decreases fast, which demon-
strates that a lot of sessions begin to fail in consequence of the error identified. When
the workload generator tries to open or to send requests and the TCP returns the error,
the current session fails and close after there are no more connections available for it.
Only an amount of 100 sessions become active after 400 seconds, representing the users
who generate load to server from this point to the end of the experiment.

In this non-reactive experiment C we identify a big overload in the server. The response
time values observed are unacceptable. Moreover the unavailability of the server represents
one of the most serious problems that overload may cause - around 80% of the users stay
waiting for server’s answer without success.
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In the other hand, the reactive experiment C executes 80000 bursts, with an average
throughput of 133 bursts/second, varying from 25 to 250 bursts/second after the initial sec-
onds. The response time raises from few seconds to more than 60 seconds, with an average
time of 13.7 seconds.

Considering the requests, the reactive experiment C achieves 690000 requests, with a
throughput varying from 50 to 1800 requests/second. This amount of request is only 6% higher
than the amount observed in experiment B. It is clear that the server became overloaded. After
20 seconds, from the beginning the response time has already achieved the 10-second limit.

In Figure 15(a), we can see the receive rate increasing and send rate decreasing from the
period between 100 and 200 seconds. It is possible to observe a correlation between average
response time and active bursts, as expected. The change in the way users react when the
server is overload causes a delay in the session duration of the users, as can be seen in Figure 16
- 75% of sessions are still active after the experimental time.
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The non-reactive and reactive experiments present different scenarios. The first one has
caused a heavy overload in the server, that keeps it unavailable for most part of the users.
The reactive one has overloaded the server, but the reaction of users to unacceptable response
time values changes their global behavior, allowing the server to save resources and later, to
answer requests in a acceptable response time.

Analysing the two versions of workloads, the non-reactive and reactive ones, we observe
that they cause different situations in all scenarios. This result is interesting, once it can be
the base for research in QoS techniques that can consider the influence of user reaction in the
performance of servers.

5.3 Discussion

The results of the experiments presented in this section show the changes in the performance
of the Web server when the workload with reactivity is applied to it. The graphics show
changes both in the values of each variable in time as in the form of each curve. Both the
throughput and response time values have significant variations.

Analyzing the results we can conclude that the actual models of workload generation are
limited, since they do not consider the user reactivity as an element of their workload models.
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This indicates that models should be improved. In the same way, the actual models of Web
server QoS have to be improved since they do not consider the user reactivity in their models
also.

Moreover, the results demonstrate how important is to consider the correlation between
user and server sides, once it can decrease the gap between the real and model scenarios. In
the experiment A, users demanded a higher throughput from the Web server, that answers
them with a very good response time. The experiment B presents another case, where the
reactivity raises the throughput and the response time of the system, but it has achieved this
in a balanced way. The experiment C has shown an interesting situation for the non-reactivity
scenario, where a heavy workload has broken down the system. Adopting traditional workload
generation mechanisms, the unavailability of the system was an expected situation, once the
changing in the way users react is not considered. Our new model presents a completely
different result, demonstrating the importance of a better understanding of the user-server
interactivity process. These results can suggest new improvements in the overload control
strategies.

6 Reactivity and QoS

Based on the models and conclusions discussed on the last sections, we explore the possibilities
of using the reactivity knowledge to improve the Quality of Service offered by Web servers.

6.1 Reactive Behavior Analysis

The discretization model of the reactive behavior provides seven user reaction classes. Each
user reaction class represent a different behavior that can be observed analysing the relation
between IAT and the response time. Table 5 presents a representation of the functions RAT
and DIF from the discretization model and the possible relation between IAT and the response
time compared to the other classes.

