
Journal of Web Engineering, Vol. 6, No. 4 (2007) 283–308
c© Rinton Press

AN INFRASTRUCTURE FOR SEMANTIC WEB PORTALS

YUANGUI LEI, VANESSA LOPEZ, ENRICO MOTTA, VICTORIA UREN

Knowledge Media Institute, the Open University, Walton Hall

Milton Keynes, MK7 6AA, United Kingdom
{y.lei, v.lopez, e.motta, v.s.uren}@open.ac.uk

Received June 1, 2007

Revised December 1, 2007

This paper presents our Semantic Web portal infrastructure, which focuses on how to

enhance knowledge access in traditional Web portals by gathering and exploiting se-
mantic metadata. Special attention is paid to three important issues that affect the

performance of knowledge access: i) high quality metadata acquisition, which concerns

how to ensure high quality while gathering semantic metadata from heterogeneous data
sources; ii) semantic search, which addresses how to meet the information querying needs

of ordinary end users who are not necessarily familiar with the problem domain or the

supported query language; and iii) semantic browsing, which concerns how to help users
understand and explore the problem domain.

Keywords: Semantic Web Portal, Semantic Metadata Acquisition, Quality Control, Se-

mantic Search, Semantic Browsing

1 Introduction

Knowledge access in traditional Web portals is typically achieved by i) hyperlinks in Web
resources, which enable navigation across Web resources; and ii) text search, which allows
the user to search information contained in the underlying data sources. The performance is
greatly limited by the lack of explicit meaning of data sources. For example, when searching
for news stories about PhD students, with traditional Web portals, we often can only get news
entries in which the term “PhD students” appears. Those entries which mention the names
of students but do not use the term directly will be missed out. Such news entries however
are often the ones that the user is interested in.

The goal of Semantic Web (SW) portals is to address this issue by adding and exploit-
ing semantic metadata that describe the meaning of data sources. One crucial condition for
achieving this goal is the existence of appropriate facilities that would ensure high quality
metadata to be gathered from the underlying data sources, thus enabling the associated ser-
vices, in particular, knowledge access services, to produce accurate results. Several problems
can happen in the metadata extraction process, which decrease the quality of the semantic
metadata. Data sources can have low quality (e.g., misspelling, erroneous statements, etc.);
problems can be derived from the fusion of multiple data sources (e.g., inconsistencies and
duplicated entries) or be introduced by the tools employed. Changes to the data sources can
also bring problems. Therefore, measures for quality control are essential.

Another important condition for successful SW portals is the existence of facilities that

283



284 An Infrastructure for Semantic Web Portals

provide sufficient support to help end users achieve their information seeking goals. Essen-
tially, this requires two types of support. One is to help users make explicit queries and exploit
semantic metadata to produce precise answers. We call this semantic search. The other is
to supply end users with browsing facilities to enable them explore the problem domain and
find the information they are looking for, which we call semantic browsing.

Regarding semantic search, an important issue is how to approach query specification for
ordinary end users in a way that would lower the barrier for them to make complex semantic
queries. In the case of relatively simple queries, a straightforward way of asking queries is
highly desirable. Both natural language question answering and keyword based searching
are elegant solutions to the problem. In the situation where complex queries are involved,
intuitive user interfaces are needed to support the specification.

As to semantic browsing, a key issue is how to support both coarse grained and fine
grained views of the problem domain. While coarse grained views present general pictures of
the entire knowledge space of a SW portal, fine grained views display more detailed pictures of
the given individual entity. Both types of views are beneficial for end users in understanding
the problem domain.

Our overview of existing SW portals with respect to these issues (in Section 2) reveals that
there is plenty of space for improvement. In this context, we proposed and implemented a
SW portal infrastructure, called KSW, which offers several tools to enhance the performance
of SW portals on the issues clarified above.

The rest of the paper is organized as follows. We begin by investigating how existing SW
portals approach the issues of metadata extraction and knowledge access (Section 2). We then
present an overview of our infrastructure and the KMi context that is needed to understand
the examples of the paper (Section 3). Thereafter, we explain the core components of the
infrastructure in sections 4, 5, 6, and 7. In Section 8, we describe the related work. Finally, we
conclude our paper with a discussion of our main contributions, limitations of the approach
and future work in Section 9.

2 SW Portals: State of the Art

In this section, we investigate how existing SW portals approach the three important issues
described above, namely high quality metadata extraction, semantic search, and semantic
browsing. As our special attention of this section is paid to SW portals, general related work
is described later in Section 8. We survey a representative sample of portals and tools without
performing an exhaustive study of this research strand.

2.1 An overview

MindSwapa, Esperontob , OntoWebc , and Knowledge Webd are examples of the first generation
of SW portals that are designed for sharing data sources among partners of specific research
projects. Metadata in these portals are typically constructed manually. As such, quality
control is usually done manually. Semantic search is enabled by form based ontology search,
which uses the structures of the underlying ontology to generate forms, menus and drop

ahttp://www.mindswap.org/
bhttp://www.esperonto.net/
chttp://www.ontoweb.org/
dhttp://knowledgeweb.semanticweb.org



Y. Lei, V. Lopez, E. Motta, and V. Uren 285

down lists, thus guiding the user in formulating queries. Some portals (e.g., MindSwap) also
support keyword based semantic search, which returns semantic entities that are related to
the keyword. As to semantic browsing, tree view based visualization techniques are common
in these portals, which project the collections of the gathered metadata and data sources
into trees using the domain ontology. Tools for building such Web portals (e.g., SEAL [1],
OntoWebber [2] and ODESeW [3]) typically focus on how to automatically generate Web pages
that support the main functionalities, namely metadata construction, form based search, and
content visualization.

Compared to the SW portals described above, CS AKTive Space [4], Flink [5], Muse-
umFinland [6], mSpace [7], and the MultiMediaN E-Culture Demonstrator [8] are more re-
cent examples that are equipped with more sophisticated mechanisms to demonstrate the
advantages of Semantic Web technologies in specific problem domains.

CS AKTive Space gathers semantic metadata automatically on a continuous basis for the
UK’s Computer Science research domain. Quality control related issues such as the problem
of duplicate entities are addressed by heuristics based methods or by using manual input.
Semantic browsing is supported by a geographic visualizer, which provides an interactive
geographic browsing facility. As to semantic search, the portal offers end users an RDF query
language based interface, which requires users to specify queries using the supported query
language (e.g., SPARQLe).

Flink focuses on online social networks in the research community of the Semantic Web.
Metadata are gathered from Web pages, FOAF profiles, Emails, and Web databases (e.g.,
Google Scholar). Quality control is addressed by two means. One is co-relation, which relies
on a set of domain specific inference rules to determine whether different resources refer
to the same individual. The other is merging, which combines profile information based
upon the owl:sameAs relation. Regarding semantic browsing, graphs are used to support the
visualization and the navigation of social networks of individuals. Semantic search is however
not addressed.

