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An efficient and effective ranking mechanism in the search engines remains as a challenging problem. In
recent years, a few relevance propagation models like Hyperlink-based score propagation, Hyperlink-
based term propagation, and Popularity-based propagation models have been proposed. In this paper, we
will give a comprehensive study of the relevance propagation technologies for Web information retrieval
and conduct both theoretical and experimental evaluations over these models to know which model is
more effective and efficient. We also propose a new relevance propagation model based on content, link
structure (web graph), and number of slashes in the URL. It propagates content and the number of slashes
as scores through the link structure. The goal is to find more relevant web pages to the user query. To
compare relevance propagation models, Letor 3.0- a standard web test collection- was used in the
experiments. We have concluded that using number of slashes in the propagation process provides
improvement in Web information retrieval accuracy.
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1 Introduction

Over the past few years, there has been a great deal of research on the use of content and links of Web
pages to improve the quality of Web page rankings returned by search engines. When a user sends a
query to a search engine, the search engine returns the URLs of documents matching all or one of the
terms, depending on both the query operator and the algorithm used by the search engine. Ranking is
the process of ordering the returned documents in decreasing order of relevance, that is, so that the
“best” answers are on the top. Finding high quality pages is one of the most important challenging
issues for any web search engine. To make the web more interesting and productive, we need an
effective and efficient ranking algorithm to present more appropriate results to the users. There are
thousands or even millions of relevant pages for each query. Nevertheless, users typically consider
only the top 10 results. Therefore, we have to focus on the most valuable and appealing web pages.
Nowadays, many studies have been done about challenges in Web search engines, such as Web page
ranking, web crawling, freshness of the web pages, spam detection, and so on [1, 3, 5, 6, 7, 11, 12, 13,
15, 21, 22, 28, 31, 32, and 33]. In this paper we are going to address the first issue, Web page ranking.
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There are currently three major categories of ranking algorithms based on the content and
connectivity as the following:

Content based. In traditional IR, the evidence of relevance is thought to reside within the text
content of documents. Consequently, the system tries to find documents corresponding to the user
query. The fundamental strategy of traditional IR is to rank documents according to their estimated
degree of relevance based on measures such as term similarity or term occurrence probability. In order
words, for each query the documents with the more similar content to the query will be selected as the
more relevant ones. Examples of the content-based ranking algorithms are TF-IDF [23] and BM25
[25].

Connectivity based. In the Web setting, information can reside outside the textual content of
documents. For example, links between pages can be used to increase the term based estimation of
document relevance. Furthermore hyperlinks, being the most important source of evidence in Web
documents, have been the subject of many researches exploring retrieval strategies based on link
analysis. Connectivity based algorithms use the links between web pages. They assign a numerical
weighting to each element of a hyperlinked set of documents, with the purpose of measuring its
relative importance within the set. Instances of the connectivity-based ranking algorithms are
PageRank [18] and DistanceRank [33].

Combinational. Using either content-based or connectivity-based algorithms independently, leads
to a low-precision ranking function which cannot fully satisfy the users' demands in the Web.
Therefore, combination algorithms which use both content and link structure were introduced. In fact
they combine content and connectivity information together. These methods can be divided into two
groups: one is to enhance link analysis with the assistance of content information, such as HITS and
topic-sensetive PageRank [8, 18, 25, 26, and 29] and the other is relevance propagation, which
propagate content information with the assistance of the web structure [14, 19, 26, and 27].

In recent years, relevance propagation methods as one of the salient combinational algorithms, has
attracted many IR researchers' attention. In the relevance propagation models [14, 19, 26, and 27], the
content-based score or query terms are propagated through hyperlinks from one page to another one. In
this paper we will give a comprehensive study of relevance propagation technologies (including 12
methods) for Web information retrieval. Then, we will propose a propagation ranking model based on
content, connectivity, and number of slashes in the URL.  Our idea is based on user browsing
behaviour. Baeza-Yates and Castillo [2] have showed pages with less depth (shortest distance in links
with the start page(s) of the Web site) are usually more important than pages with more depth. Based
on experiment results, we found that the combination of content, link, and URL information in
relevance propagation process provides improvement in Web information retrieval accuracy.

