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A web mashup is a web application that integrates content from heterogeneous sources to provide users 

with an integrated and seamless browsing experience. Client-side mashups differ from server-side 

mashups in that the content is integrated in the browser using the client-side scripts. However, the legacy 

same origin policy implemented by the current browsers cannot provide a flexible client-side 

communication mechanism to exchange information between resources from different sources. To address 

this problem, we propose a secure client-side cross-domain communication mechanism facilitated by a 

trusted proxy and the HTML 5 postMessage method. The proxy-based model supports fine-grained access 

control for elements that belong to different sources in web mashups; and the design guarantees the 

confidentiality, integrity, and authenticity during cross-domain communications. The proxy-based design 

also allows users to browse mashups without installing browser plug-ins. For mashups developers, the 

provided API minimizes the amount of code modification. The results of experiments demonstrate that the 

overhead incurred by our proxy model is low and reasonable. We anticipate the proxy-based design can 

help the mashup platform providers to provide a better solution to the mashup developers and users. 
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1 Introduction  

A web mashup is a web application that integrates content or services from multiple sources. By 

combining content from different websites, a web mashup can provide users with an integrated and 

seamless browsing experience on a single web page. The web developers can easily incorporate 

existing web services provided by third parties into one web mashup to enrich the web applications. 

The concept of the web mashup makes the web application developers create more creative web 

services for the users. 

For a simple mashup, it looks like a dashboard that collects information from different sources. It 

simply displays the content retrieved from different providers on a single web page. For example, it 

can display contents of a remote RSS/Atom feed, or contents of the web's most visited social news 

sites and portals. One example of such mashup is PopUrls (http://popurls.com/), which integrates the 
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contents of the popular sites and portals, including Twitter (http://www.teitter.com/), del.icio.us 

(http://del.icio.us/), Digg (http://www.dogg.com/), and Flickr (http://www.flickr.com/), and then it 

displays all the headlines from these sources on a single web page. With such design, a user can 

retrieve all the information at once without opening multiple web pages. 

In interactive mashups, the content of one source may be able to communicate with the content of 

the other sources to provide extra functionalities and better interactions with the user. HousingMaps [1] 

is an example of this type of mashup. It combines the property database of the Craigslist website 

(http://www.craigslist.com/) with the map data from Google Maps (http://maps.google.com/) on an 

integrated page. A user can employ HousingMaps to search for houses listed in Craigslist. Then, the 

respective locations and information about the properties will be plotted on the Google Maps. In this 

case, the information (i.e., the search options of the property, the search result and location details) 

needs to be transmitted between different sources via the browser by mashup’s client-side scripts. 

Another popular example of interactive mashups is content-aware ads. Ad scripts that dynamically 

fetch ads’ content from ad networks (e.g., Google AdSense) may need to retrieve the content of the 

web page before the ads are displayed on the web page. 

As threats to privacy may occur when information is exchanged between different sources, 

browsers currently implement the Same Origin Policy (SOP) [2], which controls who has access to 

information carried by the browser. The SOP is an all-or-nothing trust model. Documents from the 

same source are allowed to access each other’s contents, but documents from different sources do not 

have any access rights. However, such inflexible policy limits the development of interactive mashups, 

so the legacy SOP forces the web developers to make trade-offs between security and functionality. 

Various techniques have been developed to perform cross-domain communication in mashups to 

avoid being blocked by the SOP. For example, some mashups use a shared HTML property, i.e., 

window.location, as a channel to exchange messages; while others (e.g., [3]) introduce new 

HTML tags and browser plug-ins. Another method, [4], deliberately modifies the source value (i.e., 

domain) of the documents so that these documents can communicate with each other under the SOP. 

For mashups to work effectively, we argue there should be a flexible and fine-grained access 

control model. The model should satisfy the following principles of security and in the meantime 

provide enough flexibility for the mashup developers. (a) Confidentiality: In mashups, a user’s data 

should only be available to an authorized source. (b) Integrity: A user’s input on a web page should not 

be corruptible by distrusted parties. (c) Authenticity: The entity that receives the cross-domain data 

should be able to validate the identity of the sender. (d) Flexibility: Mashup developers should be able 

to define trust relationships in a more fine-grained manner, not in an all-or-nothing fashion. 

The contributions of our works are as follows. (1) We build up a client-side cross-domain 

communication library on the top of the HTML 5 postMessage method with a proxy-style fashion. 

It provides the developers a convenient, flexible and secure way to implement interactive mashups. (2) 

Our solution can automatically generate/enforce fine-grained and secure access logic (using JavaScript) 

based on XML-based access control policy (ACP) provided by the mashup developers. No need to add 

new HTML tags or install browser plug-ins. (3) We implement a prototype system and examine the 

overhead of the proxy. The result shows the overhead is linear to the number of shared components. (4) 
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Our design provides the mashup platform providers with an easy way to cooperate with other web 

services, while simultaneously protecting the private data of end users via the access control policy. 

The remainder of the paper is organized as follows. In Section 2, we provide some background 

information about mashups. Section 3 contains the description of the proposed model. We present the 

prototype system and its implementation in Section 4, and evaluate our design in Section 5. In Section 

6, we discuss existing practices and communication mechanisms for web mashups. Section 7 contains 

some concluding remarks. 

2 Background 

2.1  Web Mashups 

There are several roles in web mashups. An integrator is a site that hosts web mashups, and a provider 

is a site that provides content or service to web mashups. A mashlet is client-side content from the 

provider, and it usually includes a piece of active content and client-side script. When a user requests a 

web page from the integrator, the retrieved web content, excluding the embedded mashlets, is called 

the original content. 

Figure 1 shows an example of mashups with one original content (the integrator site is 

http://www.housingmaps.com/), one map mashlet (the map provider site is http://maps.google.com/), 

and one house mashlet (the house provider site is http://www.craigslist.com/). This mashup has three 

blocks: the biggest block with several control options is from the integrator; the left-hand-side mashlet 

is from the map provider; the right-hand-side mashlet is from the house-listing provider. The integrator 

combines two other services to provide the user with a more convenient way to search house 

information. Usually, a mashlet can be embedded into a mashup by HTML tag <IFRAME> or <DIV>. 

A mashlet may contain JavaScript code that enables it to communicate with other mashlets, manipulate 

the content or interact with the user. Note that the access policies between the original content, the 

mashlet itself and other mashlets are enforced by the SOP. 

 

Figure 1  A web mashup example: HousingMaps.com. 
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At the browser side, an HTML document and all its elements is transformed into a Document 

Object Model (DOM) at runtime. Every HTML document (including the original content and the 

mashlets in <IFRAME>) are loaded into a DOM container, called window. The document itself is 

stored in an object named window.document. DOM is the standard platform-independent and 

language-neutral programming interface used by client-side scripts to access and manipulate the 

content, structure and style of the documents. Under the SOP, documents from different sources cannot 

access with each other. The issue of the mashups we address is how to design a flexible and fine-

grained access control mechanism under the SOP between HTML documents from different sources. 

