
Journal of Web Engineering, Vol. 6, No.3 (2007) 196-221
© Rinton Press

 INTEGRATING INTERACTION DESIGN AND LOG ANALYSIS:
BRIDGING THE GAP WITH UML, XML AND XMI

GHEORGHE MURESAN
School of Communication, Information and Library Studies

Rutgers University, New Brunswick, USA
muresan@scils.rutgers.edua

Received January 15, 2007
Revised March 23, 2007

In this paper, we describe and discuss a formal methodology that integrates the conceptual design of the
user interaction for interactive systems with the analysis of the interaction logs. It is based on (i)
formalizing, via UML state diagrams, the functionality that is supported by a system and the valid
interactions that can take place; (ii) deriving XML schemas for capturing the interactions in activity logs;
(iii) deriving log parsers that reveal the system states and the state transitions that took place during the
interaction; and (iv) analyzing the state activities and the state transitions in order to describe the user
interaction or to test some research hypotheses. While this approach is rather general and can be applied in
studying a variety of interactive systems, it has been devised and applied in research work on exploratory
information retrieval, where the focus is on studying the interaction and on finding interaction patterns.
The details of the methodology are discussed and exemplified for a mediated retrieval experiment.

Key words: Methodology, interaction design, log analysis, UML, XML, DTD, XMI, search
process, mediated information retrieval

1 Introduction

1.1 Motivation

While much of the research work in Information Retrieval (IR) has focused on the systemic approach
of developing and evaluating models and algorithms for identifying documents relevant to a well-
defined information need, there is increasing consensus that such work should be placed in an
Information Seeking framework, in which a searcher’s context, task, and personal characteristics and
preferences should be taken into account (Ingwersen and Jarvelin, 2005).

Since Robertson and Hancock-Beaulieu (1992) described the cognitive, relevance and interactive
“revolutions” expected to take place in IR evaluation, the focus in interactive IR experimentation has
shifted to exploring the dynamic information need that evolves during the search process, the
situational context that influences the relevance judgments and the strategies and tactics adopted by
information seekers in satisfying their information need. This paradigm shift to a cognitive approach to
exploring search interactions and to studying Human Information Behavior has generated a large

a The author’s new affiliation is: Live Search, Microsoft Corp, Redmond, WA, gmuresan@acm.org.

G. Muresan

197

number of theories that attempt to model the search interaction and to predict the user’s behavior in
different contexts and at different stages of the interaction (Fisher et al, 2005).

Of particular interest to this author are models of the search interaction process and empirical
work to validate such models by observing consistent patterns of user behavior (Ellis, 1989; Kuhlthau,
1991; Belkin et al, 1995; Saracevic, 1996; Xie, 2000; Vakkari, 1999, 2001; Olah, 2005). The interest is
not simply in validating theoretical models, but also in designing systems that better respond to user
needs, that can adapt to support various search strategies, and that offer different functionality in
different stages of the information seeking process.

We are interested in methodologies for running interactive IR experiments, and especially in the
practical aspect of client-side logging of the interactions and analyzing the logs in such a way that as
many meaningful details as possible are captured. The analysis of the logs can subsequently be used to
observe patterns of behavior, to build a model of the interaction and possibly to predict user behavior
in certain contexts, or simply to test the usability of a user interface. Although no systematic study has
investigated the methodologies used for this kind of experiments, there is plenty of anectodal evidence
to suggest that much of the investigation is manual and ad-hoc: the researchers examine interaction
transcripts or videos, and assign codes to significant actions that take place and to shifts in interaction
stages. This process is slow, expensive, and error prone. Logs of interactions are sometimes employed
to address this issue: events and actions are logged during the search interaction, and the logs can be
analyzed afterwards. However, in our experience, there is usually little or no formal process in
designing the logs, the logging process, and the log analysis, in order for the states of the system and
the stages of the interaction to be captured.

A number of software tools have appeared on the market to support interaction analysis: their
typical functionality is to capture the screen, to film the subject during the interaction, and to log
keyboard and mouse eventsb,c,d. The researchers can subsequently examine the interaction, interpret
what is happening, insert annotations or mark significant events. Unfortunately, these tools are generic,
rather than targeted at a certain type of interaction. Therefore, while they can be helpful, the bulk of
the work is still the manual-intellectual annotation done by the researcher. Moreover, the format used
for the logs is usually proprietary, which forces the researchers to buy proprietary analysis software
that is not customizable.

A second motivation for the proposed methodology comes from observations of a number of
interactive IR experiments where the systems had clear usability issues. Such situations are common
and not at all surprising: these are experimental systems (as opposed to commercial systems), built for
studying some aspects of the interaction, so little or no resources are available for high-quality design
and usability testing. Unfortunately, this can potentially lead to compromised research results, as the
usability of the interface can potentially affect the searchers’ behavior.

Figure 1 captures the typical experimental procedure employed in interactive IR: the baseline and
experimental systems are specified, designed and built based on the research questions or hypotheses
investigated, code for logging events and actions is inserted in the appropriate places, and the logs are
analyzed after the experiment is completed in order to address the research questions. Most often the
logging code is added informally, as an afterthought. Therefore, when analyzing the logs, it is difficult
to relate the captured events to the states of the system or stages of the interaction.

b Morae: http://www.techsmith.com/morae.asp
c TaskTracer: http://eecs.oregonstate.edu/TaskTracer/
d uLog: http://www.noldus.com/site/doc200603005

198 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

Our rather unfortunate experience in Interactive TREC 2002 (Belkin et al, 2002; Hersh, 2002, for
the track description) is a case in point. First, our user interfaces were coded without appropriate state
diagram design, which created a number of usability issues: “Save”, “Bookmark” or “View” buttons
active even when no documents were selected, or even before a search was conducted, “Search” button
active even when no query was specified, or while a search was already being conducted (which
allowed queries to be submitted multiple times), “Back” button when no document was yet in the
history stack, etc. This can potentially bring into question the validity of our research results and
conclusions, as the usability of the interface could potentially affect the searchers’ behavior.

Figure 1 A typical experimental procedure in interactive IR

Second, we only captured in the logs the data that we anticipated would answer our research
questions (e.g. number of queries submitted, number of documents viewed or saved, etc). Moreover,
the logging code tended to summarize the data rather than log all the details of the interaction; for
example, it logged the number of viewed documents rather than the documents themselves. Figure 2
depicts an example of such a log.

The consequences were that: (i) we were unable to refine our hypotheses and to do more detailed
analysis of the interaction, in light of the initial results, because no extra data was captured in the logs
(e.g. no record of viewed documents was kept); (ii) in the occasions when the system crashed, the data
accumulated in memory, necessary for building summaries (e.g. the number of viewed documents),
was lost, so the logs were useless.

TREC-2002 START: 2002-08-15 17:58:57
QUERY: geneticly engineered foods safety
QUERY: geneticly engineered foods safety
SAVE DOCUMENT: [G13-84-2041245] Food Safety and Biotechnology: Are They Related?
QUERY: problems genetically engineered foods
SAVE DOCUMENT: [G40-01-0459199] International Information Programs, U.S. Department of
State, Economic Perspectives, October 1999
FINALLY SAVED DOCUMENTS: [G40-01-0459199] International Information Programs, U.S.
Department of State, Economic Perspectives, October 1999; [G13-84-2041245] Food Safety and
Biotechnology: Are They Related?
NUMBER OF VIEWED DOCUMENTS: 12
NUMBER OF UNIQUE VIEWED DOCUMENTS: 8
TREC-2002 STOP: 2002-08-15 18:03:50

G. Muresan

199

Figure 2 A sample extracted from Interactive TREC 2002 logs

1.2 Vision

What we propose in this paper is a formal procedure that integrates the modeling of the interaction, the
logging process and the log analysis, so that (i) the user interface accurately implements the conceptual
model of the interaction intended to be supported; (ii) the stages of the interaction and the states of the
system are captured accurately in the logs; and (iii) the logs can be analyzed in a systematic and at the
same time flexible way. When applied to a particular kind of interaction (such as interactive
information retrieval), the proposed procedure can be used to investigate user behavior or to test the
usability of a user interface. The optimal situation is when the researchers design the user interface and
build the experimental system, so that the design of the logging can be easily integrated, and the
semantic events, defined in the design stage, can be easily detected and logged. If user interaction with
a third party system is studied (e.g. accessing a commercial search engine via a web browser), then the
procedure can still be applied, but more work is needed to recognize significant, semantic events and
actions among the keyboard and mouse events that take place during the interaction.