MuseumFinland offers integrated access to heterogeneous museum collections. Semantic
metadata are gathered by means of mapping database schemas to the shared museum ontolo-
gies. Errors were logged by the system for correction by a human user. Semantic browsing
is supported by a view-based multi-facet browsing facility, which makes use of museum cat-
egory hierarchies to filter information. Semantic search, on the other hand, is addressed by
a keyword search facility, which matches the keyword with the available categories and then
uses the category matches to filter information.

mSpace is a SW portal specialized in classical music. It offers users a form-like user
interface, which allows users to organize the information space according to their querying
requirements by selecting or deselecting columns that represent concepts of the domain on-
tology.

MultimediaN E-culture Demonstrator pays special attention to the indexing and the search
of large collections of resources contained in the Dutch cultural-heritage domain. Metadata
are gathered mainly automatically by i) transforming the existing textual annotations into
annotations using the domain ontology and ii) clustering resources into the pre-defined se-
mantic categories. Manual annotation tools are also provided to support users annotating

ehttp://www.w3.org/TR/rdf-sparql-query/



286 An Infrastructure for Semantic Web Portals

any resources on the Web. A keyword based semantic search facility is provided, which re-
turns art works that are related to the keyword. These art works are clustered using the
relevant semantic terms. Regarding semantic browsing, a traditional view-based approach is
employed.

2.2 Summary

High quality metadata acquisition. Most recent SW portals mentioned above support
metadata acquisition. However, their support for quality control is relatively weak. Even
though some co-relation and disambiguation mechanisms have been exploited (e.g., in CS
AKTive Space and Flink), quality control has not been fully addressed and is often domain
specific. For example, how to detect and address spurious annotations has not been tackled in
any of the approaches mentioned above. Such problems may significantly decrease the quality
of the acquired semantic data.

Semantic search. This has been addressed in most SW portals in one way or another.
Several search modes are observed, including keyword based, form based, view based, and
RDF query language based search. While each user interaction mode has its unique advan-
tages over the others, the user support provided is not sufficient when each is used alone for
dealing with complex search environments. For example, keyword search and natural lan-
guage querying offer easy routes in for users, but don’t support exploration of the semantic
search space. Those users who are not necessarily familiar with the problem domain are left
out of the systems. View based search and forms can help the user explore the space, but
become tedious to use in large spaces and impossible in heterogeneous ones.

Semantic browsing. The most common support found is tree based browsing, which
projects the underlying data (or data sources) into hierarchies using the domain ontology.
Some tools offer more comprehensive support by generating i) facet based views (e.g., Muse-
umFinland, mSpace, and MultimediaN), which cluster data sources into different facets; ii)
geographic views (e.g., in CS AKTive Space), which support information browsing according
to the specified geographic locations; or iii) graph views (e.g., Flink), which allow users to
navigate through the knowledge space by working with graphs. Apart from the support for
such coarse grained views of the problem domain, most SW portals also offer means to allow
the viewing of the detailed specification of a given individual entity.

While these means are quite useful in helping users understand the problem domain, fine
grained level support is, however, not sufficient. In most cases, users are more likely to be
interested in the semantic relation network of the given entity with its neighborhood entities
than in the detailed specification. Simply displaying the details of the given entity does not
help much, as many relations are not directly defined in the specification. For instance, we
cannot get relations between Enrico and his colleagues by viewing the details of the instance
Enrico. As a consequence, users have to derive the knowledge networks themselves in order
to get an appropriate view. A partial exception is Flink, which focuses on visualizing the
knowledge networks between people. Even with Flink, the user can only browse generic
connections between different people without any support for fine grained classification (i.e.,
the distinguishing of different types of relations, e.g., knowing, co-authoring).



Y. Lei, V. Lopez, E. Motta, and V. Uren 287

3 An Overview of the KMi SW Portal Infrastructure

Our SW portal infrastructure addresses the important limitations of existing SW portals
identified above by offering several tools which enable comprehensive support for knowledge
access. First, an automated metadata acquisition tool, ASDI [9], is developed which focuses
on how to ensure high quality in the metadata acquisition process. Second, two semantic
search tools are implemented, which aim to hide the complexity of semantic search from
end users and support users making complex queries. One is AquaLog [10], which answers
questions submitted in natural language format. The other is SemSearch [11], which offers
several ways to help end users make complex semantic queries. Third, the infrastructure
supports a semantic browser called SemBrowser, which facilitates the browsing of the semantic
networks contained in the underlying data sources.

Figure 1 shows an overview of the KSW architecture. Essentially, KSW produces SW
portals that are equipped with the functionalities described above. It adopts a layered archi-
tecture, containing a source data layer, an extraction layer, a semantic data layer, a semantic
service layer, and a presentation layer.

Fig. 1. Building Semantic Web portals with the KMi SW portal infrastructure.

• The source data layer comprises the collection of all available data sources such as
semi-structured textual documents (e.g., Web pages) or structured data in the form of
XML feeds, databases, and knowledge bases.

• The extraction layer is responsible for the extraction of high quality semantic data
from the source data layer. The core component is the metadata acquisition tool ASDI.
As will be described in section 4, ASDI provides several means to ensure the quality of
the extracted data.

• The semantic data layer contains a number of domain ontologies and semantic data
repositories which store metadata extracted from the source data layer by the underlying
extraction layer.

• The semantic service layer offers knowledge access services over the semantic meta-
data repositories for SW portals. Central to this layer are three components: the



288 An Infrastructure for Semantic Web Portals

semantic search tools AquaLog and SemSearch, and the semantic browsing tool Sem-
Browser. As will be explained in Section 5 and Section 6, the semantic search tools
address the limitations associated with the semantic search facility of existing SW por-
tals. SemBrowser, on the other hand, employs several means to enable the browsing of
knowledge networks of individual entities. SemBrowser will be described in Section 7.

• The presentation layer supports the generation of user interfaces for SW portals. Our
SW portal infrastructure relies on OntoWeaver-S [12] to support i) the aggregation of
data from the semantic service layer and the semantic data layer and ii) the generation
of dynamic Web pages. OntoWeaver-S offers high level support for the design of data
aggregation templates, which describe how to retrieve data and organize data content.
As the generation of user interfaces is out of the scope of this paper, we will not go
through the details of OntoWeaver-S. Please refer to [12] for the details.