2.2  Mashup Architectures 

Server-side mashups (figure 2a) integrate data from different sources at the server and return the 

aggregated page to the client. The integrator acts as a data aggregator. It appears to the browser that all 

the content is from the same origin, i.e., the integrator. Yahoo Pipes (http://pipes.yahoo.com/pipes/) 

utilizes this design. When a user visits the mashup created via Yahoo Pipes, the browser connects to 

pipes.yahoo.com to get data. The request is redirected by Yahoo to one or more providers, like The 

New York Times, to retrieve data. Yahoo Pipes then aggregates the response data collected from 

different sources into one single web page and then passes it from pipes.yahoo.com to the browser for 

display. From the perspective of a browser, there is only one source (or domain) of these contents. 

Hence, there has no the cross-domain communication problem at the client side. 

However, the integrator is responsible for collecting data; the user needs to delegate authority to 

the integrator to obtain content from the providers. It requires the clients to trust the integrator. Such 

approach may possess privacy and security concerns. Other drawbacks of server-side mashups include 

additional processing delays and limited scalability. The latency is caused by making one additional 

round trip between the client and integrator every time the user makes a request to the mashup. 

Client-side mashups (figure 2b) differ from server-side mashups in that the integration of content 

or services takes place on the client side, i.e., the browser. The user requests the service or content 

from the provider directly. With client-side mashups, the user does not need to place so much trust in 

the integrator. However, in this case, it is necessary to consider the problem of cross-domain 

communication, since the original content and the mashlets usually come from different sources. A 

client-side mashup reduces the amount of trust that the user has to place on a distrusted third-party 

integrator. Hence, it does not possess the aforementioned drawbacks of a server-side mashup. 

Our design combines the advantages of server-side and client-side mashups. We propose a secure 

client-side communication scheme that is facilitated by a trusted proxy (figure 2c). The content from 

the integrator and providers will be integrated and displayed at the browser as usual (which is similar 

to a client-side mashup), but these returned web pages are annotated by our proxy (which is similar to 

a server-side mashup). The proxy will automatically capture all the outgoing web requests and 

incoming responses. It then downloads the access control policies (ACP) specified by the integrator 

and providers to generate a site-specific access control policy for this mashup. According to the site-

specific ACP, the proxy generates and inserts corresponding client-side JavaScript snippets into the 

returned web pages. Every time when a cross-domain communication request is issued at the browser, 

the inserted JavaScript snippets will provide a secure communication channel for the mashlets and 

enforce the providers’ security settings. Therefore, the security is guaranteed. 
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Figure 2  Two types of mashups and our proposed proxy-based scheme. 

2.3  Same Origin Policy 

The Same Origin Policy (SOP) is enforced by the browser. It is assumed that two web pages derive 

from the same source (or origin) if the application layer protocol, port and domain name are the same 

for both pages. Recall that the SOP is an all-or-nothing mechanism. For a server-side mashup, all the 

contents are from the “same source”, i.e., the integrator, so there is an all-trust relationship between the 

mashlets (no matter these mashlets are embedded by <DIV> or <IFRAME>). Hence, a mashlet can 

retrieve the user’s information without authority. In contrast, in a client-side mashup implemented by 

<IFRAME>, mashlets derive from different sources in a no-trust relationship. The <IFRAME> tag has 

an attribute named src, and it specifies the URL of the mashlet document to embed in the mashup. As 

mentioned, if the contents come from different source, they run in an isolated environment (in practice, 

they belong to different document objects in DOM) with no access to each other. 

In terms of access control within the browser, the all-or-nothing trust model does not provide any 

flexibility for web mashups. The legacy SOP forces web mashup developers to make trade-offs 

between security and functionality. 

2.4  HTML 5 postMessage Method 

HTML 5 specifies an API, named postMessage, for asynchronous communication between DOM 

window object. The postMessage API was originally implemented in Opera 8 and is now 

supported by modern browsers, such as Internet Explorer 8, Firefox 3, and Safari. To send a message, a 

window object needs to invoke the postMessage method of its target window; and to receive 

messages, a window needs to register an event handler to catch the triggered event, called a 

message. The invocation of the postMessage is not restricted by the SOP so that cross-domain 

communication is possible with this new method. For security concern, the self-defined event handler 

may check the source of the message to ensure it comes from an authorized source. However, such 

authentication mechanism is not a default functionality provided by the postMessage. However, 

Barth et al. [7] demonstrate an attack on the channel’s confidentiality using frame navigation. In light 

of this attack, the postMessage channel lacks confidentiality. 
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Figure 3  The example of conventional object access and our proposed method in client-side mashups. 

In figure 3, we show an example of postMessage usage with a client-side mashup under the 

SOP, as well as our proposed method. Figure 3a is a simple mashup with the original content and three 

mashlets. In this example, the original content (M0), mashlet M1 and mashlet M2 are from the same 

domain (e.g., http://m0.com/) and the content of the last mashlet M3 are provided by another domain 

(e.g., http://m3.com/). M1 is embedded in the original content by <DIV>, while M2 and M3 are 

embedded in the M0 by using <iframe>. (Note that there is no way to use a <DIV> to embed a 

mashlet from other domain in a client-side mashup.) Assume there is a secret object named SecMx in 

each entity Mx, respectively. For example, it could be a secret web cookie provided by the service 

domain. In figure 3b, we show the JavaScript code of non-cross-domain access. Under the SOP, M0 

and M1 can access each other’s object without any restriction (i.e., all-trust) by simply using JavaScript 

function document.getElementById(),since M0 and M1 are in the same document. On the other 

hand, M0 and M2 are not in the same document, because the browser would create another document 

for M2 due to the <IFRAME> tag. However, the document of M2 is a child node of document of M0. 

Therefore, in order to access the secret object SecM0, M2 can call the JavaScript function 

parent.document.getElementById(‘SecM0’) to obtain the object. On the other hand, 
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since M0 and M2 are from the same origin, M0 is able to obtain M2’s document object by using D2 = 

window.frames[‘M2’].document and further gets SecM2 by using JavaScript function 

D2.getElementById(‘SecM2’). 

However, for M0 and M3, it is not that easy. Under the SOP, M0 and M3 are no-trust so that 

conventional JavaScript calls cannot cross the access boundary. To perform such cross-domain 

communication, we use figure 3c to show a detail example of HTML 5 postMessage method for 

cross-domain access. For M0 to get SecM3, M0 should first obtain M3’s window, (for instance, win3 = 

window.frames[‘m3’].contentWindow), and then M0 invokes the poseMessage method 

win3.postMessage(‘SecM3’, ‘http://m0.com/’) to send a message. Note that the first 

parameter is the message (string) sent to M3 and the second parameter is the domain of M0. To receive 

such request, M3 should register an event handler to its window. Due to different browser 

implementations, it could be window.addEventListener(‘message’, callback) or 

window.attachEvent(‘onmessage’, callback). The first parameter is the event type to 

listen to and the second parameter is the function name of the event handler. The handler function will 

be called once the postMessage event (i.e., message or onmessage) is received by the callee 

(i.e., M3) from the caller (i.e., M0 in this case). In the example, an object named event stores all the 

information sent from the caller. In practice, the event.data usually carries the request of retrieving 

object SecM3. Then, M3 can reply such request by invoking another postMessage by using 

event.source.postMessage(‘SecM3’, ‘http://m3.com/’). The event.source is 

the window object of the caller (i.e., M0’s window), so that it is convenient for M3 to send a message 

back to its caller. In the example, a string SecM3 is sent back. As for M0, it should register a handler 

function for receiving the returned message as well. In this way, M0 and M3 can exchange messages 

between each other. 

