
Journal of Web Engineering, Vol. 7, No. 1 (2008) 070-092
© Rinton Press

A SITUATIONAL METHODOLOGY FOR ADDRESSING THE PRAGMATIC
QUALITY OF WEB APPLICATIONS BY INTEGRATION OF PATTERNS

PANKAJ KAMTHAN

Department of Computer Science and Software Engineering, Concordia University, Montreal
kamthan@encs.concordia.ca

Received December 8, 2006
Revised February 3, 2008

The development and evolution of Web Applications is viewed from an engineering perspective. A
Pattern-Oriented Web Engineering Methodology (POWEM) for deploying patterns as means for assuring
the quality of Web Applications is presented. POWEM consists of a sequence of steps including setting
goals, identifying stakeholder types, following a suitable development process model, identifying relevant
quality attributes, and acquiring, selecting and applying suitable patterns. The feasibility issues involved in
each step are examined. The use of patterns during macro- and micro-architecture design of a Web
Application is illustrated. Finally, some directions for future research, including extensions to POWEM,
are outlined.

Key words: Feasibility, Iterative Development, Pattern, Quality Model, Semiotics, Stakeholder
Communicated by: B. White and M. Gaedke

1 Introduction

The Web has opened new vistas for many sectors of society including education, businesses, and
government. The success of the Web, however, has also come with its share of failures, many of which
are attributed to issues related to quality (Pertet & Narasimhan, 2005).

A Web Application aims to serve its stakeholders by providing some value. This value is potentially
threatened if the quality of the Web Application is compromised. In order to elevate, restore, and/or
sustain the confidence of stakeholders, it is incumbent upon the providers to ensure the quality of Web
Applications, and to do so in a viable manner.

In this paper, the quality of Web Applications as viewed by the stakeholders is addressed. To do that,
Web Applications are considered as end-products of a systematic and feasible approach that, during
development, incorporates a form of a posteriori knowledge, namely patterns (Buschmann, Henney, &
Schmidt, 2007).

The organization of the rest of the paper is as follows. In Section 2, the background and state-of-
the-art necessary for the discussion that follows is outlined, and the position taken by the author is
stated. This is followed by the presentation of a Pattern-Oriented Web Engineering Methodology
(POWEM) for systematically addressing the pragmatic quality (Lindland, Sindre, & Sølvberg, 1994)
of Web Applications in Section 3. POWEM consists of a non-linear sequence of steps including the
identification of stakeholder types, suitable development process model, decomposition of pragmatic
quality into relevant attributes, and systematic selection and application of suitable patterns.
Specifically, with regard to organizational, social, or technical decisions, the feasibility of each step in
POWEM is considered. In Section 4, some directions for future research and challenges in pursuing
them are highlighted. Finally, in Section 5, the concluding remarks are presented.

P. Kamthan 71

2 Background and Related Work

This section presents a synopsis of the need for a systematic approach to the development of Web
Applications from the perspective of quality and the role of patterns. For the sake of this paper, a Web
Application is viewed as an interactive software system specific to a domain that will typically have a
large-size and require a non-trivial infrastructure for development, operation, and maintenance.

2.1 Understanding and Addressing the Quality of Web Applications

It is critical to all stakeholders involved that a Web Application exhibit “high” quality. If unaddressed,
there is a potential, for example, for a resource in a Web Application to be rendered unreadable on a
user agent of a customer, be inaccessible to someone who is visually impaired, or be prohibitive to
adaptive maintenance by an engineer.

 There have been various initiatives for understanding and addressing the quality of Web
Applications (Brajnik, 2001; Offutt, 2002; Mich, Franch, & Gaio, 2003; Kappel et al., 2006; Mendes
& Mosley, 2006). They cover a range of topics such as furthering the understanding of the concept of
quality by suggesting a quality model that consists of (a tree of) quality attributes; discussing the
significance of each quality attribute, thereby rationalizing its inclusion in the quality model; the
impact of a quality attribute on a class of stakeholders for specific Web Applications; and so on.

However, these efforts are restricted by one or more of the following issues: the view towards
quality is at times not explicitly stated; the relationships, including trade-offs, among quality at-tributes
relevant to Web Applications are not always indicated; or in addressing the quality at-tributes, the
focus, if at all, is less on assurance and more on evaluation.

2.2 Patterns for Engineering Web Applications

The reliance on past experience and expertise is critical to any development. A pattern is commonly
defined as a proven solution to a recurring problem in a given context (Buschmann, Henney, &
Schmidt, 2007). For an expert, patterns are means to share knowledge and act as a reference
“handbook”; for a novice, patterns can be useful as source of guidance, learning, and exploration.

From a structural viewpoint, a pattern is typically described using a set of ordered elements
labeled as (pattern) name, author, context, problem, forces, solution, examples, and related patterns.
At times, the labels of these mandatory elements may vary in the literature. Furthermore, optional
elements, such as those related to metadata, may be included to enrich the description. In the rest of the
paper, the elements of a pattern are highlighted in italics.

It is seldom that a pattern exists in isolation, and is often implicitly or explicitly related to other
patterns. Indeed, related patterns are often organized in a pattern catalog, in a pattern system, or in a
pattern language.

Patterns and Process

There have been some initiatives previously for incorporating patterns in a development process of a
Web Application.

It has been suggested that the patterns for navigation design (Rossi, Schwabe, & Lyardet, 1999)
could be integrated in the Object-Oriented Hypermedia Design Method (OOHDM). However, there
are several outstanding issues with OOHDM including that it does not address feasibility concerns,
does not explicitly and systematically approach quality concerns, and lacks broad tool support for
some of the design notations it suggests.

The Web Modeling Language (WebML) has been used to express the solutions of certain design
patterns (Fraternali, Matera, & Maurino, 2002) as conceptual models. However, the precise impact of

72 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

these patterns on quality attributes and the relationship between patterns and quality attributes is not
shown.

A pattern-based software development process based on case-based reasoning (CBR) has been
discussed and applied to an Internet chat application (Wentzlaff & Specker, 2006). However, besides
problem and solution, it does not take other mandatory elements of a pattern into consideration, and it
does not explicitly suggest any implications towards quality.

Patterns and Quality

There have been some efforts earlier in connecting quality-related concerns of Web Applications and
patterns.

There are some patterns discussed from the perspective of maintainability of Web Applications
(Weiss, 2003). However, the solutions of some patterns are highly technology-specific, the mandatory
elements of a pattern are not always appropriately documented, and the integration of patterns into any
development process is not mentioned.

There are also some patterns discussed from the perspective of usability of Web Applications
(Perzel & Kane, 1999; Lyardet & Rossi, 2001; Graham, 2003). However, these efforts are restricted by
one or more of the following issues: usability is viewed as an atomic (non-decomposable) concept, the
patterns are strongly oriented towards user interface design, the mandatory elements of a pattern are
not always suitably documented, the feasibility of using patterns is not discussed, or the integration of
patterns into any (say, user-centered) development process is not outlined explicitly.

3 A Methodology for Integrating Patterns in Web Engineering

 Figure 1. A high-level view of a pattern-oriented, stakeholder-quality-centric, and feasibility-sensitive approach to
engineering Web Applications.

P. Kamthan 73

This section proposes a methodology, namely POWEM, inspired by the notions of patterns and
situational method engineering (Kumar & Welke, 1992), for addressing the quality of Web
Applications. POWEM rests on the following interrelated hypothesis:

• Hypothesis 1. The aim of developing “high” quality Web Applications is a first-class
consideration in the organization.

• Hypothesis 2. A preventative approach to quality is at least as significant as a curative approach
(Dromey, 2003).

Figure 1 gives an overview of POWEM with the placement of (abbreviated versions of) steps in it.
POWEM consists of six mandatory steps, namely (1) Setting Goals; (2) Identifying Stakeholders; (3)
Selecting the Development Process Model; (4) Identifying and Organizing Quality Concerns; (5)
Acquiring and Selecting Patterns; and (6) Applying Patterns. These could be followed by an optional
step of Evaluating Effectiveness.

Remark 1. POWEM bears some resemblance to the Goal/Question/Metric (GQM) method (Van
Solingen & Berghout, 1999), a rigorous means to conduct a quality improvement program. For
example, step 1 could be refined into sub-goals which could then be used to ask questions that in turn
can help towards the steps involving the selection of the development process model, relevant quality
concerns, and suitable patterns.

