
Journal of Web Engineering, Vol. 6, No. 2 (2007) 143–164
c© Rinton Press

ONTOLOGY DEVELOPMENT FOR THE SEMANTIC WEB:
AN HTML FORM-BASED REVERSE ENGINEERING APPROACH

SIDI MOHAMED BENSLIMANE

University of Claude Bernard, Lyon, France

sidi-mohamed.benslimane@liris.cnrs.fr

DJAMAL BENSLIMANE

University of Claude Bernard, Lyon, France

Djamal.benslimane@liris.cnrs.fr

MIMOUN MALKI

University of Sidi Bel-Abbes, Sidi Bel-Abbes, Algeria
malki@univ-sba.dz

ZAKARIA MAAMAR

Zayed University, Dubai, U.A.E
zakaria.maamar@zu.ac.ae

PHILIPPE THIRAN

University of Namur, Namur, Belgium
philippe.thiran@fundp.ac.be

YOUSSEF AMGHAR

INSA, Lyon, France
youssef.amghar@liris.cnrs.fr

MOHAND-SAID HACID

University of Claude Bernard, Lyon, France
mohand-said.hacid@liris.cnrs.fr

Received April 18, 2006
Revised November 2, 2006

The rapid growth of the Internet makes information available anywhere and anytime.

Most businesses run Web-based front-end databases upon which online services are of-
fered to end-users. The next generation of the Web, the semantic Web, seeks to offer
data in a usable form for automatic reasoning. To this purpose, it is necessary to make
existing database content ready-to-use for semantic Web applications, which use on-

tologies to formally define the semantics of their data. As a result, a large number of
initiatives focus on building ontologies through automatic or semi-automatic processes.
In this paper we present a semi-automatic reverse engineering approach that uses a rela-

tional database’s HTML forms and a set of transformation rules to produce to an OWL
ontology.

Keywords: Ontology extraction, Relational database, HTML form, Reverse engineering.

Communicated by: G.-J. Houben & K. Turowski

1 Introduction

During the last few years, the ease-of-use of databases has considerably grown in all busi-

nesses. In addition, the simplicity and proliferation of the World Wide Web have made the

143

144 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

information available anywhere and anytime. As a result, most businesses run Web-based

front-end databases upon which a variety of online services. The next generation of the

Web, the semantic Web, seeks to offer data in a usable form for automatic processing. A

key ingredient to this is to enrich databases with semantics. Lately, ontologies have become

the focus of research in several areas including knowledge engineering and management, in-

formation retrieval and integration, agent systems, the semantic Web, etc. The availability

and proliferation of ontologies are crucial to the success of the semantic Web. Nevertheless

building ontologies is so costly that the progress of the semantic Web enhancement can get

refrained. Manual construction of ontologies [1, 2] still remains tedious, time-consuming, and

error-prone. Automatic building of ontologies from existing information sources [3] is relevant

and fully automated tools are still at the very early stage of development. Therefore, the use

of a semi-automatic technique for ontology building is deemed appropriate.

Relational databases continue to be the most popular means for storing, retrieving, and

manipulating data. Similarities do exist between relational and ontological models with re-

spect to abstracting and modeling the domain of discourse. But, their purposes are different.

In general, the incompatibilities between relational and ontological models can be summarized

as follows:

• Design : an ontology is by default application independent domain. Its concepts can

be reused by different kinds of applications. A relational model represents the structure

and integrity of the data elements of a specific enterprise application. Therefore, the

conceptualization and vocabulary of a relational schema are not a priori intended to be

used by independent users.

• Persistence : the semantics of a relational schema is often an arrangement between

what users want and what developers can do. In addition, a relational schema would be

updated on the fly as particular new functional requirements emerge. Changes in the

domain and in conceptualization may also require evolution in the content of ontologies.

Nevertheless, changes occur more frequently in database schema than in ontologies.

• Usage : ontology supports browsing concepts so reasoning task could be performed [4].

So, ontology is used to reason about concepts while relational schema is used to retrieve

a collection of instance data.

• Model elements: the differences are as follows:

– There are no basic types; everything is a concept;

– There are no attributes or relationships; everything is a property. Only binary

relationships can be represented through properties. Ternary or higher degree

relationships get their own concepts;

– Concepts and properties can be organized into inheritance hierarchies.

Reverse engineering technique appears to be interesting solution for building ontologies

to be fed with information contained in relational databases. This technique is a process

that analyzes a ”legacy” system so its components and their relationships are revealed [5].

However, building ontology on the basis of the information that is extracted from a relational

schema faces the following obstacles:

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 145

• To improve performance, many database designers tend to break the best practices of

database design by optimizing and de-normalizing the relational schema.

• Many organizations typically assume that a relational schema is in third normal form,

which is not always the case.

• The complete information about the relational database such as functional and inclusion

dependencies is usually not available [6].

• Since a relational schema does not support specific constructs that are in a conceptual

schema like inheritance, these constructs are lost during the mapping of the conceptual

schema onto the relational schema. This results in a ”semantic degradation” of the

relational schema that becomes simple, less complete, less understandable, and less

expressive [7].

• Relation and attribute names in a relational schema are in general selected based on

designers understanding and background. Moreover, these names are often shortened

(e.g., CUST NB, StuName, S 125 AZE, etc.), which makes deducting the meaning of

data a big challenge [8].

To address some of the aforementioned obstacles of reversing relational databases into

ontologies, we propose a semi-automatic OWL-based approach. The proposed approach an-

alyzes the content of a database by using its HTML forms and HTML tablesain order to

restructure and enrich the relational schema. This paper is organized as follows. In Sec-

tion 2 summarizes the approaches that deal with relational databases reverse engineering into

ontologies. Section 3 explains our proposed approach. The Detection rules that use the struc-

ture of an HTML-form are shown in Section 4. Section 5 describes the process of semantics

discovery and enrichment of a relational schema. Section 6 details the rules for building an

OWL ontology from the enriched relational schema. Section 7 presents a portal prototype

implementation of the ontology constructor. Finally, Section 8 contains concluding remarks

and suggests some future works.

2 Related works

Several efforts have been put into relational databases reverse engineering by focusing on

how to define semantics in a database schema [9], how to extract semantics out of a database

schema [5], and how to transform a relational model into an object-oriented model [10, 11, 12].

However, these efforts’ results do not meet the requirements of constructing ontology such as

property inheritance and the use of negation constructor. Although the object-oriented model

is close to the ontology theory, there are still some differences. For example, properties in

an object-oriented model cannot be represented in a hierarchy. In the following we list some

approaches that have drawn our attention with regard to the objective of our research. The

approaches are classified in three categories that are the result of a survey of the literature

addressing the techniques that consider ontologies as the target for reverse engineering of

relational databases.

aIn what follows HTML-form designates both HTML-form and HTML-table.