The DIF function divides the values using two constants k1 and k2. It is used to separate
the patient from the impatient behavior, since the difference between IAT and the response
time (R) should be a positive value for patient classes and negative for the other ones. The
RAT function intends to separate the patient classes and impatient ones in subclasses that
permit a differentiation between bursts with similar behavior. RAT uses the constants k3 and
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k4 to separate the impatient side and k5 and k6 the patient side.
Observing the RAT and DIF functions behavior for each class we can infer the typical

relation between them. We identify that class A have the biggest RAT value among the other
impatient classes (B and C). In the table we represent this by a << symbol. For classes B
and C the IAT value is still lower than the response time but their RAT value is in general
lower than the one for user class A. We represent the typical relation for classes B and C
using a < symbol. The same applies to classes E, F and G. G class has the greater RAT
value compared to the classes E and F. This is why we represent the relation between IAT
and response time with a >> symbol for class G and with a > for class E and F. We use a
≈ symbol for class D because the IAT and response time have close values.

Table 5. Relation between IAT and response time for each user reaction class
User Class DIF Function RAT Function Typical relation

A IAT - R < k1 R / IAT > k4 IAT << R
B IAT - R < k1 k3 < R / IAT < k4 IAT < R
C IAT - R < k1 R / IAT < k3 IAT < R
D k1 < IAT - R < k2 - IAT ≈ R
E IAT - R > k2 IAT / R < k5 IAT > R
F IAT - R > k2 k5 < IAT / R < k6 IAT > R
G IAT - R > k2 IAT / R > k6 IAT >> R

In order to understand the behavior of each user reaction class we represent a typical
request-response scenario on Figure 17. For each situation we represent a client issuing a
request to the server that answers it according to its load. We represent different load scenarios
for sake of better explaining the possible impact of each class behavior on the performance of
the server. We represent a non-overloaded scenario, where the server takes less than 5 seconds
to answer most of the requests. We represent also an overloaded scenario, where the response
time grows achieving values greater than 5 seconds for most of the requests. It is important
to notice that it is necessary to analyze more than just the response time in order to verify
that a server is overloaded. In fact, if the server is overloaded the response time achieves high
values most of the time.

Clients acting as impatient ones behave according to classes A, B and C. The figure
presents their typical behavior. We observe that the IAT is lower than the response time.
In a non-overloaded scenario their difference is not as significant as in overloaded ones. In
overloaded scenarios the server will take more time to answer and the impatience of the client
will make him ask more requests before receiving its previews one. Then in the point of
view of a server, impatient users tend to submit more and more requests before receiving its
previews ones. This can lead to an increase in the probability of an overload.

Clients acting as patient ones behave according to classes E, F and G. Their typical
behavior as represented have the IAT greater than the response time, meaning that for each
request submitted to the server the user waits its response before asking the next request.
After receiving the response, an user acting as patient takes a time to proceed the next request.
In overload situations, patient users tend to wait for the next request and takes a time to
proceed. This is very important since the overload situation for the server may not increase
due to the patient clients behavior. Class G presents the more patient behavior since its IAT
tends to be greater than the ones for classes E and F.

In the point of view of the server the reactions of users provoke different changes in terms
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of load since the variations in the response time affect the rate of requests submitted. In fact,
the impatient behavior tends to provoke an increase in the load over the server, since users
behaving according to classes A, B and C asks requests in a higher rate most of the time.
The patient behavior tends to make the load of the server to decrease due to the behavior of
users reacting according to classes E, F and G.

Otherwise, in a real scenario the number of users behaving according to each user class
is variable and the task of understanding its impact on the performance of a server is not
obvious due to the complexity of such scenario. In the next sections we address this task by
experimenting a web server with an reactive workload and by simulating a real web applica-
tion.

6.1.1 Online Identification of User Behavior

In order to improve QoS through the use of reactivity, a web system must be able to identify
the user behavior at each moment. This is necessary because the users may present different
behaviors during their sessions. Since the policies we present in this session are based on the
user action classes from the USAR model, we need to be able to aply the model for each user
session in a way the server may present different responses to the users in terms of the QoS
provided.

For sake of determining the user behavior on each session, we propose a user behavior
classifier based on the reactivity model. The classifier identifies the user class at each mo-
ment, applying the RAT and DIF functions for each burst the server receives. The classifier
calculates the latency presented by the server to answer the burst and the inter-arrival time
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between the current and the next burst. Then, it applies the RAT and DIF functions of
the USAR reactivity model, determining by the discretization methodology, the user reaction
class UAC for that burst.This methodology makes possible to obtain the user behavior at
each period.