We propose integrating the design of the interactive system, the design of the logger, and the
design of the log analyzer, by requiring the development of a conceptual model of the interaction,
which unifies these designs, as depicted in Figure 3. While this means more work at the onset, and
may seem un-necessary when the experimental schedule is tight, it pays off in the long run. Moreover,
the entire research team can participate in the conceptual design, with the advantages that some
mistakes and omissions may be avoided, the team members have a better understanding of the
underlying interaction model, and the work can be more easily shared. This contrasts with the common
situation when the designated programmers build the system and other members of the research team
do the log analysis, with insufficient collaboration.

Figure 3 Integrated approach to design, logging and analysis

Our formal approach is based on statecharts (Harel, 1988) or, in the more modern UML (Unified
Modeling Language)e terminology, on state diagrams. These are extensions of finite state diagramsf, in
which the use of memory and of conditional transitions makes it practical to describe system behavior
in reasonably compact diagrams. Such a model of a system describes; (i) a finite number of existence

e http://www.uml.org/
f http://en.wikipedia.org/wiki/Finite_state_machine

200 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

conditions, called states; (ii) the events accepted by the system in each state; (iii) the transitions from
one state to another, triggered by an event; (iv) the actions associated with an event and/or state
transition (Douglass, 1999; Fowler, 2004). Such diagrams have the advantage that they describe in
detail the behavior of the system and, being relatively easy to learn and use, allow the participation of
the entire research team in developing the conceptual model of the IR system to be employed in an
experiment. It also makes it easier for the designated programmers to implement and test the system,
as the logic is captured in the model.

While UML is well suited to design the interaction supported by a user interfaces, XML is an
excellent choice of format for logging user actions and state transitions. The Extensible Markup
Language (XMLg) is a World Wide Web Consortium (W3Ch) endorsed standard for document markup
that offers the possibility of cross-platform, long-term data storage and interchange. XML is more than
a mark-up language: it is a meta-markup language, in the sense that it can define the tags and elements
that are valid for a document or set of documents. For our purposes, it has the advantage that it is non-
proprietary and it can be examined with any text editor or open-source XML editor. Also, there are
plenty of XML parsers available, written in various programming languages, so processing the logs
and extracting relevant information is easy. Moreover, it allows a variety of access modes: (i)
sequential access to each event in the log (via SAXi); (ii) random access to certain kind of events,
relevant for a certain research hypothesis (via XPATHj); and (iii) complex visiting patterns (via
DOMk).

Closely related to XML are two other standards, Document Type Definitions (DTD) and the W3C
XML Schema Language, which are used to describe the vocabulary and language of an XML
document. A DTD or an XML Schema, (or simply “schema”, to refer to either) can be used by a
human to understand or to impose the format of an XML document, or by a machine to validate the
correctness of an XML document. Moreover, it can be used by an increasingly number of tools (such
as the open-source NetBeans) to generate parsers for such XML documents.

While in principle both DTD and XML Schema can be used, there are some differences between
the two. DTD’s have the advantage that are easier to write and to interpret by a human and, as they
have been around for longer, there are more tools to process them for XML validation and code
generation (most commonly into Java or C++). The newer XML schemas allow more specificity in
defining types of elements and attributes, but that comes at the cost of reduced readability and more
human effort. It is envisaged that the two will co-exist in the future, and that a pragmatic choice can
always be made according to the context as to which is more appropriate to use.

UML is ideally suited to support the design of systems, and XML for recording the activity logs.
The problem is bridging the gap between the two. One approach fully supported by existing
technology is to use the Java Architecture for Data Binding (JAXBl) specification to derive Java
classes (or rather skeletons of Java classes, specifying name, attributes and method prototypes) from
UML diagrams, and then XML DTDs or XML schemas from the Java classes. This approach has the
advantage that the skeletons of the Java classes can be expanded with code either for implementing the
user interface, or for processing the logs.

g http://www.w3.org/XML/
h http://www.w3.org
i http://www.saxproject.org/
j http://www.w3.org/TR/xpath
k http://www.w3.org/DOM/
l http://java.sun.com/webservices/jaxb/

G. Muresan

201

An alternative solution is to use the Object Management Group’s (OMG) XML Metadata
Interchange (XMI) specificationm. Initially created as an open source specification that allowed
modeling tools from different vendors (such as Rational Rose, TogetherJ) to export/import design
models, XMI has grown to wider applicability by supporting the production of XML vocabularies and
languages that enable the integration of many e-business applications (Carlson, 2001, 2006). XMI
specifies a set of mapping rules between UML and XML in terms of elements, attributes and
relationships. It must be noted that mapping UML to XMI is not an exact science, and different levels
of strictness can be applied, and tradeoffs between a number of mapping decisions can be specified.
For example, attributes specified in a UML class diagram can be converted to either XML elements or
XML attributes. Carlson (2001) discusses at length such tradeoffs, as well as the use of XPath,
XPointern and XLinko in implementing more complex relationships from UML diagrams, such as
inheritance, association or composition.

Figure 4 Mapping UML models to XML schemas and documents

Figure 4 captures this approach. UML class diagrams provide the blueprints for UML object
diagrams, and XML schemas provide the template for XML documents. XMI specifies the translation
of UML class models into XML schemas and of UML object models into XML documents. The
obvious and direct application of this approach to logging the interaction appears to be the following:
(i) derive UML class diagrams from state diagrams (this is trivial, as the states at different levels of
granularity correspond to classes); (ii) use XMI to derive XML schemas from the UML class
diagrams; and (iii) capture in XML logs the successive states of the user interfaces, after each event or
user action. The problem with such an approach, and the modified approach that we have adopted, are
discussed in section 3, after we introduce a case study to exemplify our methodology.

In summary, the expected gains of this vision are:

- generating user interfaces that accurately implement a certain interaction model;

- client-side logs that accurately capture user interactions, such as a search session;

- support for building user models that capture usability problems as well as user preferences.
This in turn can contribute to building better interfaces, and to building personalized systems that adapt
to the user’s needs and preferences.

m http://www.omg.org/technology/documents/formal/xmi.htm
n http://www.w3.org/TR/WD-xptr
o http://www.w3.org/TR/xlink/

202 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

1.3 Situating our work among related approaches

A clear distinction needs to be made between different stages of creating interactive systems when
discussing and comparing approaches, methodologies or techniques, as these are different for (i)
specifying the requirements of the system; (ii) designing the user interface; and (iii) designing and
implementing the software. The actual stage of designing the user interface (Tidwell, 2006), although
essential for building usable and ultimately successful interfaces, is not one of the concerns of our
work. We are interested in linking the system specification to the software design; therefore, we are
only going to discuss work relevant to this activity.

Most often, the specification of an interactive system is in the designer’s natural language, such as
English, accompanied by a set of the sketches of the interface at different stages of the interaction.
Unfortunately, natural-language specifications tend to be lengthy, vague and ambiguous, and therefore
are often difficult to prove complete, consistent and correct (Shneiderman and Plaisant, 2004). Use
cases use a graphical notation to describe user goals, but the emphasis is more on the user-system
interaction than in the task itself (Sharp et al, 2007). Task analysis provides a more concise and
systematic way to describe and analyze the underlying rationale and purpose of what people are doing:
what they are trying to achieve, why they are trying to achieve it and how they are going about it. Task
analysis produces models of the world and of the work or activities to be performed in it: it describes
the entities in the world, at different levels of abstraction, and the relationship between them, either
conceptual or communicative (Diaper and Stanton, 2004). Actually “task analysis” is a rather generic
term, an umbrella for a set of related methodologies such as Hierarchical Task Analysis (HTA), Goals,
Operators, Methods and Selection rules (GOMS), Groupware Task Analysis (GTA), etc; Limbourg
and Vanderdonckt (2004) provide a description of these, as well as a syntactic and semantic
comparison.