3.1 Characteristics of POWEM

Before divulging into details, certain distinctive characteristics of POWEM need to be briefly pointed
out.

First, POWEM is essentially independent of the final product, namely the Web Application under
development. This makes POWEM broadly applicable.

Second, from a practical standpoint of integrating patterns in Web Applications, the following
must be feasible: the personality types of the stakeholders, the development process, the expectations
of improving the pragmatic quality concerns, and the adoption/deployment of patterns as means for
addressing these concerns. Each of these is discussed in detail in the sections that follow. The
feasibility study could be a part of the overall Web Application project management planning activity.
Further discussion of this aspect is beyond the scope of this paper.

Third, a pattern can be viewed as knowledge that is conceptually reusable. To that regard, the
dynamics of knowledge creation and transfer in steps 5 and 6 in POWEM is based upon the interaction
between tacit and explicit knowledge. Indeed, following the approach of the Socialization,
Externalization, Combination, Internalization (SECI) model (May & Taylor, 2003), steps 5 and 6 in
POWEM fall into the interplays of Internalization (explicit-to-tacit knowledge) and Combination
(explicit-to-explicit knowledge).

In the following sections, the work involved in each of these steps is discussed in detail.

3.2 Setting Goals

A goal is the result towards which an effort is directed. It has been hypothesized that a project without
clear goals will not achieve its goals clearly (Gilb, 1988). A POWEM approach must include high-
level organizational and/or technical goals that need to be accomplished.

For instance, an organizational goal could be to achieve success (improve visibility, sustain
and/or enhance consumer satisfaction, persuade new consumers, and so on, in the long-term) and a
technical goal for the overall development strategy could be to rely on organizational memory (like
patterns) to produce Web Applications that meet the stakeholder expectations of quality.

74 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

Feasibility of Goals

A goal needs to be operationalized to be in realistic. This is evidently related to feasibility. A goal
could either be hard or soft. A hard goal is either satisfied or not satisfied. A soft goal can only be
satisfied to a certain degree, that is, satisficed (Simon, 1996).

A high-level goal is useful to set the overall picture from which the rest of the steps will follow.
It may, however, be difficult to attain a high-level goal directly. If a goal is at a level that is deemed
too high, it may need to be decomposed into manageable sub-goals. As an example, sub-goals of the
aforementioned technical goal of an engineer could be to find a development process model that
embraces the inclusion of patterns and find pattern(s) that contribute to modifiability of a specific Web
Application.

3.3 Identifying Stakeholders

A stakeholder is a person or organization who influences a software system or who is impacted by that
system. In our case, there are two broad classes of stakeholders that can be identified and form a
partition with respect to their roles in relationship to a Web Application: a producer (such as an owner,
legislator, manager, engineer, or maintainer) is the one who owns, manages, develops or maintains the
Web Application, and a consumer (such as novice or expert user) is the one who interacts with the
Web Application for some purpose.

There are a few systematic approaches for identification and refinement of stakeholder classes.
The use cases (Jacobson et al., 1992) and Viewpoint-Oriented Requirements Definition (VORD)
(Kotonya & Sommerville, 1998) give us two established ways of classifying aforementioned
stakeholders of interactive systems in a client-server environment such as Web Applications. From a
use case perspective, a consumer is a human actor. From a VORD perspective, owner and manager are
indirect viewpoints, while the engineer and maintainer are direct viewpoints in their relationship to the
Web Application.

Feasibility of Stakeholders

The selection and application of patterns is essentially a human activity involving problem solving, and
therefore the constraints of human characteristics pertaining to it need to be taken into account.

The studies in human psychology have shown that variations among people with respect to their
predispositions, abilities, and knowledge, need to be accepted and managed (Keirsey, 1998). A
common measure of (variations in) personality is the Myers-Briggs Type Indicator (MBTI) that
measures an individual’s preference on four bipolar dimensions: introversion/extraversion (I/E),
intuition/sensing (I/S), feeling/thinking (F/T), and judgment/perception (J/P). An MBTI personality
type consists of a four-letter code, such as ESTJ (Extraverted Sensing Thinking Judging), to indicate
the personality type of an individual. Based on controlled empirical experiments, it has been
hypothesized (Boreham, 1987) that in problem solving, people with S or T in their personality type are
more likely to perform better than people with E or F, respectively. Since one of the views of patterns
is that they are a problem solving approach, it is assumed in the following that the producers
(especially, engineers and maintainers) have compatible personality types with respect to appropriate
steps in POWEM.

3.4 Selecting the Development Process Model

The inclusion of patterns in the development of Web Applications cannot be ad-hoc or an afterthought,
and should be carried out within the auspices of a suitable process model. The underlying assumption
is that an improvement in the process for development can bring about improvement in the product,
namely the Web Application itself.

P. Kamthan 75

Indeed, the use of POWEM within the framework of an existing process environment with an
implicit or explicit support for patterns is recommended. Furthermore, the following properties of the
process environment are desirable: it is human-centric as the Web Applications are inherently
interactive, customer involvement is critical, and user base is often broad; it is flexible (for example, its
workflows can proceed iteratively and incrementally) as the requirements of commercial Web
Applications are particularly susceptible to change (for example, due to market demands); and it has
broad community and tool support in order to keep the cost to a minimum and the learning curve low.

To that regard, the adoption of one of the following process models is suggested. Extreme
Programming (XP) (Beck & Andres, 2005) is a broadly-used and well-tested agile methodology for
software development. XP places “lightweight” demands on resources and is suitable for small
projects. The Unified Process (UP) (Jacobson, Booch, & Rumbaugh, 1999) is an archetype of model-
based and use case-driven process framework, instances of which are the Rational Unified Process
(RUP), and its customization for educational environment, the Unified Process for EDUcation
(UPEDU). RUP requires heavy modeling and documentation and is especially suited for large projects.
Both XP and RUP have been “tailored” to Web Applications (Kappel et al., 2006). There is some
provision of the use of patterns during macro- and micro-architecture design in both XP and RUP and,
by reference, their extensions for Web Applications.

Feasibility of Development Process Model
The process model for the development of a Web Application and the realization of the activities
recommended therein will evidently depend on the level of organizational process maturity such as the
appropriate level in the Capability Maturity Model for Software (SW-CMM) (Paulk et al., 1995). This
in turn is determined by several factors, including emphasis on quality in the organization to which the
constraints of Hypothesis 1 and 2 apply.

There have been relatively few studies that conclusively relate XP or RUP to SW-CMM. The
precise mapping of the use of patterns in an organization to SW-CMM remains an open question but is
likely to be at least Level 2.

3.5 Identifying and Organizing Quality Concerns

There are different possible views of quality (Wong, 2006). The viewpoint for quality of Web
Applications for the purpose of this paper is semiotics (Stamper, 1992). Among the proposals for
semiotic quality, the treatment in one of the well-known approaches (Lindland, Sindre, & Sølvberg,
1994) is adopted and extended.

Semiotic Level Quality Attributes Means for
Quality Assurance

[Tier 3]
Maintainability, Usability

[Tier 2]
Comprehensibility, Performance, Reliability Pragmatic

[Tier 1]
Aesthetics, Availability, Efficiency, Familiarity, Readability

Patterns

Table 1. A model for the pragmatic quality of Web Applications.

The steps of the construction, summarized in Table 1, are as follows:

76 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

1. Semiotic Levels. From a semiotics viewpoint, the representation of a resource in a Web
Application (that is, a sign) can be viewed on six interrelated levels: physical, empirical, syntactic,
semantic, pragmatic, and social. This paper is restricted to the pragmatic level, which is
responsible for the relation of signs to their interpreters. The interpreters in our case are the
stakeholders as given in Section 3.3.

2. Quality Attributes. Since pragmatic quality is a multi-dimensional concept, it is decomposed into
granular levels that consist of known attributes that can be addressed directly or indirectly. These
quality attributes could, for example, manifest themselves as non-functional requirements (NFRs)
of a Web Application. For the definitions of these quality attributes, one could refer to the IEEE
Standard 1061-1998, the ISO 9241-11:1998 Standard, and the ISO/IEC 9126-1: 2001 Standard.

3. Means. Finally, among the possibilities, patterns as means for improving the quality attributes are
assigned.

Remark 2. The quality attributes in Table 1 are necessary, but there is no explicit claim of their
sufficiency. In this sense, Table 1 follows the “Open World Assumption.”