We have designed and tested KSW in the context of building a SW portal for KMi that
would provide integrated access to various aspects of the academic life of our labf. The relevant
knowledge is distributed in several different data sources such as departmental databases (e.g.,
information about people, technologies, projects, etc.) and HTML pages (e.g., news stories).
In particular, KMi has an electronic newsletterg, which now contains an archive of several
hundred news items, describing events of significance to the KMi members. Beside its het-
erogeneous nature, another important feature of the KMi domain data is that it continuously
undergoes changes. For example, KMi-related events are reported in the newsletter and added
to the news archive. Therefore, the semantic metadata that underly the portal have to be
updated often. The KMi SW portal has been up and running for a couple of years now, gath-
ering and maintaining semantic metadata from data sources and offering knowledge access
facilities to both human users and SW applications.

4 ASDI: Gathering High Quality Metadata from Heterogeneous Sources

To ensure high quality, we identify three generic tasks that are related to metadata extraction
and which should be supported in Semantic Web portals. They include i) extracting infor-
mation in an automatic and adaptive manner, so that, on the one hand, the process can be
easily repeated periodically in order to keep the knowledge updated and, on the other hand,
different meanings of a given term can be captured in different context; ii) ensuring that the
derived metadata is free of common errors; and iii) updating the semantic metadata as new
information becomes available.

In ASDI we provide support for all these quality assurance related tasks. Figure 2 shows
its architecture. ASDI relies on an automatic information extraction tool, which marks-up
textual sources, a semantic transformation engine, which converts data from source repre-
sentations into the specified domain ontology according to the transformation instructions
specified in a mapping ontology, and a verification engine, which checks the quality of the
previously generated semantic data entries. These components will be explained in the fol-
lowing subsections.

fhttp://semanticweb.kmi.open.ac.uk
ghttp://kmi.open.ac.uk/news



Y. Lei, V. Lopez, E. Motta, and V. Uren 289

Fig. 2. The architecture of the metadata extraction tool ASDI.

4.1 Information extraction

We use ESpotter [13], a named entity recognition (NER) system, to provide an information
extraction service. ESpotter accepts the URL of a textual document as input and produces a
list of the named entities mentioned in that text. In particular, ESpotter is able to provide an
adaptive service by utilizing ontologies and lexicon resources that are available in the problem
domain. For example, in the context of the KMi domain, ESpotter is able to mark the term
“Magpie” as a project, while in other domains it marks it as a bird.

For the purpose of converting the extracted data to the specified domain ontology (i.e.,
the ontology that should be used by the final applications), an instance mapping ontology (see
details in [14]) has been developed, which supports i) the generation of rich semantic relations
along with semantic data entries, and ii) the specification of domain specific knowledge (i.e.
lexicons). The lexicons are later used by the verification process.

A semantic transformation engine has been prototyped, which accepts structured sources
and transformation instructions as input and produces semantic data entries. To ensure that
the acquired data stays up to date, a set of monitoring services detect and capture changes
made in the underlying data sources and initiate the whole extraction process again. This
ensures a sustainable and maintenance-free operation of the overall architecture.

4.2 Information verification

The goal of the verification engine is to check that each entity has been extracted correctly
by the extraction components.The verification process consists of three increasingly complex
steps as depicted in Figure 3. These steps employ several Semantic Web tools and a set of
resources to complete their tasks.



290 An Infrastructure for Semantic Web Portals

Fig. 3. The overall algorithm of the data verification engine.

Step1: Checking the internal lexicon library. The lexicon library maintains domain
specific lexicons (e.g., abbreviations) and records the mappings between strings and instance
names. One lexicon mapping example in the KMi Semantic Web portal is that the string
“ou” corresponds to the instance the-open-university entity that has been defined in one of
the domain specific ontologies. The verification engine will consider any appearances of this
abbreviation as referring to the corresponding entity.

The lexicon library is initialized by lexicons specified through the mapping instruction
and expands as the verification process goes on. By using the lexicon library, the verification
engine is able to i) exploit domain specific lexicons to avoid domain specific noisy data and
ii) avoid repeating the verification of the same entity thus making the process more efficient.

Step2: Querying the semantic metadata repository. This step uses an ontology-
based data querying engine, to query the already acquired semantic metadata (which is as-
sumed to be correct, i.e., trusted) and to solve obvious typos and minor errors in the data.
This step contains a disambiguation mechanism, whose role is to de-reference ambiguous en-
tities (e.g., whether the term “star wars” refers to the Lucas’ movie or President Reagan’s
military programme).

The data querying engine employs a number of string matching algorithms to deal with
obvious typos and minor errors in the data. For example, in a news story a student called
Dnyanesh Rajapathak is mentioned. The student’s name is however misspelled as it should
be Dnyanesh Rajpathak. While the name is successfully marked up and integrated, the mis-
spelling problem is carried into the portal as well. With support from the data querying
engine, this problem is corrected by the verification engine. It queries the knowledge base
for all entities of type Student and discovers that the difference between the name of the



Y. Lei, V. Lopez, E. Motta, and V. Uren 291

verified instance (i.e., Dnyanesh Rajapathak) and that of one of the students (i.e, Dnyanesh
Rajpathak) is minimal (they only differ by one letter). Therefore, the engine returns the cor-
rect name of the student as a result of the verification. Note that this mechanism falls down
when similarly named entities denote different real life objects.

If there is a single match, the verification process ends. However, when more matches
exist, contextual information is exploited to address the ambiguity. The verification engine
exploits the semantic relations between the entities that appear in the same piece of text (e.g.
the news story) and the matches as contextual information. For example, when verifying the
person entity Victoria, two matches are found: Victoria-Uren and Victoria-Wilson. To decide
which one is the appropriate match, the verification engine looks up other entities extracted
from the same document and checks whether they have any relation by using formal queries.
In this example, the instance AKT is annotated in the same story. Using a Sesame Serql
queryh “select r from {ksw:Victoria-Uren} r {ksw:Victoria-Uren}”, we can get a relation has-
project-member) between the Victoria-Uren and AKT. Victoria Wilson, on the other hand,
does not have any direct relation with AKT. Hence, the appropriate match is more likely to
be Victoria-Uren than Victoria-Wilson.

Step3: Investigating external resources. If the second step fails, external resources
such as the Web are investigated to identify whether the entity is erroneous, in which case it
should be removed, or correct but new to the system. For this purpose, an instance classifica-
tion tool was developed, which makes use of PANKOW [15] and WordNet [16], to determine
the appropriate classification of the verified entity. Now let us explain the mechanism by
using the process of verifying the entity IBM as an example.

Step 3.1. The PANKOW service is used to classify the string IBM. PANKOW employs
an unsupervised, pattern-based approach on Web data to categorize the string and produces
a set of possible classifications along with ranking values. If PANKOW cannot get any result,
the term is treated as erroneous but still can be partially correct. Thus, its variants are
investigated one by one until classifications can be drawn. For example, the variants of the
term “BBC news” are the term “BBC” and the term “news”. If PANKOW returns any
results, the classifications with the highest ranking are picked up. In this example, the term
“company” has the highest ranking.