The rest of this paper is organized as follows. In section 2, we describe existing relevance
propagation models. In section 3, we present the proposed model. In section 4, we study effectiveness
of relevance propagation models and report the results of our experiments on the Letor 3.0 -a standard
Web test collections.  Then  we  study  the  efficiency  of  relevance  propagation  models  in  section
5, and finally, in section 6 we give the conclusions and future research directions.
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2 Related Work

Ranking has been the subject of extensive research. Okapi BM25 is a ranking function used by search
engines to rank matching documents according to their relevance to a given search query. It is based on
the probabilistic retrieval framework developed in the 1970s and 1980s by Stephen E. Robertson,
Karen Spärck Jones, and others [24]. BM25 is a bag-of-words retrieval function that ranks a set of
documents based on the query terms appearing in each document. It is not a single function, but
actually a whole family of scoring functions, with slightly different components and parameters. One
of the most prominent instantiations of the function is as follows.

Given a queryQ , containing keywords nqq ,...,1 , the BM25 score of a document D  is:
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Table 1. BM25 Parameters.

Variable Definition

),( Dqf i 'iq s term frequency in the document D

|| D Length of the document  D  in words

avgdl Average document length in the text collection from which documents are drawn

1k , b Tuning parameters, ]0.2 ,2.1[1 ∈k , 75.0=b
N The total number of documents in the collection

)( iqn # of documents containing iq

),( QDScore Similarity between query Q  and doc D

Table 2. Relevance propagation models and their abbreviations.

Model Abbreviation

- Hyperlink based  score propagation [26] HS
Score-level

Popularity-based Popularity based Relevance Propagation [14] PSH

- Hyperlink based term propagation model [19] HT
Term-level

Popularity-based Popularity based Relevance Propagation [14] PTH

Many relevance propagation models were developed to propagate content information through the
link structure to increase the number of document descriptors. We have grouped them as shown in
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table 2. Score-level and Term-level methods propagate content similarity between the Web pages and
submitted queries as BM25 score and term frequency (TF) through the link structure respectively. For
example from table 2, PSH model as a score-level method propagates BM25 score and popularity
measure (PageRank score) of the pages, and HT model only propagates TF in the relevance
propagation process.

Table 3. Special cases of the relevance score propagation model (HSa model).

Special case Abbreviation Model formulation

Weighted In-Link HS-WI
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 Shakery et al. [26] consider how to use web structure to further improve relevance weighting.
They propagated the relevance score of a page to another page through hyperlink between them (web
structure). They defined the hyper relevance score of each page as a function of three variables: its
content similarity to the query (self-relevance), a weighted sum of the hyper relevance scores of all the
pages that point to it (in-link pages), and a weighted sum of the hyper relevance scores of all the pages
it points to (out-link pages). According to these definitions, their relevance propagation model can be
written as:
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where 1=++ γβα , ( ) ( )pSph =0 , ( ) ( )pSppiI ∝,ω  and ( ) ( )jjO pSpp ∝,ω
(6)

 ( )phk  is the hyper relevance score of page p  after the k -th iteration, ( )pS  is the content

similarity between page p  and the query (BM25 score) and Iω  and Oω  are weighting functions for

in-link and out-link pages, respectively. For implementation, they have given three special cases of this
model: weighted in-link (WI), weighted out-link (WO), and uniform out-link (UO) (Table 3).

QIN et al. [19] proposed another propagation model (a Term-level model), called HTb model, it
needs to propagate the frequency of query term (TF) in a Web page before adopting relevance
weighting algorithms to rank the document. In fact, HT model is an extended version of the HS model
and similar to HS, it has three special cases that are shown in table 4.

                                                
a Hyperlink-based score propagation model
b Hyperlink-based term propagation model
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Table 4. Special cases of the relevance term propagation model (HT model).

Special case Abbreviation Model formulation

Weighted In-Link HT-WI
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Table 5. Popularity-based propagation models and their abbreviations.

Model Abbreviation Corresponding
method

Weighted in-link PSH-WI HS-WI
Weighted out-link PSH-WO HS-WOPopularity-based score propagation using hyperlink