146 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

• User query-based approaches: in [13], Kashyap’s approach builds and refines an ontology

by analyzing the user requires that are run over a relational schema. However, this

approach does not develop axioms, which are part of ontology. Moreover, the ontology

refinement quality is not ensured since this depends on user’s queries, which are random.

• Relational schema-based approaches: in [14], Stojanovic et al.’s approach provides a set

of rules to map a relational database’s constructs onto an RDF ontology constructs.

These rules analyze relations, keys, and inclusion dependencies (which are not often

available). In [15], Rubin et al.’s approach proposes to automate the process of filling

the instances and their attributes values of an ontology using the data that are extracted

from relational sources.

• Tuple-based approaches: since the relational schema is poor in explicit semantics [4],

Astrova’s approach [16] analyzes a relational database to discover additional ”hidden”

semantics (e.g., inheritance). However, this approach is very time consuming when the

number of tuples in a relational database is huge.

As an attempt to solve the common problems of reverse engineering, recent research projects

suggest data semantics extraction using HTML pages to be linked to wrapper [17, 18, 19, 20].

The drawback here is that any change in an HTML page can break the wrappers and thus,

the ontologies they are based on. HTML pages are often redesigned typically more than

twice a year [21]. Recently, Astrova proposed in [22] an HTML form based approach to

extract ontology and to create ontological instances from HTML-pages’ data. However, the

main drawback of this approach is that it does not offer any way to identify inheritance

relationship.

3 The proposed ontology development approach

To overcome some drawbacks of the aforementioned works, our approach proceeds by extract-

ing semantics from the HTML-forms that relational databases expose to the external world.

Prior to building the ontology in a semi-automatic way, the extracted semantics is combined

with the proper semantics that underpins these relational databases.

3.1 Motivations

The following arguments motivate why we adopted HTML-forms to start with the process of

generating an ontology:

• HTML-forms are convenient interfaces to enter, change, and view data on Web pages.

Therefore, studying and analyzing HTML-forms can reveal important information such

as mandatory data and range of data.

• HTML-forms are a structured collection of fields that are used to communicate with a

relational database. While data in a form are usually structured, a relational database’s

structure is often not available in advance [23].

• HTML-forms partially represent a logical structure of the relational database, rather

than its physical structure (i.e., a relational schema). Indeed, they often provide a

user-friendly interface to the relational database. In the back-end of this interface, a

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 147

relational schema is probably not well-designed, not optimized, and even not normalized

[8].

• Field names in HTML-forms are usually more explicit and meaningful than the corre-

sponding relations’ and attributes’ names in a relational schema.

• HTML-forms are normally associated with instructions that provide additional infor-

mation on how data are structured and managed [24].

3.2 Overview of the approach

The proposed ontology building approach consists of three rules-based engines (Figure 1):

• Structure detection engine has two sets of rules. The first set analyzes the HTML

pages in order to identify the constructs of a form. The second set uses these constructs

to produce this form’s XML-schema.

• Semantic discovery engine has two sets of rules. The first set acquires the domain

semantics by extracting the relational schemas of the forms and their dependencies

constraints. The second set allows the enrichment of the database relational schema

with the discovered semantics.

• Ontology building engine has two sets of rules. The first set automatically trans-

lates the enriched relational schema into OWL-based ontological constructs. Rules are

organized into four groups for constructing classes, properties, hierarchies, and axioms.

The second set is responsible for creating instances of the ontology using the relational

tuples.

Fig. 1. Ontology building framework.

4 Form structure detection

For illustration purposes, we use the Algerian airline company Web siteb. Two HTML pages
among several are shown in Figure 2: Booking form and Flight Program table. The underlying
source of the Web site is a relational database whose schema is given in Table 1. Underlined
and italic attributes represent primary and foreign keys, respectively.

bhttp://www.airalgerie.dz

148 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

Fig. 2. HTML pages along with HTML-Form and HTML-Table.

Table 1. A relational database schema.

N Relational schema

1 Passenger (PassengerID, FN, LN, Age)

2 City (CityID)

3 Departure-City (CityID, DC-Name)

4 Arrival-City (CityID, AC-Name)

5 Date (DeparatueDate)

6 Departure-Hour (HourID, type)
7 Arrival-Hour (HourID, type)
8 Company (CompanyID, CompanyName)

9 Plane (PlaneID, CompanyID, Capacity)
10 Flight (FlightID, Dep-HourID, Arr-HourID, PlaneID)
11 Leaving-From (FlightID, Dep-CityID)

12 Going-To (FlightID, Arr-CityID)

13 Book (PassengerID, FlightID, DepartureDate, Price, Class)

4.1 Analysis of HTML pages structure

This analysis phase uses an HTML-form to clarify its structure, identify its components and
relationships, and finally extract its E/R schema.

4.1.1 Model of a form

A conceptual model of a form using an E/R schema was originally proposed in [25] and
partially represented in Figure 3. We extended this schema by adding some constructs that

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 149

allow references between forms. In addition, we introduced the concepts of field underlying
source and linked-attribute to keep a close link with the database that is under analysis.
Basically, the extended E/R schema consists of:

• Form type : is a structured collection of empty fields that are formatted in a way that
permits communication with the database. A particular representation of a form type
is called form template that suggests three basic components namely title, captions, and
entries.

• Structural units (SUs): correspond to objects that closely group related fields in a
form.

• Form instance : corresponds to an occurrence of a form type. This is the extensional
part that is obtained when a form template is filled in with data. Figure 2 shows two
instances of Booking and Program of flights forms type.

• Form field : consists of a caption and its associated entry. Each entry is generally
linked to a table’s name as per the table names in the underling database. The values
that a form field displays/receives are provided by (or stored in) the linked-attribute.
Some form fields are computed; others can be simply not linked to the relational
database. We distinguish three types of fields: filling fields (e.g., TEXT, CHECK-
BOX, RADIO, TEXTAREA attributes); selection fields (e.g., SELECT attribute); and
link fields (HREF attribute).

• Underlying source: corresponds to the structure of the relational database (i.e., a
relational schema) in terms of relations and attributes along with their data types.

• Relationship: is a connection between SUs. There are two kinds of relationship:
Membership (belongs to) and Reference (refers to). Membership is one-to-many or one-
to-one relationship between two SU types. One of the SUs (always the one-side) is called
the parent SU, the other (many-side or sometimes also one-side) is called the child SU.
An occurrence of a relationship consists of one SU occurrence of the parent and one or
several occurrences of the child SU. Reference is a many-to-many relationship between
SU types. A SU can refer to one (maybe itself) or to many other SUs.