Step 3.2. Next the algorithm uses WordNet to compare the similarity between the type of
the verified entity as proposed by the information extraction tool (i.e., “organization” in this
example) and an alternative type for the entity as returned by PANKOW (i.e.,“company”).
The algorithm here only checks whether they are synonyms. If they are (which is the case
of the example), it is concluded that the verified entity is classified correctly. Thus, a new
instance (IBM of type Organization) needs to be created and added to the repository. Oth-
erwise, other major concepts of the domain ontology are compared to the Web-endorsed type
(i.e.,“company”) in an effort to find a proper classification for the entity in the domain on-
tology. If such classification is found, it is concluded that the verified entity was wrongly
classified. Otherwise, it can be safely concluded that the verified entity is erroneous.

In summary, ASDI provides several means to address the issue of high quality metadata
extraction clarified in the introduction. First, it addresses ambiguities by taking into account
the context in which an entity is mentioned in order to determine its type. Second, it contains

hhttp://www.openrdf.org/doc/sesame/users/ch06.html



292 An Infrastructure for Semantic Web Portals

a verification engine that checks the validity of any derived metadata against a repository of
trusted domain knowledge and against the information available on the Web. Finally, since
the whole acquisition process is automatic, it can be automatically run whenever new data
becomes available, thus ensuring that the semantic metadata is always up to date.

5 AquaLog: Enabling Queries in Natural Language

As mentioned in the introduction, natural language (NL) question answering is an elegant
approach, which provides users with a straightforward way of posing queries, without having
to learn the vocabulary adopted by the ontology or having to master a special query language.
AquaLog exploits this approach to facilitate information querying for SW portals.

To bridge the gap between the user terminology and the underlying domain ontology of SW
portals, AquaLog exploits a variety of linguistic mechanisms, including GATE [17], distance
metrics [18], lexical resources (WordNet [16]), and the structure of the domain ontology. Fur-
thermore, to ensure that the system adapts to the jargons of users, thus leading to improved
performance over time, AquaLog is coupled with a sophisticated learning mechanism.

Figure 4 shows an overview of the AquaLog architecture. The core components are i) a
linguistic component, which parses the natural language queries into a set of linguistic triples;
ii) a relation similarity service, RSS, which makes use of the underlying ontology and the
available metadata to interpret the linguistic triples as ontological triples; and iii) an answers
engine, which infers answers from the derived ontological triples.

Fig. 4. An overview of the AquaLog architecture.

AquaLog algorithms are detailed in [10]. Here we illustrate its usage as an integrated com-
ponent of the presented infrastructure by walking through two concrete examples. Consider
the questions “who are the PhD students of Enrico” and “who are the PhD students of Enrico
that are doing research on trust”. In order to be competent to understand the questions and
give precise answers, behind the scenes, the question answering mechanism in AquaLog takes
the following steps:

Step 1: Parsing a NL query into linguistic querying triples. The linguistic com-
ponent maps the NL input query into a set of linguistic triples. The notation used to rep-
resent a triple is (term, relation, term). At this stage the analysis is domain independent
and purely based on linguistic criteria. For instance, the first user query described above is



Y. Lei, V. Lopez, E. Motta, and V. Uren 293

parsed into (person/organization, PhD students, enrico), while the second one is parsed into
(person/organization, PhD students, enrico) and (which is, doing research, trust).

Step 2: Interpreting linguistic querying triples as ontology-compliant triples.
First, the RSS component maps user query terms to entities contained in the target ontology
by making use of i) string metric algorithms, ii) lexical resources such as WordNet, or lexicon
libraries, if any. Once one or more query terms are successfully mapped into possible candidate
ontology terms, the RSS component then uses the ontology to relate them together and to
produce the ontology compliant triples that better represent the user query.

For the first linguistic triple(person/organization, PhD students, enrico), the RSS compo-
nent matches the term Enrico to the instance Enrico-Motta which is of the class kmi-staff-
member ; and the term PhD students to the class phd-students. RSS re-classifies the triple
and now the problem becomes finding the relation that links the class phd-student to the class
kmi-staff-member or vice versa. RSS achieves this task by using the subsumption hierarchy, in
which all the super classes and subclasses of both terms are considered as domain and range of
the potential relations. In this example, there is only one ontological relation has-supervisor
that makes sense between the terms. Therefore the RSS component generates the ontolog-
ical triple (phd-student, has-supervisor, enrico-motta). In this particular case, the domain
information enclosed in the ontology is enough to interpret the query without requiring user
feedback. The results can be seen in Figure 5.

Fig. 5. A basic query example in AquaLog.

Likewise, the second linguistic triple (which is, doing research, trust) is linked to the first
triple through the non-ground term phd-student and processes as the ontology triple (phd-
student, has-research-interest, trust). The resultant ontological triples and results can be seen
in Figure 6. Then, the user can click on all the ontological terms to navigate through the
ontology.



294 An Infrastructure for Semantic Web Portals

Since the universe of discourse is determined by the particular ontology, in the case that
there are discrepancies between the NL questions and a set of possible relations recognized in
the ontology, external resources like WordNet are used to handle unknown vocabulary (terms)
by giving a set of synonyms. When neither the ontology, not the lexical resources are enough
to disambiguate between possible ontology relations, the user is asked to disambiguate. The
learning mechanism will then update the lexical resources to ensure that for a given ontology
and a specific user community, its performance improves over the time, as the users’ feedback
allows AquaLog to learn novel associations between the relations used by users (in the context
of a query triple) and the internal structure of the ontology.

Step 3: Inferring answers from ontology-compliant triples. The answers engine
retrieves the available metadata that satisfy the derived ontology triples to produce answers
depending on the query category. As shown in Figure 6, the answer to our last query example
is an instance of the class phd-stduents, which has a research interest in trust and at the same
time has Enrico Motta as supervisor from the context of the KMi SW portal.

Fig. 6. A complex query example in AquaLog.

A distinctive feature of Aqualog is that it is ontology independent. Its performance
strongly depends on the quality of the ontology and the gathered metadata. This again em-
phasizes the importance of the quality of semantic metadata. End user support is enhanced
in the latest development by allowing the user i) to select an ontology from a pre-defined
subset of ontologies or ii) to upload their own ontologies to answer queries.



Y. Lei, V. Lopez, E. Motta, and V. Uren 295

6 SemSearch: Helping Users Make Complex Queries

The role of SemSearch in our SW portal infrastructure is to address the two important issues
associated with semantic search namely query specification and relation search. Figure 7
shows an overview of the SemSearch architecture. As shown in the figure, SemSearch uses
keyword based semantic search as a starting point for complex queries. Although it is iterative,
the search process of SemSearch can be classified into five major steps:

• Step 1. Interpreting the user query, which is to find out the semantic entity matches
for the keywords involved in a user query.