The specifications above are in general at a high level of abstraction and task granularity. While
useful in guiding the design of the system, they do not provide sufficient support for automatic
processing in order to prove completeness or correctness of a system, or for code generation. A
possible exception’s is Paterno’s work (2001, 2004) on graphical representation of task specification.
He proposes the use of ConcurTaskTrees (CTT) and discusses a variety of ways to integrate task
models, which describe the activities that should be performed in order to reach users’ goals, with
UML diagrams, created for supporting object-oriented software design, but biased towards the internal
parts of the software system. Possible approaches are: (i) to represent CCT models with existing UML
notation, e.g. with class diagrams; (ii) to develop automatic converters between UML and task models;
(iii) to extend UML / building a new type of diagram. Paterno favors the latter approach, proposing a
notation for tasks similar to the existing UML activity diagrams, but that also capture hierarchic
relationships between tasks. These are used, is proposed, together with other UML diagrams such as
use cases (which define pieces of coherent user behavior without revealing the details of the
interactions with the system) and sequence diagrams, which reveal details of the interactions for a
certain task or sub-task.

Paterno’s work is related to ours in the sense that he also tries to bridge the gap between different
levels of abstraction, moving from user tasks towards software implementation. Apart from the
application of our methodology being rather different, the difference is that we are looking at a more
detailed level of the interaction, which connects keystrokes and mouse events to semantic actions, in
the context of solving a certain task.

Shneiderman and Plaisant (2004) also discuss more specific and formal approaches such as
grammars, transition diagrams or statecharts, which provide a more fine-grained view of the human
system interaction and provide support for automatic processing and a connection to software design.

G. Muresan

203

For example, Winckler and Palangue propose a formal description technique based on statecharts,
dedicated to modeling navigation in web application (2003). That work is indeed related to ours, but
they focus and limit their attention to modeling the interaction, with no interest in logging and further
analyzing it.

More closely related to our goal and approach is Trætteberg’s work on DiaMODL (2003), a dialog
modeling hybrid language that combines a dataflow-oriented notation with statecharts that focus on
behavior. That work is complementary to ours: rather than proposing a new notation or language, our
intent is to use and integrate existing notations and languages in order to combine the advantages that
they offer. In that direction, we were inspired by Carlson’s work on linking UML and XML (2001,
2006), which we already mentioned in the previous sub-section. However, his view is data-centric,
with application in transferring data between applications, while we are mainly interested in modeling,
representing, logging and analyzing user-system interactions. Similarly, Crawle and Hole propose
(2003) an Interface Specification Meta-Language (ISML) which appears to be related but more generic
than our Interaction Modeling Language, plus they also restrict their focus to modeling, rather than
logging, the interaction.

2 Case Study: Mediated Information Retrieval
In order to help the reader more easily understand the proposed methodology, we are going to describe
its application on our MIR (Mediated Information Retrieval) project. The focus of this paper is the
experimental methodology that we designed and employed, rather than the actual research questions
and the experimental results of that project. Therefore, the description of the project will be limited to
the minimum necessary. A more complete description of the project and a comprehensive analysis of
the results appear elsewhere (Lee, 2006).

2.1 The mediated retrieval model

We proposed the concept of mediated information retrieval (or access) in previous work (Muresan
and Harper, 2001, 2004; Muresan, 2002), as a way to address the problem of exploratory searches,
when the searcher may be unfamiliar with a problem domain, uncertain of what information may be
useful for solving a particular task, or what query terms would be helpful in retrieving relevant
information. The idea is to emulate the function of the librarian or intermediary searcher, who interacts
with the information seeker, elicits more information and helps the searcher refine, clarify and
formulate her information need. Our reification of the mediation interaction model is based on so-
called source collections, specialized collections of abstracts or documents that cover the searcher’s
problem domain. These collections, which emulate the librarian’s knowledge of a certain domain, are
either manually structured (based on some ontology that describes that domain) or are automatically
clustered in order to reveal the concepts and structure of the domain, in order to inform and educate the
searcher.

The interaction model is captured in Figure 5. In the first stage the searcher interacts with the
source collection so that (i) she becomes more familiar with the terminology, concepts and structure of
the problem domain, and better able to convey her information need; and (ii) the system monitors the
user’s interaction and her selection of documents, and learns the type of documents that she is
interested in. Following the mediation stage, the search target moves to the Web or any other target
collection where the user hopes to find new information to satisfy her need and complete some task. At
this point the system is able to support the searcher by suggesting query terms; also, the user is
expected to be more familiar with the problem domain, and able to formulate better queries than before
the mediation.

204 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

Figure 5 The interaction model in mediated information retrieval

2.2 The MIR project

In previous work we demonstrated the potential effectiveness of mediation through pilot studies and
user simulations. In the MIR project, yet to be completed, we run formal user studies to verify if
mediation can indeed improve retrieval effectiveness. Moreover, we are interested in observing
patterns of interaction, which could help us design better interfaces.

Figure 6 The baseline MIR interface (no mediation)

In the first stage of the project, which we have completed, the human searcher did not get any
support from the system in formulating their queries to be submitted to the Web search engine. The

G. Muresan

205

mediation consisted in the user exploring the source collection in order to better understand the topic
investigated, and to enrich her vocabulary. In a future stage of our investigation, the system will
suggest a “mediated query” and the searcher will be able to edit it before submitting it to the search
engine.

From among the candidate source collections that we were able to obtain, we selected the New
Jersey Environmental Digital Library (NJEDL) collection because: (i) with approximately 1,300
documents, it is relatively small so, once clustered, it can be searched and browsed relatively easily in
a reasonable amount of time; (ii) it provides a good coverage of environmental issues; (iii) we were
able to generate a number of training and test topics for the experiment. A good test topic is one for
which there are relevant documents in the target collection (the Web), but finding them requires good
queries.

Our experimental design was inspired by work in Interactive TREC (Dumais and Belkin, 2005).
We compared a baseline system, with no mediation, against the experimental system, based on
mediation. Each of 16 subjects was randomly assigned a condition that specified the systems to be
used and the topics to be investigated, two with the first system and another two with the second
system. The systems and the queries were rotated in a Latin square design, in order to avoid any order
effect. Figures 6 and 7 depict the user interfaces for the baseline and experimental systems.

Figure 7 The experimental system (with mediation)

206 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

An effort was made to make the systems identical, with the exception of the mediation
functionality, so that any differences in results can be attributed to mediation. Each interface has a
Task control panel where the task is displayed, and where the subject can formulate their information
needs and submit them as queries. Search results from the target collection are shown in the “WEB”
tab of the Search results panel. When a document is selected, it is displayed in the web browser. The
subject can use the right mouse button to save a document from the hit list; the document snippet will
be shown in the Saved documents panel. When a document is saved, the searcher is asked to specify
the aspects of the topic that the document deals with, as shown in Figure 8. Retrieval effectiveness is
measured both by recall (the number of relevant Web documents saved by the searcher, relative to the
total number of relevant documents known by the researchers to be relevant) and aspectual recall (the
number of distinct topical aspects identified by the searcher, relative to the total number of aspects
found by the researchers). In order to identify relevant documents and aspects, we employed a pooling
procedure similar to what has become a standard procedure in such IR experiments (Voorhees and
Harman, 2005): we judged the relevance of the documents saved by all the subjects, and of the
candidate documents identified by ourselves when exploring candidate test topics.

Figure 8 Capturing the aspects covered by a saved document

The experimental system has an additional tab, “NJEDL”, which supports the exploration of the
full source collection. The source collection is clustered, and the subjects can use a combination of
searching and browsing for its exploration. On the one hand, searching can provide starting points for
browsing: when a document snippet in the result list is selected, not only is the full document shown in
the web browser, but the cluster hierarchy is expanded and scrolled automatically, so that the user can
investigate the neighborhood of the selected document. On the other hand, browsing the clusters and
documents of the source collection is expected to reveal serendipitous relevant information and to
suggest new query terms.

