
Journal of Web Engineering, Vol. 12, No.3&4 (2013) 291-316

© Rinton Press

A SECURE PROXY-BASED CROSS-DOMAIN COMMUNICATION

FOR WEB MASHUPS

SHUN-WEN HSIAO1,2 YEALI S. SUN1 MENG CHANG CHEN2

National Taiwan University1

{r93011,sunny}@im.ntu.edu.tw

Academia Sinica2

{hsiaom, mcc}@iis.sinica.edu.tw

Received October 28, 2011

Revised March 13, 2013

A web mashup is a web application that integrates content from heterogeneous sources to provide users

with an integrated and seamless browsing experience. Client-side mashups differ from server-side

mashups in that the content is integrated in the browser using the client-side scripts. However, the legacy

same origin policy implemented by the current browsers cannot provide a flexible client-side

communication mechanism to exchange information between resources from different sources. To address

this problem, we propose a secure client-side cross-domain communication mechanism facilitated by a

trusted proxy and the HTML 5 postMessage method. The proxy-based model supports fine-grained access

control for elements that belong to different sources in web mashups; and the design guarantees the

confidentiality, integrity, and authenticity during cross-domain communications. The proxy-based design

also allows users to browse mashups without installing browser plug-ins. For mashups developers, the

provided API minimizes the amount of code modification. The results of experiments demonstrate that the

overhead incurred by our proxy model is low and reasonable. We anticipate the proxy-based design can

help the mashup platform providers to provide a better solution to the mashup developers and users.

Key words: Web mashup, same origin policy, access control, proxy

Communicated by: M. Gaedke & T. Tokuda

1 Introduction

A web mashup is a web application that integrates content or services from multiple sources. By

combining content from different websites, a web mashup can provide users with an integrated and

seamless browsing experience on a single web page. The web developers can easily incorporate

existing web services provided by third parties into one web mashup to enrich the web applications.

The concept of the web mashup makes the web application developers create more creative web

services for the users.

For a simple mashup, it looks like a dashboard that collects information from different sources. It

simply displays the content retrieved from different providers on a single web page. For example, it

can display contents of a remote RSS/Atom feed, or contents of the web's most visited social news

sites and portals. One example of such mashup is PopUrls (http://popurls.com/), which integrates the

292 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

contents of the popular sites and portals, including Twitter (http://www.teitter.com/), del.icio.us

(http://del.icio.us/), Digg (http://www.dogg.com/), and Flickr (http://www.flickr.com/), and then it

displays all the headlines from these sources on a single web page. With such design, a user can

retrieve all the information at once without opening multiple web pages.

In interactive mashups, the content of one source may be able to communicate with the content of

the other sources to provide extra functionalities and better interactions with the user. HousingMaps [1]

is an example of this type of mashup. It combines the property database of the Craigslist website

(http://www.craigslist.com/) with the map data from Google Maps (http://maps.google.com/) on an

integrated page. A user can employ HousingMaps to search for houses listed in Craigslist. Then, the

respective locations and information about the properties will be plotted on the Google Maps. In this

case, the information (i.e., the search options of the property, the search result and location details)

needs to be transmitted between different sources via the browser by mashup’s client-side scripts.

Another popular example of interactive mashups is content-aware ads. Ad scripts that dynamically

fetch ads’ content from ad networks (e.g., Google AdSense) may need to retrieve the content of the

web page before the ads are displayed on the web page.

As threats to privacy may occur when information is exchanged between different sources,

browsers currently implement the Same Origin Policy (SOP) [2], which controls who has access to

information carried by the browser. The SOP is an all-or-nothing trust model. Documents from the

same source are allowed to access each other’s contents, but documents from different sources do not

have any access rights. However, such inflexible policy limits the development of interactive mashups,

so the legacy SOP forces the web developers to make trade-offs between security and functionality.

Various techniques have been developed to perform cross-domain communication in mashups to

avoid being blocked by the SOP. For example, some mashups use a shared HTML property, i.e.,

window.location, as a channel to exchange messages; while others (e.g., [3]) introduce new

HTML tags and browser plug-ins. Another method, [4], deliberately modifies the source value (i.e.,

domain) of the documents so that these documents can communicate with each other under the SOP.

For mashups to work effectively, we argue there should be a flexible and fine-grained access

control model. The model should satisfy the following principles of security and in the meantime

provide enough flexibility for the mashup developers. (a) Confidentiality: In mashups, a user’s data

should only be available to an authorized source. (b) Integrity: A user’s input on a web page should not

be corruptible by distrusted parties. (c) Authenticity: The entity that receives the cross-domain data

should be able to validate the identity of the sender. (d) Flexibility: Mashup developers should be able

to define trust relationships in a more fine-grained manner, not in an all-or-nothing fashion.

The contributions of our works are as follows. (1) We build up a client-side cross-domain

communication library on the top of the HTML 5 postMessage method with a proxy-style fashion.

It provides the developers a convenient, flexible and secure way to implement interactive mashups. (2)

Our solution can automatically generate/enforce fine-grained and secure access logic (using JavaScript)

based on XML-based access control policy (ACP) provided by the mashup developers. No need to add

new HTML tags or install browser plug-ins. (3) We implement a prototype system and examine the

overhead of the proxy. The result shows the overhead is linear to the number of shared components. (4)

S.-W. Hsiao, Y. S. Sun and M. C. Chen 293

Our design provides the mashup platform providers with an easy way to cooperate with other web

services, while simultaneously protecting the private data of end users via the access control policy.

The remainder of the paper is organized as follows. In Section 2, we provide some background

information about mashups. Section 3 contains the description of the proposed model. We present the

prototype system and its implementation in Section 4, and evaluate our design in Section 5. In Section

6, we discuss existing practices and communication mechanisms for web mashups. Section 7 contains

some concluding remarks.

2 Background

2.1 Web Mashups

There are several roles in web mashups. An integrator is a site that hosts web mashups, and a provider

is a site that provides content or service to web mashups. A mashlet is client-side content from the

provider, and it usually includes a piece of active content and client-side script. When a user requests a

web page from the integrator, the retrieved web content, excluding the embedded mashlets, is called

the original content.

Figure 1 shows an example of mashups with one original content (the integrator site is

http://www.housingmaps.com/), one map mashlet (the map provider site is http://maps.google.com/),

and one house mashlet (the house provider site is http://www.craigslist.com/). This mashup has three

blocks: the biggest block with several control options is from the integrator; the left-hand-side mashlet

is from the map provider; the right-hand-side mashlet is from the house-listing provider. The integrator

combines two other services to provide the user with a more convenient way to search house

information. Usually, a mashlet can be embedded into a mashup by HTML tag <IFRAME> or <DIV>.

A mashlet may contain JavaScript code that enables it to communicate with other mashlets, manipulate

the content or interact with the user. Note that the access policies between the original content, the

mashlet itself and other mashlets are enforced by the SOP.

Figure 1 A web mashup example: HousingMaps.com.

294 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

At the browser side, an HTML document and all its elements is transformed into a Document

Object Model (DOM) at runtime. Every HTML document (including the original content and the

mashlets in <IFRAME>) are loaded into a DOM container, called window. The document itself is

stored in an object named window.document. DOM is the standard platform-independent and

language-neutral programming interface used by client-side scripts to access and manipulate the

content, structure and style of the documents. Under the SOP, documents from different sources cannot

access with each other. The issue of the mashups we address is how to design a flexible and fine-

grained access control mechanism under the SOP between HTML documents from different sources.