(PSH model)
Uniform out-link PSH-UO HS-UO
Weighted in-link PTH-WI HT-WI

Weighted out-link PTH-WO HT-WO
Popularity-based term propagation using hyperlink

(PTH model)
Uniform out-link PTH-UO HT-UO

Mousakazemi et al. [14] have extended HT and HS models and proposed Popularity-based
relevance propagation framework (including PSH and PTH models, table 5). They used the popularity
measure of the Web pages (PageRank score) in the propagation process of the relevance propagation
methods (table 6). PageRank is a popular ranking algorithm used by Google to measure the importance
of the Web pages. PageRank weights each link based on the importance of the document from which it
originates and the number of outlinks in the origin document. It models the users’ browsing behaviours
as a random surfer model [4, 30]. In this model a person surfs the Web by randomly clicking links on
the visited pages. When she (PageRank) reaches to a Web page that does not have any outward link,
she will randomly jump to another page. PageRank assumes that a user either follows a link from the
current page or jumps to a random page on the Web graph. The rank of page j is then computed by the
following equation:
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where n is the number of the Web pages, O(i) denotes the number of outgoing links from page i and
B(j) shows the set of pages that point to page j. Parameter d, damping factor, is used to guarantee the
convergence of PageRank and remove the effects of sink pages (pages with no outputs).

Table 6. Model formulation of popularity-based relevance propagation models (PSH & PTH models).

Method Model formulation
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Above γ  is a tuning parameter that was set to 1.4 and PR(P) is the PageRank score of page P. For
simplicity we have listed reviewed models, their structures, and their abbreviations in table 7.

Table 7. Relevance propagation models, their structures and abbreviations.

Links
Model Score-level Term-level Popularity

measure Inlink outlink
Abbreviation

Weighted in-link √ √ HS-WI

Weighted out-link √ √ HS-WO
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3 Slash-based relevance propagation model

Baeza-Yates and Castillo [2] proposed three probabilistic models for user browsing in “infinite” Web
sites. Their models collapse multiple pages at the same level as a single node, as shown in Figure 1.
That is, the Web site graph is collapsed to a sequential list. These models aim at predicting how deep
users go while exploring Web sites.

3.1  Random surfer models for an infinite Web site

A Web site has considered S = (Pages, Links) as a set of pages under the same host name that forms a
directed graph. The nodes are Pages = {P1, P2, . . . } and the arcs are Links such that
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(Pi, Pj) ∈ Links iff there exists a hyperlink from page Pi to page Pj in the Web site. For random
surfing, each page is modelled in Pages as a state in a system, and each hyperlink in Links as a
possible transition. This kind of model has been studied by Huberman et al. [9].

Figure 1. A Web site and a sequence of user actions can be modelled as a tree (left). If we are concerned only with the
depth at which users explore the Web site, we can collapse the tree to a linked list of levels (right) [2].

At each step of the walk, the surfer can perform one of the following atomic actions: go to the next
level (action next), go back to the previous level (action back), stay in the same level (action stay), go
to a different previous level (action prev), go to a different deeper level (action fwd), go to the start
page (action start) or jump outside the Web site (action jump).

For action jump an extra node EXIT is added to signal the end of a user session (closing the
browser, or going to a different Web site) as shown in Figure 2.

Figure 2. Representation of the different actions of the random surfer. The EXIT node represents leaving the Web site [2].

The set of atomic actions is A = {next, start/jump, back, stay, prev, fwd} and the probabilities if the
user is currently at level λ , are:

– Pr (next| λ): probability of advancing to the level λ  + 1.

– Pr (back| λ): probability of going back to the level λ  − 1.

– Pr (stay| λ): probability of staying at the same levelλ .

– Pr (start, jump| λ): probability of going to the start page of this session, when it is not the
previous two cases; this is equivalent in our model to begin a new session.



M.A. Golshani, A.M ZarehBidoki, and V. Derhami      273

– Pr (prev|λ): probability of going to a previous level that is neither the start level nor the
immediate preceding level.

– Pr (fwd|λ): probability of going to a following level that is not the next level.

In the following three proposed models of random surfing in dynamic Web sites are presented and
analyzed.

3.1.1  Model A: back one level at a time

In this model, with probability q the user will advance deeper, and with probability (1 − q) the user
will go back one level, as shown in Figure 3.

Transition probabilities are given by:

– Pr(next|λ) = q

– Pr(back|λ) = 1 − q for λ  ≥ 1

– Pr(stay|λ) = 1 − q for λ  = 0

– Pr(start, jump|λ) = 0

– Pr(prev|λ) = Pr(fwd|λ) = 0

Figure 3: Model A, the user can go forward or backward one level at a time [2].

A stable state x is characterized by:
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If q ≥ 1/2 then the solution is xi = 0, and x∞ = 1, so we have an asymptotic absorbing state. This
means that no depth boundary can ensure a certain proportion of pages visited by the users. When
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The cumulative probability of levels 0 . . . k is:
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Figure 4. Distribution of visits per depth predicted by model A [2].