• Step 2. Translating the user query into formal queries.

• Step 3. Refining queries. This step is optional, as refinement may not be necessary in
some queries.

• Step 4. Querying the back-end semantic data repositories using the generated formal
queries.

• Step 5. Ranking the querying results.

Fig. 7. An overview of the SemSearch architecture.

The core components of SemSearch are: i) a query interface, which supports the specifica-
tion of multi-keywords queries; ii) a keyword search engine, which makes sense of user queries
by exploiting the domain ontology and the extracted metadata; iii) a query translation engine,
which translates user queries into formal queries; iv) a query refinement engine, which refines
user queries according to the specified requirements; v) a ranking engine, which presents the
search results in an order that indicates the degree to which they satisfy the user query; and
vi) a user interface component, which supports all the user interaction required for query
specification and refinement, and results presentation.



296 An Infrastructure for Semantic Web Portals

The system also provides an index engine, which indexes semantic entities contained in
the domain ontology and the gathered metadata repositories using Lucenei . The indexing
step takes place before semantic search for the sake of speeding up the search process (which
is why we refer it as step 0). SemSearch relies on the Sesame query enginej to perform queries
against the metadata repositories of SW portals.

As our main focus here is on query specification, we concentrate on those components that
are highly related, including the SemSearch query interface, the keyword search engine, the
query translation engine, and the user interface component. Other components are out of the
scope of the paper.

To illustrate the SemSearch system, we use two query examples which apply to the KMi
context. One is querying for news stories that are relevant to PhD students. The other
example is looking for relations between John and Enrico.

The SemSearch Query Interface. The query interface extends traditional keyword
search languages by allowing the explicit specification of i) the queried subject which indicates
the type of the expected search results, and ii) the combination of keywords. The query
interface uses the operator “:” to capture the query subject and the operators “and” and “or”
to specify the combination of keywords (apart from the subject keyword). A user query in
SemSearch looks like “subject:keyword1 and/or keyword2 and/or keyword3 ...”.

With this syntax, the first query example can be specified as (news: PhD students),
where the term news is the query subject and the term PhD students is a required keyword.
Equipped with support for multiple keyword specification, the query interface can be easily
used to specify relation search, where there are two keywords involved and both keywords
refer to individual entities (i.e., instances). The second query example described above falls
into this category and can be specified as “John:Enrico”.

The Keyword Search Engine. This component looks up the indexed metadata reposi-
tories for matches. The main search source is the labels of semantic entities. The rational for
this choice is that, from the user point of view, labels often catch the meaning of semantic
entities in an understandable way. In the case of instances, we also used their short literal val-
ues as the search source. So that when the user is searching for “chief scientist”, the instance
that has such a string as a value of its properties can be reached.

The matches are ranked by measuring their closeness to the keyword. Three factors
have been taken into account, including similarity, domain context, and query context. The
similarity factor measures the closeness of a match to the keyword syntactically (i.e., string
similarity), which is derived from the text search engine employed. In future, we will add
mechanism to compute the semantic similarity of the match to the keyword.

The domain context factor helps decide the closeness of the matches to the keyword from
the specific domain point of view. For example, with the keyword “enric”, is the user more
likely to mean the person enrico-motta than the project enrich? It is calculated as Pmx∑n

i=1
Pmi

,

where Pmx denotes the count of the match mx serving as value of other instances in the
metadata repository; and m1, m2, ..., and mn represent all of the non-exact matches.

The query context factor takes the position of a query term and its expected match type
(i.e., class, instance, and property) into account when ranking the match results. Several
i http://lucene.apache.org/
jhttp://www.openrdf.org/



Y. Lei, V. Lopez, E. Motta, and V. Uren 297

heuristic rules are used to rank the matches. For instance, the subject keyword (i.e., the first
keyword in a user query) is assumed to refer more often to a class than an individual entity.
Thus, for a subject keyword, class matches would get higher ranking.

For the sake of simplicity, we treat all three factors as equally important in ranking at the
moment. Hence, the formula is read as r=(rs+rd+rq)/3, where rs denotes the match simi-
larity; rd is the domain context factor; and rq depicts the query context factor. Nevertheless,
it should be easy to assign weights to different factors in specific context. Figure 8 shows the
matches of the keywords contained in the first example.

Fig. 8. The semantic entity matches of the keywords involved in “News:PhD Students”.

The Query Translation Engine. This component translates user queries into formal
(RDF) queries. It combines the matches of all the keywords and generates sensible queries
according to the nature of the matches (e.g., classes, properties, or instances). A key oper-
ational problem is that in real world situations there can be a large number of matches and
hence many more combinations. We used several heuristic rules to reduce the number of
matches for each keyword. An algorithm has been developed to support query construction.
Please refer to [11] for details.

Relation search, in which we search for either direct triples between two instances that
match a pair of keywords or a pair of triples that link the instances via a mediating entity, is
supported in the tool to some extent. Now let us demonstrate how it is acheived, using the
query “John:Enrico” as an example. Two major steps are involved in the search process:

• Step a. Retrieving direct relations between the two given instances. Such relations are
physically stored in the metadata repository. In the relation search example described
above, such relations take the format (Enrico, relation, John) or (John, relation, En-
rico).

• Step b. Retrieving indirect relations. The search engine first looks for mediating classes
whose instances are linked to both instances. It then retrieves the mediating instances
and their relations to the query terms.



298 An Infrastructure for Semantic Web Portals

Fig. 9. Templates for constructing queries for supporting relation search.

Spread activation techniques [19, 20] could be used here to walk through the graphs of
the query instances and find the relations that are highly relevant. In the current version of
the SemSearch prototype, we only consider relations that involve one mediating entity. The
rationale behind this is that the strength of relations decays quickly as the length of their
path grows. We treat all the mediating relations as equally important, as it is not possible to
assign each relation a weight in real world scenarios.

Three templates are developed to support the generation of queries involved in relation
search. Figure 9 shows a simplified version of the templates represented in the Sesame Serql
query language. The first one supports the task involved in the first step. The other two
templates work for the second step. Figure 10 shows the clustered results of the relation
search example “John:Enrico”. The mediated classes include Project, article-in-journal, kmi-
planet-news-items, paper-in-proceedings, etc. The search results (i.e., mediating instances and
their relations) are grouped using the mediating classes.