2.2 Mashup Architectures

Server-side mashups (figure 2a) integrate data from different sources at the server and return the

aggregated page to the client. The integrator acts as a data aggregator. It appears to the browser that all

the content is from the same origin, i.e., the integrator. Yahoo Pipes (http://pipes.yahoo.com/pipes/)

utilizes this design. When a user visits the mashup created via Yahoo Pipes, the browser connects to

pipes.yahoo.com to get data. The request is redirected by Yahoo to one or more providers, like The

New York Times, to retrieve data. Yahoo Pipes then aggregates the response data collected from

different sources into one single web page and then passes it from pipes.yahoo.com to the browser for

display. From the perspective of a browser, there is only one source (or domain) of these contents.

Hence, there has no the cross-domain communication problem at the client side.

However, the integrator is responsible for collecting data; the user needs to delegate authority to

the integrator to obtain content from the providers. It requires the clients to trust the integrator. Such

approach may possess privacy and security concerns. Other drawbacks of server-side mashups include

additional processing delays and limited scalability. The latency is caused by making one additional

round trip between the client and integrator every time the user makes a request to the mashup.

Client-side mashups (figure 2b) differ from server-side mashups in that the integration of content

or services takes place on the client side, i.e., the browser. The user requests the service or content

from the provider directly. With client-side mashups, the user does not need to place so much trust in

the integrator. However, in this case, it is necessary to consider the problem of cross-domain

communication, since the original content and the mashlets usually come from different sources. A

client-side mashup reduces the amount of trust that the user has to place on a distrusted third-party

integrator. Hence, it does not possess the aforementioned drawbacks of a server-side mashup.

Our design combines the advantages of server-side and client-side mashups. We propose a secure

client-side communication scheme that is facilitated by a trusted proxy (figure 2c). The content from

the integrator and providers will be integrated and displayed at the browser as usual (which is similar

to a client-side mashup), but these returned web pages are annotated by our proxy (which is similar to

a server-side mashup). The proxy will automatically capture all the outgoing web requests and

incoming responses. It then downloads the access control policies (ACP) specified by the integrator

and providers to generate a site-specific access control policy for this mashup. According to the site-

specific ACP, the proxy generates and inserts corresponding client-side JavaScript snippets into the

returned web pages. Every time when a cross-domain communication request is issued at the browser,

the inserted JavaScript snippets will provide a secure communication channel for the mashlets and

enforce the providers’ security settings. Therefore, the security is guaranteed.

S.-W. Hsiao, Y. S. Sun and M. C. Chen 295

Figure 2 Two types of mashups and our proposed proxy-based scheme.

2.3 Same Origin Policy

The Same Origin Policy (SOP) is enforced by the browser. It is assumed that two web pages derive

from the same source (or origin) if the application layer protocol, port and domain name are the same

for both pages. Recall that the SOP is an all-or-nothing mechanism. For a server-side mashup, all the

contents are from the “same source”, i.e., the integrator, so there is an all-trust relationship between the

mashlets (no matter these mashlets are embedded by <DIV> or <IFRAME>). Hence, a mashlet can

retrieve the user’s information without authority. In contrast, in a client-side mashup implemented by

<IFRAME>, mashlets derive from different sources in a no-trust relationship. The <IFRAME> tag has

an attribute named src, and it specifies the URL of the mashlet document to embed in the mashup. As

mentioned, if the contents come from different source, they run in an isolated environment (in practice,

they belong to different document objects in DOM) with no access to each other.

In terms of access control within the browser, the all-or-nothing trust model does not provide any

flexibility for web mashups. The legacy SOP forces web mashup developers to make trade-offs

between security and functionality.

2.4 HTML 5 postMessage Method

HTML 5 specifies an API, named postMessage, for asynchronous communication between DOM

window object. The postMessage API was originally implemented in Opera 8 and is now

supported by modern browsers, such as Internet Explorer 8, Firefox 3, and Safari. To send a message, a

window object needs to invoke the postMessage method of its target window; and to receive

messages, a window needs to register an event handler to catch the triggered event, called a

message. The invocation of the postMessage is not restricted by the SOP so that cross-domain

communication is possible with this new method. For security concern, the self-defined event handler

may check the source of the message to ensure it comes from an authorized source. However, such

authentication mechanism is not a default functionality provided by the postMessage. However,

Barth et al. [7] demonstrate an attack on the channel’s confidentiality using frame navigation. In light

of this attack, the postMessage channel lacks confidentiality.

296 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

Figure 3 The example of conventional object access and our proposed method in client-side mashups.

In figure 3, we show an example of postMessage usage with a client-side mashup under the

SOP, as well as our proposed method. Figure 3a is a simple mashup with the original content and three

mashlets. In this example, the original content (M0), mashlet M1 and mashlet M2 are from the same

domain (e.g., http://m0.com/) and the content of the last mashlet M3 are provided by another domain

(e.g., http://m3.com/). M1 is embedded in the original content by <DIV>, while M2 and M3 are

embedded in the M0 by using <iframe>. (Note that there is no way to use a <DIV> to embed a

mashlet from other domain in a client-side mashup.) Assume there is a secret object named SecMx in

each entity Mx, respectively. For example, it could be a secret web cookie provided by the service

domain. In figure 3b, we show the JavaScript code of non-cross-domain access. Under the SOP, M0

and M1 can access each other’s object without any restriction (i.e., all-trust) by simply using JavaScript

function document.getElementById(),since M0 and M1 are in the same document. On the other

hand, M0 and M2 are not in the same document, because the browser would create another document

for M2 due to the <IFRAME> tag. However, the document of M2 is a child node of document of M0.

Therefore, in order to access the secret object SecM0, M2 can call the JavaScript function

parent.document.getElementById(‘SecM0’) to obtain the object. On the other hand,

S.-W. Hsiao, Y. S. Sun and M. C. Chen 297

since M0 and M2 are from the same origin, M0 is able to obtain M2’s document object by using D2 =

window.frames[‘M2’].document and further gets SecM2 by using JavaScript function

D2.getElementById(‘SecM2’).

However, for M0 and M3, it is not that easy. Under the SOP, M0 and M3 are no-trust so that

conventional JavaScript calls cannot cross the access boundary. To perform such cross-domain

communication, we use figure 3c to show a detail example of HTML 5 postMessage method for

cross-domain access. For M0 to get SecM3, M0 should first obtain M3’s window, (for instance, win3 =

window.frames[‘m3’].contentWindow), and then M0 invokes the poseMessage method

win3.postMessage(‘SecM3’, ‘http://m0.com/’) to send a message. Note that the first

parameter is the message (string) sent to M3 and the second parameter is the domain of M0. To receive

such request, M3 should register an event handler to its window. Due to different browser

implementations, it could be window.addEventListener(‘message’, callback) or

window.attachEvent(‘onmessage’, callback). The first parameter is the event type to

listen to and the second parameter is the function name of the event handler. The handler function will

be called once the postMessage event (i.e., message or onmessage) is received by the callee

(i.e., M3) from the caller (i.e., M0 in this case). In the example, an object named event stores all the

information sent from the caller. In practice, the event.data usually carries the request of retrieving

object SecM3. Then, M3 can reply such request by invoking another postMessage by using

event.source.postMessage(‘SecM3’, ‘http://m3.com/’). The event.source is

the window object of the caller (i.e., M0’s window), so that it is convenient for M3 to send a message

back to its caller. In the example, a string SecM3 is sent back. As for M0, it should register a handler

function for receiving the returned message as well. In this way, M0 and M3 can exchange messages

between each other.

