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So far, ontologies have been widely used to convey knowledge across the Semantic Web.

Complementing web ontologies with Horn-like rules to assert relations among ontology
individuals and properties is part of the ongoing implementation of the Semantic Web.

Intelligent Web Adaptive Hypermedia Systems (AHS) are the next generation for adap-

tive hypermedia on the web. We present a web-based intelligent AHS for e-learning that
configures on the fly complex learning objects tailored to the user profile. This automatic

configuration is entirely accomplished by reasoning over a hybrid Knowledge Base (KB)

composed of ontologies, and Horn-like rules defined on top of ontologies concepts. Inter-
operability on the semantic level is achieved by using an application profile of standard

vocabularies, standard languages for the representation of ontologies and rules, and a
standard interface for reasoning functionality.
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1 Introduction

Adaptive Hypermedia Systems (AHS) build a model of the goals, preferences and knowledge
of each individual user, and use this model throughout the interaction with the user in order
to adapt to the needs of that user [1]. The Semantic Web consists of adding machine under-
standable pieces of knowledge related to web content so that automatic agents can behave as
if they were able to understand the semantics of such content. Ontologies for the Semantic
Web formally define structural vocabularies to be used in semantic markup, are situated on
the Web, and are encoded in web standard languages such as the Ontology Web Language
(OWL) [2]. Description Logics (DL) [3] is the formalism that underlies OWL. DL based
languages are well suited to represent the structural properties of a domain that support
reasoning involving entire classes. However, they are not sufficiently expressive to represent
relations among ontology individuals. Therefore, instance reasoning is not possible on them.

aThe current filiation of the author is Department of Computer Science - University of Toronto
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On the other hand, Horn-like clauses can capture relationships between composite properties
and make the manipulation of individuals possible, addressing the reasoning about instances
that DL lacks [4]. The combination of the two paradigms, namely, ontologies and rules, is
necessary for practical purposes. Some early DL systems that included rules on top of ontol-
ogy concepts are KRYPTON [5], BACK [6], Classic [7] and CARIN [8]. The Semantic Web
Rule Language (SWRL) [9] is the language recently proposed to represent Horn-like rules on
top of ontologies for the Semantic Web. The existing reasoners [10] that address this very
expressive combination, which is encodable in SWRL, are not feasible for practical purposes,
because such a combination is undecidable [4][9]. However, decidable results can be obtained
by separating reasoning in the structural component from reasoning in the rule component of
a KB[11][12]. This approach encourages the combined use of pre-existing rule-based reasoners
with up-to-date DL reasoners [13] [14] to address hybrid inference. Following this approach,
our architecture deals with structural inference by the use of the RACER reasoner [13], and
with rule-based inference, by the use of the Jess rule engine [15]. With respect to interop-
erability and scalability, we used the standard interface DIG Description Logics application
program interface (DIG) [16] to ask and tell our DL KB. This enables us to use any up-
to-date DL reasoner compliant with the standard DIG. AHS for e-learning have a Student
Model that contains the style and preferences of each student and a model of the educative
content. According to [20], an AHS for e-learning has an Information Space consisting of a
Hyperspace of web pages with educative content and also a Knowledge Space telling the sys-
tem which topics of the Domain being taught are addressed by each Hyperspace element. We
have added some elements to the Knowledge Space. These extra elements convey structure
and other metadata under the form of a set of axioms used for the on the fly computation of
tailored learning objects. Since our system was envisioned to interoperate on the Semantic
Web, i.e., to be used by Semantic Web agents, we make the knowledge about our e-learning
data available in standard for the web terms. These terms are part of a terminology defined
as an application profile that extends the terms defined in standard pre-existing vocabularies
for the e-learning domain [17][18] [19]. Web agents can understand our OWL terminology,
or can interpret each of its terms according to the semantics of their root standard terms.
Since we have our terminology represented in OWL, which is a language envisioned to work
under the Open World Assumption (OWA), the interchange of knowledge on the Web under
the premise that the involved sources have non comprehensive information is possible. This
is a necessary approach for the Semantic Web environment. On the other hand, we also take
advantage of the Closed World Assumption (CWA) of the Datalog paradigm underlying the
rule-based component of our KB to make the inference that only concerns our system. This
approach is consistent with the vision given in [28]. This paper shows the decisions taken and
the difficulties we had to overcome when addressing hybrid reasoning to achieve adaptation
to user’s profiles during the design and implementation stages of an Adaptive Hypermedia
System for the Semantic Web. The remainder of this work is structured as follows. Section 2
introduces related work and contextualizes our contribution. Section 3 gives a brief account
of existing approaches for addressing reasoning on the Semantic Web. Section 4 shows the
built hybrid knowledge base, section 5 gives details about the hybrid inference that we carried
out, and section 6 is a short conclusion.
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2 Related Work