As for M3 to retrieve an object of M0, M3 should first get the window of M0 and then perform the 

postMessage procedure. However, we point out that getting any object of M0 (e.g., SecM0, SecM1, 

and SecM2) is not easy for an embedded M3 with <iframe>. Not only because they are in no-trust 

relation under the SOP, but also the embedded mashlets may not know the structure the mashup. It is 

difficult for the mashlet developer to communicate with other mashlet or the original content without 

any help. Hence, we solve these problems in our proposed library. 

It seems convenient to perform cross-domain communication via the postMessage. However, 

some issues should be addressed in practice. First, the postMessage receiver needs to validate the 

message on its own to ensure it is from an authorized source (domain). The mashlet programmer needs 

to write a script (the length of the script depends on how many domains it trusts) for validation. Second, 

the trust relationship between mashlets may change dynamically. Such validation scripts may not be 

scalable, and it should be modified timely. Third, basically a mashlet has no information about the 

mashup and its sibling mashlets. A mashlet may not know what else mashlets are embedded in the 

same web mashup. However, for the purpose of inter-mashlet communication, the message sender 

needs to get the receiver’s window id to invoke the postMessage method. In practice, it is difficult 

and not secure for the sender to search for receiver's information in integrator's DOM. Moreover, the 

SOP forbids such information access if the sender and the original content do not have the same origin. 

In this case, without the help of integrator, it is nearly impossible for a “blind” mashlet to find the 

frame of its target mashlet. 
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The HTML 5 postMessage method is a nice solution to cross-domain communication problem. 

However, we argue that the mechanism is too simple. It lacks of security checks and fine-grained 

access control. The mashup developers have to implement these functionalities on their own. In this 

case, we believe providing a well-developed library to perform these underlying features would be a 

benefit for the mashup platform providers. 

In our proposed system, we take the advantage of the postMessage, and we provide a proxy-

based solution to mitigate the issues mentioned above to allow fine-grained, efficient and secure 

interactions between mashup components. Figure 3d shows the example code of invoking our 

proposed proxy-based cross-domain library. First, the proxy will automatically insert the <script 

src=”proxy.js”> in the mashlets to enable our libraries. The p_registerHandler() will be 

called automatically, once a mashlet is completely loaded in the browser (i.e., window.onload) to 

deal with the aforementioned registration procedure. Until now, the mashlet developers do not have to 

modify any of their codes. If M0 (or M2) needs to access certain objects of M3, the developers can 

simply call our library p_queryWindow(aURL) to get the window of M3 by given M3’s domain or 

URL for reference. And then by calling our wrapper function p_requestData(targetWin, 

targetURL, elementID), the value of object elementID in M3 will be returned. In this case, 

the cross-domain communication is completed. The mashlet developer can also specify which domain 

can or cannot access its private object by a XML policy file. Our library will check it before returning. 

We will discuss the detail implementation of p_queryWindow and p_requestData later. 

3     System Design 

3.1  Security and Functional Requirements 

Confidentiality. If a client-side communication mechanism is implemented, the message can only be 

seen by the nominated parties. Sometimes, a secret symbol is shared by the user and the original 

content/mashlet for authentication purposes. One scenario that violates confidentiality is when a user 

views a page with a secret web cookie or password. Then, a malicious mashlet might read it and send it 

to a remote host. A secure design must ensure that the mashlet can only see the proper content. 

Take another example, Gmail provides advertisers with a service which Google dynamically 

selects advertisements (displayed on the right-hand side of the web page) most relevant to the content 

of the email content. If Gmail is designed as a client-side mashup architecture (actually it is not), then 

we can view each ad as a mashlet and the email content as the original content. A secure and flexible 

browser-side communication needs to make sure that the ads mashlet can only see the content of the 

email but cannot see any other data in the original content, such as the contact list. 

Integrity. Malicious parties must be prevented from accessing exchanged messages. For example, 

Twitpay.com is a web mashup application that allows people to send small payments through Twitter 

and PayPal. To do this, they include the recipient’s username and the amount in the exchanged 

message. There could be a security problem if third-party ads are mashed up on the same web page. 

The ads mashlet must not be able to tamper with the value of the payment in the user’s input data. 

Authenticity. The communication mechanism should guarantee the identity of the data sender as 

well as the data receiver. Malicious mashlet can act as others to obtain the data that it cannot retrieve. 
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In addition, it should ensure that the communication parties comply with the ACP set by the mashup 

developers. That is, only nominated parties can access the shared data. 

Flexibility. We believe the ACP should be more fine-grained to the element level, rather than 

domain level. A mashlet may want to share an element to some authorized mashlets, but prevent access 

by others. Therefore, in our design, the ACP is linked to an element. In our case, under the SOP, a 

mashlet may not access another mashlet’s element due to different origins, but it can specifically ask 

for the value of the element using our proposed mechanism if it passes the trust validation. 

3.2  The Proposed Web Mashup Model 

We argue the legacy SOP restriction is insufficient to support the various trust relationships for data 

access that are desired by mashup developers. We anticipate that a mechanism that provides “content 

isolation” and “secure communication” are necessary. The mechanism needs to allow the original 

content and mashlets to communicate with one another flexibly in client-side mashups and guarantees 

confidentiality, integrity, and authenticity at the time. 

Figure 4 shows a mashup model in which Mi denotes the mashup entities. Especially, we designate 

M0 is the original content, and the remaining Mi are the mashlets. Wi is the DOM object window 

containing Mi. Ei,j is the jth element in Mi. In our design, all the mashlets are embedded in <IFRAME>, 

so that each mashlet has a separate window. Under the SOP, if E2,1 wishes to access E1,1 (when M2 

and M1 are from different sources), the communication would fail. It guarantees that no unauthorized 

cross-domain access will succeed. Hence, we build a postMessage channel for the access. 

When the user sends a mashup page request (i.e., original content) to the integrator, the proxy 

records the request and fetches the ACP files (in XML format) from the integrator and all the providers, 

and it automatically generates a site-specific ACP for this mashup. After the response is sent back to 

the proxy, the proxy inserts a link (that points to the generated ACP enforcement code written in 

JavaScript) in the HTML file and returns the modified HTML to the user. The enforcement code will 

be downloaded and enforced later by the browser. The procedure for requesting mashlet pages is 

similar. We describe the detail steps of the procedure in next subsections. 

 

Figure 4  The web mashups model in the browser. 
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3.3  Site-Specific Access Control Policy 

Figure 5 shows an example of the provider’s ACP file and integrator’s ACP file. ACP_Provider is 

the root node of the provider’s ACP XML file, and its attribute src specifies the provider’s URL. 

Authorized_Element (with an attribute id) lists the elements that the mashlet would like to 

share with others. The Licensee node specifies the authorized domain that can access this element. 

The integrator’s ACP file is similar, but it has one more node, called Provider_URLs. 