• Constraint : is a rule that defines which data validity for a given form field. For
instance, a cardinality constraint specifies for an association relationship the number of
instances that a SU can participate in.

4.1.2 Identification rules to obtain a form’s E/R schema

The following rules summarize the mechanisms that permit identifying a form model’s con-
structs using a relational schema as input. These rules populate the structure detection engine
of Figure 1.

Rule i1: Form instance identification. In order to differentiate the different contents in
an HTML document, Web pages are usually split into multiple areas. We refine these contents
by removing stop words and useless tags like and <i> and by preserving the following
sections:

• The section between open and closing <form> tags that are used to access and update
the relational database.

150 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

Name

Name

(1,n)

(1,1)

Comprises

Referred by (0,n)

(0,n)Refer to (1,1)

(0,n)

(1,1)

Title

(1,n)

(1, n) (0,1)
(1,1)

(1, n)

Child

Form Type

Contains

Form FieldLinked to

Linked Attribute

Underlying Source

Belongs to

Parent

Caption (0,1) Enrty (1,n)

Membership

Reference

Structural Unit

Name

Name

Name

(1,n)

(1,1)

Comprises

Referred by (0,n)

(0,n)Refer to (1,1)

(0,n)

(1,1)

Title

(1,n)

(1, n) (0,1)
(1,1)

(1, n)

Child

Form Type

Contains

Form FieldLinked to

Linked Attribute

Underlying Source

Belongs to

Parent

Caption (0,1) Enrty (1,n)

Membership

Reference

Structural Unit

Name

Fig. 3. Extended E/R schema of a form

• The section between open and closing (<table>, <td>,<tr>,,) tags that
are returned following user query execution. This represents a particular view of the
relational database.

Rule i2: Linked attributes identification. Linked attributes are identified as follows:

• In an HTML-form, the value of attribute name in <Input>, <Select>, and <Textarea>

tags is associated with the text segment that is located immediately ahead these tags.
This attribute’s name will be used in the enrichment process.

• In an HTML-table, the value of the structural tags <thead> and <th> [26].

If the linked attributes are not separated with the structural tags (merged data), we use visual
cues [27, 18]. This approach typically means that there will be some separators (e.g., blank
areas) that help users split the merged data.

Rule i3: Structural unit identification. To determine the logical structure of an HTML
page (i.e., meaning of the page as understood by users), we use visual cues [27]. E.g., users
might consider FirstName, LastName, and Age in Figure 2 as one entity (Passenger).

Rule i4: Relationship identification. Relationships can be established when two SUs
are included in the same HTML page. Since a relational database’s content does not reside
in a single HTML page, extra relationships could be identified using hyperlinks. Hyperlinks
are interpreted in many cases as semantic relations between SUs.

Rule i5: Constraint identification. In addition to an HTML page’s constructs, data are
analyzed to identify additional constraints. A data analysis includes a strategy of learning by
example, borrowed from machine learning techniques [28]. For example, in Figure 2 we could
identify a constraint Not Null on the linked attributes Departure-City and Arrival-City.

4.2 Form XML-schema generation

When the structure of the form type is extracted, the corresponding XML-schema can then
be generated based on a set of translation rules.

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 151

Rule g1. Each SU in the form type is translated into a complexType element in the corre-
sponding XML schema.

Example: SU Passenger becomes as follows:
<xsd:complexType name="passenger">...</xsd:complexType>

Rule g1 is recursively applied to all complex SU components.

Rule g2. Each form field in an SU is translated into a sub-element of the corresponding
complexType element. The primitive type of the element adopts the field type.

Example. Field FirstName is translated into a string type:
<xsd:element name="firstname" type="xsd:string"/>

Rule g3. If an SU contains simple filling fields (e.g., TEXT tag), the corresponding Com-
plexType element takes (minOccurs="1") and (maxOccurs="1") as occurrence.

Rule g4. If an SU contains multiple filling fields (e.g., MULTIPLE attribute), the corre-
sponding ComplexType element takes (maxOccurs="*") as maximum occurrence.

Rules g3 and g4 are recursively applied to the form fields of each SU. While applying g1, g2,
g3 and g4 rules to Booking form type structure, the obtained XML-schema is given in Table
2.

Table 2. XML schema of Booking Form.

≺ ?xml version=”1.0”? ≻

≺ xsd:schema=xmlns:xsd=”http://www.w3.org/2001/XMLSchema ≻

≺ xsd:complexType name=”formulaire-de-rservation” ≻

≺ xsd:attribute name=”class” type=”xsd:integer”/ ≻

≺ xsd:complexType name=”Passenger” type=”xsd:”PassengerID” maxOccurs=”1”/ ≻

≺ xsd:complexType name=”City” type=”xsd: ”CityID” maxOccurs=”1”/ ≻

≺ xsd:complexType name=”Date” type=”xsd: ”DateID” maxOccurs=”1”/ ≻

≺ xsd:complexType name=” PassengerID” ≻

≺ xsd:element name=”FirstName” type=”xsd:string”/ ≻

≺ xsd:element name=”LastName” type=”xsd:string”/ ≻

≺ xsd:element name=”Age” type=”xsd:integer”/ ≻

≺ xsd:complexType/ ≻

≺ xsd:complexType name=” CityID” ≻

≺ xsd:element name=”LeavingFrom” type=”xsd:string”/ ≻

≺ xsd:element name=”GoingTo” type=”xsd:string”/ ≻

≺ xsd:complexType/ ≻

...
≺ xsd:complexType/ ≻

≺ xsd:complexType/ ≻

≺ xsd:schema/ ≻

152 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

5 Semantic discovery engine

The role of the semantic discovery engine is to enrich the relational schema with semantics
using the respective form’s XML schema. The form’s XML schema are used to identify form’s
relations to enable the extraction of the functional and inclusion dependencies.

5.1 Form semantic extraction

Firstly, a form’s relations and respective primary keys are identified using the nodes of the
form’s XML schema and the underlying database. Secondly, functional and inclusion depen-
dencies between these relations are extracted from the form’s instances.

5.1.1 Form relations extraction

The identification of a form’s relations and respective primary keys consists of determining
the equivalence and/or the similarity between the nodes of the XML-form hierarchical struc-
ture and the relations in the underlying database. This is the starting point from a reverse
engineering perspective [25]. A node in an XML-form hierarchical structure may be either:

• Equivalent to a relation in the underlying database, i.e., node and relation have a same
set of attributes;

• Similar to a relation, i.e., its set of attributes is a subset of the attributes of the relation;

• A set of relations, i.e., its set of attributes gathers several relations in the underlying
database.