In order to improve the online classification, we propose a metric named USP , from user
session profile, that represents the average user reaction class for bursts already been served
for a user session. The following function calculates the USP for burst k:

USP (k) =
{

4, k = 1,
UACk−1+USP (k−1)

2 , k > 1,

∀ k ∈ workload, where the USP for request 1 is equal to the average user action class
D represented by the number 4. This function makes possible to obtain the mean user
action class for a user session. We use it in the session admission control policy presented in
Section 6.2.3.

6.1.2 Reactivity and QoS

The impact of reactive workloads on the performance of Internet services is discussed in
Section 5, where we adopt the USAR model to evaluate the performance of a Web application
and present a new version of the workload generator httperf [35], capable of reproducing the
user reactivity. We performed experiments using an actual Web server using three distinct
scenarios of load, and analyzing the following metrics: server throughput, response time, rate
of submitted requests and number of active sessions. The results show that reactive workloads
behave differently when compared to non-reactive workloads submitted to the Web server.
The experiments demonstrate that different response times affect the workload, changing the
rate of requests submitted and, consequently, changing the load of the server. Therefore, it is
shown that server-side affects the client-side behavior, and vice-versa, proving the importance
of the reactivity.

The main consequence of demonstrating the fact that reactivity impacts the server per-
formance is that the actual models of Web server performance may be improved since they
do not consider it. This motivates the investigation of new QoS strategies that may even
mitigate negative effects of the reactivity and reinforce the positive ones.

6.2 QoS Improvement

In this section we present new QoS strategies that consider reactivity. First it is important to
introduce the concept of burst, since our policies are based on it. Bursts consist of sequences
of requests for fetching a web page and its embedded objects (like pictures). A burst is
submitted to the server when a user clicks on a link or requests a Web page during its session.
Bursts mimic the typical browser behavior where a click causes the browser to first request
the selected Web object and then its embedded objects. Burst is a synonym for the term
action we referred on the USAR model. A session consists of a sequence of bursts in which
the time between any two consecutive bursts is below a certain threshold.

The proposed strategies are based on admission control and scheduling strategies. The
basic idea is that bursts must be classified into user reaction classes, based on the reactivity
model described in Section 3 that establishes seven user classes from A to G. The main novelty
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of this paper is the use of the reactivity to improve QoS and the idea to combine the proposed
admission control and scheduling techniques.

6.2.1 Admission Control

Admission control rejects requests whenever the arrival rate is too high and it is necessary
to maintain an acceptable load in the system. Without admission control, the response time
increases when the system saturates. Traditionally, server utilization or queue length are
criteria used in admission control schemes. This section presents briefly the approaches to
implement the reactive admission control presented in [38].

6.2.2 Burst-Based Approach

Based on the USAR model, this approach considers how users tend to react according to
Internet service’s performance. The burst-based policy rejects bursts when it identifies a
fulfilled rejection rule. Traditional policies adopt just one limit to response time and begin to
reject bursts once this limit is achieved. We define the policy as a function of the response
time of a service (R) according to the following rules:

• α ≤ R < β: reject bursts of user action classes A, B and C.

• β ≤ R < θ: reject bursts of user action classes A, B, C and D.

• R ≥ θ: reject bursts of all user action classes.

In these rules, α, β and θ are values determined based on empirical results and criteria
defined in the literature [30].

The idea of this policy is that users who have more impatient profile tend to react faster
(that is, reload or submit a different request) than other users when the server presents
high response times, degrading server’s performance. The burst-based policy has a multiple
criteria rule, minimizing the rejection impact, once less users may have bursts refused by the
QoS admission control policy. In summary, this policy has the premise that, under overload
scenarios, it may be better to give priority to users who have more chance to wait for the
response.

6.2.3 Session-Based Approach

The session-based admission control policy rejects user sessions. Traditional policies employ
a single response time threshold and start to reject all user sessions once this limit is reached.
The burst-based admission control policy may affect all users, but the session-based policy is
different, since it tends to affect fewer users. Considering this, reactivity may be important
to identify which user sessions have to be dropped.

