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Older studies have proved that when searching information on the Web, users tend to
write short queries, unconsciously trying to minimize the cognitive load. However, as
these short queries are very ambiguous, search engines tend to find the most popular
meaning – someone who does not know anything about cascading stylesheets might
search for a music band called css and be very surprised about the results. In this paper
we propose a method which can infer additional keywords for a search query by leveraging
a social network context and a method to build this network from the stream of user’s
activity on the Web. The approach was evaluated on real users using a personalized
proxy server platform. The query expansion method was integrated into Google search
engine and where possible, the original query was expanded and additional search results
were retrieved and displayed. 70% of the expanded results were clicked and we observed
a significant increase of time that the users spent on the expanded results when compared
to the time spent on standard results.
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1 Introduction
In our daily contact with the Web, we are faced with a vast amount of documents and their
number increases every moment. To facilitate a systematic navigation in this chaotically
linked large information space, search engines were created. They allow us to search for
documents by entering a set of keywords – if these keywords are found in the text of the
document, it is retrieved and presented to the user.
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However, the fulltext-only search is often incapable of handling user queries satisfactorily
and has been gradually shifting towards becoming more personalized. Many keywords are
ambiguous, their meaning varies from context to context and from person to person. Some
words are ambiguous by nature, e.g., a coach might be a bus or a person; other words became
ambiguous only after being adopted for a particular purpose. Many English nouns, apart
from their natural meaning, often name software, music band or any other entity. There are
also words whose meaning depends on the person who is using them; clearly, architecture
means different things to a processor designer than to an architect.

Ambiguity naturally disappears if more keywords are added to a query – together, they
form a context, which defines the meaning of particular words, which would be ambiguous
otherwise. For instance, if we extend our “coach” query with a word “repair”, it is immediately
clear that we mean a bus not a person meaning of the “coach”. Based on the previous
observations, we might conclude that using short queries is not a good idea. Unfortunately,
this is how we search. We unconsciously try to minimize the cognitive load [1] and use short
queries, with average length of about two keywords [2].

In the common demonstration of the problem, a user is searching using a query “jaguar”.
According to Wikipediaa, this word has 31 documented meanings, ranging from the well-known
car or operating system, to the more obscure meanings such as a music band, game console
or German battle tank. Traditional search engines do not have the knowledge of the meaning
the user is looking for; they treat all documents the same, looking for the textual matches
and ordering the resulting documents by a ranking function. As a consequence, the search
results contain a mixed set of documents, covering all possible meanings of the word and the
disambiguation is left to the user herself. Search engines work like databases: they crawl and
index documents and respond to queries with a list of results. The order of documents depends
on the adopted relevance function; the most widely used search engine today – Google – uses
a PageRank relevance function: the more links to a document, the more likely it is to appear
at the top positions. This ordering is however not always compatible with user’s information
needs: a programmer searching for “cucumber” probably does not want to make a salad.

In [3], authors suggest two ways to personalize search results. The first way is to modify
the original query for each user and add, remove or replace keywords to move the search closer
to her needs. The other way is to keep the query unchanged, but modify the ranking scheme
and thus incorporate user’s interests.

We tackle the problem by implicitly inferring the context and modifying the user’s query to
include it. The original query is enriched with additional keywords which capture the user’s
focus. In case of the said programmer, the resulting query might be “cucumber testing”
which provides much more valuable and relevant documents than the original query. We
select additional keywords following the social network, or rather the virtual community the
user belongs to in this network. The search thus becomes personalized – the same query for
another user from another community might be “cucumber salad”.

Our key results include:

1. We build a metadata based model of user’s interests. The metadata (keywords, terms,
tags etc.) are automatically extracted from each visited page. We use a combination of

aWikipedia article on the possible meanings of the word jaguar, http://en.wikipedia.org/wiki/Jaguar_
(disambiguation)
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automatically captured metadata together with human created data.

2. We enhance the interest models with data from similar users extracted from a social
network where users are linked based on the similarities of their interests.

3. We designed a specialized proxy server [4] which allows us to monitor user’s activity on
the whole “wild” Web. Using the proxy, we can hook into every page and track not only
its access, but also the implicit feedback indicators [5, 6] such as scrolling, copying and
the real time a user spent on the page and personalize the page content.

We describe results of a month-long, real-users evaluation. Using the proxy server, we in-
tegrated our method of query expansion into Google search engine and injected the results
based on our expanded queries next to the original results. We noticed not only that 70%
of the expanded results were clicked but also observed a significant increase in the implicit
relevance metrics concerning the expanded results. We evaluated the results page usefulness
by looking at the time the user spent on it. A clicked result was declared as useful, if its dwell
time was larger than 4 seconds. In our experiments, only 27% of clicked standard results were
useful, while the clicked expanded results were useful in 54% of cases.

2 Related Work
Apart ambiguity, the biggest problem with search is that the expectations of different users
entering the same query are probably very different [7]. If the search engine wants to provide
a user with the relevant results, it needs to understand user’s informational intent – a set of
user-specific expectations and goals [8]. User’s intent may be identified via information about
who the user is, what are her needs, her interests and goals, both long-term and intermediate.

The value of personalized search has been recognized as early as in 2000; Lawrence [9]
emphasized the role of personalization and predicted that personalized search will gradually
become more and more important. In [3], the authors have identified two major strategies of
search personalization.

• Query refinement, which is also commonly referred to as query expansion. The basic
idea is that the original query is altered to better express user’s intent. The individual
terms in a query may be altered, new terms may be added or existing terms may be
removed. From one point of view, this is a strategy that ensures that when two users
enter the same query, it is changed so that each user runs a different query.

• Result processing is a less transparent strategy. If two users issue the same query, the
same query is run, but the personalization occurs at the ranking stage. The user’s needs
may be taken into account and some documents with content that is more closely match-
ing user’s intent may be ranked higher. Similarly, the documents that are predicted to
contain no useful information may be ranked lower.

From the two approaches, search results processing seems to be more widely used. The key
work was presented in [10], where the authors describe a version of PageRank that is biased
towards user’s interests – a topic sensitive PageRank. Instead of a single rank value, 16 values
are calculated, each representing the rank of the page in context of one of the 16 top-level ODP
topics. Their work however does not deal with the problem of detecting the actual interests
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of the users. This gap was later filled e.g., by [11]. They propose a method for building an
interest-based user model based on the ODP taxonomy and the Topic-Driven Random Surfer
Model. The user model is a weighted vector representing user’s interests in 16 top-level ODP
categories.