At the beginning of the experiment subjects are given a tutorial, and the experimental system is
demonstrated to subjects through the prescribed mediation interaction: after seeing the current topic,
the searcher explores the source collection, available in the NJEDL tab, in order to understand the
topic and its context better, and to grasp its terminology. Then, the interaction moves to the WWW tab,
where a query can be submitted to the Web search engine, like in the baseline system. In the
experiment the user is not forced to adopt this interaction model: if the topic is familiar and
formulating a good query is perceived as easy, she may choose to go straight to the WWW tab and
search the Web. However, the source collection is always available, and the searcher can always
explore it; this may happen if the Web search is perceived as unsuccessful, and when more ideas for
query terms are sought.

G. Muresan

207

3 State-Based Design of Interaction and Logging

3.1 From UML to XML via XMI

The Unified Modeling Language (UML) defines a standard language and modeling notation for
creating models of business and technical systems. It has the advantage that it can be easily understood
not only by software engineers building systems, but also by non-technical people specifying the
requirements of a system; in our context, the entire research team can collaborate to define the
intended functionality of an interactive system, and in particular of an information retrieval system.
UML is most often used as a blueprint for a system, facilitating communication between designers,
and guiding the programmers building the system. It specifies not only the concepts and vocabulary of
a system, but also the relationship between the concepts and the language that describes the
functionality of the system.

UML can be used to define several types of diagrams that capture different aspects of a design
(Fowler, 2004). Class diagrams describe the types of objects in the system and the various
relationships between them. Interaction diagrams describe how groups of objects collaborate in order
to implement a certain function. Of particular interest to us are state diagrams, used to describe the
behavior of systems. When used in the design of user interfaces, state diagrams capture the stages of
the interaction, define valid user actions at each stage, and specify the transitions brought about by
various user actions.

Idle

evStartTask

UserState

ViewResults
ExploreTarget

ViewTargetHitList

ViewTargetDoc

SavingDoc

ViewSavedDoc

ExploreSource

ViewSourceHierarchy

ViewSourceDoc

ViewSourceHitList

H

Thinking EditingQuery

evDisplayDoc

evQueryEdit

evQueryEdit

evStartSavingDoc

evSelectPane

evSelectSavedDoc

evUnsave

evUnsave

evSaveDoc

evNotQueryEdit

evSelectPane

evNotQueryEdit

evSelectDoc
evHierarchy

evDisplayDocevList

evNotQueryEdit

Figure 9 State diagram for the MIR project

208 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

To exemplify, Figure 9 shows the state diagram that depicts the system states during the MIR
interaction. We believe that such a diagram is fairly easy to understand or design even for a researcher
not trained in software engineering. In the Idle state between search sessions, the user may perform
related activities such as filling in questionnaires required by the experiment. When the session starts,
triggered by an evStartTask event, the system displays the current search task and enters the Thinking
state, in which the subject reads the task description and thinks of appropriate queries (or alternative
actions) to be used. If the user starts typing a query (marked by an evQueryEdit event), there is a
transition into the EditQuery state. On the other hand, in the case of using the mediation system, the
user has the choice of starting to browse the source collection first (marked by expanding the cluster
hierarchy or selecting a cluster, i.e. an event different from query editing). While the user is editing the
query (i.e. typing or using copy-and-paste), the system stays in the EditQuery state. When the ”Search”
button is pressed, the history (H) pseudo-state will indicate which of the collections was being
explored prior to editing the query; thus the query is submitted to the appropriate collection, the search
results are displayed in the Search results panel of the appropriate tab, and the system enters the
ViewResult state. This is a “superstate”, which has a number of “substates”: the ExploreSource state
corresponds to the exploration of the source collection (NJEDL), while the ExploreTarget state
corresponds to the exploration of the target collection (the Web). The searcher may choose between
the two collections (and therefore between the two sub-states) by selecting one of the tabs, or the sub-
state may be set automatically by the history mechanism.

The granularity of the states depends on the desired precision of modeling the interaction; it is
typically dictated by the intended functionality of the system, but it may also be informed by the type
of research hypotheses under study. For the MIR project, we considered a second level of substates.
When exploring the source collection, the user may be browsing the cluster hierarchy
(ViewSourceHierarchy) or scanning the list of search results (ViewSourceHitList), or selecting and
viewing one of the documents (ViewSourceDoc). When exploring the target collection, the user may
be scanning the list of hits (ViewTargetHitList), or may be viewing a selected hit (ViewTargetDoc) or
may be in the process of saving a search result judged relevant, and typing in the aspects covered by
that document (SavingDoc), or may have second thoughts and look again at a saved document trying
to decide whether to unsave it (ViewSavedDoc). The searcher can shift focus of the exploration
between the source and target collections (the evSelectPane event triggers this shift). This choice is
captured by the history pseudo-state (H), which dictates if future transactions from EditQuery should
go to ExploreSource or ExploreTarget following a query submission to the search engine.

Not depicted in this diagram are the orthogonal (or parallel) states, corresponding to different
components of the system such as the Task control panel and the Search results panel. These states can
also be modeled at different levels of granularity in order to support the design and implementation of
the system. For example, the Query panel can be in a Valid state, when a query can be submitted, or an
Invalid state, when there is no query, or a query has just been submitted and the search results are
expected from the search engine. These system states, parallel to the user states (and hence the two
synchronizations bars in the diagram), are essential in designing the functionality of the system.
However, they are omitted here for space reasons.

A couple of clarifications are in order:

- Although think-aloud protocols can help, it is not possible to have a perfect image of the searcher’s
cognitive process. Therefore, what is represented in the diagrams is not user cognitive states, but
system states. However, the user’s actions and the sequence of system states do reflect the decisions
taken by the user, and can therefore be used in modeling user behavior.

G. Muresan

209

- The labels assigned to system states reflect the researchers’ understanding of the interaction, and
specify their interpretation of what is going on. Like variable names in programming, these labels
should convey the semantics of the interaction; however, a perfectly accurate depiction of the user’s
cognitive process is not necessary. In the example, the label “Thinking” was assigned to the state in
which the searcher was instructed to read the assigned task and to think of a search query to submit.
There is no guarantee that the user follows the instructions and is indeed thinking; conversely, it does
not mean that this is the only state in which the user has to think. The label simply attempts to depict
the researcher’s best description of what is going on.

UserState

seenWarning : boolean = false
startMillis : long = 0
stopMillis : long = 0

+ setSeenWarning ()
+ getSeenWarning ()
+ setStartMillis ()
+ setStopMillis ()
+ getDuration ()
+ getDuration ()
+ toString ()
+ handleSubmitQuery ()

ViewResults

+ ViewResults ()
+ handle ()

ExploreSource

ExploreTarget

ViewSourceHierarchy

ViewSourceDoc

+ ViewSourceDoc ()
+ handleViewSourceDoc ()
+ getDoc ()
+ setDoc ()

ViewTargetHitList

ViewTargetDoc

+ ViewTargetDoc ()
+ handleViewTargetDoc ()
+ getDoc ()
+ setDoc ()

SavingDoc

- confirmed : boolean
- option : int
- aspects : String

+ SavingDoc ()
+ setDoc ()
+ getDoc ()
+ getAspects ()
+ isSaveConfirmed ()
+ getOption ()
+ setAspects ()
+ setSaveConfirmed ()
+ setOption ()

ViewSavedDoc

- unsaved : boolean = false

+ ViewSavedDoc ()
+ getDoc ()
+ setDoc ()
+ isDocUnsaved ()
+ setDocUnsaved ()
+ handleViewingSavedDoc ()
+ handleUnsaveDoc ()