We monitor the average response time (R) and the user session profile for each session
(USP ), i.e., the average user reaction class of each burst that has already been served (see
Section 6.1.1). We define the following three criteria:

• α ≤ R < β: reject user sessions with USP < 4, i.e., sessions associated with user
reaction classes A, B and C.

• β ≤ R < θ: reject user sessions with USP < 5, i.e., sessions associated with user
reaction classes A, B, C, and D.
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• R ≥ θ: reject all user sessions.

This policy is based on the same idea presented in the reactive burst-based policy, however
applied to session-based control mechanism. The next subsection describes scheduling.

6.2.4 Scheduling

Most existing web servers provide services based on the Best Effort model, using FIFO schedul-
ing [43]. As presented in Section 2, there are works that propose different approaches to
improve the basic FIFO scheduling approach. They present gains compared to the Best Ef-
fort approach, but they fail to consider the reactivity, an important dimension of the user
interaction with the service.

6.2.5 PFIN Scheduling Approach

In Patient-First Impatient-Next (PFIN) approach, bursts classified with impatient classes (A,
B, and C) go to the low priority queues, and those with patient classes go to the high priority
ones.
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Fig. 18. Servers implementing PFIN Scheduling Approach

Figure 18 presents two variations of the PFIN approach, which differs in terms of the
number of priority queues used to schedule the bursts. In (a) there are three queues. All
the bursts identified with impatient classes are scheduled to the low priority queue and those
identified with patient classes are scheduled to the high priority one. Bursts identified with
classes A, B or C go to queue 0, bursts classified with D go to queue 1, and finally, the ones
classified with classes E, F and G go to queue 2. In (b) we employ seven queues, one for each
user class. The most patient classes get the high priority queues.

The PFIN policy is based on the idea that when the load is increasing the users who
have more patient profiles tend to present a lower load to the server than the impatient ones
since after receiving its response, they take more time to proceed and submit another request.
Users with impatient profiles tend to react faster, asking requests even before receiving the
previous one. This policy has the premise that under overload scenarios it may be better to
give priority to users who have more chance to spend more time to submit requests, slowing
down the server load and increasing the user satisfaction.
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6.2.6 IFPN Scheduling Approach

In Impatient-First Patient-Next (IFPN) approach, requests classified with impatient classes
(A, B, and C) go to the high priority queues, and those with patient classes (E, F, and G)
go to the low ones. Like PFIN approach, two variations are proposed with three or seven
priority queues.

The IFPN policy is based on the idea that when the load is increasing it is better to answer
first the impatient users, in order to increase their satisfaction. The advantage of delaying
answers to patient instead of impatient users is the fact that the satisfaction of patient users
tends to take more time to degrade. In summary, this policy has the premise that it may be
better to give less priority to users that have more chance to wait for the response to their
requests.

6.2.7 Admission Control and Scheduling

We propose a hybrid three-level approach, that combines the two admission control strategies
and scheduling. The idea of this new approach is to put together the advantages of each
one. Admission control is good to avoid raising the response time to unacceptable values [38].
Scheduling is adopted to control the burst’s priority according to the user class, providing
a reduction in the burst’s expiration rate, measure related to user satisfaction as we may
observe on Section 6.2.7.

In the session-based approach, rejection of sessions is drastically started as response time
grows. In the two-level approach, first of all, burst rejection is started, before the rejection
of sessions. This strategy smooths the session rejection through a previous step. Once the
burst rejection is not effective to slow down the response time, session rejection is activated.
In Parallel, scheduling produces a burst reordering process that can reduce the number of
unsatisfied users. We define the following criteria:

• α1 ≤ R < β1: reject bursts of user action classes A, B and C.

• β1 ≤ R < θ1: reject bursts of user action classes A, B, C and D.

• R ≥ θ1: reject bursts of all user action classes.

• α2 ≤ R < β2: reject user sessions with USP < 4, i.e., with average user reaction classes
A, B or C.

• β2 ≤ R < θ2: reject user sessions with USP < 5, i.e., with average user reaction classes
A, B, C, or D.

• R ≥ θ2: reject all user sessions.

• R > γ: turn on the scheduling policy.