3.1.2  Model B: back to the first level

In this model, the user will go back to the start page of the session with probability (1 − q). This is
shown in Figure 5.

The transition probabilities are given by:

– Pr (next|λ) = q

– Pr (back|λ) = 1 − q if λ  = 1, 0 otherwise

– Pr (stay|λ) = 1 − q for λ  = 0

– Pr (start, jump|λ) = 1 − q for λ  ≥ 2

– Pr (prev|λ) = Pr(fwd|λ) = 0

A stable state x is characterized by:
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Figure 5. Model B, users can go forward one level at a time, or they can go back to the first level either by going to
the start page, or by starting a new session [2].

As we have q < 1 we have another geometric distribution:
i

i qqx )1( −= (22)

The cumulative probability of levels 0…k is:
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Figure 6. Distribution of visits per depth predicted by model B [2].

3.1.3  Model C: back to any previous level
In this model, the user can either discover a new level with probability q, or go back to a previous

visited level with probability (1 − q). If a user decides to go back to a previously seen level, the level
will chosen uniformly from the set of visited levels (including the current one), as shown in the Figure
7.

– Pr (next|λ) = q
– Pr (back|λ) = 1 − q/(λ + 1) for λ ≥ 1
– Pr (stay|λ) = 1 − q/(λ + 1)
– Pr (start, jump|λ) = 1 − q/(λ + 1) for λ ≥ 2
– Pr (prev|λ) = 1 − q/(λ + 1) for λ ≥ 3
– Pr (fwd|λ) = 0
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Figure 7. Model C: the user can go forward one level at a time, and can go back to previous levels with uniform probability [2].

Figure 8. Distribution of visits per depth predicted by model C.
The transition probabilities are given by:
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3.1.4  Model comparison
We can see that if q ≤ 0.4, depth 3 or 4 captures more than 90% of the pages a random surfer will
actually visit, and if q is larger, say, 0.6, then depth 6 or 7 captures the same amount of page views.
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3.2  The proposed model

According to the obtained results (3.1.4), between two pages relevant to a query, we would tend to
favour a page near the top of the directory hierarchy. Usually, pages near the top of the directory
hierarchy have less slashes (“/”) in their URLs and it seems these pages are more important than
others. In this section, we introduce a new ranking model including two propagation methods. We
called them Slash-based Score propagation method (SS method), and Slash-based Term propagation
method (ST method).

Figure 9. A simple Web graph.

To assign score to the URLs based on the number of slashes that occurs in them, we will introduce
a slash weighting function to normalize number of slashes in URLs in range of [0, 1], we called it
SWFc (pi, p), 1),(0 ≤≤ ppSWF i .
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where p  is the child page of page pi , URLx is Universal Resource Locator (Web page address) of page
x, Slash(URLx) is number of slashes in the URLx and O(px) is a set of the Web pages that have link
from px. It is clear, the more number of slashes in the URL, the less valuable web page is. According to
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Eq. (27) if there are many slashes in the URL, SWF(pi, p) will close to one, otherwise it will close to
zero. Therefore, using (1-SWF(pi , p)) shows URL importance of page p in range of
[0, 1]. To show how SWF works, let’s see an example in figure 9.

In figure 9, each web page has two symbols, the first one is the page address (URL) and the other
is the number of slashes in the URL. For example, (P, 8) means the Web page address is P and there
are 8 slashes in the Web page address. As can be seen, Page P has two different parents. Following
equations show SWF and (1-SWF) values of page P for each of its parent.

,05.0
17
1

640
68),( ≈=
−
−

=PASWF

95.0),(1 =− PASWF

,1
18
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−
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3.2.1  SS method

In the SS method (the first proposed method), it is assumed that given a page to the user, he reads the
content of the page with probability α and he traverses the outgoing edges of its parents with
probability )1( α− . In Eq. (28), the main formula of iterative SS propagation method is proposed. The
SS method propagates BM25 score and number of slashes in URL in the relevance propagation
process.
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where ( ) ( )pSpp iI ∝,ω , )( ipO is out-link of page i, ( )pS  is the content similarity between

the page p and the query, and p is child of pi. Because )),(1( ppSWF i−  can become a big number

in compared to Iω , we use Iω  as a regulator factor to normalize its effect, and β  is a balancing

parameter to regulate the effects of Iω and (1-SWF) in the propagation process, which according to our
experiments can be set to 0.65.