ViewSourceHitList

LogAnalyzer

XPathLogAnalyzer

DOMLogAnalyzer

- cSource : int = 2
- cTarget : int = 1
- collId : int = - 1
- millis : long

+ DOMLogAnalyzer ()
+ changeState ()
+ getUserState ()
+ analyze ()
+ setMillis ()
+ getMillis ()
+ handleStartSession ()
+ handleEndSession ()
~ handleEditQuery ()
~ handleSubmitQuery ()
~ handleSelectPane ()
~ handleDoc ()
~ handleDisplayDoc ()
~ handleResult ()
~ handleSearchResults ()
~ handleStartSaveDoc ()
~ handleSaveDoc ()
~ handleUnsaveDoc ()
~ handleCluster ()
~ handleTouchCluster ()
~ handleShowMessage ()
+ summarize ()
+ report ()
+ getAspects ()

- state

Doc

- intId : String = null
- extId : String = null

+ Doc ()
+ getId ()
+ getExtId ()
+ toString ()

- doc

LogScanner

+ LogScanner ()
+ visitDocument ()
~ visitElement_log ()
~ visitElement_record ()
~ visitElement_date ()
~ visitElement_millis ()
~ visitElement_message ()
~ visitElement_StartSession ()
~ visitElement_EndSession ()
~ visitElement_EditQuery ()
~ visitElement_SubmitQuery ()
~ visitElement_SearchResults ()
~ visitElement_Result ()
~ visitElement_Doc ()
~ visitElement_SelectPane ()
~ visitElement_DisplayDoc ()
~ visitElement_StartSaveDoc ()
~ visitElement_SaveDoc ()
~ visitElement_UnsaveDoc ()
~ visitElement_TouchCluster ()
~ visitElement_Cluster ()
~ visitElement_ShowMessage ()

- analyzer

logScanner

Think

+ handle ()
+ Think ()

EditQuery

- query : String
- collection : String

+ EditQuery ()
+ handleSubmitQuery ()
+ getQuery ()
+ setQuery ()
+ getCollection ()
+ setCollection ()

Figure 10 State classes used in the MIR log analyzer

3.2 Explicit vs. implicit logging of states

At first sight, explicitly logging the system states appears natural, so that someone examining the logs
can clearly see what happened while the system was in a certain state, and when a state transition
occurred. However, logs are usually so large and contain so many details, that the researcher is
unlikely to gain much knowledge from examining them visually. Rather, the logs should be processed
automatically and the information pertinent to a certain research question should be summarized, and
possibly visualized, so that it can be interpreted by the researcher. Therefore, explicitly capturing the
states in the logs is not necessary, as long as they can be re-created at analysis time, based on the
events and actions captured in the logs, and on the model captured by the state diagrams.

210 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

One problem with capturing snapshots of system states is the issue of capturing attributes of the
state transitions. For example, the user submitting a query generates a state transition. The attributes of
this event, such as the text of query, the targeted search engine or the number of hits requested, are
usually important for the research hypotheses investigated. However, these attributes of an event are
not captured in the UML diagrams, are not translated into the XML schema and, in a naïve application
of the method discussed, are not captured in the logs. It is apparent that it is the events or user actions
that define the interaction, and they should be captured in interaction logs. Moreover, even if they were
not logged, the states of the system could be re-created based on the state diagram and on logged
events, which uniquely determine the state transitions. While the argument in favor of logging events
is compelling, the logging of the actual system states appears to be optional.

There are, however, several arguments in favor of not capturing the states explicitly, and in having
the log analyzer infer them. First, complex systems such as the user interface of a search engine are
likely to have complex states, with nested sub-states, and often have concurrent orthogonal states. For
example, not depicted in Figure 9 are orthogonal states that describe the connectivity of the system
with the Internet. If the system detects a drop in connectivity that would affect the normal running of
an experiment, then the normal functionality of the user interface would be over-ridden. Attempting to
log the parallel states and the transitions is likely to produce nesting that cannot be captured in a well-
formed XML document.

Another advantage of capturing only events and actions in the log and re-creating the states via the
log analyzer is that other interaction logs, obtained from previous experiments, or from experiments
run by other researchers, can be analyzed based on the same approach, as long as the state diagram is
known.

3.3 Our approach to integrating interaction design and log analysis

The above analysis and the decision to focus on logging state transitions suggest an extra step to the
direct approach discussed in section 1.2. From the state diagram (exemplified in Figure 9), we derive a
class diagram that captures the events that determine state transitions: each state transition corresponds
to a class, and the attributes of the class describe the attribute of the event (see Figure 10). Therefore,
the new UML class diagram captures the Interaction Modeling Language (IML) for the user
interface. It is from this intermediary diagram that the DTD and/or XML schema are derived via the
XMI mapping.

Figure 11 presents a sample of the DTD that describes the MIR interaction, and Figure 12 depicts
a sample extracted from a MIR log. It is apparent that the attributes of the events, such as the editing or
submission of a query, are captured in the logs and can be used to address the research hypotheses.
Moreover, as the IML captures just the interactions, and the log records just the events, not the states,
we are able to produce well-formed XML documents (because events do not overlap, as orthogonal
states may do). However, based on the state diagram, the states can be re-created while the logs are
parsed and the events interpreted. This supports research in analyzing state transitions and modeling
user behavior.

Apart from being the source of the XML schema, the interaction diagram supports the automatic
code generation for two software modules: (i) the logger that records each valid event and action that
takes place, and each state transition undergone by the system, recording in the log the time stamp and
the attributes of these events; (ii) a log analyzer that uses an XML parser and identifies events, actions
and state transitions, and analyzes the data according to the research hypotheses being investigated.

G. Muresan

211

This can be done with existing open-source tools (such as NetBeansp) that can automatically generate
code, given the adopted DTD or XML schema.

p http://www.netbeans.org/

Figure 11 Sample from the MIR interaction DTD

212 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

Note that the code generated is just a skeleton, and the research team needs to fill in the class
methods with actual code that writes or reads data into or from a file. However, such code is trivial
after the design of classes and methods has been generated. For writing, if Java is the implementation
language, then the standard logging packageq makes it extremely simple to output logs in XML: a
Logger object uses XML by default to write logs into a file, adds a timestamp automatically, and
displays as content of a “message” element the text passed to it for logging (see Figure 12).

Figure 12 Sample from a MIR log

Even if not used directly in generating the XML schema of the interaction and subsequently the
code for log recording and parsing, the original state diagram describing the states of the system

q http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

G. Muresan

213

(Figure 9) can be used for automatically generating code for modeling state transitions and, for
example, building a Markov model of user behavior. Note that the classes depicted in Figure 12 are not
simply used as an intermediary step to derive the interaction schema. They represent the actual classes
(in an object-oriented programming language such as Java) of the log analyzer, and of the software for
state modeling; quite obviously, the classes correspond to the states of the interaction. State objects can
capture events that took place for the duration of that state, and additional data structures can capture
the sequence of states in chronological order.

4 Discussion and evaluation
The effectiveness of a methodology is best demonstrated by its flexibility as well as its ability to solve
the problem it was designed for. In this section we discuss a number of design decisions that can be
taken to customize the methodology, and demonstrate its power based on anecdotal evidence from our
experiments, as exemplified by the kind of data analysis and research hypotheses investigation that it
supports.

4.1 Design patterns in the log analyzer

Parsing XML has become routine due to the multitude of open-source parsers and parser generators
available for a variety of programming languages. For extremely large logs, unlikely to fit in the
computer memory for the analysis, a SAX (Simple API for XML) parser is needed. This type of parser
identifies the beginning and end of various elements found in the log, and processes them based on the
callback methods provided by the programmer/researcher. The more desirable approach, although
restricted to logs of reasonable size, which fit in the random-access memory, is to use a DOM
(Document Object Model) parser, which builds a log tree model, in which each XML node
corresponds to a certain event or action, and allows the programmer to visit it in whatever order makes
sense for investigating a certain research hypothesis. For example, if the research hypothesis being
investigated is related solely to the documents saved by the searcher, it is possible and easy to visit just
the nodes capturing document saving.

