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Abstract

Day by day the recent development of communication and the data on the
web is increasing tremendously. Moreover, the use of social media among
people to express their opinion has greatly increased. Therefore, analyzing
this textual data using sentimental analysis techniques can be very helpful in
capturing and categorizing people’s opinions. This work aims to propose an
algorithm which is combination of Capsule Network (CN) with Gravitational
Search Algorithm (GSA) to analyze people’s sentiments from twitter data. In
text data mining, CN works to an excessive extent for sentiment analysis
compared with other models. The performance of the proposed approach
is studied using existing benchmark datasets and COVID-19 twitter posts.
The results showed that the proposed approach could automatically classify
the sentiments with high performance. It works better compared to other
algorithms and results also encourage further research.
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1 Introduction

Recent technologies allow people to exchange their opinion through online
community. Opinions shared by users in online are an important clue to
understand the user’s behavior. Analyzing user’s opinion and extracting use-
ful information for sentimental analysis is significant in understanding current
trend/pulse of the common public. Twitter is most popular social media
helps to extract user’s information. It allows users to post their opinion and
emotions. Sentiments help to categorized people opinions based on tweets
posted in social media. This kind of study is necessary to convey people
positive or negative opinion on certain topic. Survey states that every minute
tweets posted in twitter are exceeding in lakhs (Ekenga and McElwain,
2018). Twitter also allows user to interact with other users by sharing some
hash tags. The information available in tweets post are unstructured format
and generally difficult to analyze. In this sense, a techniques is needed to
analyze tweets and extract tweets in a meaning full way which is not possible
by traditional techniques (Ali Hasan et al., 2018). The technique must be
scalable and helps to identify sentiment of users in a reliable way. The
machine learning techniques are doing better to classify sentiments. But still
it is not sufficient when it comes to tremendous amount of data. There are
certain machine learning techniques work proves better for text classification.
In this work, (Castro et al., 2017) proposed a hybrid machine learning based
sentiment classification for converting the urdu to English tweets and identify
their sentiment (Meng et al., 2020) classify public sentiment and collect
disaster related data in online communities. Analyzing the public opinion and
satisfying their needs (Burnap et al., 2013) detects tension such as tension,
aggressive and high tension hash tags tweets and classify their sentiments
using machine learning approach.

To overcome the limitations nature-inspired optimization are investigated
for better sentiment analysis. However, the swarm intelligence takes inspi-
ration from nature algorithm like Gravitational Search Algorithm (GSA)
(Prabha and Rathipriya, 2013) is used to search space in a minimal archi-
tecture. It works on the concept of force and mass (Rashedi and Nezamabadi-
pour, 2009) every words in the text attracts the other related words here
particle act as agents. Search processes of each word are optimized to find
the best capsule to classify the text. It also optimizes the values to find the
best solution for identifying sentiments. Methods used to categorize tweets
are discussed (Gohil and Vuik, 2018) in this methodology. Capsule Network
(CN) (Kim and Jang, 2020) improves the performance in text analysis. It is
an efficient method to understand text data and converting word to vector.
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The contribution in this paper can be précised as follows: (1) Design
architecture of CN-GSA used improve the classification accuracy of both
long and short twitter post about COVID-19, (2) It helps to classify tweets
as five classes such as strong positive, positive, strong negative, negative and
neutral, (3) Comparing the efficiency of the proposed model with machine
learning and other deep learning model, (4) The proposed model improves in
terms of precision, recall, F-measure and accuracy, (5) The model improves
the accuracy for different kind of sentiment classification datasets.

In this work, the proposed Capsule Network (CN) with GSA is used to
identify important key terms from sentence and optimize from large space
text to minimized this will consequently improve the classification perfor-
mance. This paper is organized as follow. The detail descriptions of proposed
model are discussed in Section 3. Comparative analysis of CN with other
models is represented in section 4. The results of experiments show that CN
outperforms well and good compared with other methods. Finally, Section 5
concludes the paper.

2 Related Work

Over the past decade, the researchers focused on sentimental analysis, espe-
cially using machine learning techniques such as (Silva et al., 2018) SVM
techniques for text retrieval. The main drawback of this approach is certain
patterns are manually given as input which will not fit while using differ-
ent dataset at same time. It is insufficient for huge dataset also (Tripathy,
2016) discusses the usage of machine leaning techniques for sentiments
classification. Although machine learning techniques succeed in performing
sentimental classification they are limited to the performance for varied
datasets. To overcome this drawback deep learning techniques is solution to
the problem.