In other words:

Score of the page p =α (Content similarity of page p)+ )1( α− ∑
∈   parents  sp'  i

score of the parent i ×

   (Balancing Factor Iω× + (1-Balancing Factor) ×× Iω SlashWeightingFunction)
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3.2.2  ST method

This method is similar to the SS method, but instead of BM25 score propagation, it propagates term
frequency (TF) between web pages. In other words, it propagates TF and number of slashes in the
relevance propagation process. We have used the slash weighting function, ),( ppSWF i , to weight

Web page URLs. Eq. (29) shows the main iterative formula of ST propagation method.

)))),(1(),()1(),(()(()1()()( 01 ppSWFpppppfpfpf iiItiIt
pp

i
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tt
k

t
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−×−+×−+= ∑
→

+ ωββωαα (30
)

where  ( ) ( )pfpp tiI
0, ∝ω , )( ipO  is out-link of page i, )( pf k

t is the term frequency of term t in

page p in k-th iteration, and p is child of pi , and β  is a balancing parameter, which according to our
experiments is set to 0.5.

4     Empirical Evaluations

In this section we are going to evaluate the performance and effectiveness of the proposed model
against the old ones. Firstly, we investigate experimental settings, some implementation issues and the
evaluation measures and then the results of the effectiveness evaluation are shown.

4.1  Experimental Settings

For the purpose of "Effectiveness Evaluation", we used the ".GOV" corpus of the LETOR 3.0 [20].
LETOR is a benchmark collection for the research on learning to rank for IR, released by Microsoft
Research Asia (MSRA). LETOR 3.0 contains standard features, relevance judgments, data
partitioning, evaluation tools, and several baselines, for the OHSUMED and the .GOV data collection.
Version 3.0 was released in December, 2008. The .GOV corpus, which is crawled from the .gov
domain in January, 2002, has been used as the data collection of Web Track since TREC 2002. There
are totally 1,053,110 pages with 11,164,829 hyperlinks in it. As our query set, we used the topic
distillation task in Web Track 2003 and 2004 (with 50 and 75 queries, respectively). Topic distillation
aims to find a list of entry points of good websites principally devoted to the topic. The focus is to
return entry pages of good websites rather than the web pages containing relevant information, because
entry pages provide a better overview of the websites.

4.2  Constructing the Working Set

Following other researchers [14, 19, 26, and 27], instead of running our experiments on the whole set
of data, for each query, we construct a working set. To construct the working set, we first find the top
400 pages with the highest BM25 score as the core set. Then, we expand the core set to the working set
by adding the set of pages that point to the core set (citing set) and the set of the pages that are pointed
by the core set (cited set). The citing and cited sets are among relevance set pages. Both in construction
of the working set and ranking the documents after propagation in term-level methods, we used BM25
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as the relevance weighting function. The flowchart of the working set construction is shown in figure
10.

levantSet
CitedSetCitingSetCoreSetWorkingSet

Re                            
)(

∩
∪∪=

Figure 10. The flowchart of the working set construction.

We do an additional step in the working set construction of the ST method. Usually the TFs of the
search query terms in the core set pages compared to other pages in the working set are big numbers (it
is common a term has been occurred a lot in a page to show that the page is relevant to a popular topic,
in fact it is a form of spamming), so before propagation we reduce term frequency of the search query

terms in the core set pages by factor of 
)(

8.0

CoreSetpURLSlash ∈

, (e.g. PPageInterm
CoreSetp

i
TF

URLSlash    )(
8.0

×
∈

),

in another words, more depth (number of slashes in the URL), more reduction of the TFs will be
happen in the Web pages of the core set. This small change leads to significant improvement in the
results.

4.3  Evaluation Measures
For the purpose of evaluation, we use a number of evaluation measures commonly used in information
retrieval, namely Precision at n (P@n) [20], Mean Average Precision (MAP) [20], and Normalized
Discount Cumulative Gain (NDCG) [10].