The Quality-Stakeholder Contract
For the sake of this paper, pragmatic quality is viewed as a contract between a Web Application and a
stakeholder. The relevance of quality attributes in Table 1 varies with respect to stakeholder types. For
the sake of simplicity, the discussion of (not necessarily mutually exclusive) stakeholders here is
limited to those of the type end-user and engineer:

• Pragmatic-Tier 1. The quality attributes of direct concern to an end-user are aesthetics,
availability, familiarity, and readability. The quality attributes of direct concern to an engineer are
efficiency and readability.

• Pragmatic-Tier 2. The quality attributes of direct concern to an end-user are comprehensibility,
performance, and reliability. The quality attribute of direct concern to an engineer is
comprehensibility.

• Pragmatic-Tier 3. The quality attributes of direct concern to an end-user is usability. Furthermore,
accessibility can be viewed as a special case of usability (Mendes & Mosley, 2006). The quality
attribute of direct concern to an engineer is maintainability. Moreover, modifiability, portability,
and reusability can be viewed as special cases of maintainability (Buschmann et al., 1996).

Pragmatic Quality Attribute Producer Concern Consumer Concern

[Q01] Aesthetics X

[Q02] Availability X

[Q03] Comprehensibility X X

[Q04] Efficiency X

[Q05] Familiarity X

[Q06] Maintainability X

[Q07] Performance X

[Q08] Readability X X

[Q09] Reliability X

[Q10] Usability X

Table 2. The stakeholder types and corresponding quality attributes of concern.

P. Kamthan 77

Table 2 summarizes the mapping between stakeholder types and quality attributes. The identification
labels [Q01] to [Q10] have been associated for later reference.

Remark 3. The quality attributes in Table 1 are not “absolute.” The significance and associated
priority of quality attributes will likely vary across the different domains targeted by Web
Applications. For example, the performance and reliability needs of a Web Application providing
information on stock market indices will vary from the one providing information on classic movies.

Relationship among Quality Attributes
The quality attributes in Table 1 can depend on each other in a favorable or unfavorable manner.
Indeed, the quality attributes in Table 1 are not necessarily mutually exclusive in two different ways:
(1) within the same tier, and (2) across tiers.

1. Intra-Tier Quality Attribute Relationships. The quality attributes within the same tier not
necessarily mutually exclusive. For example, the steps taken towards improving reliability (say,
fault tolerance) may lead to redundant source code or data (that can be unfavorable to
maintainability) but enable ease-of-use (that can be favorable to usability). Similarly, efforts
towards improving efficiency (say, resource utilization) could lead to a detriment of readability.
For example, saving screen estate on a user interface of a Web Application by reduction of white
space increases (spatial) efficiency but at the expense of readability.

2. Inter-Tier Quality Attribute Relationships. The quality attributes in Tier 3 depend on that in
Tier 2, which in turn depend on Tier 1. For example, if a user cannot read, he/she cannot
comprehend the information in a Web Application, and thereby cannot use it to its full potential.
Similarly, for a Web Application to be reliable, it must be available.

Using a simple scheme (Wiegers, 2003), the pairwise relationships between the quality attributes are
pointed out in Table 3 where necessary. Moreover, three possible determinations can be made: (1) a
“+” sign in a cell indicates that an improvement in the attribute in the corresponding row has a
favorable (non- negative) effect on the attribute in the column, (2) a “−” sign in a cell indicates that an
improvement in the attribute in that row has, in general, a detrimental (non-positive) effect on the
attribute in the column, and (3) an empty cell indicates that an improvement in the attribute in the
corresponding row has no (known) bearing on the attribute in the column or that, due to the existence
of several exceptions, conclusion in either direction can not be drawn decisively.

 [Q1] [Q2] [Q3] [Q4] [Q5] [Q6] [Q7] [Q8] [Q9] [Q10]

[Q01] + + + +

[Q02] − + +

[Q03] + +

[Q04] − −

[Q05] + + + +

[Q06]

[Q07] − +

[Q08] + +

[Q09] − − + +

[Q10]

Table 3. A matrix of pairwise relationships between the pragmatic quality attributes.

78 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

Remark 4. From Table 3, it is evident that the rows for [Q06] maintainability and [Q10] usability are
empty, and the matrix is (obviously) not symmetric.

Feasibility of Quality Attributes
The expectations of improving the quality attributes of a Web Application must be feasible in order to
be practical.

The pragmatic level quality concerns are in general soft goals. That is, the quality attributes in
Table 1 cannot (at least mathematically), with respect to stakeholders, be completely satisfied but can
only be satisficed. For example, an a priori guarantee that a Web Application will be usable to all users
at all times in all situations that the users can find themselves in, is simply not viable. The exception to
this could for example be performance-related concerns that could be expressed as hard goals.

The interdependency of the quality attributes as discussed earlier also places inevitable feasibility
constraints. From Table 3, the improvement in one attribute may need to be balanced with respect to
its impact on the others as the steps taken to address one quality attribute can lead to a compromise of
the other. There are well-known techniques such as the Analytical Hierarchy Process (AHP) and
Quality Function Deployment (QFD) for carrying out multi-criteria decision making. Further
discussion of this aspect is beyond the scope of this paper.

3.6 Acquiring and Selecting Patterns

The characteristics of reflection, realization, and prevention make patterns especially suitable as means
for addressing quality-related concerns:

• Reflection. A pattern is not invented in isolation. To reach the candidacy of a pattern, an initial
submission by an author often needs to go through an arduous process that includes a
comprehensive review (via “shepherding” or “writers’ workshops”) by other experts in the domain.

• Realization. A pattern, when appropriately described and documented, provides the process of
arriving at an abstract but broadly applicable proven solution specific to a problem in a given
context, including the reasoning and trade-offs behind it. In other words, the solution of a pattern is
the most optimal solution to a problem under the given circumstances. This often makes patterns
more practical in their applicability compared to, for instance, guidelines (Vanderdonckt, 1999).

• Prevention. A pattern, unlike inspections or testing that focus on evaluation, is means of early
prevention of quality-related concerns.

The need for selection of patterns manifests itself by necessity as the relationship between the set
of quality attributes and the set of patterns, in general, is many-to-many. Although there are
preliminary results on automation such as an expert system-based decision analysis (McPhail &
Deugo, 2001), finding suitable patterns appropriate for a task largely remains a manual process.

Feasibility of Patterns
There are a few challenges (that could be viewed as risks) in the patterns’ selection process. They stem
from a variety of factors:

• Availability of Patterns. For an adoption of a pattern-oriented approach to the development of
Web Applications, there need to be analysis and synthesis patterns that can sufficiently “map” the
problem and solution space, respectively. However, there is no a priori guarantee that for every
quality related problem there will be suitable pattern(s) available to solve it.

• Findability of Patterns. It is relatively straightforward to detect and find necessary patterns when
they are organized in a catalog, system, or language: in these cases the names of patterns and
relationships among patterns are made explicit. However, patterns are not always organized as

P. Kamthan 79

such, and there are still a few challenges in finding desirable patterns that have been publicly
documented. There is currently no de facto meta-index of patterns. In general, patterns currently
available are not classified by quality attributes (such as those in Table 1). The number of patterns
has also grown significantly in the last decade or so. It has been reported (Buschmann et al., 1996)
that the ease of finding pattern(s) appropriate for a task is inversely proportional to the number of
documented patterns. The name of a pattern is often a means for finding patterns. However, there
are patterns in different collections that have similar or same names but semantically different
functionality, or have similar intent or functionality but different names. For example, the
COMPOSITE pattern from one collection (Gamma et al., 1995) is similar to the WHOLE-PART
pattern from another collection (Buschmann et al., 1996). These can be prohibitive to both
navigating and searching for suitable patterns.

• Cost of Deploying Patterns. There is inevitable cost in terms of time, effort, and resources of
learning and adapting any reusable knowledge, including patterns. For example, there is a learning
curve involved in aspects such as understanding the pattern description, checking if and how
accurately the context of the pattern matches with that of the problem of the Web Application
development at hand, and the constraints under which the solution suggested by the pattern exists.
There is also an associated cost of bringing the solution to a realization. For example, it has been
shown (Rosado, Fernández-Medina, & Piattini, 2006) that the cost of implementing the CHECK
POINT pattern (Yoder & Barcalow, 1997) is “high.”