It is common for XML parsers generated automatically based on DTD (such as the one produced
by NetBeans) to implement the Visitor software design pattern, which allows flexibility in specifying
which elements of the log tree should be visited and in what order, in order to collect, process and
summarize information. From our experience, we suggest combining that with the State design
pattern, where different classes correspond to states in the state diagram. This allows the state objects
to accumulate, summarize and report information in a simple and flexible fashion (Gamma et al,
1995).

The parsing code generated automatically is just a skeleton providing functionality for visiting the
log tree, and the research team needs to provide code for extracting the required data and for
conducting the intended analysis, according to the research hypotheses. Therefore, some familiarity
with the style of programming specific for building user interfaces and for analyzing user interface
interaction is recommended.

Unfortunately, the software engineering or interface design literature that would support this style
of design and implementation is rather weak and inconsistent. Some authors do a good job of
explaining the use of statecharts when designing user interfaces, but the implementations proposed are
procedural, rather than class-based (Horrocks, 1999). Apart from being inelegant and difficult to
maintain, such solutions do not support state inheritance, and do not support the accumulation of state
information. Other authors do indeed recommend a design solution based on the State design pattern,

214 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

but they only consider simple statechart examples, with no sub-states and no orthogonal states (Fowler,
2004).

We recommend the use of class inheritance to implement sub-states and the use of composition
for capturing concurrent orthogonal states. For example, in the MIR experiment scanning the list of
search results is one way to explore the target collection, so it makes sense to make ViewTargetHitList
a subclass of ExploreTarget. Figure 10 captures the entire set of classes used to model the user states in
MIR, described by the state diagram in Figure 9.

Other decisions are less obvious. When implementing the State pattern, a decision needs to be
made as to who controls the state transitions: the class representing the context (the log analyzer in our
project) or the classes representing states (Gamma, 1995). While much of the literature seems to
suggest that one of the two options should be adopted and applied consistently, a pragmatic
combination can be employed in practice. Some events always trigger transition to a particular state; in
MIR, for example, evStartTask always triggers a transition to Thinking, and evQueryEdit to
EditQuery. In such cases, the context can control the transition and the setting of the new state. Other
transitions and effects of the transitions are more complex and may depend on the current state; in such
situation the “cleaner” solution is for the handling of the event to be delegated to the state itself (e.g.
SavingDoc handles evSaveDoc).

4.2 Singletons vs. multiple objects for states

Another essential decision is how the state objects are created and stored
when analyzing the logs. One popular solution is to apply the Singleton
design pattern (Gamma, 1995), so that a unique (singleton) object is
created for each state. This is typically the preferred solution when an
application has a small number of states and a large number of state
transitions: state objects can be reused rather than new objects created,
which makes the application more efficient. Also, a state object can
accumulate information over multiple occurrences of the same conceptual
state. While in most situation using the singletons is the better solution,
for our specific application that solution is not appropriate, due to the
level of detail that we want to capture. For example, we want to analyze
not only how many queries were edited and submitted overall, but also
how much time was spent formulating each of them, if words were typed
or pasted into the query box, the number of corrections that were made on
the query etc. For capturing specific information for each instance of a
state, we adopted the solution of creating a new state object every time a
state transition occurs; for example, each EditQuery object captures the
interaction related to a different query, rather than accumulating
information about all the queries.

When the log is analyzed, a number of state objects are created and
stored in a list. There is a lot of flexibility on how these objects are
subsequently processed. For answering a certain research hypothesis, the
list of state objects can be filtered so that only objects of a certain class
are kept, and the information stored by them can be summarized and
analyzed.

Think 4
EditQuery 9
ViewTargetHitList 15
ViewTargetDoc 78
SavingDoc 16
ViewTargetHitList 6
ViewTargetDoc 31
ViewTargetDoc 9
ViewTargetDoc 35
SavingDoc 11
ViewTargetHitList 3
ViewTargetDoc 173
SavingDoc 16
ViewTargetHitList 14
EditQuery 7
ViewTargetHitList 4
ViewTargetDoc 17
ViewTargetDoc 59
ViewTargetDoc 51
ViewTargetDoc 39
EditQuery 13
ViewTargetHitList 25
ViewTargetDoc 38
SavingDoc 15
…

G. Muresan

215

4.3 Log Analysis Results

The focus of this paper is on the methodology for analyzing the interaction rather than on the actual
results. Therefore, no comprehensive analysis of the MIR logs is included.r The purpose of this section
is to demonstrate the kind of analysis supported by our methodology.

First of all, let us distinguish between two fundamentally different approaches to analyzing the
logs. The “atemporal” approach can be applied when the interest is in processing information about a
certain kind of event, with no regard to state transitions, or to the order of the states in the logs.
Examples of such situations are: getting the list of all the documents viewed or saved by the user,
getting the list of all queries submitted to the search engine, etc. In such situations, probably the most
efficient solution is to implement an XPathLogAnalyzer, which uses XPath to visit only the XML
nodes in the log tree that are of interest (for example, the SaveDoc events can be visited by specifying
"/log/record/message/SaveDoc" as the path to the nodes of interest).

If the time factor is essential in answering a certain research hypothesis or in getting a certain kind
of information, then a DOMLogAnalyzers can be employed instead, which will traverse and process
the nodes of the log tree (in XML format) in the desired order. For more flexibility, the task of actually
traversing the log tree can be delegated to a separate class (LogScanner in Figure 12), so that the
function of traversing the log is decoupled from the function of taking action for each node. An even
more flexible solution is to apply the Strategy design pattern (Gamma, 1995), by making LogScanner
an abstract class and having different visiting strategies implemented by its concrete subclasses.

Let us now have a look at a sample of results obtained by applying this methodology in MIR. The
inset text-box shows a sample report obtained by listing the class names for each state object inferred
from a log file, together with the duration of that state (in seconds). Subsequent processing could
consist, for example, in building a transition matrix by compiling the states from all the log files in
order to (i) observe patterns of behavior and be able to predict the next state at a given point; or to (ii)
find what are the most common states and most common transitions, and optimize the use of the
interface for those situations; or to (iii) detect and correct usability problems (e.g. detecting transitions
that never happen, because some functions are not sufficiently visible in the user interface).

An essential piece of analysis for the MIR project regards the effectiveness of retrieval; we are
interested to see whether mediation improves effectiveness. The computation of recall and aspectual
recall requires relevance judgments. Even without those, a simple extraction and comparison of data
from the logs can give us an idea of how well our expectations were met. Note that in previous
experiments, run as part of Interactive TREC, a high correlation was observed between recall and the
raw number of documents saved by the subjects (Belkin et al, 2001). Moreover, in the current
experiment, the subjects were asked to support their decision to save each document by stating the
aspects addressed by the document; therefore, one can expect most saved documents to be relevant,
and a higher than usual correlation between recall and number of documents saved. Obtaining from the
logs the number of saved documents and the number of queries submitted is trivial.

For the sake of exemplifying some of the statistical analysis supported by our approach, let us
report that a set of ANOVA tests shows that most differences between the non-mediated and the
mediated conditions are not statistically significant. Surprisingly, slightly more documents were saved
on average in the non-mediated condition (m = 3.94, sd = 1.76) than in the mediated condition (m =

r Detailed results and conclusions from the MIR project are reported in Lee’s PhD dissertation (2006), supervised
by this author.
s Names such as XPathLogAnalyzer or DOMLogAnalyzer are by no means standard names. They were chosen in
the MIR project to indicate that the scanning of the logs was based on XPath, respectively on traversing the DOM
tree.

216 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

3.13, sd = 1.62) despite visibly more effort in the mediation condition. While spending roughly the
same total amount of time in the overall search session (m = 1166.16, sd = 185.98 compared to m =
1190.91, sd = 168.91)t, the mediation subjects submitted significantly more queries (m = 8.69, sd =
4.90 compared to 5.69, sd = 3.22; F = 8.377, p = 0.005). In the mediation condition, subjects submitted
an average of 2.22 queries to the source collection, and an average of 6.47 queries to the target
collection.

