
Journal of Web Engineering, Vol. 7, No.1 (2008) 042-069
© Rinton Press

BOOSTING THE ADOPTION OF COMPUTER MANAGED INSTRUCTION
FUNCTIONALITIES IN E-LEARNING SYSTEMS

GENNARO COSTAGLIOLA, FILOMENA FERRUCCI, VITTORIO FUCCELLA

Dipartimento di Matematica e Informatica, Università degli Studi di Salerno
{gcostagliola, fferrucci, vfuccella}@unisa.it

Received April 4, 2007

Revised October 23, 2007

Standardization efforts in e-learning are mainly aimed at achieving interoperability among Learning
Management Systems (LMSs) and Learning Object (LO) authoring tools. In particular, the main standard
producers are giving special attention to a set of functionalities, referred to as Computer Managed
Instruction (CMI) and also known as SCORM Run-Time Environment. Their adoption is crucial in the
achievement of full interoperability among LMSs and LO authoring tools since they allow LOs to be
launched in the LMS and to exchange data with it. Even desirable, standard compliancy and guideline
adoption are difficult to obtain for LMS producers. This paper presents two design solutions aimed at
boosting the adoption of CMI functionalities in Object-Oriented and Message-Oriented LMS systems,
respectively. The former is a framework, named CMIFramework, which allows LMS developers to rapidly
adopt CMI functionalities in Object-Oriented systems. The latter is a Service Oriented Architecture (SOA)-
based reference model for offering the CMI functionalities as a service, external to the LMS. We
investigate several case studies concerning the adoption of CMI functionalities, using our solutions, in
different e-learning contexts.

Key words: E-Learning, standardization, Computer Managed Instruction, CMI, SCORM RTE,
framework, Service Oriented Architecture, SOA, Web Services
Communicated by: M. Gaedke and A. Ginige

1 Introduction

E-learning has spread rapidly in recent years. Many authors remark that the birth of e-learning
coincides with the time in which hypermedia resources started to be distributed through the Internet,
that is, with the birth of the World Wide Web. Since then its growth has been strongly influenced by
the development of the Web technologies. In fact, all of the e-learning systems are now developed as
Web applications. These Web applications present some specific requirements and features that should
be taken into account by suitable Web engineering tools and methodologies. In particular,
interoperability among e-learning systems is a very important issue. In the context of these systems,
the most important aspect related to interoperability is the possibility of running LOs produced with
any authoring tool on any Learning Management System (LMS) compliant to the standard
specifications.

Recently, in order to obtain a stronger interoperability among e-learning systems, great efforts
have been made to define standards, reference models, and guidelines for e-learning. Despite the
presence of several detractors [15, 33], the importance of e-learning standards has been ratified by
several institutional initiatives in many countries. For example, in Italy, a decree of the Ministry of
Instruction establishes that a crucial requirement for academic institutions for being accredited as
“distance courses providers” is the support of several standard specifications [10].

G. Costagliola, F. Ferrucci, and V. Fuccella 43

At present, the main specifications are focused on the proposal of common formats for LO
metadata and for resource interchange. Metadata for LOs can be used to describe them from several
points of view. Several models have been defined. Noteworthy among them are Dublin Core [11] and
Learning Object Metadata [24], the latter being the first international standard issued by IEEE
Learning Technology Standard Committee (LTSC) [17]. A resource interchange format for LOs is
proposed in the Content Packaging specification, issued both by SCORM [37] and IMS [19].

Common metadata and interchange formats are not enough to allow the LMSs to fully interoperate:
it is necessary that there is a standard environment in which the LOs can be launched and can exchange
data with the LMS. The definition of a model for this standard environment is currently proposed in
several specification documents, such as AICC CMI Guidelines for Interoperability [2], SCORM Run
Time Environment (RTE) [38] and IEEE CMI [23]. We will refer to the functionalities proposed in
these documents using the acronym CMI, an abbreviation of Computer Managed Instruction.

Unfortunately, standard compliancy and guideline adoption are difficult to obtain for LMS
producers. Adopting standards is onerous for several reasons: a large amount of time is required for
studying documents, understanding their contents and implementing them properly [27]; the
specifications have a technical nature and the availability of reference material and supporting tools is
limited [3]; the scarce availability of courses in a standard format prevents developers to adequately
test the developed solutions [40]. Furthermore, there are numerous standard producers, whose
specification documents differ in some aspects. Those differences are often a source of confusion and
incompatibilities. This is the case of CMI, whose basic architecture of launch and communication
model is accepted by all of the producers, but the specifications differ in the definition of the data
models of the information exchanged during the communication and of the API exposed to the LOs to
perform the communication. Consequently, the adoption of the CMI model, whose importance is
attested by the attention of the three main producers of standards, of many software vendors and of
several authors in the literature [6], [36] has been insufficient. Thus, there is the need of design
solutions for boosting the adoption of CMI functionalities in LMSs. In this paper, we present two
approaches: the former is a framework, named CMIFramework, and has been conceived for OO
systems.

CMIFramework consists of a set of reusable components that can be easily configured and
extended to obtain an environment in which LOs that are compliant with any issue and version of the
specifications can be launched without incurring incompatibility problems. The basic idea is to match
the changes among the various issuers’ specifications with the variability and extension points (hot
spots) of the framework. CMIFramework is configurable to allow the developer to decide the data
formats and the interfaces to support and has been conceived flexible enough to address further
modifications in the specifications. To show the effectiveness of the proposal, we describe how a well-
known LMS, Sakai, has been extended to support CMI functionalities.

The second solution, suitable for Message-Oriented systems, is a Service Oriented Architecture
(SOA)-based reference model for offering the CMI functionalities as a service, external to the LMS.
The necessity for externalizing the CMI functionalities from the LMS is motivated by the following
factors:

• The high cost of being up-to-date with the specifications.

44 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

• The high cost of hardware and software resources necessary for offering the
functionalities.

• The necessity for having a standard model, for which SOA represents a valid choice.

 Our model can be useful for LMS producers to avoid the above costs and to develop the LMS
independently from the external module, which can be provided by third party efforts. Starting from a
technical discussion of the requirements of the model, we propose a decomposition of an LMS system
in order to establish the separation of roles between the basic LMS and the identified external service.
Then, we outline the architecture of the system by explaining the interactions among the identified
services. Lastly, the whole process is defined, identifying the activities involving the LMS and the
external process. The proposed model is validated through a prototype system, in which a popular
LMS, developed with the PHP language, is enhanced with the support of SCORM RTE functionalities,
provided by an external Web service based on Java technology.

The rest of the paper is organized as follows: the next section discusses the state of art in the
adoption of standards in e-learning systems. Some concepts of the CMI model are reported in section
3; section 4 outlines CMIFramework, including its functionalities and architecture and a case-study of
its application; the SOA-based model for offering CMI functionalities as a service external to the LMS
is presented in section 5. Work in literature related to ours is the subject of section 6. Some final
remarks and comments on future work conclude the paper. Some code segments for the configuration
of the framework and the definition of the SOA-based model are reported in the appendixes.

2 The Interoperability Issue and the Adoption of Standards in E-learning Systems

Interoperability among software systems can be generically defined as “the capability to communicate,
execute programs, or transfer data among various functional units in a manner that requires the user to
have little or no knowledge of the unique characteristics of those units” [18]. For e-learning systems
interoperability is a fundamental issue. In the context of these systems, in fact, there is the necessity of
exchanging various categories of data, such as information about the learners and the LO. The most
important aspect concerns the re-use of the LOs, since, the production and development of educational
contents for e-learning is usually a higher cost process, compared to the production of course material
for traditional learning [34]. Once full interoperability among LMS and authoring tools is achieved, it
will be easier to share LOs, and, consequently, re-use them, with considerable time and resource
savings for the content developers. As mentioned in the introduction, in order to obtain a stronger
interoperability among e-learning systems, standards, reference models, and guidelines for e-learning
have been defined.

To have a deep knowledge about the state of art in the support of standards in e-learning systems, a
survey has been carried out on both authoring tools and LMSs. We realized that authoring tools are
more advanced than LMSs in this context. In particular, tools such as Macromedia Authorware [4] and
Toolbook Instructor [45], offer an almost complete support of the existing specifications, including
many versions of several issuers.

As for the LMSs, the analysis has been carried out using data from the publicly-available Edutools
[12] system: thirteen products out of the most popular LMSs, accompanied either with an Open Source
or a commercial license, have been included in the survey. The analysis, summarized in table 1, only
concentrates on the support of standards and excludes other features. The table shows the supported

G. Costagliola, F. Ferrucci, and V. Fuccella 45

specifications for each LMS. These are divided by functionality (LO Metadata, Content Packaging,
CMI and others). Each cell in the table reports the supported specification, including issuer and
version, for each product and for each set of functionalities.