As for M3 to retrieve an object of M0, M3 should first get the window of M0 and then perform the

postMessage procedure. However, we point out that getting any object of M0 (e.g., SecM0, SecM1,

and SecM2) is not easy for an embedded M3 with <iframe>. Not only because they are in no-trust

relation under the SOP, but also the embedded mashlets may not know the structure the mashup. It is

difficult for the mashlet developer to communicate with other mashlet or the original content without

any help. Hence, we solve these problems in our proposed library.

It seems convenient to perform cross-domain communication via the postMessage. However,

some issues should be addressed in practice. First, the postMessage receiver needs to validate the

message on its own to ensure it is from an authorized source (domain). The mashlet programmer needs

to write a script (the length of the script depends on how many domains it trusts) for validation. Second,

the trust relationship between mashlets may change dynamically. Such validation scripts may not be

scalable, and it should be modified timely. Third, basically a mashlet has no information about the

mashup and its sibling mashlets. A mashlet may not know what else mashlets are embedded in the

same web mashup. However, for the purpose of inter-mashlet communication, the message sender

needs to get the receiver’s window id to invoke the postMessage method. In practice, it is difficult

and not secure for the sender to search for receiver's information in integrator's DOM. Moreover, the

SOP forbids such information access if the sender and the original content do not have the same origin.

In this case, without the help of integrator, it is nearly impossible for a “blind” mashlet to find the

frame of its target mashlet.

298 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

The HTML 5 postMessage method is a nice solution to cross-domain communication problem.

However, we argue that the mechanism is too simple. It lacks of security checks and fine-grained

access control. The mashup developers have to implement these functionalities on their own. In this

case, we believe providing a well-developed library to perform these underlying features would be a

benefit for the mashup platform providers.

In our proposed system, we take the advantage of the postMessage, and we provide a proxy-

based solution to mitigate the issues mentioned above to allow fine-grained, efficient and secure

interactions between mashup components. Figure 3d shows the example code of invoking our

proposed proxy-based cross-domain library. First, the proxy will automatically insert the <script

src=”proxy.js”> in the mashlets to enable our libraries. The p_registerHandler() will be

called automatically, once a mashlet is completely loaded in the browser (i.e., window.onload) to

deal with the aforementioned registration procedure. Until now, the mashlet developers do not have to

modify any of their codes. If M0 (or M2) needs to access certain objects of M3, the developers can

simply call our library p_queryWindow(aURL) to get the window of M3 by given M3’s domain or

URL for reference. And then by calling our wrapper function p_requestData(targetWin,

targetURL, elementID), the value of object elementID in M3 will be returned. In this case,

the cross-domain communication is completed. The mashlet developer can also specify which domain

can or cannot access its private object by a XML policy file. Our library will check it before returning.

We will discuss the detail implementation of p_queryWindow and p_requestData later.

3 System Design

3.1 Security and Functional Requirements

Confidentiality. If a client-side communication mechanism is implemented, the message can only be

seen by the nominated parties. Sometimes, a secret symbol is shared by the user and the original

content/mashlet for authentication purposes. One scenario that violates confidentiality is when a user

views a page with a secret web cookie or password. Then, a malicious mashlet might read it and send it

to a remote host. A secure design must ensure that the mashlet can only see the proper content.

Take another example, Gmail provides advertisers with a service which Google dynamically

selects advertisements (displayed on the right-hand side of the web page) most relevant to the content

of the email content. If Gmail is designed as a client-side mashup architecture (actually it is not), then

we can view each ad as a mashlet and the email content as the original content. A secure and flexible

browser-side communication needs to make sure that the ads mashlet can only see the content of the

email but cannot see any other data in the original content, such as the contact list.

Integrity. Malicious parties must be prevented from accessing exchanged messages. For example,

Twitpay.com is a web mashup application that allows people to send small payments through Twitter

and PayPal. To do this, they include the recipient’s username and the amount in the exchanged

message. There could be a security problem if third-party ads are mashed up on the same web page.

The ads mashlet must not be able to tamper with the value of the payment in the user’s input data.

Authenticity. The communication mechanism should guarantee the identity of the data sender as

well as the data receiver. Malicious mashlet can act as others to obtain the data that it cannot retrieve.

S.-W. Hsiao, Y. S. Sun and M. C. Chen 299

In addition, it should ensure that the communication parties comply with the ACP set by the mashup

developers. That is, only nominated parties can access the shared data.

Flexibility. We believe the ACP should be more fine-grained to the element level, rather than

domain level. A mashlet may want to share an element to some authorized mashlets, but prevent access

by others. Therefore, in our design, the ACP is linked to an element. In our case, under the SOP, a

mashlet may not access another mashlet’s element due to different origins, but it can specifically ask

for the value of the element using our proposed mechanism if it passes the trust validation.

3.2 The Proposed Web Mashup Model

We argue the legacy SOP restriction is insufficient to support the various trust relationships for data

access that are desired by mashup developers. We anticipate that a mechanism that provides “content

isolation” and “secure communication” are necessary. The mechanism needs to allow the original

content and mashlets to communicate with one another flexibly in client-side mashups and guarantees

confidentiality, integrity, and authenticity at the time.

Figure 4 shows a mashup model in which Mi denotes the mashup entities. Especially, we designate

M0 is the original content, and the remaining Mi are the mashlets. Wi is the DOM object window

containing Mi. Ei,j is the jth element in Mi. In our design, all the mashlets are embedded in <IFRAME>,

so that each mashlet has a separate window. Under the SOP, if E2,1 wishes to access E1,1 (when M2

and M1 are from different sources), the communication would fail. It guarantees that no unauthorized

cross-domain access will succeed. Hence, we build a postMessage channel for the access.

When the user sends a mashup page request (i.e., original content) to the integrator, the proxy

records the request and fetches the ACP files (in XML format) from the integrator and all the providers,

and it automatically generates a site-specific ACP for this mashup. After the response is sent back to

the proxy, the proxy inserts a link (that points to the generated ACP enforcement code written in

JavaScript) in the HTML file and returns the modified HTML to the user. The enforcement code will

be downloaded and enforced later by the browser. The procedure for requesting mashlet pages is

similar. We describe the detail steps of the procedure in next subsections.

Figure 4 The web mashups model in the browser.

300 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

3.3 Site-Specific Access Control Policy

Figure 5 shows an example of the provider’s ACP file and integrator’s ACP file. ACP_Provider is

the root node of the provider’s ACP XML file, and its attribute src specifies the provider’s URL.

Authorized_Element (with an attribute id) lists the elements that the mashlet would like to

share with others. The Licensee node specifies the authorized domain that can access this element.

The integrator’s ACP file is similar, but it has one more node, called Provider_URLs.

Provider_URLs lists all the providers in this mashup. Our proposed proxy extracts this node to

download providers’ ACP files and generates the aggregated site-specific access control policy. The

site-specific ACP is a table that specifies whether or not an element Ei,j can be accessed by Mx. it is

then used for generating the enforcement code.

According to the example in figure 5, we can conclude that the mashlet (www.craigslist.com) can

access the element of lcat_value stored in the original content (www.housingmaps.com), and map

mashlet (maps.google.com) can read the element of craigslist_data in the house mashlet

(www.craigslist.com).