Adaptive Hypermedia Systems for e-learning use ontologies to agree on the semantics of the
terms that their community of users share. Taxonomies are used to semantically relate the
terms used in the areas of knowledge to be taught in their courses, and formal ontologies are
used to represent knowledge about their typical activities, participants and resources [29].
In order to interoperate across the Web on the semantic level, metadata standards and web
ontologies are needed. That interoperation is intended to facilitate search, evaluation, acqui-
sition, and wide use of learning objects for example, for learners, instructors or automated
software processes. In this context, namespace schemas, such as the Dublin Core schema
[30] provide metadata standards for the Web. A namespace schema is a set of definitions for
metadata elements that stand on the Web as reference points to be used to create metadata
descriptions about resources of a specific domain in a standardized way. Generally, a schema
is designed for a registration authority, and maintained as a stable reference on the Web.
Such a design is made following a minimalist approach, which implies the use of a minimum
set of elements with simple structure in order to facilitate the adoption of the schema by the
community. Then, each particular community develops an application profile that tailors the
standard to the community requirements while retaining interoperability with the original
schema. In particular, the IEEE Learning Object Metadata (LOM) [25] standard provides a
taxonomy for the e-learning domain composed of those terms needed to describe instructional
content, learning objectives, instructional software and software tools, persons, organizations
and events referenced during technology supported learning. Since XML support has reached
a mature level, a number of projects have implemented their application profiles using XML
bindings for LOM metadata, i.e., they have a specific XML Schema designed to validate docu-
ments with LOM descriptions of learning objects. Examples of projects using LOM metadata
in XML are ARIADNE (http://www.ariadne-eu.org), Can-Core (http://www.cancore.org),
SCORM (http://www. adlnet.org) and Heal (http://www.healcentral.org). However, XML
is not able to convey the semantics of data structures by itself like RDF does. This means that
applications that interoperate based on XML bindings need to agree in advance about the
semantics of the terms of their application profiles. Conversely, the fundamental advantage
of having an application profile based on RDF lies in the fact that RDF provides a standard
way to represent meaning, making the realization of the machine understanding concept pos-
sible, and enabling the reutilization of pre-existing vocabularies, like Dublin Core. Authors in
[25] give detailed explanations of the differences between XML and RDF bindings for LOM
standard metadata.

We have developed an application profile based on RDF on top of which all our definitions were
done. However, our novel approach consists of not only sharing domain knowledge through
a RDF based application profile, but also of sharing all the knowledge needed for solving the
problem of dynamically configuring a personalized learning object. All the machinery that we
use for inference purposes, i.e. our definitions, axioms and rules, is formally represented in a
machine understandable way, which means that any web agent SWRL / OWL DL aware, can
unambiguously understand, and act, based on them. Following is a brief description of the
strengths and weakness of the standard languages currently available to address reasoning on
the Web.
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3 Reasoning Approaches for The Semantic Web

Description Logics, the formalism underlying the ontology language for the Semantic Web
OWL, structures the domain into categories called classes or concepts whose individuals
hold complex predicates. Relations among concepts are called properties or roles. In terms
of a correspondence with First Order Logic (FOL), atomic concepts can be seen as unary
predicates, properties as binary predicates, and individuals as constants. Figure 1 shows a
part of our ontologies where the relations between each course, its topics, and the material
supporting their explanation are depicted.