LMS Supported Specs

Product Web Site LO
Metadata

Content
Packaging

CMI Others

ANGEL Learning
Management
Suite, V7.1

http://www.angellearning.com/produ
cts/lms/default.html

IMS 1.3
SCORM 1.2

IMS 1.1.4
SCORM 1.2

SCORM 1.2 IMS QTI
1.2.1

ATutor 1.5.3.2 http://www.atutor.ca/ SCORM 1.2 IMS 1.1.3
SCORM 1.2

SCORM 1.2 /

Blackboard
Learning System
CE 6.1 EL

http://www.blackboard.com/product
s/Academic_Suite/Learning_System
/CE.htm

SCORM 1.2 IMS 1.1.3
SCORM 1.2

SCORM 1.2 IMS QTI
1.2.1

Blackboard
Learning System
Vista 4.1 EL

http://www.blackboard.com/product
s/Academic_Suite/Learning_System
/vista.htm

SCORM 1.2 IMS 1.1.3
SCORM 1.2

SCORM 1.2 IMS QTI
1.2.1

Claroline 1.8.1 http://www.claroline.net IMS 1.2.2
IMS 1.2.3
SCORM 1.2
SCORM 1.3

IMS 1.1.3
IMS 1.1.4
SCORM 1.2
SCORM 1.3

SCORM 1.2
SCORM 1.3

IMS QTI
2.0

Desire2Learn 8.1 http://www.desire2learn.com/ IEEE LOM
Dublin Core
SCORM 1.2
SCORM 1.3

IMS 1.1.2
IMS 1.1.3
SCORM 1.2
SCORM 1.3

AICC
SCORM 1.2
SCORM 1.3

IMS QTI
1.2.1

eCollege http://www.ecollege.com/indexflash.
learn

SCORM 1.2 SCORM 1.2 SCORM 1.2 /

KEWL http://kngforge.uwc.ac.za SCORM 1.2 SCORM 1.2 SCORM 1.2 /
LON-CAPA http://www.lon-capa.org / IMS 1.1.3

IMS 1.1.4
/ /

Moodle 1.6.1 http://moodle.org/ SCORM 1.2
SCORM 1.3

SCORM 1.2
SCORM 1.3

SCORM 1.2
SCORM 1.3

/

Sakai 2.3 http://sakaiproject.org/ / / / /
TeleTOP Virtual
Learning
Environment

http://www.teletop.nl/en/ IMS 1.2.2
IMS 1.3
SCORM 1.2
SCORM 1.3

IMS 1.1.3
IMS 1.1.4
SCORM 1.2
SCORM 1.3

SCORM 1.2
SCORM 1.3

/

The Blackboard
Academic Suite

http://www.blackboard.com/product
s/academic_suite/index.Bb

IMS 1.2.1
SCORM 1.2
SCORM 1.3

IMS 1.1.2
SCORM 1.2
SCORM 1.3

SCORM 1.2
SCORM 1.3

/

Table 1- State of Art of Support of Standards in LMSs (last up-date: 9th Jan 2007)

From the study, it emerged that the producers of the most popular systems are very interested in
standardization: twelve systems out of thirteen support some standard specifications at present. As has
been previously pointed out, there are some difficulties for the LMS producers in adopting
specifications which regard the same functionalities produced by different issuers. Challenges reside in
overcoming incompatibilities among them. From this point of view, CMI functionalities are in a
disadvantaged position in respect to other functionalities. By analyzing the data, we can notice that the
variety of the specifications supported in LMSs for CMI is inferior than others: all of the producers of
LMSs, minus one (Desire2Learn), have preferred to adopt SCORM, ignoring specifications as those
issued by IEEE and AICC [1].

46 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

Lastly, as also noticed by Buendia & Hervas [7], there are several difficulties for producers in
being up-to-date with the latest versions of the specifications: in our survey, the producers have up-
graded their LMS to the last version (the 1.3, issued in 2004) in only five of the eleven cases in which
the SCORM model has been adopted.

3 The Computer Managed Instruction Model

The Computer Managed Instruction (CMI) model defines a set of functionalities which allow LOs to
be launched in the LMS and to exchange data with it. The issuers (AICC, IEEE and SCORM) propose a
very similar model, even though several differences are present even among different versions of the
same issuer. Almost all of them are aimed at defining the following common aspects regarding the LO
– LMS communication:

• Launch: the set of rules under which an LO can be launched in a Web-based environment

• API: the interface of methods to be invoked by an LO in order to communicate with the
LMS

• Data Model: the data set on which the communication is based.

Only a limited set of LOs can communicate with the LMS. These LOs, according to the SCORM,
are called Sharable Content Objects (SCOs), and their communication capability is due to the fact that
they contain a specialized software module, called ECMAScript, which consists of several Javascript
functions in the ECMAScript standard format.

The core of the CMI specifications contains the description of the LO - LMS communication
mechanism. The way in which it takes place is shown in figure 1, which depicts a Web based scenario
where a LO has already been launched in a Web browser window and the LMS runs within a Web
Server.

The LO (SCO), equipped with the ECMAScript module, can communicate with another module
running on the client side: the API Adapter. We will refer to a running instance of the API Adapter
with the term of API Instance. The API Adapter, even though it runs on the client side, must be
provided by the LMS. Therefore, it has often been implemented through a browser plug-in, an Active-X
object, or, more frequently, through a Java applet. Java applets technology fits the needs of the RTE
model well, since it can provide a module deployed on a server (the LMS), but running on the client
(the Web browser). The API Adapter module exposes an interface of methods to the LO. By invoking
them, the LO can exchange data with the LMS server. In practice, the API Adapter works as a broker
between the LO and the LMS, since the former lacks the capability to connect with the LMS server
directly, due to its nature of a plain document readable through a Web browser.

The LO has the duty of starting and terminating the communication session and of leading the data
exchange with the LMS. On the LMS side, an instance of the communication data must be kept. As
mentioned before, the LO can perform the communication invoking several ECMAScript methods
exposed by the API Adapter. With reference to the 2004 (1.3) version of the SCORM, the methods for
starting and terminating the communication are, respectively, initialize() and terminate(). The methods
to set and get the run-time data (an instance of the data model) on the LMS are, respectively,
getValue(<element_name>) and setValue(<element_name>, <value>).

G. Costagliola, F. Ferrucci, and V. Fuccella 47

The API Adapter must handle error conditions which can occur during the communication, and
notify the LO about them by returning a specific value on a method invocation. Furthermore, the API
Adapter provides the LO with further methods for obtaining information on the errors, in case any of
them have occurred.

Figure 1 - CMI Architecture (SCORM RTE)

The Data Model is the set of data exchanged between the LO and the LMS during the
communication. For each element, the name, the data type, the access mode (read only, write only,
read/write), the multiplicity and other information have been defined. This set of data includes, but is
not limited to, information about the learner, interactions that the learner has had with the LO,
objectives, success status and completion status of the LO. The set of data that can only be read (RO)
by the LO is typically information which must be passed from the LMS to the LO to be shown to the
user, such as the learner’s name and identifier. The set of data that can be both read and written (RW) is
information which must be available at the LO at its launch and updated by the LO at the end of the
session. An example of this information is the progress level of the lesson. Finally, an example of data
which can only be written (WO) by the LO, is the time spent by the learner in the session. Generally,
there is an instance of the Data Model (the run-time data, in the sequel) for each (learner, LO) couple,
if the learner has accessed the LO at least once. The same instance can be shared throughout the
session of the learner on the LO, otherwise a new instance can be generated, according to the needs of
the LMS. All data model elements are identified by a name, composed using a dot-notation (e.g.,
cmi.success_status).

4. The CMIFramework

An Object-Oriented framework can be defined as a reusable, “semi-complete” application that can be
specialized to produce custom applications [21]. Frameworks are one of the most exploited solutions to
achieve software reuse, together with software libraries and design patterns [30]. The primary benefits
of OO application frameworks stem from the modularity, reusability, extensibility, and inversion of
control they provide to developers [14].

The CMIFramework is an Object-Oriented Java framework which can be instantiated in order to
alleviate the work of LMS developers in adopting CMI functionalities in their systems, thanks to the
software re-use principle. It also solves the incompatibility problems among different specifications,
allowing the launch of LOs compliant with any CMI specification in the same environment. Presently,
CMIFramework can support most of the specifications produced so far, avoiding the time-consuming

48 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

task of up-grading all the LO compliant with older versions of the specifications. Nevertheless, it has
been designed flexible enough to address several future changes in the specifications. Furthermore, it
goes beyond the standard functionalities, allowing the developers to define customized solutions, not
necessarily adhering to them strictly. Once the framework has been instantiated to support CMI, adding
a newer version of the specifications can be done only by editing the configuration of the framework.

To elaborate, among the features of CMIFramework, we can find the support for LMS-defined API
Interfaces with the related error handling system and for LMS-defined data models. These LMS-
defined solutions can be combined to standard ones, providing all these functionalities in a unique
environment. Other interesting features of the CMIFramework is the caching of the LO - LMS
communication and the server-side persistence of the Run-Time data.

CMIFramework has an innovative architecture. On the client-side, it allows the deploying of any
number of API Interfaces. This is simply done mainly by editing the XML-based configuration and
coding the interface. The configuration also allows the designer to completely define the elements of
the Data Models.