For dependent nodes, the primary keys are formed by concatenating the primary key of
its non-null parent node with its requires the interaction with the analyst who can identify
the objects that do not verify the equivalence and similarity properties defined above. While
applying this process on both the hierarchical structure of Booking form and the relational
schema of the underlying database in Table 1 the following relational sub-schema is extracted:
City(CityID)

Passenger(PassengerID, FirstName, LastName, Age)

Departure-City(CityID, DepartureCityName)

Arrival-City(CityID, ArrivalCityName)

Date(DepartureDate)

From the Program of flights form, the following relational sub-schema is extracted:

Departure-Hour(HourID, type)

Arrival-Hour(HourID, type)

Plane(PlaneID, capacity)

Flight(FlightNumber, DepartureCityID, ArrivalCityID,DepartureHourID, ArrivalHourID,

PlaneID)

From the relationships between the hierarchical structure of Booking and Flight Program
forms, the following relational sub-schema is identified:
Book(PassengerID, FlightNumber, DepartureDate, Class).

5.1.2 Functional dependencies extraction

The extraction of functional dependencies from a database extension has received a great deal
of attention [29, 30, 31]. In our approach we use Malki et al.’s algorithm [25] that introduces

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 153

two ways to reduce the time for extracting functional dependencies. The first way is to replace
database instances with a compact representation that is, the form instances. The second way
is to use only the non-primary attributes in the left side of functional dependencies. While
applying this algorithm on the sub-schema of Program of flights form and its instances, the
following functional dependency is identified: PlaneID → FlightNumber, which means that a
plane ensures only one flight.

5.1.3 Inclusion dependencies extraction

In our approach, we formulate possible inclusion dependencies between relation’s key of re-
lational sub-schemas of forms. The time complexity of this process is more optimized with
regard to other approaches [31, 5], because the possible inclusion dependencies are verified
by analyzing the form extensions which are more compact representation with regard to the
database extension [25]. The heuristics employed by the extraction process for proposing
possible inclusion dependencies are described below:

• Two relations Ri and Rj , having the same primary key X, may be linked by an inclusion
dependency, noted: ((Ri,X), (Rj ,X)) .

• When the primary key X of a relation Ri is a foreign key Y in an other relation Rj ,
then it is possible to have the inclusion dependency, noted: ((Rj , Y), (Ri,X)) .

While applying this algorithm on the sub-schema of Booking form, the following inclusion
dependencies are obtained:

((Departure-City,CityID),(City,CityID))

((Arrival-City,CityID),(City,CityID))

5.1.4 Integration of forms sub-schemas

Forms sub-schemas are merged into one global schema by using integration schema techniques.
We agree with [32], who claims that the schema integration process consists of two phases:
comparison and conformity of schemas, and merging and restructuring of schemas. The
comparison phase performs a dual comparison of relations (of the sub-schemas) and finds
possible relation pairs. The merging and restructuring phases generate an integrated schema
from two component schemas that have been compared. The result of integration schema is
accumulated into a single schema, which evolves gradually toward the global schema of forms.

5.2 Semantic enrichment of the relational schema

The knowledge extracted throughout the steps discussed in the previous sub-sections is used
to clarify, restructure, and augment the semantics of the relational schema by making use of
the following enrichment rules:

Rule e1: Relational schema clarification. Relation and attribute names of a form
schema are usually more explicit than those of a relational schema. Thus, we retain names
apparent in the global schema of forms instead those of the relational schema.

Example: Notice the adaptation of the name DepartureCityName to the attribute. This can
better convey the meaning of data than the original attribute name DC-Name would.
The same for FirstName, and FlightNumber instead FN and FlightID.

154 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

Rule e2: Relational schema restructuration. To satisfy the 3NF requirement we use
the algorithm [33] that convert 1NF into 3NF through the recovered functional dependen-
cies. During the conversion, all the semantics specified in the original relation definitions in
database is preserved.

Example: Let be the following relations and recovered functional dependency:
Flight(FlightNumber,DepartureHourID,ArrivalHourID,PlaneID);

Plane(PlaneID,companyID,Capacity).

PlaneID → FlightNumber

The Relational schema restructuration will give us the following 3NF relations:
Flight(FlightNumber,DepartureHourID,ArrivalHourID);

Plane(PlaneID,companyID,FlightNumber,Capacity).

Rule e3: Constraint and dependency addition. To allow adding the extracted inclusion
dependencies and constraints to the relational schema, we extend the usual formal definition
of the relational model [34] with additional constructs typically found in SQL-DDLs, i.e.,
constructs which allow to state inclusion dependencies. In the next section, the added depen-
dencies and constraints are used to detect respectively hierarchical and axioms construct in
the target OWL ontology. The application of the enrichment rules on the relational schema
described in Table 1, generates the enriched relational schema given in Table 3.

Table 3. Enriched relational database schema.

N Schma relationnel enrichi

1 Passenger (PassengerID, FirstName, LastName, Age)

2 City (CityID)

3 Departure-City (CityID, DepartureCityName)

4 Arrival-City (CityID, ArrivalCityName)

5 Date (DeparatueDate)

6 Departure-Hour (HourID)
7 Arrival-Hour (HourID)
8 Company (CompanyID, CompanyName)

9 Plane (PlaneID, CompanyID, FlightNumber, Capacity)
10 Leaving-From (FlightNumber, DepartureCityID)

11 Going-To (FlightNumber, ArrivalCityID)

12 Flight (FlightNumber, DepartureHourID, ArrivalHourID)

13 Book (PassengerID, FlightNumber, DepartureDate, Price, Class)

Inclusion dependencies Constraints

((Departure-City, CityID), (City, CityID)) DepartureCityName : NotNull
((Arrival-City, CityID), (City, CityID)) ArrivalCityName : NotNull
... ...

6 Ontology building

Before exposing our ontology development rules, the central features of a relational model are
described and aligned with those provided by an ontological model.

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 155

6.1 Relational schema Vs Ontology

The underlying model of a source database is the relational model that is extended with ad-
ditional constructs, while the target ontological model is the one defined by [35].

Definition 1 Relational model is a 8-tuple (R, A, T, attr, dom, U, I, notnull), where:

1. R is a finite set of relations.

2. A is a finite set of attributes.

3. T is a set of atomic data types.

4. attr : R → 2A is a function that returns attributes contained in a specific relation ri ∈ R.

5. dom : A → T is a function that returns type of an attribute.

6. U is a set of unique constraints of the form (r,Ar) where:

• r ∈ R;

• Ar ⊆ att(r).

7. I is a set of inclusion dependencies where:

• each element has the form: ((r1, A1), (r2, A2));

• r1, r2 ∈ R;

• A1 = {a11, .., a1n};

• A2 = {a21, .., a2n};

• A1 ⊆ attr(r1) and A2 ⊆ attr(r2);

• |A1| = |A2| and dom(a1i) = dom(a2i).