<ACP_Provider src=“www.craigslist.com”>

 <Authorized_Elements>
 <Authorized_Element id=“craigslist_data”>

 <Licensee> maps.google.com </Licensee>
 </Authorized_Element>

 </Authorized_Elements>

</ACP_Provider>

<ACP_Integrator source=“www.housingmaps.com”>

 <Provider_URLs>

 <Provider_URL> maps.google.com </Provider_URL>

 <Provider_URL> www.craigslist.com </Provider_URL>

 </Provider_URLs>
 <Authorized_Elements>

 <Authorized_Element id=“lcat_value”>
 <Licensee> www.craigslist.com </Licensee>

 </Authorized_Element>

 </Authorized_Elements>
</ACP_Integrator>

Figure 5 An example of ACP XML files.

3.4 The Operation of the Trusted Proxy

Based on the aggregated site-specific ACP, the proxy generates access control-related Java-Script files

for each mashlet and the original content. Before the proxy returns the HTML pages to the browser, it

inserts an HTML tag, named <SCRIPT>, in the <HEAD> of the HTML document to include the

corresponding JavaScript file in the mashlet as well as in the original content. Hence, our proposed

library and the access control script are added to the mashlets and the original content. Note that

additional network overhead may occur when the proxy fetches the ACP XML files form the

integrator and the providers. However, these ACP XML files can be cached at the proxy for better

performance. We will discuss some performance issues in Section 5. Table 1 shows the operation

functions supported by the proposed proxy.

S.-W. Hsiao, Y. S. Sun and M. C. Chen 301

Table 1 The operations of the proposed proxy

Operation Description

Policy retrieval The proxy retrieves ACP files from the providers and the integrator. These files are stored in a fixed

directory of public available web servers, and are written by the providers and the integrator in a

predefined XML format that is described in the previous section.

Access-control policies

aggregation

According to all the related access control policies, the proxy generates an aggregated table for each

web mashup. This operation restarts every time when any related policy has been updated.

Web scripts generation According to each aggregated table, this task generates a JavaScript file that provides provider’s

mashlet and integrator’s original content with APIs to use for secure and flexible client-side

communication. Repeat this operation when the aggregated table has been updated.

Web page Adaptation Insert a <script> in the head element of a HTML file to include a JavaScript library in every mashlet

as well as the original content. Entities will call the function defined in the library.

Caching To increase performance, in a reasonable period, processed results can be cached and used directly

by the next request for the same URL. Furthermore, it can be done offline.

3.5 The Operation of the Browser

In the all-trust model (figure 6a), under the SOP, M1 and M2 can access any elements in W0, because

M0, M1 and M2 are from the same source, i.e., the integrator. In this example, M1 and M2 are embedded

in M0’s HTML document by <DIV>, so there is only one window (i.e., W0) in this mashup. As

mentioned, the elements of M0, M1, and M2 can be accessed by a built-in JavaScript function call, for

instance document.getElementById(). In the no-trust model (figure 6b), if M0, M1 and M2

derive from different sources, and M1 and M2 are embedded in M0 by <IFRAME> (i.e., M0, M1 and M2

have their own document and window), a browser cannot exchange data under the SOP.

We use figure 6b for discussing HTML 5 postMessage method here. If M1 can obtain the

reference of M2’s window object, W2, and apply the W2.postMessage() method, cross-domain

communication can be realized. However, M1 may not have enough information about its sibling M2,

and cannot get W2. Hence, in our design, our library will redirect the request of M2 to M0 (i.e., the

parent of M1 and M2). According to the ACP, M0 can explicitly allow or decline this redirected request

for M1. It makes the communication between mashlets easier.

Figure 6 The legacy all-or-nothing trust models.

302 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

In our model, the mashlet only needs to know the domain and id of the element that it would like

to communicate with. If M1 wants to get M2’s element E2,1, our library applies the following procedure

for M1 (see figure 7). (0) entityRegisterHandler: Every entity must add a handler to deal with

the postMessage event. (1) entityGetWindow: M1 asks its parent window, W0, for the window

index of element E2,1. Our API secretly creates a secure postMessage channel between W0 and W1

for the query. Since the proxy has obtained the ACP files of M0, M1 and M2, it has the structure of this

mashup and already stores the index in W0’s JavaScript snippet. W0 then returns the index of W2 to M1

by using postMessage channel as well. (2) entityRequestData: After obtaining the index of

W2, M1 creates another postMessage channel to M2. M2 registers an event handler to catch the event

if the element is designed to be accessible. (3) querySendValid: According to the aggregated site-

specific ACP, M2’s JavaScript snippet contains information about the domains that can access the

element E2,1. The API returns TRUE, if M1 passes the validation; otherwise a NULL object is returned.

(4) sendData: M2 then uses W1 to create yet another postMessage channel to send the data to M1.

(5) queryReceiveValid: M1 also needs to validate the data received from M2 to prevent data from

a malicious mashlet, and then M1 gets the received data. Note that, the mashlet only needs to call one

function to send a cross-domain message, since all the underlying communications between M0, M1

and M2 are securely performed by our library automatically.

For this example in figure 7, there are four postMessage channels are established by our

proposed library. Because the postMessage method only allows data to be “pushed” to the

requester, the requester can only passively wait for data owner to send data. However, the mashlet

developers do not need to deal with the complex communication procedures if our library is used.

Figure 7 The cross-domain communication procedure in the browser.

3.6 The Pseudo Script of Cross-Domain Communication Library Used in the Browser

We show the pseudo scripts (shown in figure 8) of our proposed cross-domain communication library

in this subsection. Proxy.js is the JavaScript file inserted into original HTML with the site-specific

ACP by our proxy server. It provides secure cross-domain communication for the mashup developers.

The entire Proxy.js has 382 lines of code. In the library, we create an object to handle the cross-

domain procedure, and it extends EventTarget.prototype to add, save and launch event

S.-W. Hsiao, Y. S. Sun and M. C. Chen 303

listeners defined by each mashup entity. Each entity can define their customized actions in their

callbackFunc functions, such as showing a message box that displays the data requested from

others or storing the obtained data in their cookie for further use.

By calling p_registerHandler, we add an event listener, p_onPostMessage, to the

current window to listen and handle the message sent by the original postMessage function. For

Internet Explorer, the function named attachEvent for event registration is used; otherwise

addEventListener is used for other the supported browsers. We also generate several hidden

JavaScript text nodes using document.createElement() as temporary containers to allow

p_onPostMessage to save received messages in the mashlet for later use.

p_GetWindow(aURL) is used to search the window objects embedded in the original content.

The original content would help the caller to find the target window object having the specified

domain or URL. The target window will be returned to the caller by another postMessage channel

between the original content and the caller. Such design would be practical for the original content to

find all embedded iframes, since a mashlet may not access its sibling mashlets due to the same origin

policy.

p_requestData(targetWin, targetURL, elementID) is used by the caller to send a

request to the callee after the caller gets the target window. If the targetWin is the window of the

original content, the caller simply calls the postMessage function to send data by using its parent’s

window (because the original content is the mashlet’s parent node). If the callee is a sibling mashlet, as

we mentioned, p_getWindow() can obtain the window via the original content, so that our library

can solve the problem of accessing sibling mashlet.

p_onPostMessage is responsible for handling the message sent between the entities (i.e.

original content and mashlet). The message carrying in the event e has two parts: message type and

message content. There are four message types are defined in our library: REQUEST, REPLY,

RETURN_WIN, and QUERY_WIN. REQUEST and REPLY are used for data exchange between the

entities. RETURN_WIN and QUERY_WIN are used for a mashlet and its original content to exchange

window index of other entities. Once the window receives a message, p_onPostMessage will be

invoked and perform the corresponding reactions.

p_queryReceiveValid is used by the data requester to check if it is secure to receive the

client-side cross-domain data, while p_querySendValid is for the data owner to check if it is

against its access control policy to send data to the requester. The site-specific ACPs generated by our

proxy are used in these functions to check the validity of such cross-domain data delivery.

p_sendData is used by p_onPostMessage to perform different reactions corresponding to

the message type. It is used by the data owner to send the data after receiving a REQUEST message.

callbackFunc (event, args) is the call back function of the event handler. Mashlet

developers can manually register these self-defined functions in their mashlets. Once the message is

received by the mashlet, the customized function will be invoked automatically.