Unlike document re-ranking, query refinement is more visible and users see the modified
query and are free to further refine it. The process itself does not have a consistent naming and
different works refer to it as query reformulation, query expansion or query modifications. In
its generic form, the query reformulation deals with query modification and may be employed
for different purposes. From the point of view of a personalized search system, the goal of
query expansion is different: it is to alter the query (remove, add or modify terms) in a way
that the final query describes more closely the specific goal that the user has in mind. Query
expansion is used in various areas concerning search, including:

• solving the index term synonymy problem by expanding each query term with a list of
its synonyms [12];

• correcting the misspelled queries [13];

• suggesting similar queries, queries which have the same informational intent, but use
different terms to describe it. The approaches range from statistics-based [14], which
do not deal with the underlying meaning of the query terms, to semantic [15], which
can distinguish between various meanings.

Query expansion is most often used for improving the precision of search; by adding new
terms to the query, the scope of the query is narrowed, which might cause decrease of recall,
but provides more relevant results. The main drawback of most query expansion techniques
that prevents these methods from being called personalized is the way how the new terms
are selected. The term selection methods usually do not consider user’s specific interests
and are often based on static information, like lexical affinities [16] (word co-occurrences)
or thesauri [17], resulting in the same terms being presented to different users. Only few
approaches try to personalize the expansion terms, like [18], where the expansion is based
on analyzing user’s desktop documents. Relevance feedback [19] is using query refinement to
improve search results, but it can be seen more like an approach to capture extremely short
user’s context. It requires the user to formulate a good-enough query first and select few
relevant documents and as such is not practical in situations when the user does not have
knowledge about the problem domain.

In our approach, we use query refinement to expand the original query with additional
keywords. User does not need to have deep knowledge of the problem domain, as the additional
keywords are selected automatically, by matching her preferences with preferences of other
users, whose interests are similar. This also means that the generated expansions are different
for different users.

Any approach to search personalization must first build a user model which captures user’s
interests which can later be used to personalize the search. The interests are often modeled
using tags [20] and other metadata extracted from visited pages. Sometimes, tags are even
used to infer other characteristics, e.g., [21] use tags to not only model user’s interests, but
also to infer the magnitude of the interest in the tagged document (the more tags user applied
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to a particular document, the more interested she is). The majority of research focused on
metadata-based user modeling is however based on the assumption that it is the user herself
who annotates documents with metadata and contributes to her own model. In our work we
capture the metadata automatically, similarly to [22].

This approach brings the challenge of how to capture enough of the user’s activity to build
a rich user model. Two major approaches are widely used to tackle this problem. First is
to use an ad-hoc, specialized browser (e.g., [23]), created just for the purpose of capturing
user’s behavior. A similar approach is to extend existing browsers by means of plugins (for
instance in [24]). Both approaches are not very suitable for a real-world usage. The specialized
browser is often limited in functionality and forces user to abandon her old habits; usage of
browser plugins is slightly less intrusive for the user, but there is still a need for installing
and updating the extension, not to mention the effort that needs to be put in maintaining the
extension for multiple browsers. A very rarely used approach is using a proxy server; there
were several attempts like COHSE [25], Sconeb, or IBM WBI3c, but none of these projects is
currently maintained.

Search personalization achieves best results when the created user model is rich and con-
tains large amounts of data [26]. Many times, some kind of social structures are used to enrich
the user model with data from similar users, sharing the same interests [27]. The groups of
similar users may be obtained in two ways – by using a real-world social network, or by
building an artificial network where users are connected not by their real-world relationships,
but by their other attributes, such as shared interests.

There are approaches that try to leverage explicit connections, but they are scarce, due
to the redundant work that they offload onto the users (redundant from the point of view of
the user). For instance [24] let the users build their own communities by letting them select
other users that they think are similar.

In [28], authors experiment with different types of social groups (work, social and task
based) and their effect on the search. They let each group to manually rank the results for
queries and studied the intergroup agreement. While previous research shows that there is a
lot of variation in what different people consider relevant, their results suggest that there is
a lot of variation even for people with shared goals. Their results also suggest that the most
coherent expectations can be found for task-based groups, i.e., it makes more sense to group
people according to their short-term goals, rather than according to their long-term relations.
Also, unsurprisingly, the members of any of the three groups can agree more often than any
random people.

A recent research has shown that there may be a correlation between natural social network
connections and interests. In [29], authors compare real world network (Facebook) connections
with artificially created connections based on the profile similarity. They selected a small part
of Facebook and crawled the site for connections and profile information. The connections in
the artificial network were created by comparing the profile keywords, but in order to increase
a chance for a successful match, the profile keywords were enhanced with WordNet data (i.e.,
homonyms, hypernyms, etc.). If the similarity between two keyword-based profiles exceeded a
threshold, the link was created. They discovered a surprising similarity between the artificial

bScone proxy, http://www.scone.de/
cIBM WBI3 proxy, ttp://www.almaden.ibm.com/cs/wbi/
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and natural network. Their results are further supported by a similar study on delicious and
flickr data [30].

The connection between social links and interests is further emphasised by research area
of social Web search, where searching is not looked upon as a solitary activity, but an activity
where engaging social element can lead to improved results. The search collaboration can be
explicit, e.g., in SearchTogether [31] system, where users collaboratively lookup information,
or the collaboration can be more subtle, e.g., in HeyStaks [32] system, which learns preferences
of groups of users and adapts search results appropriately.

Many of the existing methods focus only on re-ranking the standard results – they do
not solve the problem of actually getting the results into the list. This is usually solved with
query expansion, which is often based on static information which does not accurately capture
user’s interest. We believe that query refinement could achieve deeper level of personalization
by also analyzing the documents and behavior of similar users. We propose a method which
extends and combines social networks and query refinement methods. We link the users in
a social network not only by analyzing URLs of the visited pages, but also by analyzing the
content features of these pages. We later use these features to capture user’s current interest
when she is searching, and also to provide the basis for our query refinement methods.