4.3.1  Precision at n (P@n)
As it has been quoted in reference [20], precision at n measures the relevance of the top n documents
in the ranking list with respect to a given query:

Submit a query

Retrieve the relevant
set

Construct the core Set

Retrieve the Citing setRetrieve the Cited set

Constructing the working
set
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n
np resultsn  in top docs relevance of#@ = (31)

4.3.2  Mean Average Precision (MAP)
The average precision (AP) [20] of a given query is calculated as Eq. (32), and corresponds to the
average of np@   values for all relevant documents:

query for this docsrelevant  total#

rel(i))*(P@i
1
∑
==

N

iAP (32)

where N is the number of retrieved documents, and rel(n) is a binary function that evaluates to 1 if the
n-th document is relevant, and 0 otherwise. Finally, MAP is obtained by averaging the AP values over
the set of queries.

4.3.3  Normalized Discount Cumulative Gain (NDCG)
For a single query, the NDCG value of its ranking list at position n is computed by Eq. (33):
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where r(j) is the rating of the j-th document in the ranking list, and the normalization constant Zn is
chosen so that the perfect list gets NDCG score of 1. For Letor 3.0, there are two ratings {0, 1} find
corresponding to "relevant" and "not relevant" in order to compute NDCG scores.

4. 4 Effectiveness Evaluation

In this section, we present an experimental evaluation of the proposed model against the corresponding
models (old ones). For ease of reference, the abbreviations of the proposed model and its
corresponding models are shown in table 8.

Table 8. Slash-based propagation methods, theirs abbreviations and corresponding models.

Model Abbreviation Corresponding
methods

Slash-based Score propagation method SS
Baseline (BM25)

HS (WI, WO, UO)
PSH (WI, WO, UO)Slash-based relevance

propagation

Slash-based Term propagation method ST
Baseline (TF)

HT (WI, WO, UO)
PTH (WI, WO, UO)

Following figures and tables compare algorithms in terms of MAP, p@n, and NDCG@n.
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Figure 11. Evaluation of score-level models on the best MAP in TREC 2003.
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Figure 12. Evaluation of score-level models on the best MAP in TREC 2004.
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Figure 13. Evaluation of term-level models on the best MAP in TREC 2003.
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Figure 14. Evaluation of term-level models on the best MAP in TREC 2004.
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Table 9. Performance comparison of  score-level methods
(In terms of MAP)

Method
Improvement of SS compared to :

Baseline
37%

PSH-WI
3%

PSH-WO
10%

PSH-UO
18.5%

HS-WI
2%

HS-WO
27%

HS-UO
38%

Table 10. Performance comparison of  term-level methods
(In terms of MAP)

Method
Improvement of ST compared to :

Baseline
42%

PTH-WI
5%

PTH-WO
29%

PTH-UO
26%

HT-WI
9%

HT-WO
34%

HT-UO
43%

Figures 11-14 show the performance of the propagation models (in terms of MAP) on TREC-2003
and TREC-2004 data sets. As can be seen ST and SS are the best methods in term-level and score-
level models, respectively. From these figures we can find that the ST method was the most robust,
which won the others with most values of MAP in both of the TREC-2003 and TREC-2004 data sets.
After ST, SS is the second winner. Besides the peak of the performance value, the robustness of an
algorithm is also an important factor for its effectiveness. According to the figures we can see that the
PTH-WI method [14] does not have this feature, and different behaviour is shown by PTH-WI in
TREC-2003 and TREC-2004 data sets. In other words the extended version of the algorithm (PTH-
WI) has worse performance compared to the orginal version of the algorithm (HT-WI) in the TREC-
2004 data set. Moreover, Mousakazemi et al. [14] has claimed that HS-WI for 85.0=α has the best
performance, but our experiments and QIN et al. [19] show HS-WI for 97.0=α has the best
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performance and PSH-WI (extended version of HS-WI) does not have any improvement compared to
HS-WI.

According to the experiments, we found that the slash-based propagation model, ST and SS
methods, can generally outperform their corresponding models. Tables 9 and 10 show improvement of
the proposed methods compared to the corresponding methods.

From table 10, as can be seen ST outperforms their corresponding methods (Baseline, PTH-WI,
PTH-WO, PTH-UO, HT-WI, HT-WO, HT-UO) by 42%, 5%, 29%, 26%, 9%, 34%, and 43%,
respectively. Following tables provide more details.

Table 11. The best performance of each algorithm (in terms of p@n).