The User Interface Component. This component supports all the interactions re-
quired for i) formulating and refining user queries and ii) presenting search results. A screen
snapshot of the main user interface has already been shown in Figure 10. Four major facili-
ties are provided by the main user interface, including i) allowing the specification of keyword
queries; ii) displaying the matches of the keywords; iii) allowing the ticking on/off of keyword
matches to refine user queries; and iv) displaying the final search results returned by the
Sesame Query Engine. Two types of views are generated to help users understand the search



Y. Lei, V. Lopez, E. Motta, and V. Uren 299

Fig. 10. The clustered results of the relation search example “John:Enrico”.

results, including tree-based views and graph-based views. We used ClusterMapk to generate
graph-based views.

More advanced query refinement is supported by the concept of knowledge lenses, which
supports a zoom-like facility in exploring the search space. It supports narrowing the search
focus by going down to more specific classes (or topics) or broadening the search focus by
going up to more generic classes. Figure 11 shows a screen snapshot of the user interface
for refinement specification. Consider the query example “News:PhD students”. The user
can broaden the search from the class news-item (which describes news stories) to a more
generic class item-in-composite-publication, which covers not only news stories but also other
publications.

As shown in Figure 11, users can also add constraints to the search. For example, users
can add a constraint “related to Semantic Web” to the query example described above. As the
term Semantic Web matches the instance semantic-web whose type is the class research-area,
the results will be news stories that are relevant to both PhD students and the research area
Semantic Web.

khttp://www.aduna-software.org/home/overview.view



300 An Infrastructure for Semantic Web Portals

Fig. 11. A screen snapshot of the user interface for refinement specification.

To summarize, SemSearch improves end user support with respect to the specification of
complex queries by several means:

• A Google-like query interface, which offers a straightforward way to specifying relatively
complex queries, where multiple keywords are involved.

• Keyword based search as a starting point, which offers users an easy way to start complex
queries.

• Multi-keyword search facility, which supports relation search as well as entity search.

• Knowledge lenses for query refinement, which provide an intuitive way to broaden or
narrow the search scope.

• An intuitive and easy to use interface, which supports all the interactions required to
help users formulate and refine their queries.

7 SemBrowser: Browsing Networks of Entities

The key role of SemBrowser is to support users to browse and navigate through the knowledge
network of the problem domain. Central to SemBrowser is a relation extraction engine, which,



Y. Lei, V. Lopez, E. Motta, and V. Uren 301

on the one hand, generates navigation services for a given entity, thus enabling navigation,
and on the other hand, is responsible for retrieving entities and relations that satisfy the
specified query requirements.

The purpose of navigation services is to narrow the scope of the knowledge network of
the associated entity from containing all the relations to its neighborhood entities down to
the specified relation only. To generate navigation services, the relation extraction engine
first investigates direct relations, i.e., relations that are physically stored in the metadata
repositories. For example, in the case of generating navigation services for Enrico Motta,
the extraction first looks for triples in the format of (X,relation, Enrico Motta) or (Enrico
Motta, relation, X) that are physically stored in the repositories. Such an operation yields
several results in the KMi context, including news, publications, projects, etc. The relation
extraction engine then walks around the graph of the given entity to collect indirect relations,
through which the given entity is linked with other entities. The navigation service “Related
People” is such an example for a specific person in the KMi context, as there are no triples in
the metadata repositories that take the format (people, relation, people). SemBrowser makes
use of the relation search approach described in Section 6 to find indirect relations and entities
that are connected by these relations.

In the KMi context, several navigation services can be automatically extracted for a person,
including related news, related persons, related projects and related publications. Such services
are attached to semantic entities (which are people in the example) in Web pages as right
click menus to enable navigation. Figure 12 shows an example of such navigation services.
Each entity in the Web page is clickable and is associated with a set of navigation services. By
clicking on the “Related People” menu associated with the person Enrico Motta (as shown
in part (a)), the user can browse people who collaborate with Enrico Motta.

Behind the scenes, SemBrowser issues queries to the underlying metadata repository and
gathers related entities. These entities are again associated with navigation services, as shown
in part (b) of the figure. In this way, entity navigation is enabled.

Constraints can be added to the navigation services to filter out unwanted entities and
their corresponding relations, thus enabling the customization of knowledge networks of an
entity. For example, in the KMi SW portal context, we assume that users are only interested
in certain types of relations when viewing the knowledge network of a specific person and
his/her colleagues, including co-authored publications, shared research interests, and projects
they collaborated in. Such constraints are added to the navigation service “Related People”
and take effect during navigation.

Apart from the relation extraction engine, SemBrowser also provides a visualization en-
gine, which presents knowledge networks and enables navigation. Two main techniques are
used. One is an HTML-based approach, which uses the length of bars to visualize relation
strength. A simple algorithm is developed, which assigns different weights to the extracted
relations according to their path length to the given entity, and calculates the strength of the
relations between two given entities. A heuristic rule used here is that the longer the path
is, the weaker the relation gets. Figure 12(b) visualizes the relations between Enrico Motta
and his colleagues using this technique. It provides a straightforward way of highlighting the
entities that are closely related. From the figure, the user can easily determine that Enrico
Motta has lots of collaboration with John Domingue.



302 An Infrastructure for Semantic Web Portals

Fig. 12. An example of entity navigation in the context of the KMi SW portal. Part (a) shows
sample navigation services. Part (b) displays the network of Enrico Motta with his colleagues.
The user can navigate to (b) by clicking on the right-click menu attached with semantic entities
as shown in (a).



Y. Lei, V. Lopez, E. Motta, and V. Uren 303

Fig. 13. A sample knowledge network visualized in ClusterMap.



304 An Infrastructure for Semantic Web Portals

The other main technique used is a graph-based approach, which uses graphs to represent
semantic relations. We use ClusterMap for this purpose. Figure 13 shows a screenshot of
the example knowledge network described above. Apart from listing all the entities that are
around the given entity, the visualization engine also shows the entities that are linked to these
entities. It shows Enrico Motta works on 25 projects and published 80 papers. Furthermore,
it shows the network of people’s collaboration around the projects and papers.

8 Related Work

As this work involves research in several different topics, we will briefly describe the related
work respective to each.

8.1 Related work on semantic metadata acquisition

A number of tools have been developed recently, which support the acquisition of semantic
metadata. Some focus on providing support for manual operations. Some aim to provide
fully automatic or semi-automatic support. The closest tools are those that support metadata
extraction from structured data sources (e.g., database and XML feeds) and semi-structured
(e.g. Web pages, tables). Examples include the Semantic Content Organization and Retrieval
Engine (SCORE) [21], the KIM platform [22], and the SW portals described in Section 2. As
a way of ensuring high quality, domain specific rules are often used to specify how and where
to extract specific information. Our work distinguishes from these efforts by providing more
comprehensive support for quality control.

As described in Section 4, ASDI provides several means to ensure the quality of the ex-
tracted data. First, it aims to reduce ambiguities by taking into account the context in which
an entity is mentioned in order to determine its type. Second, it contains a verification engine
that checks the validity of any derived metadata against a repository of trusted domain knowl-
edge and against the information available on the Web. Finally, since the whole acquisition
process is automatic, it can be automatically run whenever new data becomes available, thus
ensuring that the semantic metadata is always up to date.