3.7 Applying Patterns

There are three main non-mutually exclusive concerns in the application of patterns: an understanding
of the patterns, the order in which patterns are applied, and the result upon the composition of patterns.

1. Understanding Patterns. For a given pattern, an understanding of the underlying problem and
the context in which it occurs, and understanding the forces and consequences of the proposed
solution, are necessary for applying a pattern effectively. For example, a pattern whose solution
suggests the use of color will not be applicable in situations when the underling device lacks
support for it or if the user is color blind.

2. Order of Applying Patterns. The order in which patterns are applied does matter and needs to be
taken into consideration. For example, in the design phase, the patterns for high-level design are
applied first, followed by the patterns for low-level design. If ignored, it may not be at all possible
to apply some patterns (as they conflict) and/or lead to a non-optimal result. This order is pre-
determined if all the patterns being selected are from the same pattern system or a pattern
language. In such as case, they may also be available as a “map” or more formally as a directed
acyclic graph (DAG) to assist navigation. Otherwise, an appropriate pattern description will have
context and related patterns elements that can give an indication of the order to be followed.

3. Composing Patterns. Even when a certain order in application of patterns is followed, it is the
result upon the composition of patterns that should appear suitable. Whether the result is
acceptable could, for example, be revealed during a low- or high-fidelity prototyping. If not, one
needs to revert back to the POWEM step 5, and revise the selection.

3.8 Patterns for Pragmatic Quality in the Design of Web Applications

This section addresses the role of patterns elicited from external sources in the design phase of a
typical Web Application. The selection of patterns is based on their generality, neutrality with respect
to any specific application domain, broad availability, parity to the quality attribute at hand, suitability
of the context and the forces (where available), and the public reputation of the authors. In order to
distinguish the patterns from the main text, their names are indicated in uppercase.

80 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

Macro-Architecture Design of Web Applications
The macro-architecture design is the place where high-level design decisions, independent of any
implementation paradigm or technology, are made. To that regard, some general considerations are in
order.

A Web Application will implicitly or explicitly target some domain such as education,
commerce, entertainment, government, and so on. (These can obviously be granularized further to
arbitrary levels.) The choice of the domain name (such as .net or .org) does not always or
automatically reveal the nature of the domain. There are patterns available for certain common genres
like EDUCATIONAL FORUMS (for educational institutions), NONPROFITS AS NETWORKS OF
HELP (for non-profit organizations), and SELF-SERVICE GOVERNMENT (for municipal, state, or
federal government agencies) (Van Duyne, Landay, & Hong, 2003). The application of such genre-
specific patterns can increase user familiarity with the Web Application. Furthermore, the organization
owning a Web Application may wish to serve (potential) consumers in diverse cultural and/or
geopolitical situations (such as, in different countries and using different natural languages). This
could be done using the LOCALE HANDLING pattern (Busse, 2002). However, the trade-off in
deploying this pattern is that the maintenance responsibilities increase.

Next, some technical considerations can be emphasized. The macro-architecture design patterns
suggested are based on the fact that Web Applications are a class of distributed request-response-type
interactive systems. Specifically, the applicable patterns are the CLIENT-SERVER pattern (Schmidt et
al., 2000) followed by the APPLICATION SERVER pattern (Manolescu & Kunzle, 2001), which in
turn is followed by the MODEL-VIEW-CONTROLLER (MVC) pattern (Buschmann et al., 1996;
Fowler et al., 2003).

The CLIENT-SERVER pattern supports modifiability and reusability. For example, a server or
resources on the server-side could be modified without impacting the client. Also, a single server can
support multiple clients simultaneously, or a client could make simultaneous requests for resources
residing on multiple servers. For instance, an Extensible Markup Language (XML) document could be
located on one server, while an ECMAScript/JavaScript script on another server, and a Cascading
Style Sheet (CSS) or Extensible Stylesheet Language Transformations (XSLT) document on yet
another.

The APPLICATION SERVER pattern also supports maintainability: it isolates the Web
Application from other aspects on the server-side such that the communication between the application
itself and the Web server takes place via the SINGLE POINT OF ACCESS (Yoder & Barcalow, 1997)
pattern. This separation allows the Web Application to evolve independently.

The separation of structure of information in a markup document from its presentation is one of
the principles of Web Architecture (Jacobs & Walsh, 2004) and is practically realized by the
SEPARATE CONTENT FROM PRESENTATION pattern (Weiss, 2003). Adopting this principle and
pattern along with an appropriate use of MVC leads to a separation of semantically-different aspects,
namely of data, rendering, and processing, into three sets of components: M = {model}, V= {view},
and C = {controller}, where | M | = 1, | V | ≥ 1, | C | ≥ 1, and | · | denotes the cardinality. This (at least
theoretically) minimizes the coupling between these aspects. Thus, modifications to one component
are localized and lead to minimal propagation of changes to other components. This improves the
modifiability of components of a Web Application. A model is normally not aware of the views and
controllers attached to it. This allows the MVC pattern to follow the “single source” approach: the
same model in MVC could be used with multiple views and multiple controllers. For example, the
same information could be adapted (repurposed or transformed) and delivered to different situations
(like user agent environments or consumer needs). This improves the reusability of components of a
Web Application.

P. Kamthan 81

Figure 2 presents an abstract view of the aforementioned macro-architecture design patterns.

Figure 2. A view of the macro-architecture design patterns in the development of Web Applications.

MVC is an example that illustrates the fact that patterns often do not exist in isolation. Indeed,
other patterns may be needed to help solve the problems encountered in the use of MVC in specific
situations. A few such cases are considered next.

The actual separation of model, view, and controller in an object-oriented environment is
practiced with the help of micro-architecture design patterns (Gamma et al., 1995) such as
OBSERVER, COMPOSITE, and STRATEGY.

A Web Application can become increasingly sophisticated with functionalities such as dynamic
delivery of resources, personalization, and so on. MVC needs to adapt to these situations, and in doing
so, it faces a number of challenges that can be tackled with the use of other special-purpose patterns
(Fowler et al., 2003). For example, to invoke different user interface styles in a Web Application, there
may be a need to have multiple controllers. As the number of controllers increase, this can lead to
redundancy that in turn is prohibitive to maintainability. In such a case, the common logic could be
extracted via the APPLICATION CONTROLLER pattern. In response to a request to a Web
Application, there may be several tasks that need to be performed and these tasks may have
overlapping aspects. The distribution of the behavior of the input controller across multiple objects can
lead to redundancy, which in turn is exorbitant to maintainability. The FRONT CONTROLLER
pattern suggests a consolidation of all request-handling by channeling requests through a single
handler object.

Reliability Design

For addressing reliability (specifically, availability) concerns, the macro-architecture design of server-
side components of a Web Application could use a number of available patterns (Manolescu &
Kunzle, 2001; Ahluwalia & Jain, 2006). For example, extra measures to support the availability of a
Web Application (unrelated to the functionality of the Web Application) could be included by using
the INTRODUCE REDUNDANCY pattern. One way to introduce redundancy is to have a cluster of
multiple servers such as suggested by the FAIL-OVER THROUGH CLUSTERING pattern, where if
one (primary) server fails, the other (secondary) server takes over the responsibility. However,
redundancy also increases maintenance responsibilities.

If and when the need arises, a failure message could be relayed directly using the FAILURE
NOTIFICATION pattern or indirectly using the HEARTBEAT pattern (where an engineer is informed
via periodic broadcasts that a specific Web server is available; the absence of such a message would
then imply its unavailability.)

82 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

Micro-Architecture Design of Web Applications
The micro-architecture design is the place where low-level design decisions that are to be implemented
are cast.

In the following, the focus is only on the design aspects that impact pragmatic quality. As such,
the attention is geared more towards client-side rather than server-side concerns.

Interaction Design

Interaction design is an approach to the design of interactive systems that focuses on the human as well
as the computer aspects, and is perhaps the most crucial client-side concern of Web Applications.

In the following, the four most critical interaction design aspects of Web Applications, namely
information design, navigation design, search design, and presentation design, independent of any
specific domain, are considered. These four aspects are not mutually exclusive.