On the server-side, a small amount of code must be written in order to customize the LMS
behavior on the occurrence of the main events of the communication: the actions to undertake on
initialization, commit and termination, can be handled by customizing the server-side module.

4.1. Main Functionalities

As mentioned before, the reference model has been subject to several modifications through the many
documents that discuss CMI functionalities. The most important ones take into account the definition
of the following aspects: the interface of the API Adapter, the error handling model and the Data
Model elements. The main configuration features and the extension points of the framework
concentrate above all on these aspects. In particular, our framework supports the following main
functionalities:

• Full implementation of all the CMI specifications produced so far;

• Caching of the API Instance – LMS communication;

• Server side persistence of the run-time data;

• Support for more than one API Instance interfaces and for their related error handling
systems;

• Support for more than one Data Model;

The way in which the API Instance – LMS communication takes place follows a consolidated set
of rules. The framework supports these rules and, moreover, it implements a sort of communication
caching: the run-time data, initialized by the LMS, is sent to the API Instance before the
communication takes place. Later on, all the read and write operations are performed locally. Only at
the end of the communication, the instance is sent back to the LMS, avoiding delays in the
communication due to possible slow communications.

The specifications consider some cases in which the run-time data could be persisted, to be
possibly loaded and re-used in more than one communication sessions. In order to support this feature,
the framework has a support for the persistence of run-time data on the server side.

G. Costagliola, F. Ferrucci, and V. Fuccella 49

The interface exposed to the LO by the API Instance has been subject to some changes which have
regarded, particularly, the name with which the API Instance object is identified in the Web page and
the method prototypes definition. Even though such modifications could seem trivial, they have been
the main source of incompatibility between LMS and LO authoring tools. To face this problem, we
chose to give the framework the chance to expose more than one interface to the LO. These interfaces
must be defined in the framework configuration. The framework generates them at run-time, just
before the launch of the LO.

The error handling system is strictly dependent on the API Instance interface and, in fact, for each
invocation of one of its methods, a set of exceptions can occur. During the evolution of the
specifications, the code and the name bound to each of them, have been subject to changes. Moreover,
time after time, new error conditions have been defined. An exception mainly occurs when wrong
values for the parameters are passed to the invoked methods or when the API Instance state does not
allow the invocation of a given method. In the event of an error, the method execution is interrupted
and an atypical value is returned to the LO. The framework allows the LMS designer, through a simple
configuration mechanism, to list all the exceptions that could occur for a given method of a deployed
API Interface, providing a large set of predefined checks. Furthermore, it could be extended by adding
new check definitions. All the listed checks are triggered before the execution of the methods, to assure
that the invoked method can be safely executed. The internationalization support assures that the name
and the text of for the error messages are viewed in the language selected in the browser’s settings. The
Validator framework [46], provided by Apache Group, has been used for aiding the error handling
process.

The data model on which the LO-LMS communication is based has been in the centre of the
debate since its first definition by AICC. Later on, several more data models have been defined. Even
in this case, in order to support all the specification documents, the framework has been designed to
support more than one data model. For each data model, the elements that constitute it, can be defined
by the LMS administrator, setting their identifier and type in the configuration. Moreover, other
information concerning them can be defined, such as: the access rules to the element, some constraints
on its value and some eventual dependencies on other elements. Finally, it is possible to define some
derived elements, calculated on the basis of the values of other elements. Even in this case, some
predefined classes to calculate derived elements have been made available to the LMS developer. The
framework can be extended as well, writing the code of the method that calculates the derived element.

Figure 2 - Information model of the apis.xml configuration file

The framework configuration is easily performed by editing two XML files. Their formats are
shown in figure 2 and 3. The first (named apis.xml, see figure 2) allows us to define the API Instance
interfaces. This can be done by adding a new APIset element. The interface methods can be defined

50 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

through the method element. The error conditions which must be checked on a method can be defined
by using the error element.

The datamodels.xml configuration file allows us to define the supported data models. Each of
them, represented by a datamodel element, can contain both simple elements and derived elements,
represented, respectively, with the element and the derived-element XML elements. Constraints on the
elements can be defined by using the value element, while, in order to define dependencies between
them, the dependency element must be used..

Figure 3 - Information model of the datamodels.xml configuration file

4.2. Architecture

The framework is composed of two main components: a client-side one and a server-side one. The
former is composed of modules running in the Web browser (Java applets), archived in a JAR (Java
ARchive) compressed file. The latter is a Java library of modules for use in Web-based applications.

The client component provided by the framework is, in practice, an API Adapter slightly modified,
compared to the one shown in figure 1, in order to communicate with LOs conformant to different
versions of the specifications and to allow the deployment of LMS-defined API Interfaces. As stated in
section 2.1, the API Instance runs on the client in the LMS main page. This characteristic has been
modeled with the composition relation in figure 4a.

As stated before, the API Adapter is usually implemented through a Java Applet. Unfortunately,
this solution only allows a limited set of methods to be exposed to the LO. Furthermore, these
methods’ signatures must be established at the development-time. For example, a SCORM 1.2
conformant API Adapter will contain the LMSInitialize() method, while this method is simply called
initialize() in SCORM 1.3.

G. Costagliola, F. Ferrucci, and V. Fuccella 51

To support the definition of the API Interface at the deployment-time (by editing the
configuration) we use the following pattern: the LO does not invoke methods directly on the API
Adapter, but on a new API Interface module, implemented through a Javascript class. The API
Adapter is still implemented through a Java applet. The API Interface Javascript class is built at run-
time by a server-side module which reads the configuration of the framework. It is worth noting that
the most recent versions of the most popular Web browsers do support the execution of Javascript
Object Oriented code. Just before the launch of the LO, the issue of the specifications to which the LO
is conformant (this information is contained in the Content Package from which the LO was imported)
is determined. Then, the framework looks for the definition of the right API Interface in the
configuration, generates the Javascript class and instantiates a new object of that class.

The proposed pattern is shown in the UML class diagram of figure 4b. The relation of API Adapter
with the LMS Main Page has been modelled as a composition. Before the launch of the LO, the server-
side module called APIInterfaceGenerator.jsp builds the APIInterface Javascript class. Then, the LMS
Main Page launches the LO, which contains (modelled through a composition relation) the
ECMAScript module, as the specifications prescribe. The LO can invoke the APIAdapter methods
indirectly through the APIInterface.

To compel the LO to interact with the APIInterface Javascript class instead of the APIAdapter, the
framework makes use of the following trick: it is the APIInterface object and not the API Instance to
be inserted in the LMS Main Page with the standard identifier used by the LO to locate the interface
(the identifier’s value is API in the SCORM 1.2 and API_1484_11 in the SCORM 1.3).

Figure 4 - Architecture of CMIFramework

The server component is composed of two main modules: ConfigurationManager and
CMIManager. The former must be instantiated in the LMS by composition, the latter by inheritance, as

52 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

shown in figure 4c. The ConfigurationManager is responsible for reading the configuration from the
XML files and for sending it as serialized objects on demand to the client component. Besides the
definition of the API Interfaces, the remaining part of the configuration consists of the definition of the
data models to support, including the whole set of its elements and derived elements. As for the
CMIManager module, its core has been implemented as an abstract Java Servlet, such that it can be
customized for LMS implementations. The CMIManager is responsible for handling the server side
duties of the LO-LMS communication. The customizable features are LMS-defined actions to
undertake before the start of the communication, after the end of the communication and on the
commit of the changes made to the run-time data, through the implementation of onInitialize(),
onTerminate() and onCommit() methods, respectively. In practice, the developer only needs to create a
Java servlet which extends the one provided by the framework and to implement the above methods.
For a typical implementation, before the communication starts, the run-time data could be initialized
with some information kept by the LMS, such as the personal information of the learner and the
progress status of the learner on the lesson. Furthermore, the run-time data, received from the client,
could be used to update the LMS records after the communication or on every commit event. The
interactions just described, between the client component and the two server modules, are shown in
figure 4d.

4.3. Case-Study: A SCORM Module for Sakai

The Sakai Project [35] is a community source software development effort to design, build and deploy
a new Collaboration and Learning Environment for higher education. The Sakai application
framework has been customized by our developers in order to obtain a learning environment called
Running Platform (RP), which has been used at our department for the management of the courses, in
a blended learning style.

A prototype for a new tool for SCORM RTE has been developed in order to test the effectiveness
of our framework in creating an environment in which LOs, compliant with different versions of the
SCORM specification could have been launched. The module, originally designed as a stand-alone
application, was later integrated into the RP. The stand-alone application, called CMILMS, is a
minimal system, which is only able to launch pre-loaded LOs conformant to the versions 1.2 and 1.3 of
the SCORM. CMILMS adopts the classical three-tier (Presentation-Logic-Data) architecture of Web
applications. The CMI Framework Client Component has been deployed in the Presentation layer of
the application by simply putting the JAR file among the Web content of the application. Furthermore,
it has been instantiated in the JSP pages of the application through the use of a Tag Library [43]
developed ad hoc.