Deep Learning is a kind of machine learning techniques has significant
importance to classify tweets. They automatically extract patterns and pro-
vide better performance for varied datasets (Conneau et al., 2016) developed
a very deep CNN showing the performance of Deep Learning model for text
data (Changyi et al., 2020) also developed a novel approach sparse binary
optimization to reduce the data from high dimensional to low dimensional
space reducing scarcity of space (Mehreen, 2019) classifying sentiments
using forest optimization algorithm to improves the classifier accuracy and
helps to extract meaningful words from large context of text. Machine learn-
ing analysis of sentiments are also beneficial to limited number of posts
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(Yujiao and Fleyeh, 2018). Optimizing sentiments (Jaspreet and Gurvinder,
2017) to identify relevant words and classify using classifiers (Mosa, 2019)
discusses the usage of Gravitational Search Algorithm (GSA) for mining
large amount of text to maximize the significant sentiments and minimizes the
redundancy of terms (Zhao et al., 2019) uses an ensemble method of capsule
networks is given as input to the polling layer to improve the better accuracy.
The combination of RNN and CNN (Lai, 2015) proposed a new model for
text classification. Here, word-embedding is used for both given word and
passed through max polling layer (Cheng et al., 2016) it expands the work of
LSTM in replace of memory in single cell with possible neural network. CN
is better to classifier (Jae young Kim, Sion Jang, 2020) for text and improves
the performance for varied datasets. Gender classification (Xian Zhong,
Jinhang Liu, Shuqin Chen, 2020) and emotional tags identification achieves
better result. Hybrid method of CN proposed a good algorithm for sentiment
classification (Yongping Du, Xiaozheng Zhao , 2019). Though, deep learning
model perform better the overall meaning of the text in the sentence must
not differ. If a word in a sentence is taken as misread information if literally
affects the sentiment of post. The sentiment mainly depends on the word that
gives meaning to the sentence. Therefore, to understand the meaning of the
words CN with GSA is developed. This proposed model performance best
for wide-ranging datasets. Since, the extraction of words is important role for
sentimental analysis.

The main objective of this paper is to improve the performance of sen-
timent classification by extracting the relevant words. The proposed model
overcomes different data pre-processing techniques and makes it suitable
for converting the words to vectors encoding. The motivation of CN is to
identify words without choosing the sentiment appropriately (Hu and Cui,
2017). These studies also suggest that CN act as a core network for sentiment
classification (Pang et al., 2002) discuss better achievement of using CN to
identify sentiments.

3 Proposed Model

3.1 Data Collection

Six different types of datasets are used to test the proposed model. The
first three benchmark dataset are collected form UCI repository and next
three COVID-19 dataset is collected form twitter. First three dataset con-
sist of imdb dataset, yelp dataset and amazon dataset collected from URL
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Table 1 Dataset description

Dataset Name Class Size
IMDB dataset 2 1000
Yelp dataset 2 1000
Amazon dataset 2 748
COVID_1 5 6200
COVID_2 5 10,969
COVID_3 5 5200

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
labeled with binary sentiments. The other dataset are user generated dataset
collected from Twitter streaming API (Trupthi and Pabboju, 2017) tweets are
extracted using the keyword about COVID-19 posted in English language.
The extracted unstructured data is converted into structured data. Further-
more, the data is stored in machine readable format in “.CSV” file. Table 1
shows the description about the datasets and classification classes.

3.2 Data Preprocessing

Data preprocessing was carried out to minimize the unnecessary keywords,
noise data and special characters, symbols etc., the purpose of preprocessing
is to handle data appropriately. Data stemming techniques was used to remove
affixes, hyphen and not important keywords. Lemmatization was considered
to analyze group of words into single meaning words. The sentimental classi-
fication for first there dataset is fixed label. For, COVID-19 datasets they are
classified based on the sentiments polarity. It is classified into strong positive,
positive, negative, strong negative and neutral. The sentiments belong to
strong positive label if text of polarity rate lies in between 0.5 to 1. Similarly,
sentiments are positive if their polarity rate is less than 0.5, sentiments are
strong negative if the polarity rate is greater than —0.5, sentiments are nega-
tive if the polarity rate occur in between —0.5 to —0.1 and finally sentiment
belong to neutral if polarity rate is zero.