This strategy rejects both bursts and sessions, but according to different limit values,
balancing the burst’s rejection and providing a way to schedule the bursts in order to raise
the user satisfaction.
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6.3 Experimental Evaluation

This section presents our experimental analysis of the new QoS policies. Section 6.3.1 briefly
describes the simulator used in our experiments. Section 6.3.2 explains the methodology to
evaluate the new QoS policies. Section 6.3.3 shows the experiments and results. Finally,
Section 6.3.4 presents a discussion about the experimental evaluation.

6.3.1 Simulating Reactivity and QoS Policies

In order to evaluate the new scheduling strategies we extended the USAR-QoS simulator pre-
sented in [38] with novel features, capable of reproducing the behavior of different scheduling
mechanisms. The architecture of the simulator is based on a real web application composed
of a server providing a certain service and a set of clients. The server is composed of one
or more queues and a processing unit with a certain limited processing capacity. The clients
behavior is based on the reactive version of the httperf workload generator presented in [39].

The USAR-QoS’ architecture is based on events and respects modularity. It uses the
Simpack Toolkit [21]. Figure 19 presents a state diagram that represents USAR-QoS. For
more details about the simulator, see [38].
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Fig. 19. State diagram representing the USAR-QoS simulator

6.3.2 Methodology

In order to evaluate the effectiveness of the proposed reactive QoS policies, we simulate them
using the USAR-QoS simulator. We prepare a TPC-W-based synthetic workload trace file to
be used as the input for the simulation.
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We simulate several scenarios using different USAR-QoS configurations to observe how the
application server behaves. We discuss in this paper a scenario in which the server achieves a
high throughput and the response times observed raises over the user satisfaction threshold.
We base this threshold on [30] where the authors identify three groups regarding the response
time of a system:

• 0.1 sec: the limit when a user perceives that the system is reacting instantaneously.

• 1.0 sec: the limit when the flow of thought of a user is not interrupted, although the
user may notice the delay.

• 10.0 sec: the limit when a user loses attention and the interaction with the system is
disrupted.

Based on these values we implement each of the proposed reactive admission control and
scheduling strategies in the USAR-QoS. As explained in Section 4, each reactive QoS policy
has a set of values (α, β, θ and γ) that define its functioning. These values should be
carefully chosen since the effectiveness of each policy depends on them. The values we choose
are: α1 = 3.0, β1 = 5.0, θ1 = 7.0, α2 = 5.0, β2 = 7.0, θ2 = 9.0, and γ = 0.0.

We also evaluate the basic non-reactive QoS strategies on USAR-QoS. We implement a
traditional session and burst admission control mechanisms with a threshold of 9.0 and 7.0
seconds, respectively. We implement also the Best Effort FIFO scheduling approach.

The experiments we present here consist of 5000 sessions, created in an average rate of 10
sessions per second. The server is configured to support 50 bursts per second of throughput.
The trace file is based on the TPC-W benchmark [2, 33]. Each burst is identified with a
different user reaction class according to the USAR model [37]. The overall distribution of
action classes for the trace file is shown by Table 6.

Table 6. User reaction classes distribution for the workload
A B C D E F G
5% 10% 10% 15% 15% 15% 30%

We evaluate all combinations of reactive and non-reactive admission control and scheduling
policies to compare the results and verify the most effective ones. Due to space constraints
we show only the most relevant results.

6.3.3 Results

Tables 7 and 8 present the summary of the experimental simulation results. The results we
have chosen to present here are the ones who better represent the benefits of considering
reactivity for Web performance modeling. Each experiment is identified by a number from 1
to 5. The columns admission control and scheduling describes the experiment configuration
in terms of the QoS strategies. The tables present the following information: session and
burst admission control policy, scheduling policy, total experimental duration, higher response
time value (represented as R), mean response time, total number of requests, responses and
expirations of bursts, burst lost rate, and number of rejected sessions by the session admission
control. The burst lost rate represents the percentage of bursts expired compared to the whole
number of bursts requested to the server. It corresponds to the number of occurrences the
user asks the next burst before receiving the previous response.
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Table 7. Summary of experiments - Part 1