The server component has been instantiated in the Logic tier of CMILMS as explained in the
previous chapter: the CMIManager module by inheritance and the Configuration Manager module by
composition. The CMIManager has been extended in order to customize the server side behavior of the
application. In this case, both the methods onInitialize() and onTerminate() have been implemented. In
the former, the data model used for the communication has been initialized with the data to pass from
the LMS to the LO. The latter has been used for the opposite purpose. In both cases, simple JDBC code
has been added to these methods. The server-side persistence of run-time data, provided by the
framework, has been used to share the data model instances across multiple sessions of the same
learner on the same LO. The framework has been configured by declaring the API Interfaces and the

G. Costagliola, F. Ferrucci, and V. Fuccella 53

data models for both the supported versions of the SCORM. Extracts from the configuration files are
shown in appendix A.

Sakai offers a suitable container for tools and associated services. Its architecture is quite flexible
to allow different levels of integration for the tools. The most loosely coupled integration level allows
the developer to integrate stand-alone applications. At the scope, two main rules must be followed:

1. The request must be intercepted and dispatched to the application by a module called
Sakai Web-App Gateway

2. Basis services, such as authentication and authorization management, must be provided
by an interface called Sakai API Gateway.

In light of these arguments, the main integration programming activity has consisted in the
modification of the CMILMS application in order to dialog with the Sakai APIs. The architecture of the
integrated system is shown in figure 5. The whole application runs in a Java Web Container (Apache
Tomcat, in our test deployment). The CMILMS application uses the Sakai framework as a container for
all the needed services: for the handling of the HTTP requests and responses and for the use of basic
services such as authentication, authorization and user group handling.

To plug the Sakai WebApp Gateway in the application, actually, there was no need to modify the
application: we just needed to develop a servlet filter for the requests and the responses. A filter entry
was added to the deployment descriptor (the web.xml file) of the application.

At the Presentation tier, some work was necessary in order to harmonize the aspect of the final
application: the Cascading Style Sheets of RP have been applied to the Web pages of the application.
Then, the original main page of the CMILMS application has been linked to an iFrame in the RP page
which launches the LOs.

Figure 5 - Architecture of the Running Platform with the integration of the SCORM module (CMILMS)

The work necessary to plug the Sakai API Gateway in the application has been slightly more
complicated: the handling of the user accounts, based on JDBC, of the stand-alone version have been
substituted with some calls to the Sakai API Gateway. This has been done in every part of the

54 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

application dealing with the user handling (both in the Logic and in the Data tier). Additionally, some
user accounts and information have been imported from the application database to the RP one.

5. The SOA-based Model for CMI

According to OASIS [28](the Organization for the Advancement of Structured Information Standards),
SOA can be defined as a paradigm for organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It provides a uniform means to offer, discover,
interact with and use capabilities to produce desired effects consistent with measurable preconditions
and expectations. SOA offers several advantages to developers (reusability, composability, autonomy,
optimization and discoverability) and is very useful when loose-coupling, that is, a low dependency
among systems, is needed. For the latter requirement, OO systems appear inadequate, since objects are
strictly tied in the applications, thus it can be very difficult to offer functionalities as “services”. Even
under the point of view of interoperability, SOA overcomes the OO model, since the most common
Object-based distributed system technologies (i.e CORBA or J2EE) are based on quite different and
incompatible object models [13]. SOA is strictly related to Web services: actually, Web services can be
regarded as a realization of SOA.

This section defines a SOA-based architecture for offering the CMI functionalities from a service
external to the LMS. Our solution is valid for a generic LMS. A real-world application, based on our
model, is contained in the last sub-section. We propose a decomposition performed at two different
levels: at a higher level, the separation of concerns between the LMS and the external service is
specified; at a lower level, the modules composing each service are identified. Only the basic
functionalities of the CMI model, such as the launch of LOs and the LO-LMS communication, together
with basic LMS functionalities, such as the management of LO, are considered. Other services which
can be found in a common LMS or other standard functionalities, which are not pertinent to our
research, are not considered in this work. This choice does not prevent us from applying our model to
wider systems.

5.1. Definition of the Services

The main objective of this phase is the definition of the services to build and of the logic encapsulated
in each of them. Most of our work in this phase consists of establishing how to span the CMI
functionalities among the identified services. Our aim is to alleviate the duties of the LMS as much as
possible in the handling of CMI functionalities. Most of the work will be provided by an external
service, which will be referred to as CMI Service.

In order to support the CMI model, the basic functionalities of an LMS are the following:

• managing users (above all, learners and tutors) and keeping an LO database;

• launching and dismissing LOs on learner’s demand;

• communicating with the LO, providing the learner’s user-agent with The API
Instance;

• handling the run-time data: the LMS must create an instance of it using names and
types defined in the Data Model, keep it up-to-date during the communication and
save it for future sessions.

G. Costagliola, F. Ferrucci, and V. Fuccella 55

The handling of users, including registration, authentication and authorization services, must be a
duty of the LMS. Digital repositories of LOs can be external to the LMS. For example, the solution
proposed in [48] uses a dedicated server for keeping LOs. Other solutions integrate them on the same
server as the LMS which launches them. We prefer to deal with the separate servers option because it is
flexible enough to include the integrated one: once an external service is identified to keep LOs, it can
still be placed on the same server as the LMS. We will refer to the service which keeps LOs and
provides them to the LMS as LO Repository service.

According to the CMI model, among the operations provided to the learner by the LMS, there are
the launch, the suspension, the resume and the dismissal of an LO. The communication between the
LO and the LMS must start on the launch or resume events and must end on the suspend or dismiss
events.

While it is quite clear that the CMI Service is in charge of hosting the server-side module which
handles the communication with the LO, more doubts can arise as to which service should provide the
API Adapter to the user-agent. As pointed out in section 2.2 this is a duty of the LMS. The API Adapter
must be downloaded and run on the client-side. Due to these requirements, a common solution is to
implement the API Adapter as a Java applet, which can be packed in a JAR file and downloaded
through the HTTP protocol. As before, we will refer to the instance of the API Adapter running on the
user-agent as API Instance. To avoid complications, the following reasons suggests the inclusion of the
API Adapter as a module of the RTE Service:

• The API Instance must interact with the server-side module responsible for the
communication. Putting the API Adapter on a separate service from this module
gives no practical benefits and would compel us to define a standard protocol for the
communication.

• A security limitation of Java applets prevents them from establishing network
connections with other servers than the one from which they have been downloaded.
This limitation, however, can be overcome by using signed applets or changing user-
agents security policies.

The last considerations concern how and where to keep the communication run-time data and, if
they are kept by a service external to the LMS, how to make this data available to the latter during the
communication. It is widely accepted that run-time data is not part of the LMS database. In the past, a
poor design choice, adopted in some systems, was to design the LMS database in conformity with the
Data Model of the CMI model. This choice should be avoided for the following reasons: firstly, the
Data Model has a hierarchical structure, which does not fit well with the relational model that is almost
always used by LMSs; secondly, the definition of the data model has been subject to changes across the
versions of the SCORM specifications. To be up-to-date, it would have been necessary to re-engineer
the systems designed with the database conformant to the Data Model.

In light of the previous observations, our choice is to keep the run-time data on the CMI Service. In
the next section we will explain how to make the run-time data available to the LMS when needed. The
above reasoning led us to identify the services model for CMI functionalities shown in figure 6. It
identifies the services and the operations for each of them. Including only the CMI functionalities, the
LMS must only supply the operations for the learner to make use of the LOs. The LO Repository

56 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

Service provides the operations related to the administration of the LO repository, such as listing,
searching and downloading of the LOs contained in it. The CMI Service is responsible for all the
operations to perform the CMI communication with the LO, for making the run-time data available to
the LMS and, finally, for making the API Adapter available for download to the learner’s user-agent.

Figure 6 - Services Model

5.2. Architecture

The main objective in this phase is to define the low-level architectural decomposition of an LMS
system which offers CMI functionalities, using the services identified in the previous section. The
interactions among them, with the specification of the message exchange patterns, are shown.

Figure 7 illustrates the “actors on the scene” and their interactions. They are the LMS, the CMI
Service, the LO Repository Service and the User-agent. The interactions among them are shown with
arrows. Wide arrows show Web services-based interactions. The following channels have been
defined:

1. The channel through which the User-agent downloads the API Adapter from the CMI
Service

2. The channel for requests and responses from the User-agent to the LMS to perform
operations (launch, suspend, resume and dismiss) related to the LOs

3. The channel used by the LMS to locate the requested LO on the LO Repository Service
and to forward the user-agent’s request to the given URL

4. The channel used by the API Instance (running on the User-Agent) to perform the CMI
communication with the CMI Service

5. The channel through which the CMI Service and the LMS communicate to allow the LMS
to access run-time data when needed

Channels from 1 to 4 can use a simple HTTP request/response message pattern. The message
pattern for channel 5, instead, requires a more detailed explanation on the events which cause the LMS
to access the run-time data. In our model, the run-time data is kept by the CMI Service. According to
the CMI model, the run-time data can be read and written by the LO during the communication through
the invocation of the methods getValue() and setValue() respectively, exposed by the API Instance.