3 Social Context Driven Query Expansion

Our approach to search personalization is based on query expansion. The additional keywords
for the query are coming from artificially built social network. The basic assumption here is
that we can infer user’s interests by analyzing texts of the articles she had read. We then
use these interests to link users together – the more similar interests do the users have, the
more strongly are they connected in the artificial social network [33]. When the user issues a
query, we infer additional keywords by analyzing query history of community members, or by
analyzing texts of the documents those members have read. Limiting the expansion process
only on the community data is the key property of our approach that actually makes the
keyword selection personalized. The communities are created by considering similar interests
that means that different users end in different communities and the expanded queries are
different.

The interests are modeled using various metadata (keywords, tags, terms etc.) coming
from the visited pages. These metadata are not provided explicitely, and need to be auto-
matically extracted from the texts. Although the web pages usually provide some form of
metadata [34], they are not appropriate for modeling purposes. To acquire the metadata, we
use a personalized proxy server platform and techniques that are more closely described in
Section 4. Using this platform, we are able to uniquely identify the user, to track and log
her activity on the Web and even to collect detailed browsing information – implicit feedback
indicators, such as the approximate time spent on page, number of mouse moves, scrolls, etc.

3.1 Interest-based User Model

The user model is based on user interests, automatically acquired from her activity on the
Web. It is defined as a hypergraph H :=< V, E >, with a set of vertices V = A ∪ P ∪ T ,
where A represents a set of users accessing the pages: A = (a1, a2, · · · , ak), P represents a
set of pages P = (p1, p2, · · · pl) and T represents a set of terms T = (t1, t2, · · · , tm); and a set
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of edges E = (a, p, t)|a ∈ A, p ∈ P, t ∈ T and P ∩ T = ∅, A ∩ P = ∅, A ∩ T = ∅. Using this
representation is advantageous, as it allows for good denormalization and allows us to track
each of the vertices independently. It may seem intuitive to merge accesses and pages, but
this models allows us to abstract page from access, and if the document represented by the
URL (page) changes, we can create new vertex in the graph and connect it respectively.

Each vertex v ∈ A (user’s access to a document) has these attributes:

• user identifier, a unique identification of a user u ∈ U

• timestamp

• referrer

• implicit feedback indicators

Each vertex v ∈ P has these attributes:

• checksum (used to determine whether the content on the URL changed, which would
lead to a creation of new vertex. We calculate the checksum from the cleartext (the
actual textual content of the document), so the documents with the same content but
different ads have the same checksum)

• content length (used along with implicit feedback indicators to calculate a page interest
score)

Vertices v ∈ T (terms) that are extracted from the documents represent the conceptual level
of the user model and have following attributes:

• label – the name of the term itself

• relevance – denotes how much is the term relevant to the content of the page

• type – type of the term (e.g., person, city)

The user model is periodically updated. Each document view initiates the term extraction
process and the acquired metadata is added to the user model. If needed, new edges, or
vertices are added to the graph (e.g. the document does not exist, or its checksum is changed).

User’s interests are thus modeled with document metadata. Although the automatically
acquired metadata can be of variable quality, we rely on the fact that the most important
document features representing the major user’s interests will be repeated several times across
multiple documents and prevail the noisy metadata by the count.

The described user model serves as a basis for query expansion. This is a process which
consists of three steps:

1. enhancing the user model of each user with community data

2. detecting the user’s context

3. expanding the query

The user model is enhanced periodically and offline, while the context detection and query
expansion happen in real-time.
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3.2 Building the Communities

For each user, we find similar users, based on the similarities between their interest-based user
models. We use both the term-based similarity and document-based similarity. The main
reason for this enhancement is that we gain more data for our query expansion algorithms.

We start by creating a social network, where each vertex represents a user and each edge
connects two users with a weight that denotes their similarity. The network is constructed in
the following steps:

1. Before we start the network creation, we first consider the implicit feedback of each
access, calculated as

X = 1− 1
1 + w

; W = time_on_page + click_count + copy_count + select_count

content_length

We do not weight the indicators, although some of them may have bigger impact than
the others. As the Figure 1 shows, the distribution of X exhibits the long tail property,
with the majority of Web pages with the value of 0 < X > 0.1. We therefore prune all
accesses with the value of X < 0.1

2. New network is created, each user is connected with each other by an edge of weight 0

3. For each unique visited domain (as in the domain system of the internet)

(a) If any two users visited the exactly same URL (we also consider URL parameters,
as a change in a parameter could result in a different page), the weight w of the
edge e connecting them is increased by a value of parameter d.

(b) Otherwise, the weight w of the edge e connecting them is increased by a value of
parameter s.
Generally, s < d as viewing the exactly same document implies more similarity
than just viewing a document from the same domain (e.g., if both users read the
exact same newspaper article vs. if both read some article on the newspaper portal).
We use en empirically derived value of s = 1 and d = 0.5.

4. For each pair of users, an overlap of their term-based models is calculated, and the weight
w of the edge e connecting them is increased by the cardinality of this overlap; i.e., we
aggregate all terms from the user model of the first user into a set Tu1 , and similarly,
for the second user into a set Tu2 , then the weight is increased by card(Tu1 ∩ Tu2).

In order to avoid repeated calculation of the whole network, we do not build a new network,
but rather evolve the existing one by incremental updates. When updating, we do not consider
all accesses, only those, which were added after the last network update. We create a network
using the described algorithm and merge it with the existing network. Let ui and uj be the
users, w(ui, uj) be the weight of the edge connecting ui and uj in the new network, and
w′(ui, uj) the weight of the edge connecting ui and uj in the old network, then the weight
of the edge in the merged network is wn(ui, uj) = p.w′(ui, uj) + w(ui, uj) and p is the decay
factor, representing the loss of preference. We use an empirically derived value of p = 0.9.
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Fig. 1. Distribution of the implicit feedback values.

In the next step, we detect communities of similar users by applying a spreading activation
algorithm over the weighted social network. We randomly select a vertex (user) not yet
assigned to any community which is activated and the activation spreads over the weighted
edges to other vertices. All activated edges are considered part of one community. Similarly
to [35], we do not detect communities for all vertices, since most of them are part of the same
communities, but use a following algorithm:

1. select a random vertex

2. spread the activation, create a community from all activated vertices

3. select a vertex, not yet assigned to any community and continue with step 2

4. exit when all vertices are linked to a community

Each community is stored and represented as a set of its member users.