Information Design

The information in Web Applications has increasingly become heterogeneous. It is often the case that
the information presented on a single document is aggregated from several sources. For example,
consider, from user-perspective, the entry point to a Web Application, namely the “Home Page,”
which can be realized using the HOME PAGE pattern (Graham, 2003). Then, the “Home Page” of a
news organization served from the main source may include a latest news ticker from one server and
weather information from another server, the currency and stock market information from a financial
Web Service, and periodically changing advertisements from yet another source.

This can be systematically realized by the use of the WHOLE-PART pattern (Buschmann et al.,
1996), which enables a hierarchical organization of objects. Since each of these objects can be
modified or replaced independently, the WHOLE-PART pattern supports maintainability. Also, since a
“part” can correspond to more than one “whole,” the WHOLE-PART pattern also supports reusability.
However, multiple indirections stemming from client requests and responses for fulfilling them can
lead to a loss of performance, particularly when each “part” itself is structured as WHOLE-PART.

Next, the classification of information, which is a conventional approach by humans for
understanding information, is considered. The information organization patterns (Van Duyne, Landay,
& Hong, 2003), when use appropriately, aid readability, comprehensibility, and usability. For example,
the GRID LAYOUT pattern that suggests the organization of information in a single document (“Web
Page”) into a grid of rows and columns where every atomic information element is made to fit within
this grid. The WHAT’S NEW PAGE pattern provides newly added information to a Web Application,
and could include the CHRONOLOGICAL ORGANIZATION pattern. A document in a Web
Application that provides event proceedings could contain a list of publications and/or their authors
based on the ALPHABETICAL ORGANIZATION pattern.

The users of a Web Application can vary in their capabilities and preferences, and may find one
view of information to be more usable than another. The MIRRORWORLD pattern (German &
Cowan, 2000) provides two or more views of the same information. Specifically, information in these
views could be presented (Tidwell, 2006) in TWO-PANEL SELECTOR pattern when there are two
different views that are to be presented simultaneously, or CLOSABLE PANELS or CARD STACK
patterns when there are several different views to be presented in such as way that only one view is
visible at a time in each panel or stack, respectively.

Tables are often used to structure information in two dimensions. However, the presence of many
columns (or multiple lines per row) can adversely affect readability, as it becomes increasingly hard to
separate the entries visually. The ROW STRIPING pattern (Tidwell, 2006) suggests the use of two
similar shades to alternately color the backgrounds of the table rows.

P. Kamthan 83

Now, documents in a Web Application may contain images for presenting some information such
as the corporate logo or product pictures. The FAST-DOWNLOADING IMAGES pattern (Van
Duyne, Landay, & Hong, 2003) suggests creation of images optimized for color and size in an
appropriate format, and thus aids accessibility and performance. The REUSABLE IMAGES pattern
(Van Duyne, Landay, & Hong, 2003) suggests caching images that appear at multiple places in a Web
Application, and thereby aids performance.

To support usability, there should be a provision in the information design to support internal
locus of control (thereby provide options to a user) and for users to recover (say, from inadvertent
errors). The MULTI-LEVEL UNDO pattern (Tidwell, 2006) provides a way to easily reverse a series
of actions performed by the user in a Web Application that can track user session and maintain state.

Navigation Design

Navigation is traversal in information space for some purpose such as casual or targeted browsing for
information or complementing a reading sequence (like in electronic books). Both the intra- and the
inter-document navigation within the context of Web Application are realized by the use of
hypermedia.

The navigation patterns, when use appropriately, aid usability. For example, the
BREADCRUMBS pattern (Van Duyne, Landay, & Hong, 2003) could be used to inform the user of
location of the resource being viewed relative to the “Home Page” of a Web Application. The Yahoo!
Directory was one of the earliest users of the BREADCRUMBS pattern. However, the use of the
BREADCRUMBS pattern must be in context: it will not scale well for Web Applications with deep
hierarchies (L1 > L2 > … > Ln, for large n, will occupy quite a bit of space on a document) or for
information architectures of Web Applications that are not based on a hierarchical design. The CLEAR
ENTRY POINTS pattern (Tidwell, 2006) presents only a few entry points into the interface, which can
restrict the navigation to a specific category and make it task-oriented.

The FLY-OUT MENU pattern (Marks & Hong, 2006) could be used to present content organized
in a compound menu where each menu item itself has a sub-menu that expands only upon interaction
and when the user desires. This enables large amount of navigation information to be abstracted from
the user and presented only upon interaction by the user, thereby improving both (spatial) efficiency
and readability. The FLY-OUT MENU pattern could itself be arranged horizontally or vertically as
suggested by the HORIZONTAL NAVIGATION or VERTICAL NAVIGATION patterns (Marks &
Hong, 2006), respectively. The choice of the menu items themselves could be inspired by those that
are known to be most frequently selected by users (via some form of statistical analysis like checking
server log files): the guidance for this is provided by the DIRECT PATH pattern (Casteleyn, Garrigós,
& Plessers, 2004).

Any navigation design must take exceptional behavior into consideration to support usability.
The SESSION pattern (Weiss, 2003) can help maintain the state of the Web Application in the event of
an interruption of navigation flow. The MISSING LINK pattern (German & Cowan, 2000) informs the
user that certain hyperlink does not exist and suggests alternatives.

There are navigation design patterns that enable efficient use of space and aid comprehensibility
(Tidwell, 2006). For example, the WIZARD pattern leads the user through the interface step by step
for carrying out tasks in a prescribed order. It can also be used to implement a context-sensitive help
on a given functionality. The RESPONSIVE DISCLOSURE pattern starts with a very minimal
interface, and guides a user through a series of steps by showing more of the interface as the user
completes each step. These two patterns could, for example, be used for carrying out a registration
process. Now, during such a process, the user may have to be presented with several options (such as
multiple mailing addresses or credit cards). However, the designer is faced with the problem that the
information on all of them would not fit on a single panel and a user does not have to see the details of

84 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

all the options simultaneously. In such a case, the CARD STACK pattern could be used where one
option is visible by default and the others are hidden.

Search Design

The goal of searching is finding information. Searching is not native to Web Applications, but has
become ever more challenging as the amount of information to be searched through increases.

The searching patterns, when used appropriately, aid comprehensibility, efficiency, performance,
and usability. The use of a SIMPLE SEARCH INTERFACE pattern (Lyardet, Rossi, & Schwabe,
1999) or an INTUITIVE SEARCH INTERFACE pattern (Wellhausen, 2005) that suppresses technical
details can contribute towards comprehensibility. Specifically, this can be realized by the
STRAIGHTFORWARD SEARCH FORMS pattern (Van Duyne, Landay, & Hong, 2003) that requires
minimal technical background on part of the user. In case when there are clearly defined user types
such as novice and expert, the SIMPLE AND EXPERT SEARCH DIALOG pattern (Wellhausen,
2005) suggests a simple search dialog that contains only the most basic features, while additionally
provide an expert search dialog that supports all features available. This user-sensitivity of searching
allows not sacrificing the effectiveness of searching for the sake of comprehensibility.

The use of SEARCH BAR pattern (Wellhausen, 2005) allows adding a small search bar to the
Web Application that provides space for entering a value for one search parameter, and thereby
contributes to efficiency.

The following patterns can all improve the effectiveness of the searching activity: the use of
SELECTABLE SEARCH SPACE pattern (Lyardet, Rossi, & Schwabe, 1999) or ONLY HERE!
pattern (Schmettow, 2006) that can restrict the search to a specific category; the REFINE RESULTS
pattern (Wellhausen, 2005) that enables iterative refinement of past search results, including reverting
back to modify earlier decisions; the SELECTABLE KEYWORDS pattern (Lyardet, Rossi, &
Schwabe, 1999) or EXPLOIT SOCIAL INFORMATION pattern (Schmettow, 2006) that can suggest
keywords for improving subsequent search results based on the past user experience or behavior; the
ORGANIZED SEARCH RESULTS pattern (Van Duyne, Landay, & Hong, 2003) or RANK BY
AUTHORITY pattern (Schmettow, 2006) that organize, rank, and present a summary of the most
“relevant” search results; and the SAVE SEARCHES pattern (Wellhausen, 2005) that allows the users
save, load, manage, and re-execute their search requests. The Google search engine and CiteSeer
publication server implement some of these search patterns.

When search results are too numerous, they could cognitively overload a user. In such a case,
searching and navigating can complement each other. Using the PAGING pattern (Marks & Hong,
2006), the search results could be split into multiple sections that could be navigated sequentially.