G. Costagliola, F. Ferrucci, and V. Fuccella 57

Besides the LO, the run-time data must also be read and written by the LMS. This happens on the
occurrence of several events, for the following reasons:

1. After run-time data is instantiated and just before the communication starts, the data must
be initialized with LMS-specific settings

2. After the communication is finished the LMS can read the run-time data to up-date its
internal database with information gathered during the communication

3. Whenever a setValue() or getValue() or commit() is performed, the LMS could undertake
some customized actions.

It is worth noting that, since the CMI communication is performed between the API Instance and
the CMI Service, the LMS is unaware of the events listed above. Thus, the channel 5 is used to inform
the LMS of the occurrence of these events.

Figure 7 - Interactions among services

5.3. Definition of the Process

This section describes in detail the communication process between the CMI Service and the LMS,
performed whenever a user-agent asks for an LO to be launched. The communication can be based on
SOAP formatted messages and must be conversational: the services keep a state of the conversation
during the message exchange. In other words, the messages must be part of a session. To perform this
message exchange, the LMS must equipped with a service callback endpoint. We will refer to this
module as the LMS Endpoint.

The basic idea is that the LMS, on a LO launch request from the user-agent, delegates all the
duties of the CMI communication to the CMI Service, and only requires to be notified on the
occurrence of the desired CMI events (a sub-set of [initialize, setValue, getValue, commit, terminate]).
On the occurrence of those events, the LMS could undertake some actions. For example, some
information contained in the run-time data can be persisted by the LMS on each invocation of a
commit type method. The only event the LMS should compulsorily manage is the terminate one, on
which it should receive and use in some way the run-time data registered during the communication.

The process has been shown with an UML activity diagram (figure 8): the swim-line on the left
shows the activities performed by the LMS Endpoint, while the activities performed by the CMI
Service are shown on the right. The scenario starts when the LMS has received a LO Launch request
from the user-agent and has already instantiated and initialized the run-time data. Furthermore, the API

58 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

Adapter has already been downloaded from the CMI Service and an instance of it is running in the
user-agent. Firstly, the LMS requests the services of the CMI Service, sending a synchronous
CMIRequest message. This message carries configuration information, such as, the issue of the CMI
specifications, and, most important, the set of CMI events on whose occurrence it wants to be notified.
Furthermore, the entire run-time data are sent with the request. The CMI Service replies with a
CMIResponse message. The above defined operations follow the request-reply message pattern
(solicit-response from the point of view of the CMI Service). Lastly, the CMIRequest message can,
optionally, carry authentication information from the LMS.

Figure 8 – UML activity diagram of the process

Now, the LMS can launch the LO, and the CMI communication can start. The CMI
communication takes place between the API Instance and the CMI Service. Firstly, the CMI Service
must send the run-time data, just received from the LMS, to the API Instance. On the occurrence of the
CMI communication events, the CMI Service notifies that to the LMS, attaching the whole run-time
data to the asynchronous CMIEventNotify message. Messages are asynchronous for performance
reasons: the communication must not stop on every method invocation and the LMS can undertake the
desired action. The message exchange pattern is notification from the point of view of the LMS
Endpoint and one-way from the point of view of the CMI Service.

G. Costagliola, F. Ferrucci, and V. Fuccella 59

On the occurrence of the terminate event type, after the notification message, the process
terminates.

5.4. Case-Study: A SCORM RTE Module for Moodle

In this section we show how the reference architecture presented in the previous sections has been
applied to add SCORM RTE functionalities to Moodle 1.8 [26], a popular Open Source LMS developed
using PHP server-side language. A prototype of the CMI Service has been implemented using Java 2
Enterprise Edition (J2EE) technology. The choice of such cross-technology system is not the fruit of
coincidence, but has been made in order to show the language independency of our solution.
Furthermore, the CMI Service, developed as a prototype, can be completed to offer its services to more
than one LMS, based on whatever technology, at the same time.

The CMI Service has been built as a J2EE Web Application, packaged in a WAR file. It can be
deployed in any J2EE Web container. The availability of CMIFramework has allowed us to make little
effort in developing the CMI Service. We should recall from the previous section that, among the
others, CMIFramework provides the following components:

• An implementation of the API Adapter as a Java applet

• Full implementation of the modules involved in the LO-LMS communication

• Run-time data persistence handling module

• A module, implemented as a Java Servlet, which provides methods to override in
order to handle the events of the communication.

Thanks to the availability of the above modules, it has been necessary to develop only some
modules of the LMS Endpoint from scratch. The Apache Axis [5] SOAP library has been used to
compose the messages to carry run-time data to and from the LMS, on the occurrence of the events of
the communication. To elaborate, these events have been handled by overriding the onInitialize() and
onTerminate() methods, provided by the server side module of CMIFramework. In these methods, the
code to compose SOAP messages has been added. The information carried by these messages include:
the event type, a session identifier, to keep a conversational state and the entire run-time data,
represented as a list of (name, value) couples. It is worth noting that the caching of the communication
has been used: in our implementation we have avoided the API Instance and the CMI Service to
communicate on every single setValue() and getValue() method invocation. Instead, the run-time data
has been changed locally on the API Instance, thus sending it to the CMI Service only on the
termination of the communication.

The LMS Endpoint has been developed as an extension of the Moodle system. Moodle comes with
a mechanism to develop extensions to the basic LMS: a new module can be developed and integrated
by modifying a template provided with the Moodle documentation. Actually, a SCORM player for
Moodle already exists, but it is entirely built as an internal module. Our prototype, however, is aimed
at demonstrating how to provide SCORM RTE functionalities using an external service. Moodle has an
internal LO repository, thus, the operations of searching an LO, getting its URL and so on, are based on
the simple invocation of Moodle API methods. Furthermore, the forward operation with which the
LMS launches an LO, has been implemented as an action internal to the Web server which hosts the
LMS system. The support for external LO repositories has been announced for the 2.0 version of
Moodle.

60 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

Summarizing, our development activity consisted of the following two steps:

1. Preparing the environment in which the LOs are launched

2. Developing the LMS Endpoint for Moodle.

The activities related to the first point have consisted in simple PHP page coding: a PHP Web
page has been created. The API Adapter has been inserted in it as an applet to download from the Web
server which hosts the CMI Service. Furthermore, this page has been designed to contain a form with
the buttons to launch, resume, suspend and dispose a previously selected LO.

The development of the LMS Endpoint has been quite simple: a free library of PHP functions has
been used to manage the SOAP messages sent to and received from the CMI Service. In our simple
prototype, the LMS only requires the CMI Service to be notified on the terminate event. The function
which handles the launch operation, contains the code to send a SOAP message to register to the CMI
Service, as described in the previous section. Applying a common pattern, suggested by the CMI
specifications, the LO downloaded from the LMS is launched in a child Window of the user-agent. A
single function has been created to decode the message from the CMI Service, read the event type and
locally persist the run-time data.

To handle the conversational state of the communication we have adopted the 1.0 version of the
SOAP Conversation Protocol [41]. This protocol makes it easy to conduct stateful conversations
between two parties. In appendix B, the definition of the CMI Service is shown through a WSDL
document. Furthermore, the appendix contains the BPEL code for the definition of the CMI Service
process.

6. Related Work

Challenges in the adoption of standards have been the main motivation for the investigation of
approaches which insure the re-use of standard functionalities [47]. To this extent two main solutions
have been explored:

• Providing LMS developers with frameworks [27, 9, 32] and reference
implementations [25, 31, 39] of standard functionalities.

• Proposing architectures and reference models [8, 16, 29, 44, 47, 48, 49, 50] to adopt
in real systems in order to establish a widely accepted decomposition for e-learning
systems. Once established, these models should facilitate the independent
development of the identified components.

In order to simplify the duty of the developers, some reference implementations have been
developed. The most important of them is SCORM Sample RTE, freely downloadable through the
SCORM website. In [25] an implementation of the SCORM, adapted to present contents on mobile
devices, is presented. Beside the implementations based on Java, such as the ones cited so far and as
the further product described in [31], some systems have been developed using the Microsoft .Net
framework, such as DotNetSCORM and the one described in [39], which implements the LO – LMS
communication using Web Services.

As for frameworks and libraries, an experiment is shown in [27], which proposes a library of re-
usable components and testing tools for WBT systems. A wider-ranging work, which has as an
objective the development of a framework for the adoption of the whole SCORM model, is described

G. Costagliola, F. Ferrucci, and V. Fuccella 61

in [9]. Another framework for the support of several functionalities not directly connected to the
adoption of standards and guidelines in e-learning systems is presented in [32].

Despite recognizing the importance of supporting all of the different existing specifications, none
of the cited works propose a solution to the problem of the incompatibility between LO and LMS
supporting different specifications or different versions of the same specification: the only solution
seems to be the proposal of conversion utilities to update the LOs. For example, the SCORM web site
claims that “the ADL Technical Team is currently developing several conversion utilities that can be
used to update SCORM Version 1.2 conformant content to SCORM Version 2004 conformance”. Some
third party conversion utilities are already available on the Internet and some authoring tools, such as
the one proposed in [42], have been developed to upgrade LOs in order to support the latest version of
the specification. It is worth noting that the effort of upgrading LOs can be avoided using an LMS
developed with the framework we propose.