Topic

subClassOf

isAvailableTo

Course

LearningObject

Support

supportsTo

subClassOf

Fig. 1 Courses and Topics

We formally define Support as the class of individuals that are related to an element of class
Topic by relation supportsTo:

Support ≡ ∃ supportsTo.Topic

We provide an axiom to characterize class Course stating that its elements are those related
by the inverse of relation isAvailableTo with individuals of classes Support or Topic.

Course ≡ ∃ isAvailableTo−.(Support t Topic)
TopicsForCourseX ≡ Topic u ∃ isAvailableTo.{courseX}

We can query a DL KB to ask if a given individual satisfies a certain concept or ask for
the entire set of individuals satisfying a concept, among others. A detailed account of DL can
be found on [3]. DL reasoners work under the Open World Assumption (OWA), this means
that the knowledge in the KB is assumed to be incomplete, i.e. nothing can be inferred about
what is not explicitly stated. For example, given a student, say student1, a course named
course1 composed of topic1, topic2 and topic3, and having hasKnowledgeOn(student1,

topic1) as the unique instance pertaining to relation hasKnowledgeOn, we are not allowed
to conclude that student1 has no knowledge of topic2 and topic3. Such a conclusion is
not possible under OWA because there is no explicit statement saying that the individual
hasKnowledgeOn(student1, topic1) represent all the existing individuals of the relation
hasKnowledgeOn. In absence of such a statement, the supposition is that they may exist,
but our KB has not been told about them, i.e. it is assumed that our KB does not have a
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comprehensive account of the world that it represents. On the contrary, working under Closed
World Assumption (CWA), particularly using negation as failure, which is the assumption of
database systems, we should conclude from the same KB that student1 only has knowledge
of topic1, because we assume that our universe is closed to what our KB knows.

On the other hand, SWRL was designed to be the rule language for the Semantic Web.
It is based on a combination of the OWL DL and OWL Lite sublanguages of OWL with
the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language [9]. SWRL
rules are of the form of an implication between an antecedent (body) and a consequent (head).
Rules with conjunctive consequents can be divided into multiple rules each with an atomic
consequent of the form: B1∧B2∧ ..Bn → H, which resembles the Horn rules of FOL. Atoms
in these rules can be of the form C(x), P(x,y), sameAs(x,y), differentFrom(x,y), or
builtIn(r,x,...) where C is an OWL description, P is an OWL property, r is a built-in
relation, and x,y are either variables, OWL individuals, or OWL data values. Informally, an
atom C(x) holds if x is an instance of class description C, an atom P(x,y) holds if x is related
to y by property P, and an atom builtIn(r,x,...) holds if the built-in relation r holds for
the interpretations of the arguments. For the sake of decidability only variables that occur
in the antecedent of a rule are allowed to occur in the consequent, i.e. only individuals that
are explicit in the KB can be used to support conclusions. The SWRL built-ins approach is
based on the reuse of existing built-ins of XQuery [21] and XPath [22], which are themselves
based on XML Schema Part 2: Datatypes[23]. XML and RDF sintaxis are provided for the
serialization of SWRL on the web.

Each reasoning approach targets a very different kind of inference. The strength of DL lies
in its very expressive class constructors that enable the definition of classes by describing the
properties that their individuals hold. Given the axiomatization of the domain in such a class
hierarchy, a DL reasoner can classify individuals according to the general schema and is able
to determine if a given individual falls into some categories unanticipated by the modeler.