8.2 Related work on semantic search

Numerous search tools have been recently developed which aim to enhance the performance
of traditional search technologies by exploiting semantic metadata. Among them, ORAKEL
[15] and e-librarian [23] are the closest tools to our question answering tool AquaLog. Like
AquaLog, they aim to exploit the domain ontology and the available semantic metadata to
answer questions submitted in natural language format. While AquaLog is a portable tool,
which can be easily adapted to different domains, the portability of ORAKEL and e-librarian
is reduced in order to obtain high performance. For instance, ORAKEL involves the user in
the tasks of providing a domain specific grammar and lexicon, while the e-librarian requires
a domain dictionary to be built.

Ontogator [24], Corese [25], and the DOSE search engine [26] are closest to SemSearch.
Like SemSearch, which uses keyword based search as a starting point for complex queries, both
Ontogator and Corese combine keyword search with the other searching facilities to speed up
the search process. The DOSE search engine, on the other hand, is similar to our search tool
in using ontology navigation as a way to support query refinement. GRQL [27] and SEWASIE



Y. Lei, V. Lopez, E. Motta, and V. Uren 305

[28] are also notable tools that use graph-based views to support query construction.
Regarding keyword based search, the closest work includes the TAP search engine [19] and

the search engine presented in [20]. While these search tools make use of graph walking to
retrieve relevant entities, SemSearch focuses on translating user keywords into formal queries.

As to relation search, TEXTRUNNER [29] is the closest tool to our work. Just like
SemSearch, TEXTRUNNER accepts several query terms as input and produces entities or
relations as output depending on the type of the search. One major difference between the
two lies in the knowledge graphs they work on: TEXTRUNNER with string-based graphs and
SemSearch with knowledge-based graphs (i.e., semantic networks). The approach presented by
Anyanwu & Sheth [30] shares a similar goal with our work, which is to support the retrieving
of semantic associations between different data entities. A query language is proposed, which
relies on a set of query operators to enable the specification of relation based queries. Another
tool which is worth mentioning here is the tool developed by Li et al. [31]. It emphasis the
importance of the relations between keywords in document retrieving.

8.3 Related work on semantic browsing

Notable tools for semantic browsing are Magpie [32] and Haystack [33]. Magpie attaches
the available semantic metadata to existing Web pages and extracts several services from
the metadata to enable semantic browsing. Thus, it is very different from our approach,
which extracts semantic metadata from Web pages and makes use of the extracted semantic
metadata to support semantic browsing.

Haystack, on the other hand, takes a route similar to ours to approach semantic browsing.
While Haystack focuses on how to support end users in defining user interfaces to organize
the information space of the problem domain, SemBrowser concentrates on how to generate
and customize navigation services for a given entity to meet users’ information seeking needs.

Other work which is worth mentioning here includes the tools developed in the research
strand of Semantic Wikipedia [34]. They aim to enhance knowledge sharing and exchange
fostered by the Wiki technology by using semantic metadata to manage and store Wiki pages
and their links.

9 Conclusions and Future Work

The key contribution of this paper is the proposed portal infrastructure, which integrates
and exploits several comprehensive functionalities that are essential in enhancing access to
knowledge in traditional Web portals and state-of-art Semantic Web portals, namely high
quality metadata acquisition, semantic search, and semantic browsing.

Central to the infrastructure are four distinctive tools: i) ASDI, which supports metadata
extraction from heterogenous data sources and provides several means to address quality
control; ii) AquaLog, which exploits the domain ontology and natural language processing
techniques to answer queries in natural language format, thus lowering barriers for users to
make semantic queries; iii) SemSearch, which addresses two important issues associated with
semantic search namely relation search and query specification; and iv) SemBrowser, which
supports the browsing of knowledge networks of individual entities.

While these tools can each work separately, the integration is able to bring knowledge
contained in the underlying data sources to ordinary end users in the context of Semantic



306 An Infrastructure for Semantic Web Portals

Web portals, that would not be possible otherwise. We have built a Semantic Web portal for
our research lab by applying the proposed portal infrastructure. Experimental evaluations
have been carried out to assess the performance of the metadata extraction tool ASDI and
question answering tool AquaLog.

With 91% precision and 77% recall, ASDI improves the quality of the metadata that are
extracted by the information extraction tool. This indicates that the quality control measures
developed take effect. As to AquaLog, we collected 69 different questions. Among them, 40
have been handled correctly. 19 more can be handled correctly if re-formatted by the end
user. This was a pretty good result, considering that no linguistic restrictions were imposed
on the questions (please note that we have asked users not to ask questions which required
temporal reasoning, as the underlying ontology does not cover it). Please refer to [9] and [10]
for the details about the evaluation set up and the analysis of results.

The presented infrastructure also addresses the heterogeneity issue of SW portals at the
data source level. As described in Section 4.1, it relies on the metadata extraction component,
ASDI, to address semi-structured as well as structured data sources. Our future work will
focus on the heterogeneity issue at the ontology level. This calls for extending the tool
suite towards multiple ontologies. In particular, measures need to be developed to compare
and combine knowledge represented in different ontologies in order to enable quality control,
semantic search, and semantic browsing.

Acknowledgement

We wish to thank Dr. Marta Sabou for her valuable comments on earlier drafts of this paper.
This work was funded by the Advanced Knowledge Technologies Interdisciplinary Research
Collaboration (IRC), the Knowledge Sharing and Reuse across Media (X-Media) project, and
the OpenKnowledge project. AKT is sponsored by the UK Engineering and Physical Sciences
Research Council under grant number GR/N15764/01. X-Media and OpenKnowledge are
sponsored by the European Commission as part of the Information Society Technologies
(IST) programme under EC Grant IST-FP6-26978 and IST-FP6-027253.

References

1. N. Stojanovic, A. Maedche, S. Staab, and R. Studer (2001), SEAL - a framework for developing SE-
mantic PortALs, In Proceedings of the 1st International Conference on Knowledge Capture(KCAP
2001), pp. 155–162.

2. Y. Jin, S. Decker, and G. Wiederhold (2001), OntoWebber: model-driven ontology-based Web site
management, In Proceedings of Semantic Web Working Symposium (SWWS), pp. 529–547.

3. O. Corcho, A. Gomez-Perez, A. Lopez-Cima, V. Lopez-Garcia, and M. C. Suarez-Figueroa (2003),
ODESeW. Automatic generation of knowledge portals for Intranets and Extranets, In Proceedings
of the 2nd International Semantic Web Conference 2003 (ISWC 2003), pp. 20–23.