Provider_URLs lists all the providers in this mashup. Our proposed proxy extracts this node to 

download providers’ ACP files and generates the aggregated site-specific access control policy. The 

site-specific ACP is a table that specifies whether or not an element Ei,j can be accessed by Mx. it is 

then used for generating the enforcement code. 

According to the example in figure 5, we can conclude that the mashlet (www.craigslist.com) can 

access the element of lcat_value stored in the original content (www.housingmaps.com), and map 

mashlet (maps.google.com) can read the element of craigslist_data in the house mashlet 

(www.craigslist.com). 

 
<ACP_Provider src=“www.craigslist.com”> 

   <Authorized_Elements> 
      <Authorized_Element id=“craigslist_data”> 

         <Licensee> maps.google.com </Licensee> 
      </Authorized_Element> 

   </Authorized_Elements>  

</ACP_Provider> 

 

<ACP_Integrator source=“www.housingmaps.com”> 

   <Provider_URLs> 

      <Provider_URL>  maps.google.com </Provider_URL> 

      <Provider_URL>  www.craigslist.com </Provider_URL> 

   </Provider_URLs>  
   <Authorized_Elements> 

      <Authorized_Element id=“lcat_value”> 
         <Licensee> www.craigslist.com </Licensee> 

      </Authorized_Element> 

   </Authorized_Elements> 
</ACP_Integrator> 

Figure 5  An example of ACP XML files. 

3.4  The Operation of the Trusted Proxy 

Based on the aggregated site-specific ACP, the proxy generates access control-related Java-Script files 

for each mashlet and the original content. Before the proxy returns the HTML pages to the browser, it 

inserts an HTML tag, named <SCRIPT>, in the <HEAD> of the HTML document to include the 

corresponding JavaScript file in the mashlet as well as in the original content. Hence, our proposed 

library and the access control script are added to the mashlets and the original content. Note that 

additional network overhead may occur when the proxy fetches the ACP XML files form the 

integrator and the providers. However, these ACP XML files can be cached at the proxy for better 

performance. We will discuss some performance issues in Section 5. Table 1 shows the operation 

functions supported by the proposed proxy. 
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Table 1  The operations of the proposed proxy 

Operation Description 

Policy retrieval The proxy retrieves ACP files from the providers and the integrator. These files are stored in a fixed 

directory of public available web servers, and are written by the providers and the integrator in a 

predefined XML format that is described in the previous section. 

Access-control policies 

aggregation 

According to all the related access control policies, the proxy generates an aggregated table for each 

web mashup. This operation restarts every time when any related policy has been updated. 

Web scripts generation According to each aggregated table, this task generates a JavaScript file that provides provider’s 

mashlet and integrator’s original content with APIs to use for secure and flexible client-side 

communication. Repeat this operation when the aggregated table has been updated. 

Web page Adaptation Insert a <script> in the head element of a HTML file to include a JavaScript library in every mashlet 

as well as the original content. Entities will call the function defined in the library. 

Caching To increase performance, in a reasonable period, processed results can be cached and used directly 

by the next request for the same URL. Furthermore, it can be done offline. 

3.5  The Operation of the Browser 

In the all-trust model (figure 6a), under the SOP, M1 and M2 can access any elements in W0, because 

M0, M1 and M2 are from the same source, i.e., the integrator. In this example, M1 and M2 are embedded 

in M0’s HTML document by <DIV>, so there is only one window (i.e., W0) in this mashup. As 

mentioned, the elements of M0, M1, and M2 can be accessed by a built-in JavaScript function call, for 

instance document.getElementById(). In the no-trust model (figure 6b), if M0, M1 and M2 

derive from different sources, and M1 and M2 are embedded in M0 by <IFRAME> (i.e., M0, M1 and M2 

have their own document and window), a browser cannot exchange data under the SOP. 

We use figure 6b for discussing HTML 5 postMessage method here. If M1 can obtain the 

reference of M2’s window object, W2, and apply the W2.postMessage() method, cross-domain 

communication can be realized. However, M1 may not have enough information about its sibling M2, 

and cannot get W2. Hence, in our design, our library will redirect the request of M2 to M0 (i.e., the 

parent of M1 and M2). According to the ACP, M0 can explicitly allow or decline this redirected request 

for M1. It makes the communication between mashlets easier. 

 

Figure 6  The legacy all-or-nothing trust models. 



 

 

302      A Secure Proxy-Based Cross-Domain Communication for Web Mashups 

 

In our model, the mashlet only needs to know the domain and id of the element that it would like 

to communicate with. If M1 wants to get M2’s element E2,1, our library applies the following procedure 

for M1 (see figure 7). (0) entityRegisterHandler: Every entity must add a handler to deal with 

the postMessage event. (1) entityGetWindow: M1 asks its parent window, W0, for the window 

index of element E2,1. Our API secretly creates a secure postMessage channel between W0 and W1 

for the query. Since the proxy has obtained the ACP files of M0, M1 and M2, it has the structure of this 

mashup and already stores the index in W0’s JavaScript snippet. W0 then returns the index of W2 to M1 

by using postMessage channel as well. (2) entityRequestData: After obtaining the index of 

W2, M1 creates another postMessage channel to M2. M2 registers an event handler to catch the event 

if the element is designed to be accessible. (3) querySendValid: According to the aggregated site-

specific ACP, M2’s JavaScript snippet contains information about the domains that can access the 

element E2,1. The API returns TRUE, if M1 passes the validation; otherwise a NULL object is returned. 

(4) sendData: M2 then uses W1 to create yet another postMessage channel to send the data to M1. 

(5) queryReceiveValid: M1 also needs to validate the data received from M2 to prevent data from 

a malicious mashlet, and then M1 gets the received data. Note that, the mashlet only needs to call one 

function to send a cross-domain message, since all the underlying communications between M0, M1 

and M2 are securely performed by our library automatically. 

For this example in figure 7, there are four postMessage channels are established by our 

proposed library. Because the postMessage method only allows data to be “pushed” to the 

requester, the requester can only passively wait for data owner to send data. However, the mashlet 

developers do not need to deal with the complex communication procedures if our library is used. 

 

Figure 7  The cross-domain communication procedure in the browser. 

3.6  The Pseudo Script of Cross-Domain Communication Library Used in the Browser 

We show the pseudo scripts (shown in figure 8) of our proposed cross-domain communication library 

in this subsection. Proxy.js is the JavaScript file inserted into original HTML with the site-specific 

ACP by our proxy server. It provides secure cross-domain communication for the mashup developers. 

The entire Proxy.js has 382 lines of code. In the library, we create an object to handle the cross-

domain procedure, and it extends EventTarget.prototype to add, save and launch event 
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listeners defined by each mashup entity. Each entity can define their customized actions in their 

callbackFunc functions, such as showing a message box that displays the data requested from 

others or storing the obtained data in their cookie for further use. 

By calling p_registerHandler, we add an event listener, p_onPostMessage, to the 

current window to listen and handle the message sent by the original postMessage function. For 

Internet Explorer, the function named attachEvent for event registration is used; otherwise 

addEventListener is used for other the supported browsers. We also generate several hidden 

JavaScript text nodes using document.createElement() as temporary containers to allow 

p_onPostMessage to save received messages in the mashlet for later use. 

p_GetWindow(aURL) is used to search the window objects embedded in the original content. 