Some researchers propose a SOA-based architecture for defining a decomposition of a generic e-
learning system [47], [48], [49], [50]. Also e-learning standards and guidelines producers, as IMS,
have started to focus their attention on Web services, proposing ad hoc specifications [20]. Authors in
[50] propose a service architecture to integrate LMS and Learning Content Management System
functionalities. All the identified modules are services that offer their functionalities using Web
Services technology. Vossen & Westerkamp propose an architecture of a generic e-learning system
[47], [48], whose functionalities are provided by a set of Web Services, external to the main LMS
application. In [49] a Grid-based layered architecture for the support of collaborative learning is
proposed.

Other SOA-based architectures are more focused on the search of LOs, which may or may not use
standard functionalities. In [44] a Web Services-based architecture is proposed in order to allow LMS
servers to share learning-related information, such as learning material, learner data and learning
strategies. Each of the previous category of information is kept by a different sub-system. According to
Hussain and Khan [16], Web Services can be used in the field of content repositories, in order to obtain
an infrastructure for the centralized search and discovery of SCORM-based learning contents. The
work proposed in [29] is based on the LTSA [22] architecture, which is adapted to a SOA-based model.
The authors intend to use this model to allow for a flexible integration of educational components. LOs
can be discovered using the metadata annotation of the LOM and then assembled together in a Web-
services based platform. Casella et al. [8] propose several modifications to the approach described by
the SCORM RTE. The use of the API Adapter, which could not run in devices with limited capabilities,
is substituted by the use of a suitable Middleware component in a Web Services-based architecture.

A work closely related with ours is [9]. It presents a framework for the adoption of the whole
SCORM model in a SOA-based architecture. Most of the functionalities are provided by external
services. A service which offers the functionalities specified in the RTE model is called Tracking
Service. In the authors’ opinion, such a service should be local to the LMS, for performance reasons.
This argument is valid in their architecture, due to their decision to fuse RTE functionalities with other
tracking functionalities. Otherwise, in our opinion, there would not have been valid reasons for
preventing the externalization of the RTE functionalities from the LMS.

Reference implementations give scarce opportunities for software re-use, since their components
are tightly coupled with the whole system of which they are a part. Frameworks overcome this
problem, being loosely coupled with the system in which they are instantiated. Unfortunately, under

62 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

several circumstances, several problems still arise with frameworks. First of all, in most cases they are
adoptable only in systems developed with the same technology: an Object Oriented framework
developed in Java could not be used in a .NET or LAMP (Linux, Apache, MySQL, PHP)-based LMS.
Secondly, even though the use of a framework allows for the easy extensibility of a system with new
functionalities and has more customization margins, when instantiated in a monolithic system,
frameworks become part of it, increasing its size. The drawbacks in this case are related to the
maintenance, testing, and workload of the resulting system, since most enterprises, educational
organizations cannot afford high systems handling [9]. The latter problem can be overcome defining
standard architectural models based on distributed e-learning systems. Among them, solutions based
on SOA are more and more widely adopted. Offering a way to externalize functionalities from the
LMS, they allow LMS producers to gain several benefits, such as better software re-use and easier
integration and complexity management, with a consequent cost reduction. Furthermore, these
solutions are language independent and interoperable. Offering functionalities as services external to
the LMS often poses technical and practical problems depending on the specific service offered. The
lack of existing systems or prototypes based on the proposed architectures prevents us from effectively
validating them. Furthermore, there is no agreement on the decomposition. As a consequence, we are
quite far from obtaining a standardized architectural model of a generic and comprehensive e-learning
system, which could effectively help in the re-use of functionalities.

7. Conclusions

The production of e-learning content is a very onerous task, compared to the production of course
material for traditional learning. Thus, there is the necessity of reusing the developed content and to
launch it on any e-learning system. The possibility of running LOs produced with any authoring tool
on any LMS is one of the most important aspects of interoperability. To this aim, standard formats and
guidelines for e-learning have been defined. From an analysis of the state of art in their adoption, a
certain difficulty from LMS producers in supporting the specifications has emerged and, in particular,
in being up-to-date with the most recent of them. Problems arise in adopting specifications which
regard the same functionalities produced by different issuers, due to incompatibilities among them.
From this point of view, CMI functionalities are in a disadvantageous position in respect to other
functionalities.

Nevertheless, the adoption of the CMI model has been identified as a necessary choice in order to
make these systems fully interoperate. To facilitate the LMS designers, we have proposed two solutions
to the above problems, in order to boost the adoption of the CMI model.

CMIFramework is helpful in rapidly adopting the CMI functionalities in Object-Oriented systems.
A simple prototype has been developed in order to demonstrate its power and ease of use.

Then, a further solution, useful in those cases in which the high cost of implementing the CMI
specifications suggests the necessity of externalizing its functionalities from the LMS, has been
presented: a SOA-based architecture which can be adopted by LMS systems in order to support the
CMI functionalities, using a service external to the LMS.

Both solutions allow LMS producers not to consume time and resources in implementing and
being up-to-date with the standards. Furthermore, the SOA-based model allows LMS producers to use
external resources for offering CMI functionalities, which can be more resource-intensive compared to
other simpler standard functionalities, such as metadata and packaging. Nevertheless, compared the

G. Costagliola, F. Ferrucci, and V. Fuccella 63

framework-based solution, in implementing the SOA-based model, a greater effort is required for the
development of the wrapper for message exchange. A complete system which implements the CMI
Service is planned as future work.

References
[1] AICC (2007), Aviation Industry CBT Committee, http://www.aicc.org/
[2] AICC CMI (2004), CMI Guidelines for Interoperability AICC rev. 4.0
 http://www.aicc.org/docs/tech/cmi001v4.pdf
[3] Andreev, R., Ganchev, I., O'Droma, M. (2005), Content metadata application and packaging

service (CMAPS) - innovative framework for producing SCORM-compliant e-learning content,
Proc. of 5th International Conference on Advanced Learning Technologies, pp274–278

[4] Authorware (2007), Macromedia Authorware 7, http://www.adobe.com/products/authorware/
[5] Axis (2006), Apache Web Services – Axis, http://jakarta.apache.org/axis /
[6] Bohl O., Schellhase J., Sengler R., Winand U. (2002), “The Sharable Content Object Reference

Model (SCORM) – A Critical Review”, Int. Conf on Computers in Education, pp950-951
[7] Buendia, F., Hervas, A., (2006). An Evaluation Framework for e-Learning Platforms Based on

Educational Standard Specifications, Proc. of 6th Intl Conf on Advanced Learning Technologies,
pp184-186

[8] Casella, G., Costagliola, G., Ferrucci, F., Polese, G., Scanniello (2006) G., A SCORM Thin Client
e-learning Systems Based on Web Services, To appear in International Journal of Distance
Education Technology

[9] Chu, C.P., Chang, C.P., Yeh C.W., Yeh Y.F. (2004), A Web-service oriented framework for
building SCORM compatible learning management systems, Proceedings of International
Conference on Information Technology: Coding and Computing, pp156-161 Vol.1

[10] Criteri e procedure di accreditamento dei corsi di studio a distanza delle università statali e non
statali e delle istituzioni universitarie abilitate a rilasciare titoli accademici di cui all'art. 3 del
decreto 3 novembre 1999, n. 509 - G.U. n. 98 del 29/04/2003

 http://www.unimercatorum.it/Documenti/Decreto17_04_03.pdf (in Italian)
[11] Dublin Core (2005), Dublin Core Metadata Initiative, http://dublincore.org
[12] Edutools (2007), EduTools Course Management System Comparisons – Reborn
 http://www.edutools.info/static.jsp?pj=4&page=HOME
[13] Emmerich, W. (2000), Engineering Distributed Objects. John Wiley and Sons
[14] Fayad, M.E., Schmidt, D.C. (1997), Object-Oriented Application Frameworks, Communications

of the ACM, 40 (10), pp32-38
[15] Friesen, N. (2004), Three Objections to Learning Objects and E-learning Standards, McGreal, R.