4. M.C. Schraefel, N.R. Shadbolt, N. Gibbins, H. Glaser, and S. Harris (2004), CS AKTive Space:
representing computer science in the Semantic Web, In Proceedings of the 13th International
World Wide Web Conference (WWW 2004), pp. 384–392.

5. P. Mika (2005), Flink: Semantic Web technology for the extraction and analysis of social networks,
Journal of Web Semantics, 3(2-3):211–223.

6. E. Hyvonen, E. Makela, M. Salminen, A. Valo, K. Viljanen, S. Saarela, M. Junnila, and S. Kettula
(2005), MuseumFinland – Finnish museums on the Semantic Web, Journal of Web Semantics,
3(2-3):224–241.



Y. Lei, V. Lopez, E. Motta, and V. Uren 307

7. M. Schraefel, M. Wilson, A. Russell, and D. Smith (2006), mSpace: improving information access
to multimedia domains with multimodal exploratory search, Commun. ACM, 49(4):47–49.

8. G. Schreiber, A. Amin, M. van Assem, V. de Boer, L. Hardman, M. Hildebrand, L. Hollink,
Z. Huang, J. van Kersen, M. de Niet, B. Omelayenko, J. van Ossenbruggen, R. Siebes, J. Taekema,
J. Wielemaker, and B. Wielinga (2006), MultimediaN E-Culture demonstrator, In Proceedings of
the 5th International Semantic Web Conference (ISWC 2006), pp. 951–958.

9. Y. Lei, M. Sabou, V. Lopez, J. Zhu, V. S. Uren, and E. Motta (2006), An infrastructure for
acquiring high quality semantic metadata, In Proceedings of the 3rd European Semantic Web
Conference, pp. 230–244.

10. V. Lopez, E. Motta, V. Uren, and M. Pasin (2007), AquaLog: an ontology-driven question answer-
ing system as an interface to the Semantic Web, Jounal of Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2):72–105.

11. Y. Lei, V. Uren, and E.Motta (2006), SemSearch: a search engine for the Semantic Web, In Pro-
ceedings of the 14th International Conference on Knowledge Engineering and Knowledge Man-
agement (EKAW 2006), pp. 238–245.

12. Y. Lei, E. Motta, and J. Domingue (2004), OntoWeaver-S: supporting the design of knowledge por-
tals, In Proceedings of the 14th International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW 2004), pp. 216–230.

13. J. Zhu, V. Uren, and E. Motta (2004), ESpotter: adaptive named entity recognition for web brows-
ing, In Proceedings of the Professional Knowledge Management Conference, pp. 518–529.

14. Y. Lei (2005), An instance mapping ontology for the Semantic Web, In Proceedings of the 3rd
International Conference on Knowledge Capture, pp. 67–74.

15. P. Cimiano, S. Handschuh, and S. Staab (2004), Towards the self-annotating Web, In S. Feldman,
M. Uretsky, M. Najork, and C. Wills, editors, Proceedings of the 13th International World Wide
Web Conference (WWW 2004), pp. 462–471.

16. C. Fellbaum (1998), WORDNET: An electronic lexical database. MIT Press.
17. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan (2002), Gate: a framework and graph-

ical development environment for robust nlp tools and applications, In Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics (ACL 2002), pp. 168–175.

18. W. Cohen, P. Ravikumar, and S. Fienberg (2003), A comparison of string distance metrics for
name-matching tasks, In Proceedings of the IJCAI-2003 Workshop on Information Integration on
the Web (IIWeb-03), pp. 73–78.

19. R. Guha, R. McCool, and E. Miller (2003), Semantic search, In Proceedings of the 12th Interna-
tional Conference on World Wide Web, pp. 700–709.

20. C. Rocha, D. Schwabe, and M. de Aragao (2004), A hybrid approach for searching in the Semantic
Web, In Proceedings of the 13th International World Wide Web Conference (WWW 2004), pp.
374–383.

21. A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke (2002), Semantic
Content Management for Enterprises and the Web, IEEE Internet Computing, 6(44):80–87.

22. B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Goranov (2003), KIM -
semantic annotation platform, In Proceedings of the 2nd International Semantic Web Conference
(ISWC 2003), pp. 834–849.

23. S. Linckels (2005), A simple solution for an intelligent librarian system, In Proceedings of the
IADIS International Conference of Applied Computing, pp. 495–503.

24. E. Makela, E. Hyvonen, and S. Saarela (2006), Ontogator: a semantic view-based search engine
service for web applications, In Proceedings of the 5th International Semantic Web Conference
(ISWC 2006), pp. 92–106.

25. O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker (2004), Querying the Semantic Web with Corese
search engine, In Proceedings of the 3rd Prestigious Applications Intelligent Systems Conference
(PAIS) on 16th European Conference on Artificial Intelligence (ECAI/PAIS), pp. 705–709.

26. D. Bonino, L. Farinetti, and A. Bosca (2004), Ontology driven semantic search, WSEAS Transac-
tion on Information Science and Application, 1(6):1597–1605.



308 An Infrastructure for Semantic Web Portals

27. N. Athanasis, V. Christophides, and D. Kotzinos (2004), Generating on the fly queries for the
Semantic Web: The ICS-FORTH graphical RQL interface (GRQL), In Proceedings of the 3rd
International Semantic Web Conference (ISWC 2004), pp. 486–501.

28. T. Catarci, T. Di Mascio, E. Franconi, G. Santucci, and S. Tessaris (2004), An ontology based
visual tool for query formulation support, In Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI 2004), pp. 32–33.

29. M. Cafarella, M. Banko, and O. Etzioni (2006), Relational web search, Technical Report UW-
CSE-2006-04-02, Turing Center, University of Washington.

30. K. Anyanwu and A. Sheth (2003), p-Queries: enabling querying for semantic associations on the
Semantic Web, In Proceedings of the 12th International Conference on World Wide Web (WWW
2003), pp. 690–699.

31. Y. Li, Y. Wang, and X. Huang (2007), A relation-based search engine in Semantic Web, IEEE
Transactions on Knowledge and Data Engineering, 19(2):273–282.

32. J. B. Domingue and M. Dzbor (2004), Magpie: browsing and navigating on the Semantic Web,
In Proceedings of the 9th International Conference on Intelligent User Interfaces (IUI 2004), pp.
191–197.

33. D. Quan, D. Huynh, and D. Karger (2003), Haystack: a platform for authoring end user semantic
web applications, In Proceedings of the 2nd International Semantic Web Conference 2003 (ISWC
2003), pp. 738–753.

34. M. Vlkel, M. Krtzsch, D. Vrandecic, H. Haller, and R. Studer (2006), Semantic MediaWiki, In
Proceedings of the 15th International Conference on World Wide Web (WWW 2006), pp. 585–594.