3.3 Proposed Algorithm

The CN architecture of the proposed algorithm is represented in Figure 1.
The CN works on the concept of grouping the neurons actively represent
vector and finally results in capsule layer (Hugo et al., 2020). The probability
of detecting the correct feature is based on the vector representation and
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Input Layer

Convolution GSA Optimizer Primary Capsule Capsule
Layer
Figure 1 CN architecture.

feature representation. CN model also contains convolution layer used to
extract important features from the input vector. Among all the text vectors
it works on the function of gravity every particle attracts the other particle
with high attraction value to make a better capsule. Representing words
in sequential and minimizes the parameter instantiations. GSA optimizer
is initialized to CN model for better identification of words. It is used to
minimize the distance between the words and helps to choose the best words.
It incorporated to capture words and makes the classification easier. The
maximization fitness function is used for the purpose of choosing top words.
However, final capsule consist of five classes.

Figure 2 explains in detail about manipulation of sample sentence using
proposed model. The sentence is “Help prevent spread of COVID 19 by
maintain social distancing” as passed input to Input layer denoted by wiy,
ws....w, for each word. The sentence is divided into token or words
containing of n dimensional value. The tokens of each word are converted to
vector is the process of convolutional layer by extracting important features.
The convolution layers are carried out to GSA optimizer to find the optimal
features to form a capsule. This context information is sufficient to make
prediction. The value in the second capsule is high which helps to classify
sentiment as strong positive.

The convolution layer is represented as follow let w [J R to be the matrix
of input layer with t tokens. In equation 1, W denotes weight belongs to R in
convolution layer to feature generation.

Fy=f(W xw;,wy...wp) (1)
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Help prevent spread of COVID 19 by maintain social distancing

l

Input Layer
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Figure 2 CN-GSA architecture.

The features are extracted based on the weight of word passed to each word
in the sentence. Weights given to word dependence on sentiment polarity of
word present in the sentence.

Algorithm:

Step 1: Procedure: Input Text (77,75 ... T),) to be tokens (t1,t2 . .. tm)

Step 2: Initialize the vectors to each word converting text to vectors
(Vi Vi)

Step 3: Apply convolution layer to identify the importance of features with
transformation of capsule:

u; = W;V; 2
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Step 4: Tokens are considered as agents in GSA each agents are attracted by
other agents by force and mass.

Agents = u; ... u;j 3)

Step 5: The total force that act as agent’s ¢; can be weighted randomly.

TF = Z rand(TF) “4)
=1

Step 6: Find the best and worst value

fitnessvalue(i) = Maz(TF)) (5)
1tness N — worst(t
Mass — f Ua.,lue(z) : ( ) (6)
best(i) — worst(i)
M\j = W;; * Mass @)
Step 7: Applying squashing mass function to achieve the capsule

— 2 -

bl s
JT 2 (®)

1+ HM”H HMzJ”

Step 8: Apply the training model and compile the metrics accuracy

The Equation (2) represents the word to vector transformation by extract-
ing important features. The agents in Equation (3) represent the number of
tokens in a sentence. Equation (4) describes the process of fitness function
calculated with total force value in Equations (6) and (7). Mass function
was calculated based on the weighted text value. Squash function is cal-
culated and denoted in Equation (7). Finally the obtained value is divided
into train and test function. The performance of the algorithm depends on
the accuracy level. Finally this paper suggests text data processing through
the convolution layers and GSA layer is successful. As GSA layer has fast
converging characteristics it takes less time for powerful computation. This
shows the proposed algorithm is able to run in any kind of text dataset without
any domain problem. Therefore, this model achieves good results than the
existing techniques.
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4 Experimental Analysis

In this section, discuss the results of experiments and performance of the
proposed model. In Table 2, the Support Vector Classifier (SVC) achieved
the best F1 scores. For recall measure Random Forest (RF) and Logistic
Regression (LR) achieved best results for negative sentiments. The macro
average of Logistic Regression (LR) and Support Vector Classifier (SVC)
remains the same at 82%. For weighted average (WA) the SVC achieved best
result. The K-Neighbor Classifier (KN) obtains low macro average (MA) and
WA compared to other classifier.

As observed from Table 3, for Yelp Dataset sentiment classification
is represented. SVC classifier achieved best result in precision, recall and
F1 score. RF classifier in MA is minimum compared to other approaches.
Performance of SVC is better in both MA and WA values. Table 4 shows
SVC performs better for Amazon dataset as it achieved 76% of precision and
77% accuracy for WA. Similarly, 75 % value for F1 in MA and WA.