Any search design must take exceptional behavior into consideration to support usability. A
keyword-based search necessitates input from the user, and is therefore prone to errors. The use of
AUTO COMPLETE pattern (Yahoo! Design Pattern Library) can circumvent this problem. The
CORRECT ME IF YOU CAN pattern (Schmettow, 2006) suggests informing the user about possible
spelling errors and suggesting a correction.

Presentation Design

It has been shown in surveys (Tractinsky et al., 2006) that users value the aesthetics or the “look-and-
feel” of a Web Application. The elements of presentation apply to all aspects of design discussed
previously.

For the purpose of aesthetics, a variety of patterns could be used. For example, using the DEEP
BACKGROUND pattern (Tidwell, 2006), an image or gradient could be placed in the background of a
document in such a way that it visually recedes behind the foreground elements. As another example,

P. Kamthan 85

often in traditional shops, certain products that are seasonal, for special occasions, on sale or otherwise
recommended, are often displayed in a special manner. This selected list of products could be
highlighted via the FEATURED PRODUCTS pattern (Van Duyne, Landay, & Hong, 2003).

It is known that colors can have a positive impact both cognitively and aesthetically if used
appropriately, in particular taking into the considerations of the color blind (Rigden, 1999). Often,
organizations have their favorite color(s) that are prominently reflected in their logo, and placed on
their business cards and office supplies. Using patterns like FEW HUES, MANY VALUES or
COLOR-CODED SECTIONS (Tidwell, 2006) a Web Application could be given a unique “identity.”
It is known that the user interface must reflect the state of the software. So, for example, the option in a
navigation bar selected by a user could be reflected uniquely upon visitation by the user. As shown
below, C2 is the color of the option that corresponds to the resource that the user is currently viewing
and is different from the others:

[C1] [C2 ≠ C1] [C1] […] [C1]

There are of course other presentation issues that would impact usability such as the choice of
fonts and their properties, layout and positioning of user interface components, use of white space, and
so on. These could also be addressed via an appropriate use of patterns.

Example
Figure 3 gives an abstract illustration of the solutions of some of the interaction design patterns
mentioned previously. As a concrete example, the “News Page” at IBM has used these interaction
design patterns.

Figure 3. A confluence of solutions of interaction design patterns in the development of Web Applications.

The numbers indicate the order of application and the FLY-OUT MENU items are shown in dashed
lines to exemplify non-permanence. Figure 3 does not show all possible behaviors of solutions but
rather presents only one possible view.

The Appendix summarizes the quality attributes and patterns mentioned in this paper. The list of
patterns is by no means complete and is subject to evolution. This is because the use of each pattern
places a Web Application in a new state (context) that can lead to new problem(s). To solve these
problem(s) we may have to apply new set of pattern(s), assuming that such pattern(s) are indeed
available.

Remark 5. The above discussion reiterates the fact that there is no unique classification scheme for
patterns. Indeed, a pattern proposed in one context can be applicable to other contexts, irrespective of
the original intention of the author, including placement in some known classification scheme.

86 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

Remark 6. Many of the patterns mentioned in this section can be implemented using an assortment of
technologies. The use of technologies needs to be conservative so as to be reachable to a variety of
user agents. Indeed, from previous discussion, two cases are relevant. The MVC pattern can be
realized using the Java implementation of frameworks like Asynchronous JavaScript and XML
(AJAX) and Rails where XML and XSLT can be used for storage and repurpose of text-based
information, and Extensible HyperText Markup Language (XHTML) along with CSS were used for
presentation of information. In case of the FLY-OUT MENU pattern, the menu can be populated with
menu items using ECMAScript (JavaScript), the expanding and collapsing of menu can be realized
using ECMAScript, highlighting of a menu item being pointed to can be realized using CSS, and the
navigation part can be realized via support for hypertext in XHTML.

3.9 Evaluating Effectiveness

There are metrics for theoretically evaluating the effectiveness of applying guidelines for the purpose
of improving certain quality attributes (like accessibility or usability) of Web Applications (Ivory,
2001). However, to the author’s knowledge there are no such corresponding metrics for patterns.
Furthermore, existing collection of metrics may prove insufficient to evaluate patterns (Masuda,
Sakamoto, & Ushijima, 1999). Therefore, there is much work to be done in the area of measuring
designs that make use of patterns.

For an empirical evaluation, a “lightweight” manifestation of POWEM was followed at
Concordia University in a project for managing patterns titled Patterns for Web, Web for Patterns
(P4W4P). Specifically, P4W4P was given in multiple undergraduate- and graduate-level courses, each
spanning about four months, and was carried out by multiple teams of size 10.

The complementary but interrelated goals for the development of the P4W4P Web Application were:

• Goal 1. P4W4P would make publicly available, from both print and/or electronic sources, a
cohesive and carefully selected collection of patterns for designing Web Applications. This
collection, namely Patterns for Web Applications (PWA), would acknowledge original sources, be
navigable, searchable, and evolvable. Users of P4W4P would have context-dependent help and
opportunities for feedback available to them at all times. P4W4P would also provide maintenance
facilities such as modifying the information of an existing pattern and adding/deleting a pattern.
The access to these administrative services would be restricted.

• Goal 2. P4W4P would apply PWA to itself.

Thus, the purpose of P4W4P was that it would help PWA, and in turn, PWA would help P4W4P.
Figure 4 illustrates the symbiosis resulting from the interplay of these goals.

Figure 4. The synergy between Patterns and Web Applications.

P. Kamthan 87

An initial, albeit informal and elementary, feasibility study for P4W4P was performed. The knowledge
and skill set of students were key determinants in forming groups within a single team. To manage
costs, the activities of modeling, documentation, and implementation were all carried out in an Open
Source Software (OSS) environment according to available guidance (Kamthan, 2007).

The development of P4W4P was both iterative and incremental with periodic deliverables. Based
on instructor’s formative assessment (feedback and suggestions for improvement, including questions),
some of these deliverables were revisited and revised for compliance with future submissions. In
particular, P4W4P followed the UPEDU with minor variations such as more emphasis on early
modeling in the Unified Modeling Language (UML), NFRs, and on interaction design, and less on
lengthy documentation. Many of the patterns mentioned in Section 3.8 were included in PWA and
were used during the development of P4W4P.

In general, the students found the project experience rewarding. In the following, the (admittedly
mixed) reactions and results by students using POWEM in P4W4P for achieving the aforementioned
goals are outlined. They are based on the reports submitted by the teams at the conclusion of the
project and have been limited only to the context of this paper.

• Quality Assurance. The students appeared to be more interested in quality attributes of concern to
consumers than to producers. For example, there was much more emphasis on patterns for usability
than for maintainability. This could be explained in two ways: most students did not have a formal
background in maintenance and the students knew at the outset that once the course ended they are
unlikely to maintain P4W4P in the future.

• Acquisition, Selection, and Application of Patterns. The students initially found the notion of a
pattern rather abstract and hard to understand, particularly when it was introduced in a domain-
independent fashion, but intriguing once exposed to real-world examples. Furthermore, they found
the selection from a large number of (at times, seemingly similar) patterns on certain topics to be
overwhelming. On the other hand, this made them appreciate the necessity of a well-designed
navigation and precise searching in their own effort towards P4W4P. The students also found that,
in some cases, the descriptions of certain patterns were inadequate (such as absence of certain
mandatory elements) in order for them to make an informed decision about their selection. In
retrospect, this also helped them “reengineer” certain key aspects such as the context and forces of
a pattern.

• Quality Evaluation. The task of formally inspecting the design artifacts, including verifying the
presence and use of patterns, was carried out in rotation (for example, Team A reviews the design
of Team B, Team B reviews the design of Team C, and so on). The students found the inspections
carried out to be useful for improving their own designs and for instilling a competitive yet
professional spirit.

3.10 POWEM in Perspective

It is evident that POWEM is not “absolute.” The discussion on the feasibility of each of the steps in
POWEM places constraints and determines the scope of POWEM.

POWEM also does not come with an a priori guarantee of an improvement in quality.
Specifically, for a given quality attribute, the non-existence of a suitable pattern; the inability to find a
pattern within a given time constraint to make optimal use of it; not being able to use a pattern due to
organizational policies; or misinterpretation of the context of a pattern leading to an undesirable result,
are all potential limitations of a pattern-oriented approach to Web Applications such as POWEM.