GOV with TD-2003 GOV with TD-2004
Algorithm α

MAP P@1 P@2 P@3 P@10 MAP P@1 P@2 P@3 P@10

Baseline - 0.1335 0.14 0.12 0.14 0.098 0.1443 0.240 0.2266 0.2089 0.146

SS 0.97 0.200 0.32 0.28 0.2333 0.126 0.1802 0.28 0.2933 0.2711 0.2067

PSH-WI 0.80 0.1927 0.28 0.26 0.2267 0.126 0.1773 0.28 0.2733 0.2711 0.2053

PSH-WO 0.4 0.1797 0.26 0.22 0.16 0.122 0.1671 0.33 0.2867 0.2756 0.1893

PSH-UO 0.9 0.1746 0.20 0.21 0.1667 0.118 0.1466 0.2267 0.22 0.2178 0.1547

HS-WI 0.97 0.1963 0.30 0.26 0.2333 0.128 0.1772 0.28 0.28 0.2578 0.2053

HS-WO 0.9 0.1520 0.18 0.18 0.1533 0.11 0.1481 0.2667 0.2067 0.1956 0.1627

score-level

HS-UO 1 0.1337 0.14 0.12 0.14 0.098 0.144 0.24 0.2267 0.2089 0.1467

Baseline - 0.134 0.14 0.12 0.1333 0.94 0.144 0.253 0.226 0.204 0.146

ST 0.7 0.2055 0.34 0.29 0.2267 0.13 0.1912 0.3867 0.34 0.2933 0.2093

PTH-WI 0.1 0.2049 0.28 0.23 0.2333 0.122 0.1757 0.34 0.3133 0.2889 0.1893

PTH-WO 0.3 0.1561 0.12 0.14 0.133 0.106 0.1521 0.2 0.24 0.2311 0.1507

PTH-UO 0.8 0.1577 0.18 0.16 0.1668 0.11 0.1565 0.2667 0.2467 0.2356 0.1627

HT-WI 0.8 0.1875 0.26 0.25 0.2267 0.124 0.1785 0.3333 0.26 0.2667 0.192

HT-WO 0.85 0.1510 0.1 0.13 0.1333 0.112 0.145 0.2533 0.1867 0.1867 0.1467

term
-level

HT-UO 1 0.1341 0.14 0.12 0.1333 0.096 0.1447 0.2533 0.2267 0.2044 0.1467

For a fair comparison, we have used average value of α for the algorithms that are not robust
enough, such as PSH-WI. In other words, if an algorithm for two values of α has the best performance
in TREC-2003 and TREC-2004 data sets, average of α  is considered in the experiments. In general,
methods based on out-link (WO & UO) have lower performances compared to in-link (WI) based
methods. Table 12 depicts NDCG@10 of each algorithm over best MAP on the both data sets. From
these tables, we can find that the slash-based methods can generally outperform their corresponding
methods.
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Table 12. The best performance of each algorithm (in terms of NDCG@10).

GOV with TD-2003 GOV with TD-2004
Algorithm α NDCG @10 α NDCG @10

Baseline - 0.1796 - 0.1872

SS 0.97 0.2629 0.97 0.2657

PSH-WI 0.80 0.2550 0.80 0.2608

PSH-WO 0.4 0.2345 0.4 0.2433

PSH-UO 0.9 0.2298 0.9 0.2016

HS-WI 0.97 0.2599 0.97 0.2595

HS-WO 0.9 0.2063 0.9 0.1979

score-level

HS-UO 1 0.1798 1 0.1898

Baseline - 0.177 - 0.189

ST 0.7 0.2750 0.7 0.2801

PTH-WI 0.1 0.2515 0.1 0.2524

PTH-WO 0.3 0.1973 0.3 0.2026

PTH-UO 0.8 0.2081 0.8 0.2145

HT-WI 0.8 0.2518 0.8 0.2475

HT-WO 0.85 0.2033 0.85 0.1881

term
-level

HT-UO 1 0.1777 1 0.1885

To summarize the above experiments, we can draw the following conclusion:

1. Slash-based propagation model was more successful than hyperlink and popularity-based
propagation models.

2. Unlike the hyperlink-based and slash-based propagation models, popularity-based
propagation models [14] have the overhead of the popularity measure computation. The
offline complexity of PageRank equals to ( )EO ∗100  where E  denotes the number

of edges in the web graph.

3. The proposed relevance propagation model has two methods, ST and SS which the
former is more effective than the latter.

4. The SS and ST methods have the best performance for 97.0=α  and 7.0=α in
TREC-2003 and TREC-2004 data sets, respectively.