Nevertheless, reasoning over the combination of these kinds of rules defined on top of on-
tologies concepts is undecidable [4][9] and separating the reasoning in the structural compo-
nent from the reasoning in the rule component of a hybrid KB is necessary in order to achieve
decidable results [11][12]. In order not to be committed to a particular DL reasoner feature, we
explored the Description Logic Interface (DIG), [16] which is a standard application program
interface (API) for reasoning services on the web. DIG provides minimal functionality that is
expected to grow until providing management of transactions, among others. The DIG speci-
fication consists of a XML Schema situated at http://dl-web.man.ac.uk/dig/2003/02/dig.xsd
to encode DL language elements along with functionality that enables applications to ask and
tell new statements to the Knowledge Bases that the reasoner is using. An application that
uses DIG for reasoning services does not need to know which specific DL reasoner is providing
those services. As part of our work, we have compared the main functionality provided by
the NRQL query language implemented by the reasoner RACER [13] with the functionality
provided by the interface DIG. It turned out that NRQL allows the management of OWL files
while DIG does not. NRQL makes the use of Closed World Assumption possible, whereas
this is impossible using DIG. NRQL also has a simple syntax that DIG lacks and provides
functionality for deleting instances that DIG does not. Even though the NRQL query lan-
guage is more expressive than the DIG interface, DIG provides a convenient standard style
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Fig. 2 Information Space

for a Semantic Web application and is sufficient for our practical purposes. In the end, we
structured our knowledge base as a theory composed of a set of Description Logics axioms
and Horn-like rules implemented using OWL DL and SWRL, respectively. Our KB takes ad-
vantage of both reasoning approaches, but the inference that each one contributes is carried
out separately for efficiency purposes. The communication between the two parts of our KB
is accomplished by using the API DIG [16].

4 The Hybrid Knowledge Base

As the Semantic Web vision requires, the terms that we have used to convey the meaning of
our data are refinements of standard vocabularies that are already anchored on the Web. We
have developed an application profile [17] of the Learning Object Metadata (LOM) standard
[25] that conveys the meaning that our particular learning environment requires. We have
used OWL DL, which is the most expressive OWL that is also decidable [2] for the application
profile representation, and a RDF binding [24] as the implemented version of the conceptual
standard. Standard terms, with a well known global semantics, are the basis for our appli-
cation Profile, and all of our ontologies have their terminology based on them. Even RDF
web agents that are not OWL aware can understand our terms according to the semantics
of their roots on RDF terminologies. For the sake of clarity, and because it is not relevant
for this paper, we have omitted the namespaces qualification accompanying the name of the
elements of our KB, however, [17] has a detailed account of them. The DL segment of our
KB is composed of the set of OWL statements that our ontologies contain. The rules seg-
ment of our KB resides on the SWRL sentences that the same ontologies files contain, they
are Horn-like rules that assert conditions over individuals, concepts and relations defined in
OWL axioms. We have addressed two different conceptual areas about which the system has
to have knowledge about. One is the Knowledge Space of the system related to the educative
content, and the other concerns the student profile to whom the educative content will be
adapted [20].

4.1 Ontologies Structuring the Knowledge Space

The Domain and Content Knowledge ontologies form the Knowledge Space of the hybrid sys-
tem. The Domain ontology contains a taxonomy of concepts that structures the domain being
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taught. Most of its instances are related by mereological relations. The Content Knowledge
ontology gives the necessary knowledge to correctly assemble the small pieces of educative
content. It contains mereological relations, but also, among others, those that indicate a
convenient order of presentation and prerequisite conditions. The knowledge contained in the
Domain ontology is mostly used at the authoring or recommendation of educative content
time. It enables a contributor to classify a piece of educative content as addressing the teach-
ing of a certain topic of the domain taxonomy. On the other hand, the Content Knowledge
ontology is intended to be used in the task of automatically computing complex learning
objects according to the student’s profile. Figure 2 shows the relations among a small set of
individuals of the named ontologies. The Hyperspace is given by the XML pages containing
the proper educative content.