88 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

4 Some Directions for Future Research

This section briefly discusses the different directions in which the work presented in this paper can be
extended and may be worth pursuing.

4.1 Extensions of POWEM

Table 1 could benefit from formalization of the relationships between quality attributes and patterns.
Another possible extension of Table 1 is increasing the granularity of the quality attributes at the level
Pragmatic-Tier 1, and thereby adding another level (say, Tier 0) underneath it. In that case, for
example, fault tolerance and recoverability could be candidate quality attributes that belong to the level
Pragmatic-Tier 0. Some patterns for fault tolerance and recoverability have been suggested (Ahluwalia
& Jain, 2006). Similarly, consistency (on which familiarity depends) could be a candidate for the level
Pragmatic-Tier 0.

4.2 Integration of Patterns in Web Engineering Education

There appears to be a potential for deployment of patterns Web Engineering education, both inside and
outside the classroom. For example, during lectures, teachers could demonstrate the use of patterns in
the design of Web Applications. The students could be asked to compare and contrast between a given
set of competing patterns for a specific problem. They could also be, as described in Section 3.9, asked
to make use of a pre-selected collection of patterns in a course project like P4W4P.

However, a systematic integration of patterns in Web Engineering education will need to be in
line with the adopted teaching strategies and learning theories. There is currently no standard effort
towards defining the knowledge areas and the basic body of knowledge in Web Engineering education
where patterns could be given a place. There are pedagogical models for Web Engineering education
(Hadjerrouit, 2005) but the support for patterns in them is also lacking.

4.3 Adoption of Patterns in Standards for Web Engineering

It is known that based on consensus, standards provide a common ground and, when applied well, can
contribute towards improvement of productivity and communicability across project teams. There exist
initiatives for standardizing the development of Web Applications such as the IEEE Standard 2001-
2002 that do signify the role of quality and means for evaluation. However, the adoption of patterns in
such standards efforts will be crucial for a widespread acceptance and use of patterns in Web
Engineering.

5 Conclusion

A disciplined approach towards the development of Web Applications is necessary for both their
longevity and for acceptance by their stakeholders. A systematic and lasting view towards pragmatic
quality, and viable means for addressing it, is integral to this. Patterns provide one practical means for
addressing the quality of Web Applications, if they are located, adopted and applied with care, within a
systematic development process, and by taking feasibility issues into consideration. This paper
presents a step in that direction.

Still, for patterns to continue being useful, they must be adequately described, be openly
available, be readily findable, and evolve with the Web and the needs of Web Applications. In other
words, pattern authors and Web Engineers share the responsibility in the deployment of patterns in
future Web Applications. P4W4P only reinforces the significance of this commitment.

In conclusion, by investing in a pattern-oriented and stakeholder-quality-centric approach such as
POWEM, the producers of Web Applications can further the spirit of Web Engineering by bringing
more structure and predictability in the development process. A transition towards a preventative

P. Kamthan 89

approach to the quality of Web Applications equipped with patterns is not free but the benefits can
outweigh the costs in the long-term.

Acknowledgements

The author would like to thank the reviewers for their feedback and suggestions for improvement.

References

[1] Ahluwalia, K. S., & Jain, A. (2006). High Availability Design Patterns. The 13th Conference on Pattern
Languages of Programs (PLoP 2006), Portland, USA, October 21-23, 2006.

[2] Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-Oriented Software Architecture,
Volume 5: On Patterns and Pattern Languages. John Wiley and Sons.

[3] Beck, K., & Andres, C. (2005). Extreme Programming Explained: Embrace Change (Second Edition).
Addison-Wesley.

[4] Boreham, N. C. (1987). Causal Attribution by Sensing and Intuitive Types during Diagnostic Problem
Solving. Instructional Science, 16, 123-136.

[5] Brajnik, G. (2001). Towards Valid Quality Models for Web Sites. The 7th Conference on Human Factors and
the Web (HFWeb 2001), Madison, USA, June 4-6, 2001.

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern Oriented Software
Architecture, Volume 1: A System of Patterns. John Wiley and Sons.

[7] Busse, D. (2002). Usable Web Design Patterns for World-Ready E-Commerce Sites. CHI 2002 Workshop on
Patterns in Practice: A Workshop for UI Designers, Minneapolis, USA, April 21, 2002.

[8] Casteleyn, S., Garrigós, I., & Plessers, P. (2004). Pattern Definition to Refine Navigation Structure in
Hypermedia/Web Applications. The IADIS International Conference WWW/Internet 2004 (ICWI 2004),
Madrid, Spain, October 6-9, 2004.

[9] Dromey, R. G. (2003). Software Quality - Prevention Versus Cure? Software Quality Journal, 11(3), 197-
210.

[10] Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., & Stafford, R. (2003). Patterns of Enterprise
Application Architecture. Addison-Wesley.

[11] Fraternali, P., Matera, M., & Maurino, A. (2002). WQA: An XSL Framework for Analyzing the Quality of
Web Applications. The 2nd International Workshop on Web-Oriented Software Technology (IWWOST
2002), Malaga, Spain, June 10-11, 2002.

[12] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

[13] German, D. M., & Cowan, D. D. (2000). Towards a Unified Catalog of Hypermedia Design Patterns. The
33rd Hawaii International Conference on System Sciences (HICSS 2000), Maui, USA, January 4-7, 2000.

[14] Gilb, T. (1988). Principles of Software Engineering Management. Addison-Wesley.

[15] Graham, I. (2003). A Pattern Language for Web Usability. Addison-Wesley.

[16] Hadjerrouit, S. (2005). Designing a Pedagogical Model for Web Engineering Education: An Evolutionary
Perspective. Journal of Information Technology Education, 4, 115-140.

[17] Ivory, M. Y. (2001). An Empirical Foundation for Automated Web Interface Evaluation. PhD Thesis,
University of California, Berkeley, USA.

[18] Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software Development Process. Addison-
Wesley.

[19] Jacobson, I., Christerson, M., Jonsson, P., & Övergaard, G. (1992). Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley.

90 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

[20] Kamthan, P. (2007). On the Prospects and Concerns of Integrating Open Source Software Environment in
Software Engineering Education. Journal of Information Technology Education, 6, 45-64.

[21] Kappel, G., Pröll, B., Reich, S., & Retschitzegger, W. (2006). Web Engineering. John Wiley and Sons.

[22] Keirsey, D. (1998). Please Understand Me II. Prometheus Nemesis Book Company.

[23] Kotonya, G., & Sommerville, I. (1998). Requirements Engineering: Processes and Techniques. John Wiley
and Sons.

[24] Kumar, K., & Welke, R. J. (1992). Methodology Engineering: A Proposal for Situation-Specific
Methodology Construction. In: Challenges and Strategies for Research in Systems Development. W. W.
Cotterman & J. A. Senn (Eds.). John Wiley and Sons, 257-269.

[25] Lindland, O. I., Sindre, G., & Sølvberg, A. (1994). Understanding Quality in Conceptual Modeling. IEEE
Software, 11(2), 42-49.

[26] Lyardet, F., & Rossi, G. (1998). Patterns for Designing Navigable Information Spaces. The 5th Conference
on Pattern Languages of Programs (PLoP 1998), Monticello, USA, August 11-14, 1998.

[27] Lyardet, F., & Rossi, G. (2001). Web Usability Patterns. The 6th European Conference on Pattern Languages
of Programs (EuroPLoP 2001), Irsee, Germany, July 4-8, 2001.

[28] Lyardet, F., Rossi, G., & Schwabe, D. (1999). Patterns for Adding Search Capabilities to Web Information
Systems. The 4th European Conference on Pattern Languages of Programming and Computing (EuroPLoP
1999), Irsee, Germany, July 8-10, 1999.

[29] Manolescu, D., & Kunzle, A. (2001). Several Patterns for eBusiness Applications. The 8th Conference on
Pattern Languages of Programs (PLoP 2001), Monticello, USA. September 11-15, 2001.

[30] Marks, M., & Hong, D. (2006). Web Design Patterns Collection Technical Design. Center for Document
Engineering Technical Report CDE2006-TR09. University of California, Berkeley, USA.

[31] Masuda, G., Sakamoto, N., & Ushijima, K. (1999). Evaluation and Analysis of Applying Design Patterns.
International Workshop on the Principles of Software Evolution (IWPSE 1999), Fukuoka, Japan, July 16-17,
1999.