8. notnull : R → 2A is a function which states the attributes of a relation that need to have
a value.

All these constitute a relational schema, which describes the structure of data. Tuples in
relations reflect the values of a schema, and are the content of a database.

In our modelling, we consider that the set of unique constraints comprises those explicitly
defined in the SQL-DDL by means of primary keys and those that are recovered by the
semantic discovery engine (Section 5). Note that SQL enforces automatically that a relation
has only one primary key. Note also that our approach assumes that a relation has at least
one primary key.

In the same way, the set of inclusion dependencies comprises those explicitly defined in the
SQL-DDL, by means of foreign keys, and those that are recovered by the semantic discovery
engine. Note that SQL enforces that if ((r1, A1), (r2, A2)) is a foreign key then (r2, A2) must
be a primary key (and, hence (r2, A2) ⊆ U).

Definition 2 Ontology is a six-tuple O=(C, AC , R, AR, HC , X), where:

1. C is a finite set of concepts;

2. AC is a collection of attribute sets about concepts;

156 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

3. R is a set of relations, each relation has a pair of concepts;

4. AR is a collection of attribute sets about relations;

5. HC is called concept hierarchy or taxonomy, which is a directed relation HC ⊆ C × C;

6. X is a set of axioms that describe additional constraints on the ontology.

Based on the ontological structure, ontology comprises a set of instances, which could be
seen as the concept extension.
As a result of the ongoing process of defining a standard ontology Web language, a number
of intermediate versions have been defined (OIL, DAML, DAML+OIL, etc.). Unlike [36] that
uses Frame Logic as the ontology description language, we adopt in this paper the latest
standard recommended by W3C, namely, OWL (Ontology Web Language) [37].

6.2 Ontology development rules

Both relational, and ontology models are a kind of model for organizing knowledge. In the
relational model, both entities and relationship are expressed by relations. Therefore one
relation in the relational model may be corresponding to an ontological concept or relation. If
two relations in database have inclusion dependency, then the two corresponding ontological
concepts (or relations) will have a hierarchical relationship. Additionally, attribute constraints
in a database may be converted into ontological axioms, and the tuples in database may
constitute ontological instances. In what follows we present a set of ontology development
rules. The rules are organized in five groups.

6.2.1 Rule for classes development

Rule c1. An OWL class ci can be created based on the relation ri, if one of the following
conditions can be satisfied:

(i) Ai ⊆ attr(ri) and (ri, Ai) ∈ U and |Ai| = 1;

(ii) Ai ⊆ attr(ri) and (ri, Ai) ∈ U and |Ai| > 1; and there does not exist an A1 such that
A1 ⊆ Ai and ((ri, A1), (rj , Aj)) ∈ I.

Comment : Rule c1 indicates that if the relation’s primary key is atomic (i.e the relation
describes an entity, or there is not a part of the relation’s primary key that reflects a reference
relationship to another relation, then the relation can be mapped into one ontological class.

6.2.2 Rules for properties development

OWL distinguishes two kinds of properties: object properties and datatype properties. By
default a property is a binary relation between thing and thing. Properties can be functional,
i.e., their range may contain at most one element. Their domain is always a class. Object
properties may additionally be inverse functional, transitive, symmetric, or inverse to another
property. Their range is a class, while the range of datatype properties is a datatype.

Rule c2. For relations ri and rj , if Ai ⊆ attr(ri), and (ri, Ai) 6∈ U , and ((ri, Ai), (rj , Aj)) ∈ I
are satisfied, then an object property P can be created based on Ai. Let ci and cj classes
corresponding to ri and rj respectively, the domain and range of P are ci and cj .

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 157

Comment : Rule c2 indicates that if a no-key attribute of one relation only reflects a ref-
erence relationship to another relation, then it will be used as an object property in ontology.

Rule c3. For relations ri and rj , two ontological objects property ”has-part” and ”is-part-
of” will be created, if the two following conditions are satisfied:

(i) Ai ⊆ attr(ri), (ri, Ai) ∈ U , and |Ai| > 1;

(ii) ((ri, Ai), (rj , Aj)) ∈ I, ((rj , Aj), (ri, Ai)) ∈ I, and (rj , Aj) ∈ U .

Suppose that the classes corresponding to ri and rj are ci and cj respectively, the domain
and range of ”is-part-of” are ci and cj and the domain and range of ”has-part” are cj and ci.
Properties ”has-part” and ”is-part-of” are two inverse properties.

Comment : Rule c3 indicates that if a part of a primary key of one relation reflects a reference
relationship to another relation, then the entity described by second relation is a special kind
of the entity described by the first relation. The classes corresponding to the two relations
should have objects properties ”is-part-of” and ”has-part” respectively.

Rule c4. For relations ri, rj , and rk, if (ri, Ai) ∈ U , (rj , Aj) ∈ U , and ((rk, Ak), (ri, Ai)) ∈ I,

((rk, Ak), (rj , Aj)) ∈ I, where Ai ∪Aj = Ak, and Ai ∩Aj = ⊘, then two object properties P
′

j

and P
′′

j can be created based on the semantics of rk. Suppose that the classes corresponding

to ri and rj are ci and cj respectively, the domain and range of P
′

j are ci and cj and the

domain and range of P
′′

j are cj and ci. P
′

j and P
′′

j are two inverse properties.

Comment : Rule c4 indicates that if a relation r is used to describe the relationship be-
tween two others relations, two inverse object properties can be acquired based on semantics
of the relation r.

Rule c5. For relations r1, r2,...,ri, and rk, if (rt, At) ∈ U , and ((rk, Ak), (rt, At)) ∈ I,
∀t = 1, i, where A1 ∪ A2... ∪ Ai = Ak, and A1 ∩ A2... ∩ Ai = ⊘, then object properties
P1, P2, ..., Pi can be created. Their domain is the class ck corresponding to rk and their range
are the classes c1, c2, ..., ci corresponding to the relations r1, r2, ..., ri, respectively.

Comment : Rule c5 indicates that if one relation is used to describe the relationship among
multi-relations, it should be decomposed to multiple object properties in ontology.

Rule c6. For an ontological class ci and the datatype properties set of ci denoted as DP (ci),
if ci corresponds to relations r1, r2, ..., ri in database, then for every attribute in r1, r2, ..., ri,
if it cannot be used to create object property by using Rule c2 or Rule c5, then it can be
used to create datatype property of Ci. The domain and range of each property Pi are Ci

and dom(Ai) respectively, where Pi ∈ DP (Ci) and Ai ⊆ attr(ri).

Comment : Rule c6 indicates that for each attribute in relations, if it cannot be converted
into ontological object property, it can be converted into ontological datatype property.