Figure 3 partially shows the structure of classes of the Content Knowledge ontology. In-
stances of class Topic represent some concept or idea being part of a Discipline of study in the
context of a given Course. The explanation of the topic comes with examples, exercises and
complementary material represented in classes subsumed by class Support, such as Example,
Exercise and Complementary. A topic may have sub-topics giving more specific and detailed
explanations related by the isPartOf relation, i.e., they are considered part of the explanation
of the prime topic. The isPartOf relation was declared transitive. The order in which the
subtopics of a topic must be presented according to learning purposes is given by the learn-
ingPath relation, which was declared functional. Given a course, only certain topics of the
discipline that the course customizes are available for it, and only certain support material of
the available topics are in turn available for the course.
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4.2 Ontologies Modeling the Student Profile
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The Student ontology, depicted in figure 4, provides the necessary knowledge about the
student profile used to address the task of computing ”on the fly” those Learning Objects
that pertain to the Course the student has as her learning goal, adapted to the capacity of
her current Network Connection, and presented according to her Cognitive Style of Learn-
ing. The Cognitive Style of Learning (CLS) [26] is an individual aspect that describes the
way in which a person habitually approaches or responds to the learning task. The entity
CognitiveLearningStyle is intended to contain the four CLS identified in [27], i.e. (i)
Analogue-Analytical; (ii) Concrete-Generic; (iii) Deductive-Evaluative and (iv) Relational-
Synthetic. According to her CLS, a student may prefer to visit the examples about a topic,
try the challenge of doing some exercises related to the topic, and then go on to the page
containing the explanation of the topic, while another student with a different CLS may prefer
to read the explanation of the topic first, then read the examples, and finally try the exercises.
The order of precedence in which the different types of support material should be presented
is given by relations firstType, secondType, thirdType and fourType shown in figure 4.

4.3 Rules for Reasoning on Instances and Properties

Rules have been used to tell our KB certain conditions that hold among the property values
of related individuals. Description Logics has no tools to represent such a type of connection.
For example, we use the following rule in order to tell our KB that it should infer that the
language in which a learning object was written is the same as the language of its author,
under the assumption that the most common situation is a creator authoring learning objects
in her own native language.

learningObject(?x) ∧ creator(?x, ?y) ∧ language(?y, ?t) → language(?x, ?t)

Considering the terminology defined by ontology Content Knowledge, figure 5 graphically
shows through an example, that relations isPartOf and learningPath are expressive enough
and human manageable to represent the semantics of the hierarchic structure of topics shown
in figure 3, i.e., they are the clearest way to add or remove topics from a discipline structure,
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they are also structurally well manageable for a DL reasoner. However, it is not possible for
a DL reasoner to address the combination of instances of different relations. For example,
in order to infer which the next topic of a given one is, based on the semantics of the two
relations isPartOf and learningPath, there are three possible situations to be considered.
Namely, topic x has topic y as its next topic on the presentation order, i.e., nextTopic(x,y)
if (I) Topic y is the first child of topic x from left to right; (II) learningPath (x,y) holds and
topic x has no children, or (III) isPartOf (x,w) holds and learningPath (w,y) holds, topic x

has no children nor sibling at its right. Expressed in FOL:

(I) (∀x, y, z, t) isPartOf(y, x) ∧ ¬learningPath(z, y) ∧

¬(isPartOf(y, t) ∧ isPartOf(t, x)) → nextTopic(x, y)

(II) (∀x, y, z) learningPath(x, y) ∧ ¬isPartOf(z, x) → nextTopic(x, y)

(III) (∀x, y, z, t, w) isPartOf(x, w) ∧ learningPath(w, y) ∧

¬isPartOf(z, x) ∧ ¬learningPath(x, t) → nextTopic(x, y)

Due to the fact that property isPartOf was declared transitive, each topic is considered to be
indistinctly part of all the topics included on the transitive clousure of relation isPartOf, i.e.
topics T1, T2 and T3 are considered as holding isPartOf(T3,T2), isPartOf(T2,T1), but
also holding isPartOf(T3,T1). However, quering the KB did not allow us to differentiate
between instances isPartOf(y,x) that were explicitly told to our KB and those that result
from the transitive clousure of the relation isPartOf .