304 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

p_registerHandler() {

 // Add an event listener to the current “window” for different browsers

 if (typeof window.addEventListener != ‘undefined’)
 window.addEventListener('message', p_onPostMessage, false);

 else if (typeof window.attachEvent != ‘undefined’)
 window.attachEvent('onmessage', p_onPostMessage);

 // Create some nodes in the “document” for saving certain information
 document.createElement(…);

}

p_getWindow(str,aURL){

 var iFrames = document.getElementsByTagName(“iframe”);
 for each iframe in iFrames

 var iframe_domain = iframes.getAttribute("src");
 return if find a matched aURL and iframe domain

}

p_requestData(targetWin,targetURL,elementID) {

 var msg = “REQUEST”+ elementID + nonce;
 if targetWin is the original content window

 window.parent.postMessage(msg, targetURL);

 else //target is a sibling mashlet
 top.frames[targetWin].postMessage(msg, targetURL);

}

p_onPostMessage(e) {

 var proxyObj = new Proxy();
 proxyObj.addListener(“onNormal”, callbackFunc, origin+” ”+e.data);

 // Phrase certain information carrying in the e.data,

 // such as message type, elementID, token, domain, URL, and etc.

 if (the massage type is REQUEST) {

 sendValid = p_querySendValid(elementID, e.origin);
 if(sendValid) p_sendData(sendValid, elementID, token, e); }

 else if (REPLY) {

 receiveValid = p_queryReceiveValid(e.origin, elementID);
 proxyObj.addListener(“onReply”, callbackFunc, msgSendToEntity);

 proxyObj.onReply(); }
 else if(RETURN_WIN) {

 proxyObj.addListener(“onReturnWin”, callbackFunc, query_result);

 proxyObj.onReturnWin(); }
 else if(QUERY_WIN) {

 query_result = p_getWindow(str, URL);
 p_returnQueriedWin(query_result, e); }

 else proxyObj.onNormal(); // perform original callback function

}

p_sendData(sendValid, elementID, token, e) {

 // if this sending action is valid, then send e using the real postMessage()

 if (sendValid) e.source.postMessage(REPLY_MSG, e.origin); }

p_querySendValid(elementID, requester) {

 Check p_ACPTable to see if the XML configuration file allow such request. }

callbackFunc (event, args){…}

Figure 8 The pseudo code of the cross-domain communication library.

S.-W. Hsiao, Y. S. Sun and M. C. Chen 305

4 System Implementation

4.1 Development Environment

We employ several servers in a campus network. The user and the proxy are in the same subnet, and

each mashlet has a different domain. Our HTTP proxy is a Linux box (Fedora Core 5) with Apache 2.2

and Squid 3.1.1. It has a Pentium D 3.0 GHz CPU and 4G RAM. The web user has a PC having an

Intel Core 2 Quad 2.33G CPU with 2G RAM. Microsoft Internet Explorer 8, Mozilla Firefox 3 and

Google Chrome 6 along with the measurement tools (i.e., IE 8 Developer Tools, Firebug, and Chrome

Web Developer Tools) are used.

4.2. The Squid Proxy and eCap Extension

We configured the client browser to connect with the Squid proxy. We adopted an extension of Squid,

called eCAP [5], to perform content adaption. Figure 9 shows the operation of the proxy with the

browser and web servers. Our modified eCAP adapter is about 800 lines in C++. The main entry point

of our program is in function adaptContent. First, we insert our JavaScript library into the returned

HTML files. Second, the aggregated ACP files and the JavaScript snippets is generated by another

process, called ACP Generator, which is written in C++ (360 lines). We separate Squid/eCAP and the

ACP Generator into two processes so that the tasks can be executed in parallel.

In figure 9, when the response of a web page from the integrator is returned to the proxy, Squid

captures it and sends it to the eCAP. Our eCAP records its URL, passes it to the ACP Generator using

shared memory technique, and inserts a JavaScript link into the HTML, e.g., <SCRIPT SRC =

"http://proxy_ip/integrator_M0.js">. The modified HTML is sent back to the browser,

which will then request the JavaScript code, integrator_M0.js, from the proxy. In the meantime,

when a URL is sent to the ACP Generator, it forks a process to download the integrator’s ACP XML

file. Then, we produce the JavaScript code, i.e., integrator_M0.js, for the integrator. The code

contains all the cross-domain communication APIs and the aggregated ACP for the integrator. As

mentioned, the browser will download the code later after parsing the JavaScript link that we inserted

into the HTML.

After parsing the integrator’s ACP file and extracting the list of mashlets (from the

Provider_URLs nodes), the ACP generator then further collects all the providers’ ACP files and

generates corresponding JavaScript snippet files for each provider, e.g., provider_M1.js. These

JavaScript files will be downloaded later, when each mashlet we page is downloaded. We used

Xerces-c++/3.1.1 and libcurl/4-7 to process the downloaded ACP files. Xerces-c++ is an XML parser

for C++ which we use to process the ACP files. Libcurl is used to download ACPs from remote

servers.

The procedure for retrieving a mashlet web page is much simpler. After the browser receives the

original content, it sends extra HTTP requests to download the mashlet web pages. Squid also captures

the requests and replies. At this point, eCAP does not need to retrieve the providers’ ACP files,

because they were obtained when we generated the aggregated ACP files. eCAP inserts a script link

into the HTML reply, e.g., <SCRIPT SRC = "http://proxy.com/provider_M1.js">,

and the JavaScript code for the mashlets will be downloaded later.

306 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

The pseudo code of the ACP Generator is in figure 10.

Figure 9 The procedure for cross-domain communication between browser, proxy (including Squid, eCap & ACP Generator),

the integrator and a provider.

main()
{

 int shmid; // shared memory for eCAP and ACP Generator

 char *shm;

 CREATE_ATTACH_SHARED_MEM();
 while(0) // continue receiving the url sent by eCAP

 {

 string url = GET_URL_FROM_SHM();
 GET_ACP(url);

 }
}

GET_ACP(string url)
{

 char* integrator = DOWNLOAD_ACP(url);
 PARSE_XML(integrator);

 GENERATE_JS(integrator);

 for each provider in XML node <Provider_URL>

 {
 char* p = DOWNLOAD_ACP(provider);

 PARSE_XML(p);

 GENERATE_JS(p);
 }

}

Figure 10 The pseudo code of the ACP generator.

S.-W. Hsiao, Y. S. Sun and M. C. Chen 307

4.3 Ease of Use of the proxy.js Library

For mashlet developers, the cross-domain communication is done by our proposed library

automatically. We set our entry point in an init function that will be called once the web page is

fully loaded to the browser while the mashlet developers need not to manually include it. By calling

our p_registerHandler() function (see section 3.6), the init function sets all the event

handlers used in our library. Therefore, when a developer need to perform a cross-domain

communication, we can use the proposed wrapper p_requestData(targetWin, targetURL,

elementID) for the entities to request data from other entities and get window information

p_queryWindow through original postMessage function.