3.3 Context Selection

Given the communities of similar users, the method now proceeds with the context selection.
Some basic assumptions have to be established in order to disambiguate the query: who is
the user, what is her intent, her informational goal.

It is possible to use two approaches:

1. Long-term context, which captures all of user’s interests. This is generally a simple
process, as we just use all the collected data and the communities build from all the
data to serve as the basis for our query expansion methods.
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2. Short-term context, which captures user’s current interests. In order to use a short-
term context, we need to split the user’s browsing into episodes of activities with a
single underlying informational intent, referred to as browsing sessions [36]. Given
these browsing session, we may proceed to:

• build communities just from the data from currently active browsing session
• select existing long-term communities, by matching community metadata (i.e., the
aggregation of metadata from the user models of users who belong to the particular
community) with the session metadata (i.e., the aggregation of metadata from each
document from the session) and selecting the communities with best overlap. This
approach is more viable than the first one, as it does not require the time-consuming
social network creation.

Using the long-term context is generally simpler, while the short-tem context is more focused,
but may not contain enough data to generate accurate query expansion. It has been shown
that the best approach is to combine both long and short-term context [37] but the exact
effects are still subjects to research. In our work, we utilize only the long-term context.

3.4 Query Expansion

Outputs of the previous stage are the social networks the user belongs to and they serve as
the basis for our query expansion strategies. We use two types of query expansion:

• Query reformulation analysis

• Metadata co-occurrence analysis

3.4.1 Query Reformulation Analysis
Query reformulation analysis is based on a simple observation of how we do our searches: if
a particular query does not satisfy user’s needs, it is reformulated. We analyze the logged
accesses and find query streams: time-sorted sets of queries which were issued by a single user
and share at least one keyword, e.g., jaguar; jaguar os; jaguar mac.

When the user starts searching, we find all query streams issued by the users from her
community which contain the searched keyword(s). We analyze each query stream, and assign
it a rank that is calculated as:

Xqs =
D∑

d=1

Xd

|D|

where D is a set of documents which were accessed from the search engine result page for
that query and Xd is an implicit feedback for that document.

We select the query stream with a maximum rank and use its last query as a refinement.
Involving the implicit feedback is important, as the fact that user entered the query does
not mean that its results were useful. Considering the implicit feedback allows us to prune
queries for which no result was clicked, or for which the results were not deemed useful.
Table 1 contains some of the results of this strategy when applied on the AOL datasetd.
dAOL search engine logs, http://www.gregsadetsky.com/aol-data/
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Table 1. Examples of queries and their redefinitions.

Original query Expanded query
Java history history of Java Indonesia
jaguar jaguar animal
sphinx sphinx cats

The main strength of this algorithm lies in the underlying communities. They ensure that
the expanded queries are relevant to user’s interests. For example when a user is searching
with a query “jaguar”, there are probably many query streams; some of them lead to a query
“jaguar animal”, some of them lead to a query “jaguar mac” or “jaguar battle tank” but if we
limit the search only to user’s community, the uninteresting redefinitions are pruned away, as
they are issued by users with different interests and thus in different communities.

3.4.2 Metadata Co-occurrence Analysis
This method is based on the idea that we may refine the meaning of a keyword by looking
at all documents where it occurs and select the words that it co-occurs with most frequently.
We also expect that the co-occurrences, or keyword pairs, will differ in different interest-
based communities, e.g., in a community composed of car enthusiasts, the most frequent
co-occurrence of keyword “jaguar” may be “jaguar car”, while in the community of animal
enthusiasts the more frequent co-occurrence may by “jaguar animal”. Table 2 shows examples
of documents about the jaguar – mammal and a sample of their metadata. We see that the
pair “jaguar” and “animal” is present in all of them, and that “animal” is the most frequent
co-occurrence of “jaguar”.

Table 2. Documents about jaguar and their respective metadata.

URL Metadata
http://en.wikipedia.org/wiki/Jaguar university, animal, culture, dictionary, online,

name, symbol, retrieved, warrior, jaguar
http://www.essortment.com/all/
jaguaranimalca_rhvk.htm

animal, jaguar, prey, threat, search, jungle,
area, cat, body, water

http://www.tropical-rainforestanimals.com/
Jaguar-Animal.html

animal, prey, name, web, page, territory, picture,
forest, story, jaguar

http://www.buzzle.com/articles/
jaguar-the-rainforest-animal.html

coat, jaguar, rainforest, mating, rosette, world,
panthera, prey, animal, body

When the user enters a query, we search all documents accessed by the users in her
community and search for the most frequent co-occurrences. Similarly to social network
creation process, we prune all documents with implicit feedback score lower than 0.1.

Some samples of the redefinitions provided by this strategy are shown in Table 3.

Table 3. Examples of query redefinitions.

Original query Expanded query
passenger passenger apache
branch branch git
apache apache server
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Similarly to query stream analysis, this strategy leverages the interest-based communities.
The co-occurrences of the same keyword may be different, but grouping the users into clusters
of similar users helps to distribute the differences into separate groups.

4 Capturing User’s Interests on the Open Web

Given the disadvantages of using browser extensions or using custom browser, we designed and
implemented a specialized, personalized proxy server that we use to capture user’s activity on
the Web. The proxy server has access to the data (unless it is encrypted) that is exchanged
between client and the server and can modify it. Using this feature, we are able to modify
existing pages and provide a personalization layer. Unlike browser extensions or custom
browsers, using a proxy server is advantageous both for the user and developer. There is
no need for the user to install anything, or to change her browsing habits by using a new
user interface. The developer does not have to maintain and improve several versions of the
same extension for different browsers. Moreover, proxy servers are widely used in corporate
environments, where making the interaction with Web more efficient can bring many benefits,
for instance personalized access to a company knowledge base, or search results that are
adapted towards user’s current work task can decrease the time that is needed to find an
information and thus make the user more efficient and less prone to distractions.