The original content would help the caller to find the target window object having the specified 

domain or URL. The target window will be returned to the caller by another postMessage channel 

between the original content and the caller. Such design would be practical for the original content to 

find all embedded iframes, since a mashlet may not access its sibling mashlets due to the same origin 

policy. 

p_requestData(targetWin, targetURL, elementID) is used by the caller to send a 

request to the callee after the caller gets the target window. If the targetWin is the window of the 

original content, the caller simply calls the postMessage function to send data by using its parent’s 

window (because the original content is the mashlet’s parent node). If the callee is a sibling mashlet, as 

we mentioned, p_getWindow() can obtain the window via the original content, so that our library 

can solve the problem of accessing sibling mashlet. 

p_onPostMessage is responsible for handling the message sent between the entities (i.e. 

original content and mashlet). The message carrying in the event e has two parts: message type and 

message content. There are four message types are defined in our library: REQUEST, REPLY, 

RETURN_WIN, and QUERY_WIN. REQUEST and REPLY are used for data exchange between the 

entities. RETURN_WIN and QUERY_WIN are used for a mashlet and its original content to exchange 

window index of other entities. Once the window receives a message, p_onPostMessage will be 

invoked and perform the corresponding reactions. 

p_queryReceiveValid is used by the data requester to check if it is secure to receive the 

client-side cross-domain data, while p_querySendValid is for the data owner to check if it is 

against its access control policy to send data to the requester. The site-specific ACPs generated by our 

proxy are used in these functions to check the validity of such cross-domain data delivery. 

p_sendData is used by p_onPostMessage to perform different reactions corresponding to 

the message type. It is used by the data owner to send the data after receiving a REQUEST message. 

callbackFunc (event, args) is the call back function of the event handler. Mashlet 

developers can manually register these self-defined functions in their mashlets. Once the message is 

received by the mashlet, the customized function will be invoked automatically. 
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p_registerHandler() { 

 // Add an event listener to the current “window” for different browsers 

 if (typeof window.addEventListener != ‘undefined’)  
  window.addEventListener('message', p_onPostMessage, false);   

 else if (typeof window.attachEvent != ‘undefined’) 
  window.attachEvent('onmessage', p_onPostMessage); 

  

 // Create some nodes in the “document” for saving certain information 
 document.createElement(…); 

} 
 

p_getWindow(str,aURL){ 

 var iFrames = document.getElementsByTagName(“iframe”); 
 for each iframe in iFrames 

  var iframe_domain = iframes.getAttribute("src"); 
  return if find a matched aURL and iframe domain 

} 

 
p_requestData(targetWin,targetURL,elementID) { 

 var msg = “REQUEST”+ elementID + nonce; 
 if targetWin is the original content window 

  window.parent.postMessage(msg, targetURL); 

 else //target is a sibling mashlet 
  top.frames[targetWin].postMessage(msg, targetURL); 

}  
 

p_onPostMessage(e) { 

 var proxyObj = new Proxy(); 
 proxyObj.addListener(“onNormal”, callbackFunc, origin+”  ”+e.data); 

 
 // Phrase certain information carrying in the e.data, 

 // such as message type, elementID, token, domain, URL, and etc. 

 
 if (the massage type is REQUEST) { 

  sendValid = p_querySendValid(elementID, e.origin);  
  if(sendValid) p_sendData(sendValid, elementID, token, e); } 

 else if (REPLY) { 

  receiveValid = p_queryReceiveValid(e.origin, elementID);  
  proxyObj.addListener(“onReply”, callbackFunc, msgSendToEntity); 

  proxyObj.onReply(); } 
 else if(RETURN_WIN) { 

  proxyObj.addListener(“onReturnWin”, callbackFunc, query_result); 

  proxyObj.onReturnWin(); } 
 else if(QUERY_WIN) { 

  query_result = p_getWindow(str, URL);  
  p_returnQueriedWin(query_result, e); } 

 else proxyObj.onNormal(); // perform original callback function 

} 
 

p_sendData(sendValid, elementID, token, e) { 

 // if this sending action is valid, then send e using the real postMessage() 

 if (sendValid) e.source.postMessage(REPLY_MSG, e.origin); } 

 
p_querySendValid(elementID, requester) { 

 Check p_ACPTable to see if the XML configuration file allow such request. } 
 

callbackFunc (event, args){…} 

Figure 8  The pseudo code of the cross-domain communication library. 
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4     System Implementation 

4.1  Development Environment 

We employ several servers in a campus network. The user and the proxy are in the same subnet, and 

each mashlet has a different domain. Our HTTP proxy is a Linux box (Fedora Core 5) with Apache 2.2 

and Squid 3.1.1. It has a Pentium D 3.0 GHz CPU and 4G RAM. The web user has a PC having an 

Intel Core 2 Quad 2.33G CPU with 2G RAM. Microsoft Internet Explorer 8, Mozilla Firefox 3 and 

Google Chrome 6 along with the measurement tools (i.e., IE 8 Developer Tools, Firebug, and Chrome 

Web Developer Tools) are used. 

4.2. The Squid Proxy and eCap Extension 

We configured the client browser to connect with the Squid proxy. We adopted an extension of Squid, 

called eCAP [5], to perform content adaption. Figure 9 shows the operation of the proxy with the 

browser and web servers. Our modified eCAP adapter is about 800 lines in C++. The main entry point 

of our program is in function adaptContent. First, we insert our JavaScript library into the returned 

HTML files. Second, the aggregated ACP files and the JavaScript snippets is generated by another 

process, called ACP Generator, which is written in C++ (360 lines). We separate Squid/eCAP and the 

ACP Generator into two processes so that the tasks can be executed in parallel. 

In figure 9, when the response of a web page from the integrator is returned to the proxy, Squid 

captures it and sends it to the eCAP. Our eCAP records its URL, passes it to the ACP Generator using 

shared memory technique, and inserts a JavaScript link into the  HTML, e.g., <SCRIPT SRC = 

"http://proxy_ip/integrator_M0.js">. The modified HTML is sent back to the browser, 

which will then request the JavaScript code, integrator_M0.js, from the proxy. In the meantime, 

when a URL is sent to the ACP Generator, it forks a process to download the integrator’s ACP XML 

file. Then, we produce the JavaScript code, i.e., integrator_M0.js, for the integrator. The code 

contains all the cross-domain communication APIs and the aggregated ACP for the integrator. As 

mentioned, the browser will download the code later after parsing the JavaScript link that we inserted 

into the HTML. 

After parsing the integrator’s ACP file and extracting the list of mashlets (from the 

Provider_URLs nodes), the ACP generator then further collects all the providers’ ACP files and 

generates corresponding JavaScript snippet files for each provider, e.g., provider_M1.js. These 

JavaScript files will be downloaded later, when each mashlet we page is downloaded. We used 

Xerces-c++/3.1.1 and libcurl/4-7 to process the downloaded ACP files. Xerces-c++ is an XML parser 

for C++ which we use to process the ACP files. Libcurl is used to download ACPs from remote 

servers. 