Basically, the only thing that the mashlet developer should concern is the access control of the

elements they would like to use and share. They only have to set the tratgetURL and elementID

in the access control XML file specified in figure 5, and specify what tratgetURL and

elementID to use in the runtime.

5 Evaluation

5.1 Security Analysis

Confidentiality. The cross-domain communication in our system is made by our library using the

postMessage method. Our library guarantees that only the caller will get the window object. In this

way, the confidentiality can be maintained, since no others can get the object under the restriction of

the SOP.

Furthermore, our JavaScript library uses the URL of the callee as an input argument for the

postMessage method. This argument is examined by our library to make sure it is the same as the

source of the window object. If the examination fails, the event handler of Message will never be

called. Our library also checks if the data requester is authorized to make the request to the owner. It

prevents the violation of the web developer’s ACP setting.

Integrity. The postMessage channel can be seen as a point-to-point channel. When a requester

receives a message from the owner, no other entities can obtain the reference of the Message event

object. In other words, no other entities can access the transmitted data in order to modify it.

Authenticity. Our API requests the caller and the callee to identify themselves (i.e., the domains

they belong to). The domain is examined to ensure that it is the same as the source of the window

object.

Our work relies on the firm Same Origin Policy to guarantee the securities. It highly depends on

the browser’s enforcement. Although like all other client-side scripts, a malicious user can always

attack the client side data by viewing the source code download by the browser. However, in our work

we point out that a malicious mashlet developer cannot access an unauthorized element via cross-

domain communication mechanism when our access control mechanism is present. The enforcement

of the Same Origin Policy and our proposed function wrappers will guarantee the communication

securities as a whole.

308 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

5.2 Performance Analysis

In the subsection, we consider the overhead of our proxy-based approach. We assume that our system

and a general proxy has similar network processing delay and queuing delay, but our proxy’s

processing delay is non-negligible. First, we analyze the time overhead for a general HTTP proxy

environment and then compare it with that of our design.

1) The Latency of a General Proxy

Let BQ be the size of a request packet, BR be the size of a response packet, RB-P be the bandwidth

between the browser and the local proxy, and RI be the bandwidth between two Internet hosts. In

addition, let PQ be the time required by the proxy to process a request packet, and let PR be the time for

a proxy to handle a response. The total time needed by a general proxy to process a request and a

response is as follows.

)()(-- PBRRIRIQQPBQ RBPRBRBPRB  (1)

Therefore, we expect that the total time needed for a web mashup containing one integrator and n

mashlets will be

)]()[(*)1(-- PBRRIRIQQPBQ RBPRBRBPRBn  (2)

However, if the browser can send requests parallelly and the proxy can handle them

simultaneously, the ideal factor of (2) will be (1+1), not (1+n). That means the n requests to the

mashlets can be processed simultaneously.

2) The Latency of the Proposed Proxy with eCAP

Let n be the number of mashlets in a mashup, m be the number of trusted domains specified by a

mashlet (or by an integrator), and e be the number of accessible elements in a mashlet (or in an

integrator). In addition, let BXML(m, e) be the size (in bytes) of an ACP XML file for a mashlet (or an

integrator) that has m trusted domains and e elements. And let BACP(m, n+1, e) be the size of an

aggregated ACP file for a mashup with n mashlets and one integrator that have m trusted domains and

e elements. (In figure 5, n is also the number of <Provider_URL> nodes, m is the number of

<Licensee> nodes, and e is the number of <Authorized_Element> nodes.)

Compared with (1), the extra time needed to retrieve the original content is as follows:

 ,),(IJSRQ RemBPP  (3)

where P’Q and P’R are the extra processing times in our eCAP, and BJS(m, e) is the extra JavaScript

code (in bytes) that must be downloaded for the cross-domain communication and enforcement of the

ACP (see figure 9). In the JavaScript template used to generate JavaScript code, the value of BJS(m, e)

is 11,026 bytes plus an ACP table. The fixed 11k JavaScript Code (about 400 lines) is our cross-

domain communication library. The size of the ACP table is (the average length of domains used) * m

* (the average length of an element ID) * n bytes. Figure 5 shows some examples of the domains and

S.-W. Hsiao, Y. S. Sun and M. C. Chen 309

element IDs. The length of the strings should not be too long in practice. (In our experiments, we

assume they are both 16 bytes.)

The time needed to retrieve a mashlet web page is the same as (3). As mentioned earlier, for a

mashlet, the eCAP adaptor does not need to trigger the operation of the ACP Generator.

The ACP Generator is designed to perform in parallel with the eCAP, as shown in figure 9. Its

execution time can be divided into four parts: retrieving the integrator’s ACP XML file, processing

this file, retrieving the providers’ ACP XML files, and processing them. They are formulated as

follows:

),(]),([*

),1,()],1,([

emPRemBRBn

enmPenmBRB

XMLIXMLIQ

ACPACPIQ




 (4)

The processing time of BXML(m, e), i.e., PXML(m, e), and that of BACP(m, n+1, e), i.e., PACP(m, n+1,

e), will be measured with different sets of parameters in the next subsection. Moreover, similar to (2),

the factor n of this equation would be 2 in an ideal case. In our system, the value of BXML(m, e) and

BACP(m, n+1, e) can be derived by analyzing the lengths of the XML tags and structure used in the

figure 5. Based on our XML design, the BACP(m, n+1, e) is [133 + 45 * n + e * (63 + 37 * m)] and the

BXML(m, e) is [94 + e * (63 + 37 * m)].

3) Discussion

With regard to the retrieval time for web mashups, the main difference between a general proxy

and our design is the extra processing time required by our eCAP (i.e., P’Q and P’R) and the extra time

needed to download BJS(m, e). They represent the cost of secure cross-domain communication. We

show the results of the overhead in our system in the next subsection.

ACP generator is another overhead. Although the generator can be run offline and in parallel, we

still measure the amount of time required to generate ACP files. If the time is short enough (compared

to the time spent on network transmission), due to the parallelism, we view the overhead as negligible.

If the browser supports sending simultaneous requests, the n factor in (2) and (4) can be set to 2.

Unfortunately, in our experiments, the three browsers do not send requests in parallel. However, this

issue depends on the browser’s design and implementation, which is not the focus of our paper.

5.3 Performance Measurements

In the subsection, we present certain measurable evaluation results. For Internet Explorer, we use

HTTP Watch Professional to measure the page load time in IE. It is an extension for Internet Explorer

that gives page load timings and analysis of requests. For Firefox, Firebug 1.5.4 is used to measure the

page load time. Firebug is a free extension for Firefox that gives page load timings and a number of

development capabilities. As for Google Chrome, it has a built-in tool for performance measurement.

1) The Generation Time of ACP and JavaScript

In the ACP Generator, the major overhead results from generating ACP files and its JavaScript

snippets, i.e., PACP(m, n+1, e) + PXML(m, e). We expect that the generation time will increase with the

310 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

number of domains (m), the number of mashlets (n), and the number of accessible elements (e). Figure

11 shows the generation time for different mashup settings in our experiments. From the results, we

conclude that the time needed to generate ACP files in our system has a linear correlation with the

numbers of m, n, and e.