Generally speaking, the primary motivation behind our personalized proxy server is to cre-
ate a user modeling platform and move the personalization methods from server-side towards
the user. Nowadays, many personalized systems exist, but they are scattered around the Web
and build their own proprietary user models. The particular personalization methods do not
usually have access to other data about the user than that which was collected via her interac-
tion with the narrowly focused service (e.g., the level of knowledge in an educational system,
or user’s reading preferences in a book shop). Once a user model is created, other systems
could benefit from this knowledge. There are relatively few attempts to reuse the user models
in multiple adaptive applications in form of user modeling servers (e.g., a generic modeling
server GUMSAWS [38], or MEDEA [39] in the domain of adaptive learning), but they are
not widely spread. The main problem that is still not satisfactorily solved is how to acquire
the user modeling data from various sources and applications, even those that do not support
adaptation or explicitly collect user data. A proxy server is able to tackle both sides of the
problem – by being a gateway to the Web it can collect data from any web application, site,
or document and on the other hand, it can modify content of any page before it is received
by the client and thus bring personalization to any part of the Web.

4.1 Personalized Proxy Server

The standard proxy server serves as a forwarder of messages sent between user’s Web browser
and the remote server. Although many free or commercially used proxy servers are able to do
simple modifications to the request/response chain (e.g., remove ads, deny access to resources
etc.), their abilities are usually limited. Our personalized proxy server was designed from
the ground with the idea that any part of the proxy (extension, or a plugin) should be able
to modify any part of request or response data. We will furthermore refer to either request
or response as message. This enables the implemented methods to modify the structure
of the messages, modify the transported HTML code and personalize the whole browsing
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experience. It is possible to provide the user with new services, extend existing systems,
exploit her knowledge of existing interfaces and unobtrusively use her browsing customs.

Our personalized proxy server is based on the existing proxy server Rabbite. We improved
Rabbit with an extension system, which allows capturing and modifying user’s requests and
server’s response. It is possible to create extensions of two types:

• Services. Services provide a generic method for manipulating the message data. Each
service represents a single well-defined and reusable module that performs a specific
action over the message. Examples of services range from simple ones, such as creat-
ing a textual representation of the message from the underlying binary data, to more
advanced, which provide access to a document object model (DOM).

• Processing plugins. Processing plugins combine and compose the available services to
create a process which results in the modification of the underlying message. For ex-
ample, a processing plugin may use a DOM Manipulator service to insert new results
to a search engine page, and the DOM Manipulator will internally use a String service
to convert the bytes to its textual representation.

The incoming message is then passed through a series of processing plugins, each taking
a specific action based on the message, or over the message. Of course, not all registered
processing plugins have to be run all the time, e.g., if the Search Results Modifier plugin
detects that the underlying message is not a search engine results page, it will yield the
execution to the next plugin in chain. The whole process is graphically described in Figure 2.

4.2 Capturing the Interests

In order to gain a good understanding of user’s interests, we track user’s activity on the whole
Web and model the interests as various metadata automatically extracted from the viewed
document. The process of capturing user’s interests is described in Figure 3.

User’s browser needs to be set up to communicate with Web servers via the proxy server.
This means that each request is routed via the proxy (in practice, this can be, and is, controlled
by the user so some level of privacy can be achieved). Here, it can be modified, or other actions
may be taken (e.g., log) and the request is sent to the target server. The server responds and
the response is again routed via proxy, where it can be modified, exchanged or other action
may be taken. For the purposes of tracking user’s activity, we extract and store the document
metadata and enhance each response with a tracking JavaScript that asynchronously logs the
visit (this approach is used to override browser caches) and reports user’s activity on the
particular web page.

The processing of each document can be basically broken down into these few steps:

1. Identify the user

2. Log the document access

3. Extract and log document metadata

4. Collect and log implicit feedback signals
eRabbit proxy server, http://khelekore.org/rabbit
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<html>
  <body>
    Hello
  </body>
</html>

<html>
  <body>
    Hi!
  </body>
</html>

JavaScript Injector

Access Logger

Search Results 
Modifier

DOM Manipulator

Database Provider

Processing plugins Services

Fig. 2. Example of message processing. The message comes in and passes through a series of
processing plugins. First, Access Logger logs the message, then JavaScript Injector modifies the
HTML and inserts a JavaScript code and at last, Search Results Modifier injects or removes search
results. Each processing plugin uses a set of services to accomplish its job.

Usage of the proxy server to monitor user’s activity on the Web raises many privacy concerns
and we have tried to make our proxy platform as open and transparent as possible, while
actively educating our users about privacy control. First, we provide instructions about how
to set up the proxy server in the browser in a way that the user is in control of which Web
sites are accessed via the proxy and which are accessed directly via their internet connection
provider. Browsers provide convenient tools to make this kind of setup easy, i.e. tools that
allow users to specify whitelist or blacklist URL patterns. We have also built a Web site,
where users could see everything that was logged about them and selectively delete records.
We have provided an option to opt-out completely, by immediately deleting all user data.

User Identification
The first challenge in the data acquisition process is to unambiguously identify a user [40].
This is usually solved using IP addresses, but it is often difficult and inaccurate, as multiple
users may share the same IP address if they are behind a NAT router, or using another
proxy server. Sometimes advanced heuristics are used, such as User-Agent HTTP header
field analysis, but these are still prone to errors. Given the flexibility that our personalized
proxy offers, we use a completely different approach.

• We set an HTTP cookie with the uniquely generated user ID on the domain that we own
and insert a reference to a bogus JavaScript on that domain to every HTML response.

• Browser manages a set of domain-constrained HTTP cookies and when it makes requests
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Fig. 3. Data acquisition process. User’s request passes through the personalized proxy server (1)
and it is forwarded to the target server (2). The server’s response (3) arrives at the proxy, where it
is modified and a tracking JavaScript is injected. The modified response is sent back to the client
(4). Meanwhile, the document is processed (5) and various metadata are extracted and stored in
the user model. On the client side, the tracking JavaScript periodically updates the user model
with implicit feedback data (6).

to a domain, it sends its corresponding cookies along.

• When the response is processed in a user’s browser, it sends request to the bogus script,
along with user ID cookie.

• This request also passes through the proxy, where it is intercepted, the user ID is parsed
from the cookie and a bogus response is generated. The request is never sent to the
target server.

• The generated response contains JavaScript which is automatically evaluated in the
user’s browser and sets a global variable containing the user ID.