To deal with this issue, we have defined a property that collapses the two properties
isPartOf and learningPath into only one, called nextTopic, whose individuals state what
topic should be after a given one regardless of structure issues. The criteria used to define
nextTopic in function of isPartOf and learningPath are those shown in the given conditions
(I), (II) and (III). Instances of nextTopic relation are shown in part (b) of figure 5. In the
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end, what we considered the best way to approach the issue was to maintain the two expressive
structural relations as the main way to express the structural terminology, but to solve the
computation of the next topic when automatically configuring a new learning object, by using
the new redundant relation. In order to maintain consistency, the instances of each alternative
representation are computed in a controlled automatic basis. Following are the SWRL rules
whose computation populates the extension of relation nextTopic, we have used the informal
human readable notation given in [9].

(I) Topic(?x) ∧ Topic(?y) ∧ isPartOf(?y, ?x) ∧

¬(Topic(?z) ∧ isPartOf(?z, ?x) ∧ learningPath(?z, ?y)) ∧

¬(Topic(?t) ∧ isPartOf(?t, ?x) ∧ isPartOf(?y, ?t)) → nextTopic(?x, ?y)

(II) Topic(?x) ∧ Topic(?y) ∧ learningPath(?y, ?x) ∧

¬(Topic(?z) ∧ isPartOf(?z, ?x)) → nextTopic(?x, ?y)

(III) Topic(?x) ∧ Topic(?y) ∧ (Topic(?z) ∧ learningPath(?z, ?y) ∧

isPartOf(?x, ?z) ∧ ¬(Topic(?u) ∧ isPartOf(?u, ?x)) ∧

¬(Topic(?t) ∧ learningPath(?x, ?t)) ∧

¬(Topic(?v) ∧ Topic(?w) ∧ isPartOf(?x, ?v) ∧

isPartOf(?v, ?z) ∧ learningPath(?v, ?w)) → nextTopic(?x, ?y)

We have used the built-in swrlb:booleanNot provided in [9] to be able to represent negation in
SWRL. Each time that the structure of topics is modified, the extension of relation nextTopic

will automatically be computed by the inference of the rule engine. For the sake of clarity
we have omitted the considerations related to prerequisite conditions that are actually used
for the computation of the next topic, but whose use is similar to what was presented here.
Another important issue that required the use of rules to be solved concerns the necessary
inference for the automatic computation of the best order for a set of supporting material
given the Cognitive Learning Style of the student. Part (b) of Figure 6 shows instances of
relation nextSupport obtained similarly to what was presented to obtain the extension of
nextTopic.

To depict the entire process we will start by Part (a) of Figure 6 that shows, as an
example, part of the structure of course1. Two topics are available for the course. Topic
topic1 has an explanation, two examples, two exercises and one piece of complementary
material. We assume that all the showed support individuals are available for course1.
Each individual of class Support is related to an individual of class SupportType indicating
the four types of support the system has. The individual relational-Synthetic of class
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Fig. 6 Cognitive Learning Style determining the presentation order for the support material
of topic 1

CognitiveLearningStyle is representing such a particular CLS. The order in which the
support material should be presented to students that have relational-Synthetic CLS
is given by the four relations named firsType, secondType, thirdType and fourthType

whose range are in class SupportType. For example, firsType(relational-Synthetic,

explanation) indicates that individuals with that CLS prefer to receive explanations first.
The actual order among elements of the same category is given by their value on property

difficulty, which stands for the degree of difficulty that is expected the learning object will
present when a student approaches it. We have defined rules for computing the extension of
relation nextSupport, shown in Part (b) of figure 6, in an analogous way to what we did to
comput the extension of nextTopic relation. We have also used rules to let the system know
when a student has completed the study of a given topic. The following SWRL rule creates a
new instance of relation hasKnowledgeOn relating the student to the topic once the student
has knowledge about all the supporting material of the topic.