Unfortunately, this is a bad result for the mediation hypothesis. Possible explanations are that (i)
the subject could not find relevant documents in the source collection; or (ii) the subjects did not have
time to read the identified source documents in order to improve their understanding of the topic or to
enhance their terminological vocabulary in order to submit better queries. In order to answer these
questions, our next steps are to examine the source documents viewed by the users (captured in the
interaction logs) and to judge their relevance to the test topics. This will allow us to check if the
statistical language models of the queries submitted following mediation show any significant
difference. This shows the power and flexibility of our methodology – the accurate logging of all
semantic events, even those not related to the research hypotheses, affords the extension of the original
hypotheses, and extra analysis not planned at the outset.

5 Contributions and Future Work
5.1 Contributions and limitations of the proposed methodology

The proposed methodology is a novel and significant contribution to experimental research in
interactive systems, with applications in areas such as Human Computer Interaction or Information
Seeking and Retrieval. It is particularly suitable for studying exploratory searching, where the research
questions are usually related to understanding patterns of behavior in different stages of the interaction.
This approach has been successfully applied in Interactive TREC work and in the Mediated
Information Retrieval project.

One interesting issue to consider is the generality of our approach. What kind of systems can it be
applied to ? Is it not rather limiting to restrict logging to semantic events ? Is it possible to log
everything that happens during the interaction ? We will start addressing these issues by re-iterating
the purpose of our work. We intended to integrate the design of the user-system interaction (and
implicitly of the user interface) with the design of the logger and of the log analyzer. This means the
following:

- The user should be limited to performing actions judged by the system designer to be valid in a
certain context; e.g. the user cannot submit an empty query, or save a document repeatedly etc. It
means that only valid actions should be recorded in the logs. During testing, assertions in the log
parsing software can help make sure that the XML documents perfectly match the interaction
specification (the XML schema), and that all the recorded events and state transitions are valid.

- It is debatable whether user attempts to perform invalid actions (e.g. the attempt to re-submit a query
while the search is active), or events ignored by the system (erratic moves of the mouse) should be
logged. On the one hand, only lack of imagination can limit the system designer’s as to what should be
logged, so the danger of recording too much irrelevant data is real (e.g. if a dedicated thread records
the state of the system second by second). On the other hand, recording data that is judged irrelevant at
the onset may be valuable if the relevance judgment is reconsidered, for example if new research
hypotheses are proposed following the initial analysis of an experiment’s logs. While recommending a

t The subjects were told that they had 20 minutes (or 1200 seconds) for investigating each topic.

G. Muresan

217

balance between the extremes, we have addressed this issue by including a special action called
ShowMessage (see the DTD in Figure 11), which records “other” events, i.e. events not included
among the valid semantic events in the interaction design. In our own research experiment, we used
this capability to record when the task panel’s timer alerts the subject that just two minutes are left for
completing the task; this is an event that does not affect the state of the system and can be ignored by
the user. However, recording that event allows us to determine if the reminder affected the user’s
subsequent search behavior.

- On a related note, the designers need to decide the granularity of the events to be logged. For
example, should the system log each keystroke used to edit a query, or just the final query ? Our
recommendation is to let the research hypotheses under investigation inform the decision. For
example, we were interested in the effect of topic familiarity on the searcher’s query formulation
behavior (copying and pasting vs. typing, number of corrections made, etc), so we logged all
keystrokes. On the other hand, we only logged the mouse events that had semantic interpretation
(selection, cluster expansion, etc).

- Similarly, the system designer needs to decide whether orthogonal events (e.g. the search thread
becoming active, or the Internet connection being lost etc) are worth logging, at the expense of more
design and implementation time. Our approach is applicable in two ways: (i) the state diagrams are
built separately, and the logging is done in separate files; synchronization of logs, based on time-
stamps may be required at analysis time; (ii) more complex state diagrams are used, with parallel
swim-lanes, and all the events are logged into the same file; the disadvantage is the increased
complexity of the software.

Our proposed approach is appropriate for client-side logging, especially when the research team
design and implement both the user interface software (which includes the conceptual interaction
design) and the log analyzer. In this situation, the same class hierarchy, representing system states, can
be used for implementing both the interaction with the user (keystrokes and mouse actions are
interpreted in terms of semantic actions according to the state of the system) and the log analyzer
(logged events are interpreted in order to re-create the system states). The proposed approach can be
adapted in the following situations, with gradually increasing levels of difficulty:

- For adding logging and analysis functionality to existing code. The state diagram of the interaction
needs to be reverse-engineered based on the code and on observing the functionality of the system.
While the benefits of an integrated design are lost, the logging of the events and analysis of the logs
works well.

- For analyzing existing logs produced by a different system. The success of our state-based approach
depends on the quality of the user interface that generated the logs (whether it allows or not invalid
events to take place and to be logged) and the amount of events logged (whether the sequence of
events can unambiguously predict the sequence of system states).

- For server-side logging, our approach is only feasible if the logged information is sufficient to
determine the client that generated each event, and if the states of the client can be predicted based on
the logged events. It is not appropriate, for example, for analyzing weblogs of HTTP requests.

5.2 Future research directions

One issue that we are currently investigating is an extension of this methodology to studying patterns
of behavior by building Hidden Markov Models (HMM) based on the analysis of state transitions

218 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

recorded in the logs (Jurafsky, 2000). One decision in building such models regards the computation of
the transition probabilities. The two potential approaches are based on: (i) macro statistics – the
transitions are counted and the probabilities are computed for each individual user, then the
probabilities are averaged over the users; and (ii) micro statistics – the transitions are counted and the
probabilities computed over all the user logs. The former approach is expected to highlight the
differences between individual subjects, and the latter to show common behavior. Both approaches
should probably be used so that together they paint a better picture of what is happening. Moreover,
where the difference between individual and common behavior is significant, correlations with
individual factors (such as familiarity with the topic) should be sought.

Considering the hierarchical structure of states, it is obvious that another issue to consider is state
granularity. Taking into account just the top levels may give too coarse a view of the interaction and
may not provide sufficient details to answer research questions. On the other hand, the leaf states may
provide too much detail and may hide patterns in higher levels; moreover, due to the limited amount of
data generated in a lab user experiment, some of the leaf states may appear infrequently, so drawing
conclusions from such sparse data may be dangerous. It is probably better to repeat the analysis for
different levels of granularity or to smooth detailed interaction models with models built for transitions
between high granularity states.

Actually, the analysis described above may prove that, for complex interactions such as
information seeking, pure Markov Models may prove inappropriate, and that more complex extensions
should be considered. It may be the case that state transitions are not determined just by the current
state and certain events, but also by some parameters of the state, such as the amount of time spent, or
the number of documents examined.

A very different research direction is to investigate ways to automatically generate graphical
diagrams that show the frequency of each state transition and thus give a visual display of user
behavior. So far we have extracted transition frequencies with the log analyzer, but have built the
diagrams manually.

Also, we subscribe to efforts for standardization of log formats in certain types of applications,
such as user interfaces for digital libraries (Gonçalves et al, 2003; Klas et al, 2006). Moreover, we
suggest that our approach of deriving logging formats from user interface design should help the
effort: the functionality provided by such user interfaces should be first standardized in UML format,
and then standardization of the log formats can be achieved as an immediate consequence.

Finally, we intend to investigate a number of IR user interfaces and to compare their state
diagrams, trying to identify common patterns. This would allow us to provide support, in the form of
reusable toolkits of frameworks, for researchers designing and evaluating user interfaces for
Information Retrieval.

Acknowledgements

The methodology proposed and discussed here was successfully used in designing the user interfaces
and analyzing the logs for the Mediated Information Retrieval (MIR) project, conducted in the
School of communication, Information and Library Studies, Rutgers University. This author thanks
Hyuk-Jin Lee, who conducted the user experiment, Nicholas J. Belkin and Dan O’Connor,
supervisors, and David J. Harper from the School of Computing, The Robert Gordon University,
UK, external advisor.