The procedure for retrieving a mashlet web page is much simpler. After the browser receives the 

original content, it sends extra HTTP requests to download the mashlet web pages. Squid also captures 

the requests and replies. At this point, eCAP does not need to retrieve the providers’ ACP files, 

because they were obtained when we generated the aggregated ACP files. eCAP inserts a script link 

into the HTML reply, e.g., <SCRIPT SRC = "http://proxy.com/provider_M1.js">, 

and the JavaScript code for the mashlets will be downloaded later. 
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The pseudo code of the ACP Generator is in figure 10. 

 

Figure 9  The procedure for cross-domain communication between browser, proxy (including Squid, eCap & ACP Generator), 

the integrator and a provider. 

 
main() 
{  

        int shmid; // shared memory for eCAP and ACP Generator 

        char *shm; 
 

        CREATE_ATTACH_SHARED_MEM(); 
        while(0) // continue receiving the url sent by eCAP 

        { 

                string url = GET_URL_FROM_SHM(); 
                GET_ACP(url); 

        } 
} 

 

GET_ACP(string url) 
{ 

        char* integrator = DOWNLOAD_ACP(url); 
        PARSE_XML(integrator); 

        GENERATE_JS(integrator); 

 
        for each provider in XML node <Provider_URL> 

        { 
                char* p = DOWNLOAD_ACP(provider); 

                PARSE_XML(p); 

                GENERATE_JS(p); 
        } 

} 

Figure 10  The pseudo code of the ACP generator. 
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4.3  Ease of Use of the proxy.js Library 

For mashlet developers, the cross-domain communication is done by our proposed library 

automatically. We set our entry point in an init function that will be called once the web page is 

fully loaded to the browser while the mashlet developers need not to manually include it. By calling 

our p_registerHandler() function (see section 3.6), the init function sets all the event 

handlers used in our library. Therefore, when a developer need to perform a cross-domain 

communication, we can use the proposed wrapper p_requestData(targetWin, targetURL, 

elementID) for the entities to request data from other entities and get window information 

p_queryWindow through original postMessage function. 

Basically, the only thing that the mashlet developer should concern is the access control of the 

elements they would like to use and share. They only have to set the tratgetURL and elementID 

in the access control XML file specified in figure 5, and specify what tratgetURL and 

elementID to use in the runtime. 

5     Evaluation 

5.1  Security Analysis 

Confidentiality. The cross-domain communication in our system is made by our library using the 

postMessage method. Our library guarantees that only the caller will get the window object. In this 

way, the confidentiality can be maintained, since no others can get the object under the restriction of 

the SOP. 

Furthermore, our JavaScript library uses the URL of the callee as an input argument for the 

postMessage method. This argument is examined by our library to make sure it is the same as the 

source of the window object. If the examination fails, the event handler of Message will never be 

called. Our library also checks if the data requester is authorized to make the request to the owner. It 

prevents the violation of the web developer’s ACP setting. 

Integrity. The postMessage channel can be seen as a point-to-point channel. When a requester 

receives a message from the owner, no other entities can obtain the reference of the Message event 

object. In other words, no other entities can access the transmitted data in order to modify it. 

Authenticity. Our API requests the caller and the callee to identify themselves (i.e., the domains 

they belong to). The domain is examined to ensure that it is the same as the source of the window 

object. 

Our work relies on the firm Same Origin Policy to guarantee the securities. It highly depends on 

the browser’s enforcement. Although like all other client-side scripts, a malicious user can always 

attack the client side data by viewing the source code download by the browser. However, in our work 

we point out that a malicious mashlet developer cannot access an unauthorized element via cross-

domain communication mechanism when our access control mechanism is present. The enforcement 

of the Same Origin Policy and our proposed function wrappers will guarantee the communication 

securities as a whole. 
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5.2  Performance Analysis 

In the subsection, we consider the overhead of our proxy-based approach. We assume that our system 

and a general proxy has similar network processing delay and queuing delay, but our proxy’s 

processing delay is non-negligible. First, we analyze the time overhead for a general HTTP proxy 

environment and then compare it with that of our design. 

1) The Latency of a General Proxy 

Let BQ be the size of a request packet, BR be the size of a response packet, RB-P be the bandwidth 

between the browser and the local proxy, and RI be the bandwidth between two Internet hosts. In 

addition, let PQ be the time required by the proxy to process a request packet, and let PR be the time for 

a proxy to handle a response. The total time needed by a general proxy to process a request and a 

response is as follows. 

 )()( -- PBRRIRIQQPBQ RBPRBRBPRB   (1) 

Therefore, we expect that the total time needed for a web mashup containing one integrator and n 

mashlets will be 

 )]()[(*)1( -- PBRRIRIQQPBQ RBPRBRBPRBn   (2) 

However, if the browser can send requests parallelly and the proxy can handle them 

simultaneously, the ideal factor of (2) will be (1+1), not (1+n). That means the n requests to the 

mashlets can be processed simultaneously. 

2) The Latency of the Proposed Proxy with eCAP 

Let n be the number of mashlets in a mashup, m be the number of trusted domains specified by a 

mashlet (or by an integrator), and e be the number of accessible elements in a mashlet (or in an 

integrator). In addition, let BXML(m, e) be the size (in bytes) of an ACP XML file for a mashlet (or an 

integrator) that has m trusted domains and e elements. And let BACP(m, n+1, e) be the size of an 

aggregated ACP file for a mashup with n mashlets and one integrator that have m trusted domains and 

e elements. (In figure 5, n is also the number of <Provider_URL> nodes, m is the number of 

<Licensee> nodes, and e is the number of <Authorized_Element> nodes.) 

Compared with (1), the extra time needed to retrieve the original content is as follows: 

 ,),( IJSRQ RemBPP   (3) 

where P’Q and P’R are the extra processing times in our eCAP, and BJS(m, e) is the extra JavaScript 

code (in bytes) that must be downloaded for the cross-domain communication and enforcement of the 

ACP (see figure 9). In the JavaScript template used to generate JavaScript code, the value of BJS(m, e) 

is 11,026 bytes plus an ACP table. The fixed 11k JavaScript Code (about 400 lines) is our cross-

domain communication library. The size of the ACP table is (the average length of domains used) * m 

* (the average length of an element ID) * n bytes. Figure 5 shows some examples of the domains and 
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element IDs. The length of the strings should not be too long in practice. (In our experiments, we 

assume they are both 16 bytes.) 

The time needed to retrieve a mashlet web page is the same as (3). As mentioned earlier, for a 

mashlet, the eCAP adaptor does not need to trigger the operation of the ACP Generator. 

The ACP Generator is designed to perform in parallel with the eCAP, as shown in figure 9. Its 

execution time can be divided into four parts: retrieving the integrator’s ACP XML file, processing 

this file, retrieving the providers’ ACP XML files, and processing them. They are formulated as 

follows: 

 
),(]),([*

),1,()],1,([

emPRemBRBn

enmPenmBRB

XMLIXMLIQ

ACPACPIQ




 (4) 

The processing time of BXML(m, e), i.e., PXML(m, e), and that of BACP(m, n+1, e), i.e., PACP(m, n+1, 

e), will be measured with different sets of parameters in the next subsection. Moreover, similar to (2), 

the factor n of this equation would be 2 in an ideal case. In our system, the value of BXML(m, e) and 

BACP(m, n+1, e) can be derived by analyzing the lengths of the XML tags and structure used in the 

figure 5. Based on our XML design, the BACP(m, n+1, e) is [133 + 45 * n + e * (63 + 37 * m)] and the 

BXML(m, e) is [94 + e * (63 + 37 * m)]. 