(Ed.). Online Education Using Learning Objects. London: Routledge, pp. 59-70.
[16] Hussain, N., Khan, M.K. (2006), SCASDA: SCORM-based Centralized Access, Search and

Discovery Architecture, Proc. of the International Conference on SCORM 2004, pp137-140
[17] IEEE LTSC (2007), IEEE Learning Technology Standards Committee, http://ieeeltsc.org/
[18] IEEE Standard Computer Dictionary: Compilation of IEEE Standard Computer Glossaries, 1990.
[19] IMS (2007), IMS Global Learning Consortium, http://www.imsglobal.org/
[20] IMS WS (2005), IMS General Web Services Final Specification v. 1.0

64 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

 http://www.imsglobal.org/gws/index.html
[21] Johnson, R.E., Foote, B. Designing reusable classes. J. Object-OrientedProgramming 1, 5

(June/July 1988), pp. 22-35.
[22] LTSC WG1 (2006), IEEE LTSC, WG1, Architecture & Reference Model
 http://ieeeltsc.org/inactive/arch/
[23] LTSC WG11 (2002), IEEE LTSC, WG11, Computing Managed Instruction
 http://ltsc.ieee.org/wg11/index.html
[24] LOM (2002), Learning Object Metadata, IEEE LTSC, WG12, http://ltsc.ieee.org/wg12/
[25] Lin, N.H., Shih, T.K., Hui-huang, H., Chang, H. P., Chang, H. B., Ko, W. C.; Lin, L.J. (2004),

Pocket SCORM, Proc. of 24th International Conference on Distributed Computing Systems
Workshops, pp274-279

[26] Moodle (2005), Moodle, A Free, Open Source Course Management System for Online Learning,
http://moodle.org/

[27] Nakabayashi, K., Kubota, Y., Yoshida, H., Shinohara, T. (2001), Design and Implementation of
WBT System Components and Test Tools for WBT content standards, Proc. of 1st IEEE Int.
Conf. on Advanced Learning Technologies, pp213-214

[28] OASIS (2007) - Reference Model for Service Oriented Architecture v1.0
 http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
[29] Pahl, C., Barrett, R. (2004), A web services architecture for learning object discovery and

assembly, Proc. of 13th int. World Wide Web conference on Alternate track papers, pp446-447
[30] Pree W., Design patterns for object-oriented software development, ACM Press/Addison-Wesley

Publishing Co., 1995
[31] Qu C., Nejdl W. (2002), “Towards Interoperability and Reusability of Learning Resource: a

SCORM-conformant Courseware for Computer Science Education”, Proc. of 2nd IEEE Int. Conf.
on Advanced Learning Technologies, pp525-530

[32] Redol J., Simões D., Carvalho A., Páscoa H., Coelho J., Grave P., Luís R., Horta N. (2003),
“VIANET – A New Web Framework for Distance Learning”, Proc. of 3rd IEEE Int. Conf. on
Advanced Learning Technologies, pp258-259

[33] Rehak, D. (2002), SCORM is not for everyone. Kraan, W. & Wilson S. (Eds.)
 http://www.cetis.ac.uk/content/20021002000737
[34] Rosemberg, M. J. (2002) e-Learning. Makron Publishing, So Paulo.
[35] Sakai (2005), Sakai Project, http://www.sakaiproject.org
[36] Santos J.M., Anido L., Llamas M. (2003), “On the Use of E-learning Standards in Adaptive

Learning Systems”, Proc. of 3rd IEEE Int. Conf. on Advanced Learning Technologies, p. 480
[37] SCORM (2007), Advanced Distributed Learning – SCORM
 http://www.adlnet.gov/scorm/index.cfm
[38] SCORM RTE (2004), The Scorm Run-Time Environment ver 1.3.1
 http://www.adlnet.org/scorm/history/2004/documents.cfm
[39] Shih, T.K., Chang, W. C., Lin, N.H., Lin, L.H., Hsu, H. H., Hsieh, C. T. (2003), Using SOAP and

.NET web service to build SCORM RTE and LMS, Proc. of Advanced Information Networking
and Applications, pp408-413

G. Costagliola, F. Ferrucci, and V. Fuccella 65

[40] Simek, H., Akpinar, Y., (2005). Overcoming scormification difficulties in implementing a
learning content management system, Proc. of 6th International Conference on Information
Technology Based Higher Education and Training, pp. T3A/11 - T3A/16

[41] SOAP CP (2006), SOAP Conversation Protocol 1.0
 http://dev2dev.bea.com/pub/a/2002/06/SOAPConversation.htm
[42] Su J. M., Tseng S. S., Weng J. F., Chen K. T.; Liu Y. L., Tsai Y. T. (2005), An object based

authoring tool for creating SCORM compliant course, Proc. of 19th Int. Conf. on Advanced
Information Networking and Applications, pp209-214 vol.1

[43] TagLibs – The Jakarta TagLibs Project, http://jakarta.apache.org/taglibs/index.html
[44] Tamura Y., Yamamuro, T. (2006), Distributed and Learner Adaptive e-Learning Environment

with Use of Web Services, Proc. of the International Conference on SCORM 2004, pp11-15
[45] Toolbook Instructor (2007), e-Learning Software Content Authoring Tool
 http://www.toolbook.com/
[46] Validator (2006), The Jakarta Project – Commons Validator
 http://jakarta.apache.org/commons/validator/
[47] Vossen, G., Westerkamp, P. (2003), E-learning as a Web service, Proceedings of Seventh

International Database Engineering and Applications Symposium, pp. 242 – 249
[48] Vossen, G.; Westerkamp, P. (2006). Towards the Next Generation of E-Learning Standards:

SCORM for Service-Oriented Environments, Proc. of 6th International Conference on Advanced
Learning Technologies, pp1031-1035

[49] Wang G.L., Li Y.S., Yang S.W., Miao C.Y., Xu J., Shi M.L. (2005), Service-oriented grid
architecture and middleware technologies for collaborative e-learning, Proceedings of IEEE
International Conference on Services Computing, Orlando, FL, USA, pp67-74 vol.2

[50] Xiaofei L., El Saddik, A., Georganas, N.D. (2003), An implementable architecture of an e-learning
system, Proc. of IEEE Canadian Conf. on Electrical & Computer Engineering, pp717-720 vol.2

Appendix A: Configuration of CMIFramework to support SCORM 1.2 and SCORM 1.3

The code fragments in this section show how the CMIFramework has been configured for the case-
study presented in section 4.3, in order to support both 1.2 and 1.3 versions of the SCORM. The former
fragment is from the apis.xml configuration file, while the latter is from datamodels.xml.

In the apis.xml, two API Interfaces are declared with the attribute apiInstanceId set at API and
API_1484_11, as required respectively by the 1.2 and 1.3 versions of the SCORM (lines 3 and 32).
The definition of the interface consists of the enumeration of all the supported methods. For brevity,
the configuration of the error handling system is not shown for all of the methods. In lines 12 through
19, the list of errors which can occur on the invocation of LMSSetValue() method are defined. The first
two of them (lines 12-13), declare a check on the state of the API Instance. The following three lines
(14-16) declare checks on the first parameter with which the method is invoked. Lastly, in lines 18 and
19, checks on the second parameter are declared. Checks are defined in the Validator framework
configuration file, where a class method that performs the validation is linked to it.

1 <APIs>
2
3 <APIset id="SCORM1.2" apiInstanceId="API">

66 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

4 <method name="LMSInitialize" type="initialize" params="1" return="false">
5 <error property="apiState" check="not_terminated" code="104"/>
6 <error property="apiState" check="not_running" code="103"/>
7 </method>
8 <method name="LMSGetValue" type="getValue" params="1">
9 ...
10 </method>
11 <method name="LMSSetValue" type="setValue" params="2">
12 <error property="apiState" check="not_initialized" code="132"/>
13 <error property="apiState" check="not_terminated" code="133"/>
14 <error property="param1" check="required" code="401"/>
15 <error property="param1" check="defined" code="401"/>
16 <error property="param1" check="implemented" code="402"/>
17 <error property="param1" check="read_only" code="404"/>
18 <error property="param2" check="type_match" code="406"/>
19 <error property="param2" check="range" code="407"/>
20 </method>
21 <method name="LMSCommit" type="commit" return ="false" params="1">
22 ...
23 </method>
24 <method name="LMSFinish" type="terminate" return ="false" params="1">
25 ...
26 </method>
27 <method name="LMSGetLastError" type="getLastError" params="0"/>
28 <method name="LMSGetErrorString" type="getErrorString" params="1"/>
29 <method name="LMSGetDiagnostic" type="getDiagnostic" params="1"/>
30 </APIset>
31
32 <APIset id="SCORM1.3" apiInstanceId="API_1484_11">
33 <method name="initialize" type="initialize" params="1" return="false">
34 <error property="apiState" check="not_terminated" code="104"/>
35 <error property="apiState" check="not_running" code="103"/>
36 </method>
37 ...
38 </APIset>
39 </APIs>

As done for the API Interfaces, a similar work was requested and performed on the
datamodels.xml file, in order to define the data models for both the versions of the SCORM. The data
model for SCORM 1.2 is defined through lines 4 to 9, while that for version 1.3 through lines 11 to 33.
The changes in the names of the elements compel us to define separately elements with the same
meaning. This is the case of the elements representing the identifier and the name of the student (line
6-7 for SCORM 1.2 and line 16-17 for SCORM 1.3). Lines 19 to 21 show the definition of a derived
element, that is, an element which is not explicitly set, but calculated on the basis of the value of other
elements. The element cmi.comments_from_learner._count expresses the size of the a collection
containing the comments from the learner. As declared, the suitable CountManager class calculates
this value. Lines 23 to 26 show an element whose value is initialized (and, in this case, never changed)
at the time of the definition of the data model. As defined in the specifications, all the elements with
the _children suffix can be read in order to obtain the sub-elements composing a structured data,
which, in the case of the cmi.comments_from_learner element are comment, location and timestamp.
Lastly, the dependency of an element from two other elements is defined in line 31.