Table 2 IMDB dataset sentiment classification using machine learning techniques
Classifier Class Precision Recall F1

RF 0 0.72 0.91 0.80
1 0.89 0.67 0.77

MA 0.80 0.79  0.78

WA 0.81 0.79  0.78

LR 0 0.74 092 082
1 0.90 0.70  0.79

MA 0.82 0.81 0.80

WA 0.82 0.81  0.80

KN 0 0.83 0.74  0.78
1 0.78 0.86  0.82

MA 0.80 0.80  0.80

WA 0.80 0.80  0.80

SvC 0 0.77 0.88  0.82
1 0.87 0.76  0.81

MA 0.82 0.82  0.81

WA 0.82 0.82 0.81
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Table 3  Yelp dataset sentiment classification using machine learning techniques

Classifier Class Precision Recall F1-Score
RF 0 0.64 0.80 0.71

1 0.76 0.57 0.65
MA 0.70 0.69 0.68
WA 0.70 0.69 0.68

LR 0 0.78 0.86 0.81
1 0.85 0.77 0.81

MA 0.81 0.81 0.81

WA 0.81 0.81 0.81

KN 0 0.80 0.63 0.71
1 0.71 0.85 0.78

MA 0.76 0.74 0.74

WA 0.75 0.74 0.74

SvC 0 0.79 0.87 0.83
1 0.86 0.79 0.82

MA 0.83 0.83 0.82

WA 0.83 0.82 0.82

Table 5 shows the twitter dataset of COVID_1 consist of 5 classes. The
results indicate SVC classifier performs better based on the WA and MA
values. The precision values of RF and SVC are similar. Results also suggest
that KN classifier obtain minimum WA value of 88% precision and F1-Score.

Table 6 illustrates COVID_2 dataset in which RF achieved high results in
both MA. SVC produces better results in WA value. LR techniques achieve
medium results which is not so high and low results. KN classifier pro-
duces minimum classification results. Certain sentiments values in precision
achieve 1.00 results represents 100 percentage correctly classified results.

In Table 7, SVC methods achieved high MA using precision measure.
For recall RF technique WA achieves best results. SVC performs better in
all ways compared to other methods. KNN classifier performs minimum
results. The precision, recall and f1-score increases and decreases based on
the machine learning methods.

Table 8, discusses the comparison of proposed model with existing model.
CN with GSA shows comparable better results than other methods for all
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Table 4 Amazon dataset sentiment classification using machine learning techniques
Classifier Class Precision Recall FI1-Score

RF 0 0.75 0.56 0.64
1 0.57 0.76 0.65

MA 0.66 0.66 0.65

WA 0.67 0.65 0.65

LR 0 0.86 0.51 0.64

1 0.59 0.89 0.71
MA 0.72 0.70 0.68
WA 0.74 0.68 0.67

KN 0 0.69 0.80 0.74
1 0.68 0.55 0.61

MA 0.68 0.67 0.67

WA 0.69 0.69 0.68

SvC 0 0.86 0.65 0.74
1 0.66 0.86 0.75

MA 0.76 0.76 0.75

WA 0.77 0.75 0.75

datasets. It is clear from the results that the proposed model is suitable to
classify and understand text data easily. It further shows the algorithm is best
suitable for benchmark dataset and extracted twitter dataset. Table 9 shows
the comparison with other deep learning model, proposed model exhibit
superior performance.

Figures 3-5 illustrates the twitter user’s sentiments about COVID-19
disease. The experimental result achieves a high range value at neutral
sentiments. Sentiments results suggest that the people are not aware of the
disease during the period of March 2020. COVID-19 disease awareness must
be educated to people to prevent the spread of the virus. The next high level
of sentiments is positive. In Figure 5, shows some positive feedback about
COVID. Since, the second dataset consist of 10,969 tweets our decision about
people sentiment is neutral about the disease. Tweets classification about
COVID is resulted in neutral sentiment.
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Table 5 COVID_1 dataset sentiment classification using machine learning techniques
Classifier Class Precision Recall FI1-Score

RF 0 0.84 0.99 0.91
1 0.93 0.80 0.86

2 0.98 0.60 0.75

3 1.00 0.64 0.78

4 1.00 0.25 0.40

MA 0.95 0.65 0.74

WA 0.89 0.25 0.88

LR 0 0.86 0.81 0.90
1 0.84 0.89 0.91

2 0.81 0.80 0.92

3 0.82 0.65 0.96

4 0.00 0.75 0.50

MA 0.87 0.88 0.75

WA 0.88 0.87 0.88

KN 0 0.80 0.90 0.85
1 0.80 0.73 0.77

2 0.82 0.46 0.59

3 0.78 0.64 0.70

4 0.00 0.00 0.00

MA 0.64 0.55 0.58
WA 0.80 0.80 0.79

SvC 0 0.86 0.98 0.91
1 0.93 0.83 0.88

2 1.00 0.65 0.79

3 1.00 0.64 0.78

4 1.00 0.25 0.40

MA 0.95 0.76 0.75

WA 0.90 0.75 0.89
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Table 6 COVID_2 dataset sentiment classification using machine learning techniques
Classifier Class Precision Recall FI1-Score