3) Discussion 

With regard to the retrieval time for web mashups, the main difference between a general proxy 

and our design is the extra processing time required by our eCAP (i.e., P’Q and P’R) and the extra time 

needed to download BJS(m, e). They represent the cost of secure cross-domain communication. We 

show the results of the overhead in our system in the next subsection. 

ACP generator is another overhead. Although the generator can be run offline and in parallel, we 

still measure the amount of time required to generate ACP files. If the time is short enough (compared 

to the time spent on network transmission), due to the parallelism, we view the overhead as negligible. 

If the browser supports sending simultaneous requests, the n factor in (2) and (4) can be set to 2. 

Unfortunately, in our experiments, the three browsers do not send requests in parallel. However, this 

issue depends on the browser’s design and implementation, which is not the focus of our paper. 

5.3  Performance Measurements 

In the subsection, we present certain measurable evaluation results. For Internet Explorer, we use 

HTTP Watch Professional to measure the page load time in IE. It is an extension for Internet Explorer 

that gives page load timings and analysis of requests. For Firefox, Firebug 1.5.4 is used to measure the 

page load time. Firebug is a free extension for Firefox that gives page load timings and a number of 

development capabilities. As for Google Chrome, it has a built-in tool for performance measurement. 

1) The Generation Time of ACP and JavaScript 

In the ACP Generator, the major overhead results from generating ACP files and its JavaScript 

snippets, i.e., PACP(m, n+1, e) + PXML(m, e). We expect that the generation time will increase with the 
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number of domains (m), the number of mashlets (n), and the number of accessible elements (e). Figure 

11 shows the generation time for different mashup settings in our experiments. From the results, we 

conclude that the time needed to generate ACP files in our system has a linear correlation with the 

numbers of m, n, and e. 

Let us take the parameter setting used in our mashup environment (m, n+1, e) = (16, 2+1, 32) as an 

example. The ACP generator has to check 16*3*32 elements and generates the corresponding access 

control code for the mashup. In our system, the generation time for all ACPs and JavaScript snippets is 

109.97 ms. BACP(m, n+1, e) is 40,127 bytes and BXML(m, e) is 39,998 bytes. If RI is 100 Mpbs, the time 

required to download an ACP XML file from one web server to the proxy is about 3.2 ms plus RTT. In 

today’s network environment, the RTT might be a more significant concern. Hence, we suggest using 

the caching mechanism in the proxy to reduce this overhead 

 

Figure 11  The ACP file generation time of different mashup settings. 

2) The Time Required Manipulating the Returned HTML 

In figure 9, we insert a script link in the HTML responses so that the browser knows where to 

download the cross-domain communication and ACP enforcement code. This task includes searching 

for an appropriate insertion point in the HTML document (usually in <HEAD> tag) and saving the 

record in the memory for later reference. On average, this task only takes 0.51 ms in our prototype 

system, which is reasonable. 

3) Mashup Loading Time in Different Browsers 

We measure the entire loading time of our cloned HousingMaps mashup at the browser. The 

parameter setting of our HousingMaps is (m, n+1, e) = (16, 2+1, 32). To ensure we get the correct 

measurement, we clean the browser and proxy caches every time we make a mashup request. Although 

the result is highly dependent on the parameter selected, the implementation of the browsers and the 

network delay, it gives us a high-level overview of system performance. We also measure the loading 

time of a mashup without the Squid proxy, as well as the loading time with the Squid but eCAP is 

disabled. 

Figure 12 shows the average mashup loading times under the compared browsers. In Chrome 6, 

Firefox 3 and IE 8, the average overhead of our design (compared with that of the non-proxy 
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architecture) is about 743, 1049, and 1225 milliseconds, respectively. However, we notice that the 

overhead is caused primarily by the Squid proxy, not our eCAP adapter. 

 

Figure 12  The loading time of different browsers. 

4) The Time Required for Cross-Domain Communication in a Browser 

Although the time required for cross-domain communication in the browser depends on the 

performance of the JavaScript engines, we still show the results of calling our library under the 

compared browsers (see figure 13). The average time needed to perform one fine-grained cross-

domain communication in IE, Firefox and Chrome is 5.33, 0.22 and 0.08 milliseconds. The time 

required is nearly linear to the number of calls. 

 

Figure 13  The execution time of different browsers. 
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6     Related Work 

Fragment identifiers, the string after the # in a URI, can be used for cross-domain and cross-frame 

communication. Because the location property of an <IFRAME> can be modified by its parent 

window and itself, it can be used as a channel between the original content and the mashlet. However, 

fragment identifiers were not designed for use in this manner at the first place. As noted in [4], such ad 

hoc schemes require careful synchronization between the communicating parties, and it can be easily 

disrupted if the user presses the browser’s back button. 

In Subspace [4], the authors use domain promotion techniques to allow each provider to share a 

single JavaScript object with the integrator for communication. Under this scheme, a multi-level 

hierarchy of frames coordinates the document.domain property to communicate directly in 

JavaScript. Like most frame-based mashups, a policy for descendant frame navigation is required to 

prevent gadget hijacking. Using Sub-space correctly requires a significant amount of work on the part 

of the web developer, especially for complex mashups containing distrusted code from many different 

sources. 

SMash [6] uses the concepts of publish-subscribe systems and creates an event hub abstraction 

that allows the mashup integrator to securely coordinate and manage content and information shared 

by multiple domains. They assume that the mashup integrator is trustworthy. The event hub 

implements the access policies that govern communications among domains. Barth [7] discovered that 

SMash is vulnerable to attacks that impersonate messages exchanged between components. However, 

Subspace and SMash are considered as ad hoc schemes rather than long-term solutions. 

The MashupOS scheme [3] includes new primitives for isolating web content and ensuring secure 

communication. It proposes its own abstractions for missing trust levels in both access-controlled 

content and for unauthorized content. It adds new structures, e.g., <SANDBOX> and 

<OPENSANDBOX>, to HTML with variations on the same origin policies. 

Crites et al. [8] proposed OMash, which adopts the trust relationships defined in MashupOS and 

only uses a single abstraction to express them. The authors argue that MashupOS still relies on the 

SOP for enforcement, so it suffers all of the SOP’s vulnerabilities and pitfalls, including cross-site 

request forgery (CSRF), DNS rebinding and dynamic pharming, whereas OMash does not. 

The <MODULE> tag proposed in [9] is similar to an <IFRAME> tag, but the module runs in an 

unprivileged security context without a principal, and the browser prevents the integrator from 

overlaying content on top of the module. A module groups DOM elements and scripts into an isolated 

environment; and socket-like communications are allowed between the inner module and the outer 

module. Unlike postMessage, the communication primitive used with the module tag is 

intentionally unauthenticated, so it does not identify the message sender. 