Let us take the parameter setting used in our mashup environment (m, n+1, e) = (16, 2+1, 32) as an

example. The ACP generator has to check 16*3*32 elements and generates the corresponding access

control code for the mashup. In our system, the generation time for all ACPs and JavaScript snippets is

109.97 ms. BACP(m, n+1, e) is 40,127 bytes and BXML(m, e) is 39,998 bytes. If RI is 100 Mpbs, the time

required to download an ACP XML file from one web server to the proxy is about 3.2 ms plus RTT. In

today’s network environment, the RTT might be a more significant concern. Hence, we suggest using

the caching mechanism in the proxy to reduce this overhead

Figure 11 The ACP file generation time of different mashup settings.

2) The Time Required Manipulating the Returned HTML

In figure 9, we insert a script link in the HTML responses so that the browser knows where to

download the cross-domain communication and ACP enforcement code. This task includes searching

for an appropriate insertion point in the HTML document (usually in <HEAD> tag) and saving the

record in the memory for later reference. On average, this task only takes 0.51 ms in our prototype

system, which is reasonable.

3) Mashup Loading Time in Different Browsers

We measure the entire loading time of our cloned HousingMaps mashup at the browser. The

parameter setting of our HousingMaps is (m, n+1, e) = (16, 2+1, 32). To ensure we get the correct

measurement, we clean the browser and proxy caches every time we make a mashup request. Although

the result is highly dependent on the parameter selected, the implementation of the browsers and the

network delay, it gives us a high-level overview of system performance. We also measure the loading

time of a mashup without the Squid proxy, as well as the loading time with the Squid but eCAP is

disabled.

Figure 12 shows the average mashup loading times under the compared browsers. In Chrome 6,

Firefox 3 and IE 8, the average overhead of our design (compared with that of the non-proxy

S.-W. Hsiao, Y. S. Sun and M. C. Chen 311

architecture) is about 743, 1049, and 1225 milliseconds, respectively. However, we notice that the

overhead is caused primarily by the Squid proxy, not our eCAP adapter.

Figure 12 The loading time of different browsers.

4) The Time Required for Cross-Domain Communication in a Browser

Although the time required for cross-domain communication in the browser depends on the

performance of the JavaScript engines, we still show the results of calling our library under the

compared browsers (see figure 13). The average time needed to perform one fine-grained cross-

domain communication in IE, Firefox and Chrome is 5.33, 0.22 and 0.08 milliseconds. The time

required is nearly linear to the number of calls.

Figure 13 The execution time of different browsers.

312 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

6 Related Work

Fragment identifiers, the string after the # in a URI, can be used for cross-domain and cross-frame

communication. Because the location property of an <IFRAME> can be modified by its parent

window and itself, it can be used as a channel between the original content and the mashlet. However,

fragment identifiers were not designed for use in this manner at the first place. As noted in [4], such ad

hoc schemes require careful synchronization between the communicating parties, and it can be easily

disrupted if the user presses the browser’s back button.

In Subspace [4], the authors use domain promotion techniques to allow each provider to share a

single JavaScript object with the integrator for communication. Under this scheme, a multi-level

hierarchy of frames coordinates the document.domain property to communicate directly in

JavaScript. Like most frame-based mashups, a policy for descendant frame navigation is required to

prevent gadget hijacking. Using Sub-space correctly requires a significant amount of work on the part

of the web developer, especially for complex mashups containing distrusted code from many different

sources.

SMash [6] uses the concepts of publish-subscribe systems and creates an event hub abstraction

that allows the mashup integrator to securely coordinate and manage content and information shared

by multiple domains. They assume that the mashup integrator is trustworthy. The event hub

implements the access policies that govern communications among domains. Barth [7] discovered that

SMash is vulnerable to attacks that impersonate messages exchanged between components. However,

Subspace and SMash are considered as ad hoc schemes rather than long-term solutions.

The MashupOS scheme [3] includes new primitives for isolating web content and ensuring secure

communication. It proposes its own abstractions for missing trust levels in both access-controlled

content and for unauthorized content. It adds new structures, e.g., <SANDBOX> and

<OPENSANDBOX>, to HTML with variations on the same origin policies.

Crites et al. [8] proposed OMash, which adopts the trust relationships defined in MashupOS and

only uses a single abstraction to express them. The authors argue that MashupOS still relies on the

SOP for enforcement, so it suffers all of the SOP’s vulnerabilities and pitfalls, including cross-site

request forgery (CSRF), DNS rebinding and dynamic pharming, whereas OMash does not.

The <MODULE> tag proposed in [9] is similar to an <IFRAME> tag, but the module runs in an

unprivileged security context without a principal, and the browser prevents the integrator from

overlaying content on top of the module. A module groups DOM elements and scripts into an isolated

environment; and socket-like communications are allowed between the inner module and the outer

module. Unlike postMessage, the communication primitive used with the module tag is

intentionally unauthenticated, so it does not identify the message sender.

Caja [10], Google’s open source project, allows web applications of different trust domains to

communicate directly with JavaScript function calls and reference passing. It translates scripts to an

enforced JavaScript subset and only grants the modified scripts the privileges they require. It is

possible to isolate scripts from each other and from the global execution environment, i.e., the browser

window, to the degree needed. However, providers must write their components in Caja.

S.-W. Hsiao, Y. S. Sun and M. C. Chen 313

Facebook Markup Language (FBML) [11] is currently the most successful customized HTML and

is used in Facebook Platform. FBML is a subset of the HTML with some elements removed and newly

added tags. The FBML serves many roles in Facebook. For example, it is used in secure conditions on

the user profiles, in small snippets on the news feed, and in full-page batches on canvas pages. The

goal is to support a versatile tag set and thereby help developers target the different settings.

The BrowserShield framework [12] provides controlled cross-domain client-side communication

by preprocessing the mashlet’s JavaScript code to ensure that it can only perform actions specified in a

set of guidelines. It transforms a code at runtime on the client side or as a one-time transformation on

the integrator. Furthermore, it can prevent some denial-of-service attacks, e.g., navigating the parent

frame to a new location or the appearance of an endless sequence of alert dialogs.

AdJail [13] dynamically creates a shadow page and passes the non-sensitive content to the shadow

page to perform ads recommendation. It focuses on the confidentiality of the content for advertisement

environment, rather than a general cross-domain communication.

OMOS [15] takes the advantage of creating temporary hidden <IFRAME> and fragment identifier

messaging. Al-though it supports secure communication in browser environments, as noted in [4], we

also believe such method is an ad hoc scheme.

We list certain features of different cross-domain communication approaches in Table 1. We

notice that each approach has its own advantages that may not be replaced by other ones. It highly

depends on the mashup architecture and the application environment used. Since there is a need to

inspect the elements, insert code, and change the HTML, we anticipate that the selecting a trustworthy

party to help the cross-domain communication is quite important. For our proxy design, a neutral third

party (or a benign mashup service provider) can always fulfill this requirement, just like an

Authentication Center used in encryption process.

 Server-Side Approach Client-Side Approach Proxy Approach

Code Insertion Yes Yes Yes

HTML Modification Manually by the Mashup

programmer

Manually by the Mashlet

programmer

Automatically by the

Proxy

Browser Modification No. postMessage used. New tag or plug-in No, postMessage used.