Cookies are a vastly used technology [41], but of course, there are some risks associated with
its usage. If the user deletes the cookie, or maybe uses a different browser, her identification
is lost. We solve this problem by using EverCookief– a JavaScript code that can store the
cookie in various storages (even storages outside the browser) in user’s computer. If the
cookies are accidentally deleted, EverCookie searches its storages and if it finds the cookie,
it is automatically restored to each of the available storages. This also means that if the
user runs another browser, EverCookie will still be able to find the cookie from the original

fEverCookie, http://samy.pl/evercookie/
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browser in a non-browser storage. Of course we do provide users with a mean how to really
decouple their computer with their anonymous proxy identity.

This solution works for reliably separating different users and maintaining a consistent log
of user action for the whole duration of using the proxy server, however, this does not address
the problem of disambiguating users sharing the same computer. This problem is outside the
scope of this work, but there are solutions that involve biometric data or behavioral patterns
that could be possibly used to address this issue.

Logging Document Access
Second, we need to actually log the fact that the user accessed a document. The commonly
used server-side logging fails if the user hits browser cache, most commonly when hitting a
back button or accessing an aggressively cached resource. To avoid this type of problem and to
capture a complete trace of user’s activity, we inject a logging JavaScript into every accessed
page. It is evaluated on every page display (even on cached pages) and waits until the global
variable containing the user ID is set (described in previous paragraph). Afterwards, it issues
an asynchronous request, which is again intercepted by the proxy and the access is logged.

We log:

• user identification

• URL of the page

• referrer – this denotes a previous page that contains a clicked link to this document

• content length – number of characters in the text

• timestamp of the access

• document metadata

• document checksum

User ID, URL and referrer are sent in the asynchronous request, other attributes are filled in
on the proxy side.

Metadata Extraction
In order to extract the document metadata, we run the message through a series of following
steps. First, the message is stripped of the auxiliary content: ads, menus, header, footer etc.,
until only the main content remains (e.g., the text of the newspaper article). We further refer
to the cleansed content as cleartext. We do this by reimplementing the publicly available
Readability scriptg, which is in essence based on counting commas in paragraphs. The basic
presumption is that the main content contains higher amount of commas than ads, or menus.
This idea works best on pages which contain continuous text, while usually fails on homepages
or various listing (e.g., newspapers title page). In that case, we use the original HTML.

In the next step, the extracted cleartext is translated to English. This is due to the fact
that the metadata extraction methods in general work best on English content. We use Google
gReadability, http://lab.arc90.com/experiments/readability/
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Translateh, which is able to automatically detect the source language. The translated content
does not have the same quality as the original content, but the main characteristics and the
semantic information are preserved and the extracted metadata are of sufficient quality [42].

We use the following types of metadata:

• keywords; a one-word long metadata, which characterizes the main ideas/information
of the document it was extracted from, e.g., jaguar, animal or forest

• terms; a multiple-word long metadata; it characterizes the main ideas/information of
the document it was extracted from, but its meaning is more narrow than that of a
keyword. A term combines multiple related keywords, e.g. city hall or fire department

• named entities; are a special category of terms. They name any of the real-world entities,
like persons, cities, countries, etc., e.g. Abraham Lincoln or Mississippi

• tags; characterize the main ideas/information of the document, but unlike keywords
or terms, they were created manually by humans and although sparse, they are very
accurate

We run the translation through various publicly available metadata extraction Web services
and standalone libraries:

• JATR (http://www.dcs.shef.ac.uk/~ziqizhang) – Java Automatic Term Recog-
nition Toolkit implements some of the traditional algorithms for keyword extraction:
TF.IDF, CValue, TermEx, GlossEx and Weirdness

• Alchemy Orchestr8 (http://alchemyapi.com) – aWeb service which provides named
entity and term extraction

• OpenCalais (http://www.opencalais.com) – similarly to Alchemy, provides named
entity and term extraction

• tagthe.net (http://tagthe.net) – a simple Web service for keyword and term extrac-
tion

• Delicious (http://delicious.com) – provides tags, created by its human users. The
tags are therefore very accurate, but the disadvantage is that they are available only for
a small subset of all documents

• DMOZ (http://dmoz.org) – similarly to delicious, provides human created metadata
– Web page categories

Collecting Implicit Feedback
The extracted metadata should not be considered equal. There might be cases when the user
opens the document, but quickly realizes that the document is not interesting. In order to
detect how much did the document interest user, we need to capture interest indicators. It
is possible to ask user explicitly, but that might be considered disturbing. A much better
hGoogle Translate, http://translate.google.com
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alternative is an implicit feedback, derived from automatically collected signals. Often, a
time spent on page is derived from the server logs and used as a primary feedback indicator.

However, the time mined from logs may not be accurate. The commonly encountered
problem is a Web page opened in a background tab, for which the real time and derived time
differ greatly. To cope with this problem we use a more accurate approach. We inject a
tracking JavaScript into every document that the user requests. This script monitors user’s
activity on the page and tracks the real time user spent on the page. Currently, there is no
direct way to detect that a page is active, so we use a slightly complicated approach. The
script monitors short time windows (we used 4 seconds) for activity. If there is some activity
(mouse movement or scrolling) in the time window, the length of the window is added to the
estimated time. While even this approach is prone to inaccuracies, the time spent on page
calculated this way is certainly more accurate than the time estimated from server logs.

To further evaluate the usefulness of the page, we collect additional interest signals:

• estimated time on page

• number of clicks

• number of scrolls

• number of copying into clipboard

• number of text selections

Using the proxy platform is an improvement over existing approaches as it allows for both
data collection and adaptation of any web page that the user accesses. There are however
few problems and disadvantages of this solution. First and foremost, the set up process is
still not completely automatic and requires intervention of the user, who has to set up the
browser. This is not a problem in corporate environments, but represents an initial barrier
for individual users. There is also problem with the proxy server being a central place to
access the Web – it is prone to outages. Even though it is relatively simple to automatically
instruct the browser to stop using the proxy if it is not responding, it is still a good idea to
run multiple proxy server instances. Multiple instances are required to serve more users and
they should be placed geographically close to its users to reduce latencies. Many existing
services also depend on IP geolocation to control some aspects of their interface (for instance
localization) so using a geographically close proxy server is preferred.