[32] McPhail, J. C., & Deugo, D. (2001). Deciding on a Pattern. The Fourteenth International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE 2001),
Budapest, Hungary, June 4-7, 2001.

[33] Mendes, E., & Mosley, N. (2006). Web Engineering. Springer-Verlag.

[34] Mich, L., Franch, M., & Gaio, L. (2003). Evaluating and Designing Web Site Quality. IEEE Multimedia,
10(1), 34-43.

[35] Montero, F., López-Jaquero, V., & Molina, J. P. (2003). Improving e-Shops Environments by Using
Usability Patterns. The 2nd Workshop on Software and Usability Cross-Pollination, Zürich, Switzerland,
September 1-2, 2003.

[36] Offutt, J. (2002). Quality Attributes of Web Software Applications. IEEE Software, 19(2), 25-32.

[37] Pertet, S. M., & Narasimhan, P. (2005). Causes of Failure in Web Applications. PDL Technical Report PDL-
CMU-05-109. Carnegie Mellon University, Pittsburgh, USA.

[38] Perzel, K., & Kane, D. (1999). Usability Patterns for Applications on the World Wide Web. The 6th
Conference on Pattern Languages of Programs (PLoP 1999), Monticello, USA, August 15-18, 1999.

[39] Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (1995). The Capability Maturity Model: Guidelines
for Improving the Software Process. Addison-Wesley.

[40] Rosado, D. G., Fernández-Medina, E., & Piattini, M. (2006). Comparison of Security Patterns. The
International Journal of Computer Science and Information Security, 6(2B), 139-146.

[41] Rossi, G., & Koch, N. (2002). Patterns for Adaptive Web Applications. The 7th European Conference on
Pattern Languages of Programs (EuroPLoP 2002), Irsee, Germany, July 3-7, 2002.

P. Kamthan 91

[42] Rossi, G., Schwabe, D., & Lyardet, F. (1999). Improving Web Information Systems with Navigational
Patterns. The 8th International World Wide Web Conference (WWW8), Toronto, Canada, May 11-14, 1999.

[43] Schmettow, M. (2006). User Interaction Design Patterns for Information Retrieval Systems. The 11th
European Conference on Pattern Languages of Programs (EuroPLoP 2006), Irsee, Germany, July 5-9, 2006.

[44] Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2000). Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and Networked Objects. John Wiley and Sons.

[45] Simon, H. (1996). The Sciences of the Artificial (Third Edition). The MIT Press.

[46] Stamper, R. (1992). Signs, Organizations, Norms and Information Systems. The 3rd Australian Conference
on Information Systems, Wollongong, Australia, October 5-8, 1992.

[47] May, D., & Taylor, P. (2003). Knowledge Management with Patterns. Communications of the ACM, 46 (7),
94-99.

[48] Tidwell, J. (2006). Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly Media.

[49] Tractinsky, N., Cokhavi, A., Kirschenbaum, M., & Sharfi, T. (2006). Evaluating the Consistency
of Immediate Aesthetic Perceptions of Web Pages. International Journal of Human-Computer
Studies, 64, 1071-1083.

[50] Vanderdonckt, J. (1999). Development Milestones towards a Tool for Working with Guidelines, Interacting
with Computers, 12(2), 81-118.

[51] Van Duyne, D. K., Landay, J., & Hong, J. I. (2003). The Design of Sites: Patterns, Principles, and Processes
for Crafting a Customer-Centered Web Experience. Addison-Wesley.

[52] Van Solingen, R., & Berghout, E. (1999). The Goal/Question/Metric Method: A Practical Method for Quality
Improvement of Software Development. McGraw-Hill.

[53] Van Welie, M., & Van Der Veer, C. (2000). A Structure for Usability Based Patterns. CHI 2000 Workshop
on Pattern Languages for Interaction Design: Building Momentum. The Hague, The Netherlands. April 2-3,
2000.

[54] Weiss, M. (2003). Patterns for Web Applications. The 10th Conference on Pattern Languages of Programs
(PLoP 2003), Urbana, USA, September 8-12, 2003.

[55] Wellhausen, T. (2005). User Interfaces for Searching - A Pattern Language. The 10th European Conference
on Pattern Languages of Programs (EuroPloP 2005), Irsee, Germany, July 6-10, 2005.

[56] Wentzlaff, I., & Specker, M. (2006). Pattern Based Development of User Friendly Web Applications.
Workshop on Model-Driven Web Engineering (MDWE 2006), Palo Alto, USA, July 10, 2006.

[57] Wong, B. (2006). Different Views of Software Quality. In: Measuring Information Systems Delivery
Quality. E. Duggan & J. Reichgelt (Eds.). Idea Group, 55-88.

[58] Yoder, J., & Barcalow, J. (1997). Architectural Patterns for Enabling Application Security. The 4th
Conference on Pattern Languages of Programs (PLoP 1997), Monticello, USA, September 3-5, 1997.

Appendix

Table 4 summarizes (in a lexicographical order) the patterns mentioned in this paper within the context
of pragmatic quality of Web Applications. A symbol of (+) associated with a pattern name reflects a
positive impact on the corresponding quality attribute, whereas a (−) reflects a negative impact.

Pragmatic Quality Attribute Patterns
Aesthetics COLOR-CODED SECTIONS (+)

DEEP BACKGROUND (+)
FEATURED PRODUCTS (+)
FEW HUES, MANY VALUES (+)

Availability FAIL-OVER THROUGH CLUSTERING (+)
FAILURE NOTIFICATION (+)
HEARTBEAT (+)
INTRODUCE REDUNDANCY (+)

92 Addressing the Pragmatic Quality of Web Applications by Integration of Patterns

Comprehensibility ALPHABETICAL ORGANIZATION (+)
CHRONOLOGICAL ORGANIZATION (+)
GRID LAYOUT (+)
INTUITIVE SEARCH INTERFACE (+)
PAGING (+)
RESPONSIVE DISCLOSURE (+)
SIMPLE AND EXPERT SEARCH DIALOG (+)
SIMPLE SEARCH INTERFACE (+)
STRAIGHTFORWARD SEARCH FORMS (+)
WIZARD (+)

Efficiency CARD STACK (+)
FLY-OUT MENU (+)
ORGANIZED SEARCH RESULTS (+)
SEARCH BAR (+)

Familiarity EDUCATIONAL FORUMS (+)
NONPROFITS AS NETWORKS OF HELP (+)
SELF-SERVICE GOVERNMENT (+)

Maintainability APPLICATION CONTROLLER (+)
APPLICATION SERVER (+)
CLIENT-SERVER (+)
FRONT CONTROLLER (+)
INTRODUCE REDUNDANCY (−)
LOCALE HANDLING (−)
MODEL-VIEW-CONTROLLER (+)
SEPARATE CONTENT FROM PRESENTATION (+)
WHOLE-PART (+)

Performance ACCOUNT SETUP (+)
EXPLOIT SOCIAL INFORMATION (+)
FAST-DOWNLOADING IMAGES (+)
ONLY HERE! (+)
RANK BY AUTHORITY (+)
REFINE RESULTS (+)
SAVE SEARCHES (+)
SELECTABLE KEYWORDS (+)
SELECTABLE SEARCH SPACE (+)
SIMPLE AND EXPERT SEARCH DIALOG (+)
WHOLE-PART (−)

Readability FLY-OUT MENU (+)
GRID LAYOUT (+)
HORIZONTAL NAVIGATION (+)
ROW STRIPING (+)
VERTICAL NAVIGATION (+)

Reliability FAILURE NOTIFICATION (+)
INTRODUCE REDUNDANCY (+)

Usability AUTO COMPLETE (+)
BREADCRUMBS (+)
CARD STACK (+)
CORRECT ME IF YOU CAN (+)
CLEAR ENTRY POINTS (+)
CLOSABLE PANELS (+)
DIRECT PATH (+)
FAST-DOWNLOADING IMAGES (+)
HOME PAGE (+)
LOCALE HANDLING (+)
MIRRORWORLD (+)
MISSING LINK (+)
MULTI-LEVEL UNDO (+)
SESSION (+)
TWO-PANEL SELECTOR (+)
WHAT’S NEW PAGE (+)

Table 4. Pragmatic quality attributes of a Web Application and corresponding patterns along with their ratings.