G. Muresan

219

References
1. Belkin, N.J., Cool, C., Stein, A., Thiel, U. (1995) Cases, scripts, and information-seeking
strategies: on the design of interactive information retrieval systems. Expert Systems with Applications,
9(3), 379-395.
2. Belkin, N. J., Cool, C., Kelly, D., Lin, S.-j., Park, S., Perez-Carballo, J. and Sikora, C. (2001)
Iterative exploration, design and evaluation of support for query reformulation in interactive
information retrieval, Information Processing & Management, 37(3): 403-434.
3. Belkin, N.J., Cool, C., Kelly, D., Kim, G., Kim, J.-Y., Lee, H.-J., Muresan, G., Tang, M.-C.,
Yuan X.-J. (2002) Rutgers Interactive Track at TREC 2002, in Proceedings of TREC 2002,
Gaithersburg, November 2002.
4. Carlson, D. (2001) Modeling XML applications with UML: Practical e-Business applications,
Addison-Wesley, ISBN: 0-201-70915-5.
5. Carlson D. (2006) Semantic models for XML schema with UML tooling. Proceedings of the
2nd International Workshop on Semantic Web Enabled Software Engineering (SWESE), Nov 2006,
Athens, GA..
6. Crowle, S. and Hole, L. (2003) ISML: An interface specification meta-language, 10th
International Workshop on Design, Specification and Verification of Interactive Systems, Madeira.
7. Diaper, D. and Stanton, N. (2004) The handbook of task analysis of Human-Computer
Interaction, Lawrence Erlbaum Associates, ISBN 0-8058-4433-3.
8. Douglass, B. P. (1999) Doing hard time: Developing real-time systems with UML, objects,
frameworks, and patterns, Addison-Wesley, Reading, MA.
9. Dumais, S. T. and Belkin, N. J. (2005) The TREC Interactive tracks: Putting the user into
search, in TREC – Experiment and evaluation in Information Retrieval, eds. Voorhees, E. M. and
Harman, D. K., MIT Press, Cambridge, MA, ISBN 0-262-22073-3.
10. Ellis, D. (1989) A behavioral approach to information retrieval system design. The Journal of
Documentation, 45(3), 171-212.
11. Fisher, K. E., Erdelez S. and McKechnie, L. (2005) Theories of Information Behavior,
Information Today, Medford, NJ.
12. Fowler, Martin (2004) UML distilled: A brief guide to the standard object modeling
language, 3rd ed, Addison-Wesley/Pearson Education.
13. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995) Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, MA.
14. Gonçalves, M. A., Panchanathan, G., Ravindranathan, U., Krowne, A., Fox, E. A.,
Jagodzinski, F. and Cassel, L. (2003) The XML Log Standard for Digital Libraries: Analysis,
Evolution, and Deployment. The Third Joint Conference in Digital Libraries (JCDL), Houston, Texas,
May 2003.
15. Harel, D. (1988) On visual formalisms, Communications of the ACM, 31 (5).
16. Hersh, W. (2002) TREC 2002 Interactive Track Report, Proceedings of TREC 2002,
Gaithersburg, Nov 2002.
17. Horrocks, I. (1999) Constructing the User Interface with Statecharts, Addison-Wesley, ISBN
0-210-34278-2.
18. Ingwersen, P. and Jarvelin, K. (2005) The Turn – Integration of Information Seeking and
Retrieval in Context. Springer.

220 Integrating Interaction Design and Log an Analysis: Bridging the Gap with UML, XML, and XMI

19. Jurafsky, D. and Martin, James H. (2000) Speech and language processing, Prentice-Hall,
ISBN 0-13-095069-6.
20. Klas, C.-P., Albrechtsen, H., Fuhr, N., Hansen, P., Kapidakis, S., Kovacs, L., Krievel, S.,
Micsik, A., Papatheodorou, C., Tsakonas, G. and Jacob, E. (2006) A Logging Scheme for Comparative
Digital Library Evaluation, in Proceedings of the 10th European conference on research and advanced
technology for digital libraries (ECDL 2006), Alicante.
21. Kuhlthau, C. (1991) Inside the search process: information seeking from the user’s
perspective. Journal of the American Society for Information Science, 42(5), 361-371.
22. Lee, H.-J. (2006) Mediated Information Retrieval for the Web Environment, Ph.D.
dissertation, School of Communication, Information and Library Studies, Rutgers University, New
Brunswick, NJ, May 2006.
23. Limbourg, Q. and Vanderdonckt, J. (2004) Comparing task models for user interface design,
in Diaper, D. and Stanton, N. (eds.) The handbook of task analysis of Human-Computer Interaction,
Lawrence Erlbaum Associates, ISBN 0-8058-4433-3.
24. Muresan, G. (2002) Using Document Clustering and Language Modelling in Mediated
Information Retrieval, Ph.D. dissertation, School of Computing, The Robert Gordon University,
Aberdeen, Scotland, January 2002.
25. Muresan, G. and Harper, D. J. (2001) Document Clustering and Language Models for
System-Mediated Information Access in Proceedings of the 5th European Conference on Research and
Advanced Technology for Digital Libraries, Darmstadt, 4-9 September 2001, 438-449, ISBN 3-540-
42537-3.
26. Muresan, G. and Harper, D. J. (2004) Topic Modelling for Mediated Access to Very Large
Document Collections, JASIST 55 (10): 892-910, Special Topics Issue: Document Search Interface
Design for Large-Scale Collections and Intelligent Access, August 2004.
27. Olah, J. (2005) Shifts Between Search Stages During Task-Performance in Mediated
Information-Seeking Interaction, Proceedings of the 68th Annual Meeting of the American Society for
Information Science (ASIST), 42, Charlotte, NC.
28. Paterno, F. (2001) Towards a UML for Interactive Systems, Proceedings of the 8th IFIP
International Conference on Engineering for Human-Computer Interaction, Toronto, May 2001, 7-8,
ISBN:3-540-43044-X.
29. Paterno, F. (2004) ConcurTaskTrees: an engineered notation for task models, in Diaper, D.
and Stanton, N. (eds.) The handbook of task analysis of Human-Computer Interaction, Lawrence
Erlbaum Associates, ISBN 0-8058-4433-3.
30. Robertson, S.E., Hancock-Beaulieu, M.M. (1992) On the evaluation of IR systems.
Information Processing and Management, 28(4), 457-466.
31. Saracevic, T. (1996) Interactive models in information retrieval (IR). A review and proposal.
Proceedings of the 59th Annual Meeting of the American Society for Information Science (ASIST), 33,
3-9.
32. Sharp, H., Rogers, Y. and Preece, J. (2007) Interaction design, Wiley, ISBN: 978-0-470-
01866-8.
33. Shneiderman, B. and Plaisant, C. (2005) Section 5.2: Specification Methods, in Designing the
User Interface, Addison-Wesley / Pearson Education, p.175-183.
34. Tidwell, J. (2006) Designing interfaces, O’Reilly, ISBN 0-596-00803-1.

G. Muresan

221

35. Trætteberg, H. (2003) Dialog modelling with interactors and UML Statecharts - A hybrid
approach, 10th International Workshop on Design, Specification and Verification of Interactive
Systems, Madeira.
36. Vakkari, P. (1999) Task complexity, problem structure and information actions, integrated
studies on information seeking and retrieval. Information Processing and Management, 35, 819-837.
37. Vakkari, P. (2001) Changes in search tactics and relevance judgments when preparing a
research proposal: a summary and generalization of a longitudinal study. Journal of Documentation,
57(1), 44-60.
38. Voorhees, E. M. and Harman (2005) TREC – Experiment and Evaluation in Information
Retrieval, MIT Press, Cambridge, MA, ISBN 0-262-22073-3.
39. Winckler, M. and Palanque, P. (2003) StateWebCharts: a Formal Description Technique
Dedicated to Navigation Modelling of Web Applications, 10th International Workshop on Design,
Specification and Verification of Interactive Systems, Madeira.
40. Xie, H. (2000) Shifts of interactive intentions and information-seeking strategies in
interactive information retrieval. Journal of the American Society for Information Science, 51(9), 841-
857.