Policy Enforcement SOP Plug-in SOP + ACP

Main Overhead Web server Browser Proxy

Browser Download Plug-in (1 time)

Policy Modification Modify server policy Modify HTML Modify XML

Trust Server Plug-in Proxy

Table 1 The comparison of different cross-domain communication approaches

7 Discussion and Future Work

7.1 Discussion of Related Work

According to [4], some browsers are now trying to restrict the use of ad hoc tricks to perform cross-

domain communication. However, the solution may require adding new elements to the HTML

314 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

standard, browser changes (i.e., installation of a browser plug-ins or browser updates), and all web site

developers involved to rewrite their codes. First, changing browsers requires users to update browsers

or install additional plug-ins. For users who do not wish to perform software updates, their securities

have been exposed to potential threats. Although browser plug-ins can provide many of the cross-

domain network communication capabilities that are needed by mashups, some users choose not to

install them for security, privacy, or compatibility reasons [4].

Moreover, in [14], the authors point out some unsafe browser features that should be removed.

Hence, ad hoc solutions might not be still workable in the future. We anticipate that solutions built on

the top of standard postMessage method would be more appropriate. However, some future works

still needs to be done, such as design of a trust model in Ajax environment and ACP caching

mechanisms.

Other than using current standards, some working groups try to embed the cross-origin resource

sharing mechanism into new HTML standard. Cross-Origin Resource Sharing (CORS) is such a

specification that enables an open access across domain-boundaries. W3C makes a draft [16] that

defines a mechanism to enable client-side cross-origin requests. It allows a server to reply a response

that includes Access-Control-Allow-Origin herder, with the origin of where the request

originated from as the value, to access certain resource’s content. This specification extends this model

in several ways to retrieve resources. The Access-Control-Allow-Origin header indicates

whether a resource can be shared based by returning the value of the Origin request header in the

response. It also specified how long the results of a request can be cached using the Access-

Control-Max-Age header. The Access-Control-Allow-Methods header indicates which

methods can be used during the request.

It takes time for the web server, browser vendors, as well as, the mashlet developers to support

such new standard; after that, a common web user can enjoy the benefit of it. We anticipate that well-

designed standards can improve the security of cross-domain communication in the near future.

However, our proxy-style approach is still a valuable reference model for the mashp platform provider

and standard developers.

7.2 Potential Risk of Introducing a Proxy

The proposed proxy is used to generate code snippets and insert these returned HTML documents to

enforce the access control policies. We adopt the proxy-approach to avoid adding computation loading

on the client (i.e., browser). However, the same functionality can be provided by a browser plug-in.

They are essentially the same in a way that they both require the client to trust them to perform the

access control without malicious intention. Once they are configured, they are given the right to

control the privileges of every mashlets.

Their difference lies in the number of network requests and the network routing. However, proxy-

based solution is suitable for enterprise network and it is easy to maintain the code without bothering

the users. We can also perform some authorization procedures before the proxy configuration to assure

the identity of the proxy, in case a user connects to a distrusted proxy.

S.-W. Hsiao, Y. S. Sun and M. C. Chen 315

7.3 Discussion of Proxy-Based Design

Our proposed proxy-based design could be used in an enterprise mashup model for business benefits.

We anticipate that the proxy-based design can help the mashup platform providers to provide a better

solution to the mashup developers and users. The access control mechanism can be a part of social

network platform as a default element sharing mechanism in the mashup. Therefore, all the developers

can benefit from the proxy design and do not need to spend time for sharing mechanism. A for-profit

mashup platform provider can even integrate our mechanism in their customized web server to act as

our proxy.

The proxy currently that we use is a general HTTP proxy; however, we believe it can be integrated

in a browser as a plug-in to handle the cross-domain communication. However, it makes a general user

to download and install it before using the mashup website, which is not that convenient. The most

important of the proxy design concept is separating the access control and enforcement code from the

original web content. We believe this concept is important to guarantee the security.

In addition, for a thin web client, such as mobile devices or battery-bounded devices, the proxy-

based design can save the computation time and data transmission time of performing access control

mechanism. The thin client does not need to compute and download the access control files directly

from the servers; rather the proxy does so for the thin clients. They are all the advantages of using

proxy-based design.

8 Conclusions

In this paper, we propose a proxy-based design for a mashup environment. Our scheme provides a

guaranteed security framework that allows mashlets to perform cross-domain communication. The

authenticity, integrity, confidentiality and flexibility requirements are addressed by the design. We

build up a client-side cross-domain communication library on the top of the HTML 5 postMessage

method with a proxy-style fashion. We implement a prototype system and test the overhead of the

proxy. The results show the overhead is linear to the number of shared components, and the incurred

overhead is reasonable in our experiments.

References

1. HousingMaps. http://www.housingmaps.com/

2. Ruderman, J. The Same Origin Policy.

http://www.mozilla.org/projects/security/components/same-origin.html, 2001, (accessed Aug 10,

2008).

3. Howell, J., Jackson, C., Wang, H. J. and Fan, X., MashupOS: Operating System Abstractions for

Client Mashups. in Proceedings of 11th Workshop on Hot Topics in Operating Systems, (San

Diego, CA, 2007).

4. Jackson, C. and Wang, H. J., Subspace: Secure Cross-Domain Communication for Web Mashups.

in Proceedings of the 16th International World Wide Web Conference,(Banff, Alberta, Canada,

2007).

5. eCap. http:// wiki.squid-cache.org/Features/eCAP

6. Keukelaere, F. D., Bhola, S., Steiner, M., Chari, S. and Yoshihama, S., SMash: Secure Cross-

Domain Mashups on Unmodified Browsers. Tech. Rep., IBM Research, Tokyo Research

Laboratory, 2007.

316 A Secure Proxy-Based Cross-Domain Communication for Web Mashups

7. Barth, A., Jackson, C., Mitchell, J. C., Securing Frame Communication in Browsers.

Communications of the ACM, 52(6). 83-91. 2009.

8. Crites, S., Hsu, F. and Chen, H., OMash: Enabling Secure Web Mashups via Object Abstractions.

in Proceedings of 15th ACM Conference on Computer and Communications Security, (Alexandria,

VA, 2008).

9. Crockford, D. The Module Tag: A Proposed Solution to the Mashup Security Problem.

http://www.json.org/module.html/

10. Miller, M. S., Samuel, M., Laurie, B., Awad, I. and Stay, M., Caja: Safe Active Content in

Sanitized JavaScript. Google research project, 2008.

11. Facebook Markup Language (FBML). http://developers.facebook.com /docs/reference/fbml/

12. Reis, C., Dunagan, J., Wang, H. J., Dubrovsky O. and Esmeir, S., BrowserShield: Vulnerability-

Driven Filtering of Dynamic HTML. in Proceedings of the 7th Symposium on Operating Systems

Design and Implementation, (Seattle, WA, 2006).

13. Louw, M. T., Ganesh, K. T. and Venkatakrishnan, V. N., AdJail: Practical Enforcement of

Confidentiality and Integrity Policies on Web Advertisements. in Proceedings of the 19th

USENIX Security Symposium, (Washington, DC, 2010).

14. Singh, K., Moshchuk, A., Wang, H. J. and Lee, W., On the Incoherencies in Web Browser Access

Control Policies. in Proceedings of the 31st IEEE Symposium on Security and Privacy, (Oakland,

CA, 2010).

15. Zarandioon, S., Yao, D. and Ganapathy, V., OMOS: A Framework for Secure Communication in

Mashup Applications. in Proceedings of the Annual Computer Security Applications Conference,

(Anaheim CA, 2008).

16. Cross-Origin Resource Sharing. W3C Working Draft. http://www.w3.org/TR/cors/