Id Admission Control Scheduling Time Max Mean
Session Burst Policy (sec) R (sec) R (sec)

1 No No FIFO 12,604 29.41 6.51
2 React. React. FIFO 9,031 7.22 3.24
3 No No PFIN 13,002 84.07 6.27
4 No No IFPN 13,660 44.37 5.95
5 React. React. IFPN 8,910 7.12 3.35

Table 8. Summary of experiments - Part 2

Id Admission Control Scheduling Bursts Bursts Bursts Burst Rejected
Session Burst Policy requested responded expired lost rate sessions

1 No No FIFO 621,342 621,342 229,755 36.98% 0
2 React. React. FIFO 535,018 418,299 206,622 38.62% 717
3 No No PFIN 621,342 621,342 157,537 25.35% 0
4 No No IFPN 621,342 621,342 16,500 2.66% 0
5 React. React. IFPN 544,078 423,679 126,925 23.33% 640

In experiment 1 no admission control policy is active and the scheduling performed follows
the typical FIFO approach. Figure 20 presents the average response time (a) and the bursts
throughput (b). As we observe, the mean response time achieves a value higher than the
10-seconds limit due to the great number of requests being scheduled to the server. The
throughput of the server is close to the server limit and there is a great number of bursts
that expires during the execution, showing the overload situation. The total simulation time
for the execution of the 5,000 sessions is 13,284 seconds. We observe that the burst lost rate
achieves 36.98%, representing probably a high number of unsatisfied users.
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Fig. 20. Experiment 1: no admission control and FIFO scheduling

The simulation performed in experiment 2 uses the reactive admission control policies for
session and burst. The scheduling approach is set to run the typical FIFO approach. The
response time achieves lower values than experiment 1, showing the experiment configuration
is effective to guarantee a better QoS level. Table 7 shows the maximum response time of
7.22 seconds, almost the lower value compared to the other experiments. This is due to the
rejection of sessions and bursts by the admission control mechanism. Figure 21 shows the
response time achieved (a), the cumulative throughput (b), and the number of sessions (c).
It is important to notice that there is a significant difference between the cumulative bursts
requested throughput and the cumulative number of bursts replied, as we can see in (b).
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Their difference corresponds to the number of bursts rejected by the reactive mechanism of
admission control. Since a great number of bursts and sessions are rejected the load under
the server decreases and the response time achieves lower values. Despite the low response
times, the user satisfaction is not fulfilled and the burst lost rate achieves 38.62%, showing
that a scheduling mechanism may improve the results.
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Fig. 21. Experiment 2: Reactive admission control and FIFO scheduling

In experiment 3 and 4 there is no admission control active but the scheduling mechanism
is set to perform the PFIN an IFPN approaches, respectively. For experiment 3 the busts
lost rate achieves 25.35%, a lower value than experiments 1 and 2, but the response time
achieves 84.07 seconds showing that the scheduling may cause high delays. For experiment
4, the response time achieves 44.37 seconds, but the lost rate is very low (2.55%) showing
that the IFPN scheduling is very effective to provide a response time according to the user
tolerance to QoS. Worths to remember that such mechanism gives higher priority to requests
of impatient users. Those requests are answered first by the server and the impatience level
decreases, impacting the burst lost rate.

In order to improve the results, experiment 5 evaluates the hybrid strategy. In this ex-
periment the reactive mechanism of admission control for session and burst and the reactive
IFPN scheduling approach are active. As we observe, the maximum response time values
observed on Table 7 present the lower value compared to the other experiments. The experi-
ment presents the second lower value for the burst lost rate (21.67%). Figure 22 presents the
response time (a) and cumulative throughput (b). We observe the low response time values
and a significant percentage of bursts rejected that impacts the burst lost rate value.

6.3.4 Discussion

The experiments evaluating the reactive strategies achieve better response times and burst
lost rates compared to the experiment without any additional mechanism. The experiment
4, running just the IFPN reactive scheduling, achieves the best burst lost rate, otherwise the
response time behavior is not the best one. Experiment 2 achieves better response times due
to the effectiveness of the rejection of bursts and sessions, despite their high burst lost rate.
Experiment 5, running the reactive admission control and scheduling, presents the best result,
achieving an equilibrium in terms of response time and burst lost rate values.