1 <?xml version="1.0" encoding="UTF-8"?>
2
3 <datamodels>
4 <datamodel id="SCORM1.2">
5 ...

G. Costagliola, F. Ferrucci, and V. Fuccella 67

6 <element id="cmi.core.student_id" type="long" privilege="RO" />
7 <element id="cmi.core.student_name" type="string" privilege="RO" />
8 ...
9 </datamodel>
10
11 <datamodel id="SCORM1.3">
12 <element id="cmi._version" type="string" privilege="RO" >
13 <value init="1.0"/>
14 </element>
15 ...
16 <element id="cmi.learner_id" type="long" privilege="RO" />
17 <element id="cmi.learner_name" type="string" privilege="RO" />
18 ...
19 <derived-element id="cmi.comments_from_learner._count" type="int"
20 class="org.l3.CMIFramework.client.error.utility.CountManager"
21 privilege="RO"/>
22 ...
23 <element id="cmi.comments_from_learner._children" type="string"
24 privilege="RO">
25 <value init="comment,location,timestamp"/>
26 </element>
27 ...
28 <element id="cmi.completion_status" type="string" privilege="RW">
29 <value set="completed,incomplete,not_attempted,unknown"
30 init="unknown"/>
31 <depends idRef="cmi.completion_threshold,cmi.progress_measure"/>
32 </element>
33 </datamodel>
34 </datamodels>

Appendix B: Description and definition of CMIService process

The code fragments in this section show the description, through WSDL code, and definition, through
BPEL code, of CMIService process.

As for the description of the process, only the reusable abstract part is presented: the concrete part
containing the service binding and implementation is not included as it is related to implementation
details. The following document contains the definition of types, messages and port types. Among the
types (lines 3-22), a stringMap type is defined (lines 5-14). This data type is composed of a sequence
of (key, value) couples, whose values are strings, and is used to represent both a part of the run-time
data (line 18) and the configuration (line 25).

The three message types exchanged between CMI Service and its partners (the LMS Endpoint and
the API Instance) are defined in lines 24-34. The CMIRequest message (lines 24-27) carries both the
configuration data and the just instantiated and initialized run time data. Its corresponding response
(CMIResponse message, lines 28-30), just carries a response string. The CMIEventNotify message
(lines 31-34) carries the event type and the whole run-time data.

The process defines two port-types: LMSEndpointPT (lines 36-44) and APIInstancePT (lines 45-
47). They are both composed of two operations (CMIRegistration and CMIEventNotification), and are
used to interact with the LMS Endpoint and the API Instance, respectively. The only difference
between them is the inversion of the input and the output messages. E.g. the CMIRequest message (line
38) of the CMIRegistration operation is received (input) from the LMS Endpoint and lately forwarded
(output) to the API Instance.

Lastly, the WSDL document defines the partner link types to be used in the BPEL process
definition: LMSEndpointPLT (lines 49-56) and APIInstancePLT (lines 57-59).

68 Boosting Computer Managed Instruction Functionalities Adoption in e-Learning Systems

1 <wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
2
3 <wsdl:types>
4 <xsd:schema targetNamespace="...">
5 <xsd:element name="stringMap">
6 <xsd:complexType><xsd:sequence>
7 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
8 <xsd:complexType><xsd:sequence>
9 <xsd:element name="key" type="xsd:string" />
10 <xsd:element name="value" type="xsd:string" />
11 </xsd:sequence></xsd:complexType>
12 </xsd:element>
13 </xsd:sequence></xsd:complexType>
14 </xsd:element>
15 <xsd:element name="RTDataType">
16 <xsd:complexType><xsd:sequence>
17 <xsd:element name="version" type="xsd:string"/>
18 <xsd:element name="RTData" type="xsd:stringMap"/>
19 </xsd:sequence></xsd:complexType>
20 </xsd:element>
21 </xsd:schema>
22 </wsdl:types>
23
24 <wsdl:message name="CMIRequest">
25 <wsdl:part element="tns:stringMap" name="configData" />
26 <wsdl:part element="tns:RTDataType" name="RTData" />
27 </wsdl:message>
28 <wsdl:message name="CMIResponse">
29 <wsdl:part element="xsd:string" name="response" />
30 </wsdl:message>
31 <wsdl:message name="CMIEventNotify">
32 <wsdl:part element="xsd:string" name="eventType" />
33 <wsdl:part element="tns:RTDataType" name="RTData" />
34 </wsdl:message>
35
36 <wsdl:portType name="LMSEndpointPT">
37 <wsdl:operation name="CMIRegistration">
38 <wsdl:input message="tns:CMIRequest" />
39 <wsdl:output message="tns:CMIResponse" />
40 </wsdl:operation>
41 <wsdl:operation name="CMIEventNotification">
42 <wsdl:output message="tns:CMIEventNotify" />
43 </wsdl:operation>
44 </wsdl:portType>
45 <wsdl:portType name="APIInstancePT">
46 ...
47 </wsdl:portType>
48
49 <plnk:partnerLinkType name="LMSEndpointPLT">
50 <plnk:role name="CMIService">
51 <plnk:portType name="LMSEndpointPT" />
52 </plnk:role>
53 <plnk:role name="LMSEndpoint">
54 <plnk:portType name="tns:CMIServicePT" />
55 </plnk:role>
56 </plnk:partnerLinkType>
57 <plnk:partnerLinkType name="APIInstancePLT">
60 ...
61 </plnk:partnerLinkType>
62
63 </ wsdl:definitions>

G. Costagliola, F. Ferrucci, and V. Fuccella 69

The BPEL document for the definition of the CMI Service process follows. The document imports
the definition of the previously reported WSDL document (line 2). In particular, the partner link types
of the WSDL are used to define the two partner links to interact with the LMS Endpoint (lines 4-5) and
the CMI Service (lines 6-7). The declaration of the variables follows. Two variables are declared:
CMIRequestVar (line 11), which is bound to the CMIRequest message and CMIEventNotifyVar (line
12), bound to the CMIEventNotify message.

The process is composed of a main sequence, defined through lines 15 to 38. The first activity is
the reception of a CMIRequest message from the LMS Endpoint (line 16). On its occurrence the
process is instantiated. A reply (line 19) message follows. Then, the process informs the API Instance
of the registration. This is done by forwarding (the invoke action in line 22) the registration message to
the API Adapter.

To handle the CMI communication, a repeat-until block (lines 25-37) is used. Inside it, there is a
nested sequence of two activities. With the former (line 27), a CMI event is received from the API
Instance. Through the latter (line 30), the same message is forwarded to the LMS Endpoint. The
iteration is interrupted on the reception of a terminate message type (line 34).

1 <bpws:process ...>
2 <bpws:import importType="CMIService.wsdl" />
3 <bpws:partnerLinks>
4 <bpws:partnerLink myRole="CMIService" name="LMSEndpointPL"
5 partnerLinkType="cmi:LMSEndpointPLT" partnerRole="LMSEndpoint" />
6 <bpws:partnerLink myRole="CMIService" name="API Instance"
7 partnerLinkType="cmi:APIInstancePLT" partnerRole="APIInstance" />
8 </bpws:partnerLinks>
9
10 <bpws:variables>
11 <bpws:variable messageType="CMIRequest" name="CMIRequestVar" />
12 <bpws:variable messageType="CMIEventNotify" name="CMIEventNotifyVar" />
13 </bpws:variables>
14
15 <bpws:sequence name=Main Sequence">
16 <bpws:receive createInstance="yes" name="Receive CMI request"
17 operation="CMIRegistration" partnerLink="LMSEndpointPL"
18 portType="LMSEndpointPT" variable="CMIRequestVar" />
19 <bpws:reply name="Reply CMI response"
20 operation="CMIRegistration" partnerLink="LMSEndpointPL"
21 portType="LMSEndpointPT"/>
22 <bpws:invoke inputVariable="CMIRequestVar" name="Send RT-Data"
23 operation="CMIRegistration" partnerLink="APIInstancePL"
24 portType="APIInstancePT" />
25 <bpws:repeatUntil name="RepeatUntil event.type = 'terminate' ">
26 <bpws:sequence name="Repeat-Until Sequence">
27 <bpws:receive name="Receive CMI Event"
28 operation="CMIEventNotification" partnerLink="APIInstancePL"
29 portType="LMSEndpointPT" variable="CMIEventNotifyVar" />
30 <bpws:invoke inputVariable="CMIEventNotifyVar"
31 name="Notify CMI Event" operation="CMIEventNotification"
32 partnerLink="LMSEndpointPL" portType="LMSEndpointPT" />
33 </bpws:sequence>
34 <bpws:condition> <![CDATA[bpws:getVariableData('CMIEventNotifyVar',
35 'eventType','//') = 'terminate']]>
36 </bpws:condition>
37 </bpws:repeatUntil>
38 </bpws:sequence>
39
40 </ bpws:process>