Nevertheless, using proxy server to collect data about users and provide personalized
versions of existing systems is advantageous, especially in the research in the domain of
search, where the search engine itself does not have many opportunities to get to know user’s
preferences. We also believe that this architecture is sustainable in long-term. Proxy servers
have become standard architectural piece of the internet and they are widely used especially
at companies. Deploying this kind of personalizing proxy server in a company could bring
many benefits to its users.

5 Evaluation
We evaluated our approach to query expansion on real users, using the described proxy server.
We have advertised the proxy server throughout our faculty and invited students to try it.
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Obviously, each of the methods will work best if the queries are short and ambiguous and as
most of the user studies report, this is generally true. Since the users of our proxy server are
all students of Computer Science and as such are well aware of how search engines work, we
conducted a user study to see if there is a room for improvement in their queries.

5.1 User Study

The proxy server was deployed on 23rd March 2010. Following a short, private testing phase,
it was publicly announced on 7th April. On the day of evaluation (4th May), it had been used
by a total of 40 users. The Figure 4 shows the number of users from the first proxy server
deployment to 29th April. After this day, the number of users remained static.
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Fig. 4. Usage of the proxy server.

During this time, users have accessed 643 939 document (111 215 of them unique). But
the proxy has never been used by all users at the same time. Figure 5 show the usage in the
weeks following its launch.

In total, 3 637 queries were issued in various browsers. Table 4 summarizes the shares of
each search engine found in the logs. Practically all of the queries were entered into Google
search engine. Numbers of searches in Yahoo or Bing are insignificant and other popular
search engines (e.g., AOL, Wolfram Alpha or Cuil) were not present in the logs.

Table 4. Number of queries per search engine.

Search engine Number of queries
Google 3628
Yahoo 4
Bing 5

For the purposes of query disambiguation, the most interesting information is how long a
typical query is. Figure 6 shows the query length distribution. Our findings are consistent
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Fig. 5. Usage of the proxy in the weeks after its launch.

with that of other studies; we confirmed that even the technical users issue short queries.
We will now focus on Google as it is the search engine where majority of the searches takes

place for our users. From all issued queries, users clicked 6 152 results. From this number,
only 27.4% (1686 results) were viewed for more than 4 seconds. In other cases, the page was
abandoned after less than 4 seconds after opening. We assume that these were the cases,
where the clicked result was not relevant to user’s information needs, what means that only
about every fourth clicked search engine result is considered useful.

We were also interested if longer queries mean that users get more satisfactory results.
Figure 7 shows the fraction of useful results (i.e., results that were displayed for more than 4
seconds) with respect to query length. The results do not indicate that longer query means
better search results; while short queries are too ambiguous, long queries are too specific,
making it hard to find the relevant documents.

5.2 Real Users Experiment

Our method for social context driven query expansion was deployed on the personalized
proxy platform. We integrated the query expansion into Google search engine. During the
experiment, if the method generated any query recommendations, they were shown among
the regular results. We limited the maximum numbers of query recommendations to 4 to not
overwhelm the results page and confuse the user. The expanded queries could be generated
by any strategy, but we strived for balance, so that if possible, both strategies (query stream
analysis and metadata co-occurrence) generated the same amount of expansions. For each
expansion, we queried Google using its standalone APIi and retrieved a set of top results.
These results were shown on the results page together with standard results. Again, we
strived for balance, so each expanded query provided the equal amount of search results.

iGoogle Web search API, http://code.google.com/apis/customsearch/v1/overview.html
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Fig. 6. Distribution of query length.

Using this technique, we assembled a set of 4 results, randomly ordered, and injected it into
the standard search results page.

Even through the course of the experiment, our main goal was to bring value to our users in
the first place. We were concerned that if our approach did not work and the (bad) results were
mixed with organic results, our users would stop using the proxy server. Therefore we have
decided to separate our results from the organic results and present them as recommendations.
The expanded queries and results were clearly separated from the standard results. Figure 8
shows the search engine results page with the expanded queries.

Users could click either the search result, which would take them directly to that result,
or they could click the expanded query, which would start a new search with the expanded
query. We also incorporated an explicit negative feedback, by showing an icon of a trash can
next to query expansions as well as next to each search result. Users were aware that clicking
this icon sends a signal that either the result or expansion are incorrect. Clicking the trash
icon next to a search result would remove that result from the list, while clicking the trash
icon next to an expanded query would remove all results retrieved from that query.

The experiment was run in two sequential stages:

1. the partial query expansion, which could be generated by considering only a part of the
query, e.g., if the user entered a query “jaguar amiga”, the query could be expanded by
only considering the word “jaguar” or “amiga”.

2. the whole query expansion, which had to be generated from complete query. If a user
issued query “jaguar amiga” then both of the keywords had to be present in the query
stream for the query stream analysis strategy, or in the document metadata for the
metadata co-occurrence strategy respectively.

Table 5 summarizes the results of both stages. The main metric we used was number of
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Fig. 7. Useful results by query length.

successful expansions. The expansion was considered successful if either the expanded query,
or some of the expanded results were clicked. Note that multiple results might have been
clicked for a single expansion, so (# of expanded queries clicked + # of results clicked) may
differ from # of successful expansion.

Table 5. Summary of results from both stages of the experiment.

Partial
query

Whole
query

Whole query (con-
sidering duplicate
results)

# of expansions 311 95 95
# of results 1230 377 377
# of queries clicked 12 9 9
# of results clicked 35 14 63
# of successful expansions (i.e. query, or a
result from this query was clicked

43 21 67

% of successful expansions 13.8% 22.0% 70%

Expansions based on the whole query are more successful. After empirical evaluation of the
collected logs, we believe that this is caused by long queries. If the query is short, then both
strategies generate logically correct expansions. However, as the queries get longer, strategy
based on whole query is usually unable to expand the query, while the partial strategy picks
up and expands a word and generates even longer and meaningless queries. As the whole
query expansion strategy proved to be better, we will now focus on analyzing it further.