6.2.3 Rule for Inheritance development

In OWL, the classes and properties can be organized in a hierarchy. In our approach this
hierarchy can be discovered through inclusion dependencies.

158 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

Rule c7. For relation ri and rj , if Ai ⊆ attr(ri), (ri, Ai) ∈ U , Aj ⊆ attr(rj), (rj , Aj) ∈ U ,
and ((ri, Ai), (rj , Aj)) ∈ I are satisfied, then the class corresponding to ri is a subclass of the
class corresponding to rj .

Comment : Rule c7 indicates that if two relations in database have an inclusion dependency
based on their primary keys, then the two corresponding ontological class or property can be
organized in a hierarchy.

6.2.4 Rules for axioms development

OWL defines property cardinality to further specify properties. The property cardinality can
be created from the constraint on attributes in relations. Each relational attribute has by
default a maximum cardinality of one and a minimum cardinality of zero.
If the attribute is not null then the minimum cardinality is altered to 1. For foreign keys the
maximum cardinality is unlimited, unless the foreign key is part of the primary key of the
relation.
In OWL, a property when applied to a class can be constrained by cardinality restrictions on
the domain giving the minimum (minCardinality) and maximum (maxCardinality) number
of instances, which can participate in the relation. In addition, an OWL property can be
globally declared as functional (functionalProperty) or inverse functional (inverseFunctional).

Rule c8. For relation ri and Ai ⊆ attr(ri), if (ri, Ai) ∈ U , then the minCardinality and
maxCardinality of the property Pi corresponding to Ai is 1.

Rule c9. For relation ri and Ai ⊆ attr(ri), if Ai is declared as NOT NULL, the minCardi-
nality of the property Pi corresponding to Ai is 1.

Comment : Rules c8, c9 indicate that some constraints of attribute in relation may be con-
verted to the property cardinality in ontology.

According to Rule c1 to Rule c9, an OWL ontological structure is acquired from the en-
riched relational schema.

6.2.5 Rules for instance migration

Once the ontology is created, the process of data migration can start. The objective of
this task is the creation of ontological instances (that form a knowledge base) based on the
tuples of the relational database. For an ontological class ci, its instances consist of tuples
in relation(s) corresponding to ci and relations between instances are established using the
information contained in the foreign keys in the database tuples. The data migration process
has to be performed in two phases based on the following rules:

Rule c10. First, the instances are created. To each instance is assigned a unique identifier.
This translates all attributes, except for foreign-key attributes, which are not needed in the
metadata.

Rule c11. Second, relations between instances are established using the information con-
tained in the foreign keys in the database tuples. This is accomplished using a mapping
function that maps keys to ontological identifiers.

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 159

Comment : Rules c10 and c11 show that for one ontological class, its instances consist of
tuples in relations corresponding to the class and relations between instances are established
using the information contained in the foreign keys in the database tuples.

7 Implementation

In this section, we present some experiments we performed to assess the effectiveness of the
proposed approach to semi-automatically build an OWL ontology from a relational database
using the related HTML-forms. The main purpose of the experiments is to evaluate the
effectiveness of the ontology development rules presented in the previous sections, and to
verify that the proposed approach can contribute to help users build ontologies.

7.1 OWL ontology generation algorithm

Since the construction of an OWL ontology from an enriched relational schema is characterized
by the specific rules, the generation of this ontology can be automated. We developed an
algorithm (Figure 4) that describes the OWL ontology construction process.

Algorithm Relational TO Ontology(RDB Schema)
Input: Enriched schema of relational database
Output: OWL ontology
Begin

for ri ∈ RDB Schema do

if Ai ⊆ attr(ri), (ri, Ai) 6∈ U, and((ri, Ai), (rj , Aj)) ∈ I then

⊲ create object property Air0
having class Cx as domain and class Cy as range

⊲ create Air−1
as inverse property of Air0

else create ontological class Ci

for Ai ⊆ attr(ri) ∧ ¬∃((ri, Ai), (rj , Aj)) ∈ I do

⊲ create datatype property Ai having class Ci as domain and corresponding xsd datatype as datatype
if Ai is NOT NULL then

⊲ declare minCardinality of property Ai as 1
end if

end for

if Ai ⊆ attr(ri), (ri, Ai) ∈ U ∧ ∃((ri, Ai), (rj , Aj)) ∈ I then

⊲ declare axiom Ci ’is subClassOf’ Cj

else create object property Ai having class Ci as domain and class Cj as range
if (ri, Ai) ∈ U, |Ai| > 1, ((ri, Ai), (rj , Aj)) ∈ I, ((rj , Aj), (ri, Ai)) ∈ I, and(rj , Aj) ∈ U then

⊲ define someValuesFrom restriction on property haspart for class Ci to Cj

end if

if Ai is NOT NULL then

⊲ declare minCardinality of property Ai as 1
end if

end if

end if

end for

End

Fig. 4. Algorithm for translating an enriched relational schema into OWL ontology.

We describe here some parts of an OWL ontology generated by applying the ontology con-
struction rules to our running example (Table 3). For example, class Plane is generated from
relation Plane by using Rule c1 and the non-foreign key attributes PlaneID and Capacity,
which generate two datatype propertiescby using Rule c6. Since PlaneID is a NOT NULL
attribute, the minimum cardinality restriction on that property must be declared by using
Rule c9. An object property is created from foreign key attribute CompanyID by using Rule
c2. It has Plane as domain class and Company as range. The corresponding OWL description
is as follows:

cNote that a property is named after the attribute name prefixed by the relation name in order to avoid
possible name conflicts because different relation may contain same attributes.

160 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

<owl:Class rdf:about="\#Plane" />

<owl:DatatypePropty rdf:about="\#plane-PlaneID">

<rdfs:domain rdf:resource="\#Plane"/>

<rdfs:Datatype rdf:resource="\&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="\#plane-Capacity">

<rdfs:domain rdf:resource="\#Plane"/>

<rdfs:Datatype rdf:resource="\&xsd;integer"/>

</owl:DatatypeProperty>

<owl:Class rdf:about="\#Plane">

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality>1</owl:minCardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="\#plane-PlaneID"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Concerning the part-whole relation detected by the Rule c3, since OWL does not provide any
built-in primitives for that, object properties partOf and hasPart must be rigorously defined.
The part-of relation between two classes is expressed by the someValuesFrom restriction on
the property partOf which means that all individuals of the part class must be a part of an
individual of a class that it is part of.
For data migration process, Table 5, illustrates an example result from the application of the
Rules c10 and c11 on the relation tuples of Table 4.