Caja [10], Google’s open source project, allows web applications of different trust domains to 

communicate directly with JavaScript function calls and reference passing. It translates scripts to an 

enforced JavaScript subset and only grants the modified scripts the privileges they require. It is 

possible to isolate scripts from each other and from the global execution environment, i.e., the browser 

window, to the degree needed. However, providers must write their components in Caja. 
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Facebook Markup Language (FBML) [11] is currently the most successful customized HTML and 

is used in Facebook Platform. FBML is a subset of the HTML with some elements removed and newly 

added tags. The FBML serves many roles in Facebook. For example, it is used in secure conditions on 

the user profiles, in small snippets on the news feed, and in full-page batches on canvas pages. The 

goal is to support a versatile tag set and thereby help developers target the different settings. 

The BrowserShield framework [12] provides controlled cross-domain client-side communication 

by preprocessing the mashlet’s JavaScript code to ensure that it can only perform actions specified in a 

set of guidelines. It transforms a code at runtime on the client side or as a one-time transformation on 

the integrator. Furthermore, it can prevent some denial-of-service attacks, e.g., navigating the parent 

frame to a new location or the appearance of an endless sequence of alert dialogs. 

AdJail [13] dynamically creates a shadow page and passes the non-sensitive content to the shadow 

page to perform ads recommendation. It focuses on the confidentiality of the content for advertisement 

environment, rather than a general cross-domain communication. 

OMOS [15] takes the advantage of creating temporary hidden <IFRAME> and fragment identifier 

messaging. Al-though it supports secure communication in browser environments, as noted in [4], we 

also believe such method is an ad hoc scheme. 

We list certain features of different cross-domain communication approaches in Table 1. We 

notice that each approach has its own advantages that may not be replaced by other ones. It highly 

depends on the mashup architecture and the application environment used. Since there is a need to 

inspect the elements, insert code, and change the HTML, we anticipate that the selecting a trustworthy 

party to help the cross-domain communication is quite important. For our proxy design, a neutral third 

party (or a benign mashup service provider) can always fulfill this requirement, just like an 

Authentication Center used in encryption process. 

 

 Server-Side Approach Client-Side Approach Proxy Approach 

Code Insertion Yes Yes Yes 

HTML Modification Manually by the Mashup 

programmer 

Manually by the Mashlet 

programmer 

Automatically by the 

Proxy 

Browser Modification No. postMessage used. New tag or plug-in No, postMessage used. 

Policy Enforcement SOP Plug-in SOP + ACP 

Main Overhead Web server Browser Proxy 

Browser Download  Plug-in (1 time)  

Policy Modification Modify server policy Modify HTML Modify XML 

Trust Server Plug-in Proxy 

Table 1  The comparison of different cross-domain communication approaches 

7     Discussion and Future Work 

7.1  Discussion of Related Work 

According to [4], some browsers are now trying to restrict the use of ad hoc tricks to perform cross-

domain communication. However, the solution may require adding new elements to the HTML 
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standard, browser changes (i.e., installation of a browser plug-ins or browser updates), and all web site 

developers involved to rewrite their codes. First, changing browsers requires users to update browsers 

or install additional plug-ins. For users who do not wish to perform software updates, their securities 

have been exposed to potential threats. Although browser plug-ins can provide many of the cross-

domain network communication capabilities that are needed by mashups, some users choose not to 

install them for security, privacy, or compatibility reasons [4]. 

Moreover, in [14], the authors point out some unsafe browser features that should be removed. 

Hence, ad hoc solutions might not be still workable in the future. We anticipate that solutions built on 

the top of standard postMessage method would be more appropriate. However, some future works 

still needs to be done, such as design of a trust model in Ajax environment and ACP caching 

mechanisms. 

Other than using current standards, some working groups try to embed the cross-origin resource 

sharing mechanism into new HTML standard. Cross-Origin Resource Sharing (CORS) is such a 

specification that enables an open access across domain-boundaries. W3C makes a draft [16] that 

defines a mechanism to enable client-side cross-origin requests. It allows a server to reply a response 

that includes Access-Control-Allow-Origin herder, with the origin of where the request 

originated from as the value, to access certain resource’s content. This specification extends this model 

in several ways to retrieve resources. The Access-Control-Allow-Origin header indicates 

whether a resource can be shared based by returning the value of the Origin request header in the 

response. It also specified how long the results of a request can be cached using the Access-

Control-Max-Age header. The Access-Control-Allow-Methods header indicates which 

methods can be used during the request. 

It takes time for the web server, browser vendors, as well as, the mashlet developers to support 

such new standard; after that, a common web user can enjoy the benefit of it. We anticipate that well-

designed standards can improve the security of cross-domain communication in the near future. 

However, our proxy-style approach is still a valuable reference model for the mashp platform provider 

and standard developers. 

7.2  Potential Risk of Introducing a Proxy 

The proposed proxy is used to generate code snippets and insert these returned HTML documents to 

enforce the access control policies. We adopt the proxy-approach to avoid adding computation loading 

on the client (i.e., browser). However, the same functionality can be provided by a browser plug-in. 

They are essentially the same in a way that they both require the client to trust them to perform the 

access control without malicious intention. Once they are configured, they are given the right to 

control the privileges of every mashlets. 

Their difference lies in the number of network requests and the network routing. However, proxy-

based solution is suitable for enterprise network and it is easy to maintain the code without bothering 

the users. We can also perform some authorization procedures before the proxy configuration to assure 

the identity of the proxy, in case a user connects to a distrusted proxy. 
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7.3  Discussion of Proxy-Based Design 

Our proposed proxy-based design could be used in an enterprise mashup model for business benefits. 

We anticipate that the proxy-based design can help the mashup platform providers to provide a better 

solution to the mashup developers and users. The access control mechanism can be a part of social 

network platform as a default element sharing mechanism in the mashup. Therefore, all the developers 

can benefit from the proxy design and do not need to spend time for sharing mechanism. A for-profit 

mashup platform provider can even integrate our mechanism in their customized web server to act as 

our proxy. 

The proxy currently that we use is a general HTTP proxy; however, we believe it can be integrated 

in a browser as a plug-in to handle the cross-domain communication. However, it makes a general user 

to download and install it before using the mashup website, which is not that convenient. The most 

important of the proxy design concept is separating the access control and enforcement code from the 

original web content. We believe this concept is important to guarantee the security. 

In addition, for a thin web client, such as mobile devices or battery-bounded devices, the proxy-

based design can save the computation time and data transmission time of performing access control 

mechanism. The thin client does not need to compute and download the access control files directly 

from the servers; rather the proxy does so for the thin clients. They are all the advantages of using 

proxy-based design. 

8     Conclusions 

In this paper, we propose a proxy-based design for a mashup environment. Our scheme provides a 

guaranteed security framework that allows mashlets to perform cross-domain communication. The 

authenticity, integrity, confidentiality and flexibility requirements are addressed by the design. We 

build up a client-side cross-domain communication library on the top of the HTML 5 postMessage 

method with a proxy-style fashion. We implement a prototype system and test the overhead of the 

proxy. The results show the overhead is linear to the number of shared components, and the incurred 

overhead is reasonable in our experiments. 
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