RF 0 0.78 0.99 0.87
1 0.88 0.80 0.84

2 1.00 0.52 0.68

3 1.00 0.45 0.62

4 0.95 0.59 0.73

MA 0.92 0.67 0.75

WA 0.85 0.83 0.83

LR 0 0.79 0.96 0.86
1 0.83 0.83 0.83

2 0.97 0.41 0.57

3 1.00 0.30 0.47

4 0.95 0.56 0.70

MA 0.91 0.61 0.69

WA 0.84 0.82 0.81

KNN 0 0.57 1.00 0.73
1 0.99 0.35 0.52

2 0.97 0.41 0.57

3 1.00 0.33 0.50

4 1.00 0.41 0.58

MA 0.91 0.50 0.58

WA 0.80 0.66 0.63

SVC 0 0.86 0.96 0.91
1 0.89 0.84 0.86

2 0.98 0.64 0.78

3 0.00 0.15 0.27

4 0.00 0.23 0.38

MA 0.95 0.57 0.64

WA 0.88 0.88 0.87
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Table 7 COVID_3 dataset sentiment classification using machine learning techniques
Classifier Class Precision Recall FI1-Score

RF 0 0.85 0.99 0.91
1 0.93 0.81 0.87
2 1.00 0.60 0.75
3 1.00 0.64 0.78
4 1.00 0.25 0.40

MA 0.96 0.66 0.74
WA 0.89 0.88. 0.88

LR 0 0.80 0.98 0.88
1 0.91 0.73 0.81
2 1.00 0.44 0.61
3 1.00 0.55 0.71
4 0.00 0.00 0.00

MA 0.74 0.54 0.60

WA 0.85 0.84 0.83

KN 0 0.80 0.90 0.85
1 0.80 0.73 0.77

2 0.82 0.46 0.59

3 0.78 0.64 0.70

4 0.00 0.00 0.00

MA 0.63 0.46 0.58

WA 0.73 0.74 0.79

SvC 0 0.84 0.97 0.90
1 0.88 0.85 0.87

2 0.96 0.56 0.70

3 1.00 0.42 0.60

4 0.89 0.69 0.78

MA 0.91 0.70 0.77

WA 0.87 0.87 0.86
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Table 8 Comparing proposed work with existing method

Dataset Techniques Accuracy
Imdb RF 0.78
LR 0.80
KN 0.80
SVC 0.81

Proposed approach 0.90

Yelp RF 0.68
LR 0.81

KN 0.74

SvC 0.82

Proposed approach 0.91

Amazon RF 0.65
LR 0.68

KN 0.68

SvC 0.75

Proposed approach 0.81

COVID_1 RF 0.88
LR 0.83
KN 0.79
SVC 0.88

Proposed approach 0.91

COVID2 RF 0.83
LR 0.81

KN 0.65

SvVC 0.86

Proposed approach 0.91

COVID_3 RF 0.88
LR 0.83

KN 0.79

SVC 0.88

Proposed approach 0.91
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Table 9 Comparing with Deep Learning methods

Techniques COVID_.1 COVID2 COVID.3
CNN 0.74 0.76 0.75
LSTM 0.79 0.74 0.76
CNN_Static 0.80 0.80 0.79
Bi_LSTM 0.88 0.87 0.85
Emdd+Conv 0.89 0.86 0.86
Proposed Approach 0.91 0.90 0.91
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Figure 5 COVID_3 dataset sentiments classification.
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5 Conclusion

In this paper, an innovative approach CN with GSA is designed for sentiments
classification. Experimental study was conducted to test the performance of
the proposed model using six different dataset. From the result it has been
observed that the proposed model works better when compared with the other
methods. This approach also has the ability to deal with small to large text
data. Furthermore, due to the nature of GSA used in CN in handling text
data the proposed model increases the classification accuracy for all kind of
sentiment dataset. It achieves the accuracy above 90% in all dataset. From
the experimental results, CN with GSA achieves better results even if dataset
size increases.

For future works, the proposed method is expanded to search multiple
objectives while searching, in order to make the algorithm fit to any kind
of search process and choose the best algorithm based on domain specific.
More layers can be included in convolution layer to increase the classification
accuracy.
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