Table 6 shows the comparison of the used expansion strategies. There seem to be no
difference in the number of successful expansions they generated, although the metadata co-
occurrence strategy generated more expansions. This is expected, since the query stream
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Fig. 8. Screenshot of the Google search engine with the experiment in progress. On top, the
expanded queries are shown, followed by search results retrieved by querying Google with the
expanded queries. The injected results are clearly separated from the standard results by a label
and a separator line.

analysis requires that a similar query was issued before by a member of the community which
is a condition that limits its applicability.

This kind of experimental setup raises a concern that by separating the recommended
results from the organic results, we have created a bias, because according to the studies [43],
people tend to click on the top results, disregarding the actual relevance of the results and
deciding solely on the result position. We argue that this was not the case, because we have
observed different kind of phenomenon.

According to the post-evaluation survey and personal interviews, users tended to ignore the
recommendations and followed the standard stereotype of perceiving new interface elements
and at first scanned the standard result set and proceeded to the expanded result only if
the standard results were unsatisfying. This claim is further supported by the data collected
during the live experiment. When generating the expanded results, we did not check the
standard results, so, many times, the expanded result was already present among the standard
results. We have looked at all the cases when the result was present in both the recommended
results and organic results groups and looked which group was the clicked result from. We
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Table 6. Comparison of the expansion strategies.

Query stream analysis Metadata co-occurence
# of expanded results 133 1474
# of clicks on expanded results 5 44
% of clicked results 4% 3%
% of useful results 66.6% 53.8%

have found that when the same result was present in both groups, in 81% of cases, the result
was clicked from the organic results group, supporting the claim, the users scanned the organic
results first.

If the same result is among both organic and expanded results and we consider clicks on
the organic result as a success for the query expansion method which generated it, then the
success rate increases from 22% to 70%.

Most importantly, if we look at the usefulness rate, i.e., how many pages were opened for
more than 4 seconds, it’s 54.7% for our expanded results, what is an improvement compared
to only 27.4% for standard results.

5.3 Qualitative Analysis

To further asses the obtained results from live experiment we have manually analyzed each
query and the set of clicked results. We built a list of all queries for which some recommenda-
tions were generated together with all the possible actions that the user could take, i.e., click
an organic search result, proceed to next page in the search results list or manually refine the
query. We have then asked a human judge to asses the relevance of the recommendations for
each query. It is not fully possible to judge the relevance of the recommended query reformu-
lations externally, since the judge does not have the same context as the user at the moment
when the query was issued. However, the intent can be manually inferred from user’s actions
on search results page. We have asked the judge to carefully review user’s activity, read the
pages that the user clicked, follow through the query reformulations and carefully assign one
of the relevance labels to each recommended query reformulation according to these rules:

• perfect - the recommended reformulation fits user’s intent perfectly. The user either
manually reformulated the query to one of the recommended queries or clicked an organic
search result, which was also included in the list of recommended results (retrieved by
issuing the recommended queries);

• satisfying - the recommended reformulation fits user’s intent. The activity on the search
results page and the content of the clicked organic results suggest that the recommended
reformulations were correct and matched user’s intent at the query time;

• poor - based on the activity on the search results page and the content of clicked organic
results, the recommended query reformulations do not match user’s intent;

• cannot judge - based on the data available, it is not possible to confidently assess the
relevance of recommended reformulations.

The judge’s assessments are shown in Table 7. The data shows that 63% of the reformu-
lations passed the satisfying boundary, while 34% of the reformulations were marked as poor.
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Upon further examination of the logs from live experiment and the manual assessments, we
have found out that the reformulations marked as poor were generated solely by the metadata
co-occurence approach, where the query was expanded by a word that was too generic.

Table 7. Qualitative analysis of the query log.

Assessment % of queries
perfect 34%
satisfying 29%
poor 34%
cannot judge 3%

6 Discussion and Conclusions
In this work, we focused on search disambiguation by expanding the short and usually am-
biguous queries with other keywords, based on the user’s interests. We focused on leveraging
social networks as a mean to capture similarities between users. Our primary hypothesis
was that similar users visit similar pages and view similar documents and that by using the
metadata of the documents we will be able to group similar users together.

Our method relies on the similarity-based social networks. We designed a method to build
this social network from the stream of users’ activity, a method to weight the strength of
relationship and to mine the virtual communities. Tracking the users’ activity is possible
mainly because of our personalized proxy server platform, which we used to both track users’
activity and to seamlessly integrate our method into an existing search engine to conduct a
real user evaluation.

We build the user model by analyzing user’s activity on the “wild” Web and model her
interests using the metadata (keywords, terms, tags) automatically extracted from each visited
page. We use a combination of automatically captured metadata with human created data
(tags from delicious and categories from ODP).

We designed and evaluated two query expansion strategies, first based on the observation
that after an unsuccessful search the query will be reformulated and the second, based on
the observation that the keyword meaning can be refined by looking at the document meta-
data; keywords it frequently co-occurs with. Using the described proxy server platform, we
integrated our query expansion method into Google search engine and injected our expanded
results next to the original results. We noticed that in 70% of the searches where expansion
were generated, some of the expanded results were clicked and furthermore, we observed a
significant increase in the relevance metrics of the expanded results in comparison with the
standard results. A clicked result was considered useful if its dwell time was larger than 4
seconds. In our experiments, only 27% of standard results were considered useful in the base-
line environment, while the results expanded by our method were considered useful in 54%
of all cases. A post-hoc analysis performed by a human judge revealed that about 63% of all
recommended reformulations matched user’s intent.

There are many factors that affect the quality of expanded queries:

• The method is sensitive to metadata quality. When the metadata vectors contain com-
monly repeated elements, it will impact the expanded queries for the metadata co-
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occurrence strategy.

• Our method does not deal with semantic similarity of the metadata. Metadata are
considered similar only if they match character by character. The performance of the
method could be improved by including a more sophisticated matching algorithm, e.g.,
enhancing the metadata by related concepts (from ConceptNetj or Wordnetk), or by
using their hyponyms and hypernyms [44]. For example, the non-overlapping metadata
vectors {java} and {python} may be enhanced by their hypernyms {java, programming
language}, {python, programming language} and they would now overlap.

In the next work, we will focus on improving the metadata quality – both by automatically
analyzing the extracted keywords to remove noise, and by enhancing them with hyponyms,
hypernyms and related concepts. We also plan to explore the possibility of using short-terms
contexts, instead of currently used long-term contexts.
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