Table 4. Relational database instances

Plane Company
PlaneID CompanyID Capacity CompanyID CompanyName

A330 1 150 1 Air Algeria
B767 2 200 2 Air France

7.2 Prototype

A prototype is developed using Java (j2sdk 1.4.2) and Jena 2.1, and the Java API for ontology
development and processing. The prototype has been implemented in order to experiment and
verify that the proposed approach is doable. Our tool has a user-friendly GUI to perform the
ontology development process, and to produce an ontology stored in an OWL file. The Web
site URL, the relational schema, and other parameters such as information for the database
connection (e.g. JDBC driver, database URL), base URI and ontology URI of the output
OWL ontology are given in an input configuration file.

First, the HTML pages are parsed to detect the form’s structure and instances. It is
up to the user to validate the result. Next all the semantic behind the forms structure and
instances are extracted and used to enrich the relational schema. The ontology building engine
(Figure 1) processes the enriched schema and generates the corresponding OWL ontology
based on the algorithm previously described. The output ontology can be formalized in the
following standard formats: OWL, RDF/XML, RDF/XML-ABBREV, N3 and N-Triples.

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 161

Table 5. Ontology instances.

≺ ?xml version=”1.0”? ≻

≺ rdf:RDF
≺ owl:Ontology rdf:about=””/ ≻

≺ owl:Class rdf:ID=”Company”/ ≻

≺ owl:Class rdf:ID=”Plane”/ ≻

...
≺ Company rdf:ID=”Company1” ≻

≺ CompanyId rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”≻ 1≺ /CompanyId ≻

≺ CompanyName rdf:datatype=”http://www.w3.org/2001/XMLSchema#string” ≻

Air Algeria ≺ /CompanyName ≻

≺ /Company ≻

≺ Plane rdf:ID=”Plane1” ≻

≺ capacity rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”150≺ /capacity ≻

≺ PlaneId rdf:datatype=”http://www.w3.org/2001/XMLSchema#string” ≻ A330≺ /PlaneId ≻

≺ Possede rdf:resource=”#Company1”/ ≻

≺ /Plane ≻

≺ Company rdf:ID=”Company2” ≻

≺ CompanyName rdf:datatype=”http://www.w3.org/2001/XMLSchema#string” ≻

Air France≺ /CompanyName ≻

≺ CompanyId rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”≻ 2 ≺ /CompanyId ≻

≺ /Company ≻

...
≺ /rdf:RDF ≻

7.3 Experimental evaluation

In order to evaluate our approach, we performed two experiments on tourism domain. In the
first experiment, we analyzed an airlines company Web sited. The constructs of the obtained
OWL ontology are presented in Table 6.

Table 6. Results from the ontology development process using an airline company Web site.

OWL Ontology Constructs in Constructs Constructs Recall Precision
constructs the tutorial extracted extracted Ratio Ratio

ontology (M) correctly (C) incorrectly (I) (C/M) C/(C+I)
Classes 30 15 1 0.50 0.94

Objects properties 16 09 1 0.56 0.90
Datatype properties 77 34 3 0.44 0.92

The results are compared to the tutorial ontology for a Semantic Web of tourisme. To
evaluate the quality of the ontology development process, we compare the OWL ontology’s
constructs (correctly extracted: C, and incorrectly extracted: I) returned by the automatic
extraction process with manually determined constructs (M) in the tutorial ontology for a
Semantic Web of tourism. Based on the cardinalities of these sets, quality measures such as
precision and recall are computed.

dhttp://www.britishairways.com.
ehttp://protege.stanford.edu/plugins/owl/owl-library/travel.owl.

162 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

Precision = C/(C + I) , is the faction of the automatic discovered constructs which are
correct.
Recall = (C/M) , is the fraction of the correct constructs (the set M) which has been discov-
ered by the ontology development process.

The low recall ratio is not so much a consequence of bad ontology development approach,
but much more due to the restricted domain knowledge covered by the Web site itself. In
the second experiment, we conducted experiments on three Web site related respectively to
flightsf, hotelg, and leisurehtourism activities. The ontology development process was rather
successful, with average recall and precision ratios of 94% and 92% respectively (Table 7).
The results obtained with the use of the second experiment could be much better if more Web
sites covering a large part of the tourism activities were used as input.

Table 7. Results from the ontology development process using three Web site related respectively
to flights, hotel and leisure tourism activities.

OWL Ontology Constructs in Constructs Constructs Recall Precision
constructs the tutorial extracted extracted Ratio Ratio

ontology (M) correctly (C) incorrectly (I) (C/M) C/(C+I)
Classes 30 28 2 0.93 0.93

Objects properties 16 15 2 0.94 0.88
Datatype properties 77 73 5 0.95 0.94

8 Conclusion and future Work

With the proliferation of ontologies, the development of automated techniques for ontology
building is crucial to the success of the semantic Web. The major difficulties in building
ontology reside in the manual work that could be prone to error. Therefore, the use of a
semi-automatic ontology extraction techniques is attractive. In this paper we focused on the
problem of automating the generation of domain ontologies, at least partially, by applying
reverse engineering technique. We presented the complete details of the process of semi-
automatically creating an OWL ontology that corresponds to the content of a relational
database based on the analysis of its related HTML-forms. Our approach can be used for
migrating HTML pages (especially those that are dynamically generated from a relational
database) to the ontology-based Semantic Web.

However, in the most circumstances, the obtained ontological structure is coarse. In addi-
tion, some semantics of the obtained information needs to be validated. Existing repositories
of lexical knowledge usually include authoritative knowledge about some domains. We suggest
as future work refining the obtained ontology according to them, especially machine-readable
dictionaries and thesauri (e.g. WordNet). In addition, we plan to add other more com-
plex constraints specified in SQL in order to obtain all possible information of the relational
databases, such as more complex CREATE DOMAIN sentences or CHECK constraints, or
even triggers. Finally, it is our intention to integrate other learning techniques into our reverse
engineering approach to obtain better result.

fhttp://www.britishairways.com.
ghttp://www.hm-usa.com.
hhttp://www.travelandleisure.com.

S.M. Benslimane, D. Benslimane, M. Malki, Z. Maamar, P. Thiran, Y. Amghar, and M.-S. Hacid 163

References

1. M. Erdmann, A. Maedche, H. Schnurr, S. Staab, From manual to semi-automatic semantic annota-
tion: About ontology-based text annotation tools, in: Proceedings of the COLING 2000Workshop
on Semantic Annotation and Intelligent Content, Luxembourg, 2000.

2. R. Volz, S. Handschuh, S. Staab, L. Stojanovic, N. Stojanovic, Unveiling the hidden bride: deep
annotation for mapping and migrating legacy data to the semantic web., Journal of Web Semantic
1 (2) (2004) 187–206.

3. S. Haustein, J. Pleumann, Easing participation in the semantic web., in: Proceedings of the
WWW2002 International Workshop on the Semantic Web, Hawaii, 2002.