¬(Student(?z) ∧ Topic(?x) ∧ Support(?y) ∧ supportsTo(?y, ?x) ∧

¬hasKnowledgeOn(?z, ?y)) → hasKnowledgeOn(?z, ?x)
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Fig. 7 System Architecture

5 Hybrid Inference for Adaptation

Figure 7 shows the architecture used to support hybrid inference for adaptation purposes.
The ACS- Adaptive Content Selection module groups the system functionality related to
adaptation. It contains three sub-modules, namely, the Student Manager, the Content Man-
ager, and the Knowledge Manager. The Student Manager module continuously monitors
the activities of the student on the system in order to update the Student Model. The Con-
tent Manager module makes the educative content required by the other modules available.
The Knowledge Manager module uses the DL reasoner to query the Knowledge provided
by both the Student Model and the Knowledge Space of the system. It acts as a broker among
the other ACS sub modules given the foundations to decide both which educative content
to provide to each student and what actualizations to the Student Model should be done.
The Knowledge Manager module uses the standard for the Web DIG/XML- Description
Logics Interface to communicate knowledge with other modules and in particular with the
reasoner.

The ORBIS- Ontology and Rule-based Inference System module provides both
functionality related to the ontologies storage and rule based reasoning services. It en-
capsulates the use of the JESS rule engine by means of a transformer based on XSLT
technology. The transformer acts as a wrapper converting the standard for the Web SWRL-
Semantic Web Rule Language rules that the Knowledge Manager has to tell to the rule
engine KB, into the internal format CLP of JESS, and also transform the new ontology indi-
viduals inferred by the rule engine, into DIG/XML sentences that will be told to the KB of
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the DL reasoner. We have used the DL reasoner RACER[13] and the rule engine JESS[15].
After each cycle of the rule engine reasoning, the inferred instances are added to the DL KB,
so that they are used for structural querying. In spite of the fact that OWL is based on
the open world assumption, and the terminological part of our KB is treated under such an
assumption, we take advantage of closed world assumption, in particular of negation as failure
by encapsulating inference inside the rule engine.

Various students are allowed to work simultaneously on the system. We had to deal with
some restrictions imposed by the use of the standard DL interface DIG, in particular, the
interface does not allow for transactional management and for identifying different clients that
are working at the same time in a certain KB. We decided to use one KB per student working
on the system, since working with various KB at the same time is possible for the reasoner
used. KB elements that need to be modified during the student activity are instances of the
Student ontology that only concern the student doing the learning activity. The instances of
knowledge about the educative content, that are commonly accessed for all the students, are
not modified during the activity of taking courses.

Following is an example of the set of rules and DL queries executed over a temporal KB
for the configuration of the best piece of educative content to be offered dynamically to a
given student, say student1, who is actively working on the system. This configuration will
be made according to her current knowledge of the material of the course she is taking, say
course1, and her Cognitive Learning Style. Figure 8 shows most of the inferred concepts.
The identifiers of the support material were not included for simplicity. Learning objects that
the student already knows are shown in gray, and the rest of the course material in white.

This example is considered representative of the whole set of queries used. Other kinds
of adaptation, like the one related to the type of network connection, are ommited for the
sake of clarity. We have shown in section 4.3 how SWRL rules were used to set the ex-
tension of properties nextTopic and nextSupport. While the extension of nextTopic only
concerns the structure of the educative content, the extension of nextSupport was inferred
according to the Cognitive Learning Style of the student (see figure 6), i.e. the extension of
property nextSupport has already been tailored to the preferences of the student .We have
used the DL notation used in [3] for the purpose of clarity and the human readable syntax
for SWRL rules given in [9]. The notation R− stands for the inverse relation of relation R,
i.e. (∀p, q), R(p, q) → R−(q, p). To begin with, a query is posed to compute the extension
of concept Known, containing those learning objects available for course1 that student1 has
already learnt. Instances of this concept are depicted in gray in figure 8.