Considering these results, we conclude that the reactive QoS approach present significant
improvements, despite the gains are different according to each experiment configuration.



A. C. M. Pereira, L. A. Silva, W. Meira Jr., and W. D. S. Filho 129

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000
M

ea
n 

re
sp

on
se

 ti
m

e 
(s

ec
)

Time (sec)

Mean response time over time (sec) [smooth bezier]

Mean response time (sec)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

B
ur

st
s 

cu
m

ul
at

iv
e 

th
ro

ug
hp

ut

Time (sec)

Bursts cumulative throughput over time (sec) [smooth bezier]

Bursts requested cumulative throughput
Bursts replied cumulative throughput
Bursts expired cumulative throughput

(a) Average Response Time (b) Cumulative Throughput
Fig. 22. Experiment 5: reactive admission control and IFPN scheduling

Moreover, it is a task of the systems engineer to choose the best approach in order to provide
each application demands.

7 Conclusion

Several previous studies focused on characterization and generation of workloads from Internet
service providers. However, as far as we know, none of them models the user reactions to
the service response time. We believe that this information is very useful to understand Web
workloads.

The basis of this work is the USAR characterization model, which guides the character-
ization of the user actions based on the latency and the IAT of the requests. The model
also comprises a validation strategy, that is a starting point towards generating more realistic
workloads. We validate the model through a case study, using the log of an actual proxy-cache
server, where we demonstrate the key features of the USAR model.

The work also evaluates the impact of reactivity on the performance of Web applications.
We design a new version of httperf workload generator that considers reactivity, based on
USAR model [37]. Using this, we perform experiments, comparing the non-reactive and
reactive approaches.

The results show that reactivity causes a significant impact on the server’s performance.
This can be explained by the static behavior assigned to clients in the non-reactive scenario.
Adopting traditional workload generation mechanisms, the unavailability of the system is an
expected situation, since changes in the users’ reaction are not considered. Our new model
shows the importance of understanding better the user-server interactivity process.

Moreover, this work presents novel contributions explaining how reactivity occurs, how it
affects the system’s performance, and how different user profiles reacts over variations on the
server’s performance. We design and implement the USAR-QoS simulator which allows the
analysis of each user profile behavior.

Based on the reactivity, the work proposes new strategies to guarantee QoS in Internet
services. We propose the use of admission control techniques based on the user reactivity
which are capable of selecting requests according to an user-based criteria. We also propose
the PFIN (patient-first impatient-next) and IFPN (impatient-first patient-next) scheduling
approaches that schedules the incoming requests arriving on the server according to the classes
of the reactivity model. In order to improve the benefits of admission control an scheduling
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we present a hybrid technique that combines both strategies in a single solution. The new
strategies are evaluated using the USAR-QoS simulator and a TPC-W-based workload.

From the results we observe different gains according to each QoS approach. The mech-
anism based only on reactive scheduling achieves the best burst lost rate (i.e. the number
of requests the user presents the impatient behavior), since its mechanism gives priority to
requests classified with impatient classes. The mechanisms that adopt the admission control
are effective to reduce the response time but may cause the increase in the burst lost rate,
due to the increase in the amount of users rejecting bursts or sessions. The hybrid mechanism
presents an equilibrium, reducing both the response time values and the burst lost rate.

Is important to observe that the proposed policies may be unfair to certain users since
their typical behavior is used to improve QoS. The benefits obtained are significant and we
understand that our policies may be very useful despite the subject of unfairness, specially in
overload situations.

Finally, we observe that there is a relevant improvement in the QoS of reactive Internet
systems through the use of reactive approaches. As part of ongoing work we plan to study
the problem of starvation due to the scheduling, using some mechanism such as fair queuing
[27]. We also intend to implement the strategies in a real web server.
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31. D. Menascé, V. Almeida, R. Riedi, F. Ribeiro, R. Fonseca, and W. M. Jr. A hierarchical and

multiscale approach to analyze e-business workloads. Perform. Eval., 54(1):33–57, 2003.
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