5. WI-based methods have better performance compare to WO and UO-based methods.

5    Efficiency Evaluation

In the previous section, we investigate the effectiveness of the relevance propagation models.
However, for real-world applications, efficiency is another important factor besides effectiveness [19].
In this regard, we evaluate the efficiency of the models in this section to see their potential of being
used in search engines.
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Roughly speaking, typical architecture of a search engine has three components [2, 27]: crawler,
indexer, and searcher. If we want to integrate relevance propagation technologies into search engine,
we should consider these three components. Clearly, we could only embed relevance propagation into
the second or third component [19]. Since the search engine indexes the Web offline, and implement
the search operation online, we will discuss the efficiency of relevance propagation for the online case
and offline case respectively.

5.1  Online Complexity

Due to the algorithm descriptions, all the relevance propagation models have two kinds of
computations. The first one is to retrieve the relevant pages and rank them by relevance weighting
functions. Actually this is also needed by existing search engines. The second is the additionally-
introduced complexity, including working set construction, relevance propagation and so on. This will
be the major concern when integrating these models into the search engines. In this regard, we will
focus on the analysis of these additional computations in this section. According to the model
formulation and the implementation issues, we can get the following estimations on the online
complexity of the relevance propagation models. Note that the time complexity we estimate here is for
one query.

1. For each step of iteration in the score-level models (HS, PSH, and Slash-based models), we
need to propagate the relevance score of a page along its in-link or out-link in the sub graph
of the working set. Note that the source and destination pages of the hyperlink should be both
in the working set, and so the average numbers of in-links and out-links per page are equal to
each other. We denote this number by l. If we further use ch to indicate the time complexity of
propagating an entity from a page to another page along hyperlinks, we can get that the
complexity of each step of iteration in the score-level models is wlch. Where w is the size of
the working set. If it takes t iterations for the propagation to converge, the overall complexity
will be twlch.

2. Similar to the analysis of the score-level models, we can get the complexity of the term-level
models (HT, PTH, and Slash-based models) is all twlch.

5.2  Offline Complexity

Since a real search engines should handle hundreds of queries per second [2, 27], it will be very
difficult to implement these propagation techniques online. So offline implementation is much more
preferred if we want to apply them in real-world applications. Search engines usually build offline
invert and forward indices to store the information of each term (including frequency, position and so
on) in web pages [2, 27]. Then it is easily understood that term-level propagation models can well
match this mechanism and we only need to refine the offline index files. To illustrate it, let us take the
ST method for example. Suppose the parent pages of page p contain a particular word, and we need to
propagate the occurrence frequency of this word to page p. If p already contains this particular word,
we only need to modify its frequency; while if p does not contain the word, we need to add its ID to
the forward index [27] of page p, and then update its term frequency. Comparatively, the score-level
propagation models could hardly be integrated into search engines, because scores do not exist in the
offline indices but are dependent on the online relevance ranking algorithm used in the search engine.



288      Slash-Based Relevance Propagation Model for Topic Distillation

6    Conclusions

In this paper, we conducted a comprehensive study on relevance propagation models in web
information retrieval. A new idea for using number of slashes in the URL in the relevance propagation
process was proposed (more number of slashes in the URL, the less valuable web page is). It is
consistent with the findings by Najork and Wiener [16], and Ricardo Baeza-Yates and Carlos Castillo
[2]. To evaluate the proposed model, the Letor 3.0 web test collection was used in the experiments.
The following conclusions are drawn from our study:

1. Generally speaking, relevance propagation can boost the performance of web information
retrieval.

2. Using number of slashes in the URL in the propagation process can boost the accuracy of
the relevance propagation.

3. The Slash-based propagation model outperforms the hyperlink and popularity-based
propagation models (PSH, PTH, HS, and HT models).

4. Our model has two methods, ST and SS, but the former is more effective and efficient
than the latter.

5. Unlike the score-level models, the offline implementation of term-level models is
possible. In other words, term propagation is more feasible for real-world implementation
than relevance score propagation.

There are two interesting directions for further research:

1. Other than the neighbour sets derived from the explicit link structure of the Web, we can
also define other types of neighbours. In general, propagation models allow us to define
any set of documents with a specific characteristic as a neighbour set. As an example, we
can define the set of pages with similar content as a neighbour set [17]. It is interesting to
see if exploiting these types of neighbours can further improve the retrieval accuracy.

2. We want to explore effects of splitting Web page to different streams with possibly
different degrees of importance on relevance propagation accuracy. That is, there is a
global set of labelled streams, and the text of each Web page is split between these
streams.
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