4. N. F. Noy, M. C. A. Klein, Ontology evolution: Not the same as schema evolution., Knowl. Inf.
Syst. 6 (4) (2004) 428–440.

5. R. H. L. Chiang, T. M. Barron, V. C. Storey, Reverse engineering of relational databases: Extrac-
tion of an eer model from a relational database., Data Knowl. Eng. 12 (2) (1994) 107–142.

6. W. J. Premerlani, M. R. Blaha, An approach for reverse engineering of relational databases.,
Commun. ACM 37 (5) (1994) 42–49, 134.

7. E. F. Codd, A relational model of data for large shared data banks., Commun. ACM 13 (6) (1970)
377–387.

8. R. J. Muller, Database Design for Smarties: Using UML for Data Modeling., M. Kaufmann, 1999.
9. J. Biskup, Achievements of relational database schema design theory revisited., in: Semantics in

Databases, Vol. 1358 of LNCS, Springer, 1998, pp. 29–54.
10. M. W. W. Vermeer, P. M. G. Apers, Object-oriented views of relational databases incorporating

behaviour., 1995, pp. 26–35.
11. A. Behm, A. Geppert, K. Dittrich, On the Migration of Relational Schemas and Data to Object-

Oriented Database Systems, in: the 5th Int. Conference on Re-Technologies for Information Sys-
tems, Klagenfurt, 1997, pp. 13–33.

12. J.-L. Hainaut, J. Henrard, J.-M. Hick, D. Roland, V. Englebert, Database design recovery ., in:
Advances Information System Engineering, 8th International Conference, (CAiSE’96), Vol. 1080
of LNCS, Springer, 1996, pp. 272–300.

13. V. Kashyap, Design and creation of ontologies for environmental information retrieval., in: Twelfth
Workshop on Knowledge Acquisition, Modeling and Management, Alberta, Canada, 1999.

14. L. Stojanovic, N. Stojanovic, R. Volz, Migrating data-intensive web sites into the semantic web.,
in: Proceedings of the 2002 ACM Symposium on Applied Computing (SAC’2002), ACM, Madrid,
Spain, 2002, pp. 1100–1107.

15. D. L. Rubin, M. Hewett, D. E. Oliver, T. E. Klein, R. B. Altman, Automating data acquisition
into ontologies from pharmacogenetics relational data sources using declarative object definitions
and xml., in: Pacific Symposium on Biocomputing, 2002, pp. 88–99.

16. I. Astrova, Reverse Engineering of Relational Databases to Ontologies, in: the 1st European Se-
mantic Web Symposium (ESWS), Heraklion, Crete, Greece, 2004, pp. 327–341.

17. A. Sahuguet, F. Azavant, Building intelligent web applications using lightweight wrappers., Data
Knowl. Eng. 36 (3) (2001) 283–316.

18. J. Wang, F. H. Lochovsky, Data extraction and label assignment for web databases., in: Proceed-
ings of the 12th international conference on World Wide Web (WWW’03), 2003, pp. 187–196.

19. D. W. Embley, Towards semantic understanding - an approach based on information extraction
ontologies., in: Proceedings of the 25th Australasian Database Conference, New Zealand, 2004.

20. S. Suwanmanee, D. Benslimane, P.-A. Champin, P. Thiran, Wrapping and integrating heteroge-
neous relational data with owl., in: ICEIS (1), 2005, pp. 11–18.

21. D. Florescu, A. Y. Levy, A. O. Mendelzon, Database techniques for the world-wide web: A survey.,
SIGMOD Record 27 (3) (1998) 59–74.

22. I. Astrova, B. Stantic, An HTML Forms driven Approach to Reverse Engineering of Relational
Databases to Ontologies, in: eds. M. H. Hamza (Ed.), the 23rd IASTED International Conference
on Databases and Applications (DBA), Innsbruck, Austria, 2005, pp. 246– 251.

164 Ontology Development for the Semantic Web: HTML Form-based Reverse Engineering Approach

23. J. Choobineh, M. V. Mannino, V. P. Tseng, A form-based approach for database analysis and
design, Commun. ACM 35 (2) (1992) 108–120.

24. M. V. Mannino, J. Choobineh, J. J. Hwang, Acquisition and use of contextual knowledge in a
form-driven database design methodology., in: Proceedings of the Fifth International Conference
on Entity-Relationship Approach, 1986, pp. 361–377.

25. M. Malki, A. Flory, M. K. Rahmouni, Extraction of object-oriented schemas from existing rela-
tional databases: a form-driven approach., Informatica, Lith. Acad. Sci. 13 (1) (2002) 47–72.

26. Y. A. Tijerino, D. W. Embley, D. W. Lonsdale, Y. Ding, G. Nagy, Towards ontology generation
from tables., World Wide Web 8 (3) (2005) 261–285.

27. Y. Yang, H. Zhang, Html page analysis based on visual cues., in: ICDAR, IEEE Computer Society,
Seattle, WA, USA, 2001, pp. 859–864.

28. R. S. Michalski, A theory and methodology of inductive learning., Artif. Intell. 20 (2) (1983)
111–161.

29. I. Budak Arpinar, B. Aleman-Meza, R. Zhang, A. Maduko, Extracting entity relationship schema
from a relational database through reverse engineering, in: proc. of ER’94, San-Diego, USA, 2004.

30. H. Mannila, K.-J. Räihä, Design of Relational Databases Addison., Addison-Wesley Publishing
Company, 1992.

31. J.-M. Petit, F. Toumani, J.-F. Boulicaut, J. Kouloumdjian, Towards the reverse engineering of
denormalized relational databases., in: Proceedings of the Twelfth International Conference on
Data Engineering, 1996, pp. 218–227.

32. C. Batini, M. Lenzerini, S. Navathe, A Comparative Analysis of Methodologies for Databases
Schema Integration, ACM Computing Surveys 18 (1986) 323–364.

33. B. Salzberg, Third normal form made easy., SIGMOD Record 15 (4) (1986) 2–18.
34. S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
35. A. Maedche, S. Staab, Ontology learning for the semantic web, IEEE Intelligent Systems 16 (2),

special Issue on Semantic Web.
36. S. M. Benslimane, M. Malki, D. Amar Bensaber, Automated Migration of Data-Intensive Web

Pages into Ontology-Based Semantic Web: A Reverse Engineering Approach, in: Proceedings of In-
ternational Conference on Ontologies,Databases and Applications of SEmantics (ODBASE’2005),
Vol. 3761 of LNCS, Springer, Cyprus, 2005, pp. 1640 – 1649.

37. M. K. Smith, C. Welty, D. McGuinness, Owl web ontology language guide. W3C Recommendation.
http://www.w3.org/TR/owl-guide/ (2004).