Known ≡ ∃hasKnowledgeOn−.student1 u ∃isAvailableTo.{course1}

Concept TopicC1, whose instances are shown on the top of figure 8, contains those topics
that are available for course1, its extension is computed by the following query:

TopicC1 ≡ Topic u ∃isAvailableTo.{course1}

Concept UnKnownTopic contains those topics that are available for course1 but that
student1 has not learnt yet, its instances are the topics shown in white on top of figure 8,
and its extension is computed by the following SWRL rule:
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TopicC1(?x) ∧ ¬Known(?x) → UnKnownTopic(?x)

Concept FirsTopic contains the first topic of course course1, given by the following
SWRL rule:

TopicC1(?x) ∧ ¬(TopicC1(?y) ∧ nextTopic(?y, ?x)) → FirstTopic(?x)

NextStudentTopic, indicated in figure 8, describes the next topic to be presented to the
student student1. It should be either the first topic of the course, if it is unknown, or an
unknown topic preceded by a known one. Following is the DL query that sets its extension
in the temporal KB:

NextStudentTopic ≡ FirstTopic u UnKnownTopic t

UnKnownTopic u ∃ nextTopic−.Known

SupportC1, indicated by a shaded box in figure 8, contains the support material available
for course1 that supports the topic of NextStudentTopic, given by the DL query:

SupportC1 ≡ Support u ∃ isAvailableTo.{course1} u

∃ supportsTo.NextStudentTopic

UnKnownSupport, indicated by a white box in figure 8, contains the unknown support
material for the next topic, its extension is computed by the following SWRL rule:

SupportC1(?x) ∧ ¬Known(?x) → UnKnownSupport(?x)
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FirstSupport is the first support according to relation nextSupport that is unknown to
the student, its extension is computed by the following SWRL rule:

SupportC1(?x) ∧ ¬(SupportC1(?y) ∧ nextSupport(?y, ?x)) → FirstSupport(?x)

Finally, NextStudentSupport, indicated in figure 8, contains the next learning object to
be presented to the student, given by the DL query:

NextStudentSupport ≡ (FirstSupport u UnKnownSupport) t
(UnKnownSupport u ∃ nextSupport−.Known))

Once the concept NextStudentSupport is populated, the system can provide the stu-
dent with the next educative content in its personalized learning. Following is the DIG
serialization used for telling the temporal KB this last DL axiom stating the definition of
NextStudentSupport:

<defconcept name="NextStudentSupport"/>

<equalc>

<catom name="NextStudentSupport"/>

<or>

<and>

<catom name="FirstSupport"/>

<catom name="UnKnownSupport"/>

</and>

<and>

<catom name="UnKnownSupport"/>

<some>

<inverse>

<ratom name="http://www.inf.ufrgs.br/~tapejara/Ontology/

Generated/AWOntology.owl#nextSupport"/>

</inverse>

<catom name="Known"/>

</some>

</and>

</or>

</equalc>

In spite of the fact that our work was carried out using the reasoner RACER [13], our
system is able to obtain inference services from any up-to-date reasoner that implements the
standard API DIG. As it can be seen, our approach involves the declarative representation of
not only the knowledge concerning the application domain, but also the knowledge related to
all the needed steps to solve the addressed problem.

6 Conclusions

We have developed an Intelligent Adaptive Hypermedia System that entirelly works according
to the foundations of the SemanticWeb. Its knowledge is encoded in the standard for the Web



40 Reasoning on the Semantic Web for Adaptive Hypermedia

languages SWRL, OWL, RDF, XML and DIG. DL based languages enabled us to declara-
tively encode the knowledge about our domain, taking automatic account of inheritance and
performing structural inference, while Horn-like rules defined on top of our ontology terms
enabled us data-directed inference over instances. Our system takes advantage of an open
world assumption as the default assumption for sharing our knowledge on the web, while
closed world assumption is encapsulated in rule inference when needed. We are able to share
the knowledge behind our inference on the Web by exposing our OWL axioms and our SWRL
rules in a machine understandable representation. We avoided encapsulation of knowledge in
ad-hoc programming code. All our knowledge is expressed in a declarative, shareable way, in
languages that have well founded semantics and is used for inference in reasoners that work
in a principled way. Our system is able to automatically configure complex learning objects
tailored to student profiles by reasoning in a domain theory.
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