
Journal of Web Engineering, Vol. 12, No. 1&2 (2013) 093–130
c© Rinton Press

A DESCRIPTION-BASED COMPOSITION METHOD FOR

MOBILE AND TETHERED MASHUP APPLICATIONS

PRACH CHAISATIEN, TAKEHIRO TOKUDA

Department of Computer Science, Tokyo Institute of Technology

Meguro, Tokyo 152-8552, Japan
{prach, tokuda}@tt.cs.titech.ac.jp

Received November 25, 2011

Revised October 27, 2012

This paper presents a description-based composition method for rapid development of
mashup applications for mobile devices. We designed and evaluated a generator system

which allows an automatic generation of the declarative descriptions to mobile mashups.

The generator system is based on a mobile mashup composition language called Mobile
Application Interface Description Language (MAIDL). The language focused the reuse

of mobile applications, Web services and Web applications as mashup components and

allows composers to lay out the connection of component data flow of the mashup ap-
plication. In technical aspect, our generator provides an automated mechanism that

can reduce the mashup execution time. In usability aspect, the evaluation shows that

our composition method could assist novice composers in interpreting and planning mo-
bile mashup applications. We found no significant difference in composition time and

correctness between novice and expert composers. From the evaluation result, we are

able to indicate the expressivity, the major patterns, and common composition mistakes
in our mobile mashup composition method. The further requirements lead to a new

composition approach for single and multiple devices mashups via the use of tethered
mashup applications.

Keywords: Mobile application, description-based mashup, end user development

Communicated by: G.-J. Houben & H. Kitagawa

1 Introduction

Mobile technologies have become a highly important area in the current trends of telecommu-

nication technology due to their rapid growth [1]. The advent of high-speed mobile commu-

nications and smart phone platforms also gives rise to a divergence between the consumption

behaviour of the Web and the use of mobile Internet technology. Device-dependent func-

tionalities such as location sensors, built-in cameras and always-on Internet connections have

become essential components when developing mobile applications.

Typically, mobile applications do not complete the user’s task in a single application exe-

cution. This makes some end-user requirements arise when further customizations are needed

to be performed over the processed information. The majority of commercial applications

available through online distributions (e.g., App Store [2], Android Market [3]) are built for a

single purpose, and users often need to further combine them with other applications and/or

Web-enabled resources for their specific queries. For example, suppose a user creates a mashup

93

94 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

application that interprets place name from his/her GPS coordinates, and uses the name as

a search keyword for local information queries (e.g., weather forecast, transportation route,

etc.). To create such an application, it is impractical for non-programmers to: 1) lay out the

conceptual plan of the mashup, 2) access and query the relevant Web-enabled resource and

mobile device’s functionalities, and 3) configure the query output display.

To address the end-user mashup requirements and the development problems, we proposed

a method for mashup of device-dependent functionalities and Web-enabled resources using an

XML description-based language called Mobile Application Interface Description Language

(MAIDL). With the aim to study an end-user level mashup composition, we designed the

method to improve correctness, and lower the amount of time spent on configuration process.

Therefore, in the generation process, the composers are only required to: 1) decide the output

context, 2) lay out the mashup components and their messaging pattern, and 3) assign the

components’ control parameters that will be executed for the generation of the final output.

Our essential result is an automatic generation from the declarative descriptions to mobile

mashup applications. In the evaluation process for the method’s usability and expressivity, we

tested a generator system called Mobile MashUp Generator System (MUGS) that is based on

the proposed method. We observed the impact of skill differences by conducting an evaluation

with novice and expert composer groups. In the technical aspect, we also assessed the execu-

tion performance of the generated applications that applied our Mashup Process Scheduling

mechanism in various mashup combinations and network latency settings. Our proposed com-

position method also covers the generation of mashups in the context of tethered applications

(Tethered Web Service and Tethered Web Application). It allows remote mashup executions

via HTTP connections for platform-independent cooperative mashups in multi-device usage

scenarios. The integration of Tethered Web Service in HTML and JavaScript also extends the

expressivity of the fundamental MAIDL to cover mashups with interactive display elements.

The organisation of this paper is as follows. We review the related research, state our

motivation for designing the composition method, and clarify the contributions of our research

in the next section. The overview of the composition method, MAIDL mashup components

and generator system are explained in Section 3. The mashup generation process, execution-

related mechanisms and mashup runtime are explained in Section 4. We give the details

of evaluation covering usability, expressivity, execution performance and comparison of our

method to other works in Section 5. We discuss current problems and possible improvements

in Section 6, and finally give our conclusion in Section 7.

2 Background

2.1 Related Work

In our view, current composition methods and models often target the reuse of Web-enabled

resources. Functionalities unique to mobile devices are not focused. Thus, end-users lack

methods to create or customize mobile-specific mashup applications. Therefore, to define our

research problems and motivations, we review shortcomings in these related fields:

• Web Page Adaptation and Mobile Web Applications

• Web Information Extraction

• Mashup Composition Language and Multi-phone Application Frameworks

• End User Mashup Development

P. Chaisatien and T. Tokuda 95

The founding generation of mobile mashup researchers focused on Web page adaptations

and transformations [4, 5, 6, 7, 8]. The proposed solutions are limited to the reuse of ex-

isting Web pages for the device fragmentation problems found in mobile Web platforms.

Current trends in mashups are focusing the integration of multiple client-server communica-

tions (i.e. Web services) for mashup Web applications [9, 10]. These device-independent Web

applications are generated and deployed rapidly on Web servers [11]. Using the user-agent

identification, the servers are able to detect the type of a device and deliver a different display

when the application is accessed [12]. Naturally, when a device-independent mashup Web

application is generated and run on mobile devices, device-dependent functionalities may be

absent. Despite the developments of mashup builders and models for data integrations, the

current mashup approaches do not define an appropriate integration model for mobile mashup

applications. The conventional approaches [13, 14, 15] reuse Web-enabled resources to form

new Web applications but fail to support mobile devices’ functionalities.

As information available on the Web has been extensively used, Web data extraction and

integration has become one of the major fields to support end-user mashup developments. The

applications of Web data extraction are found in many research areas of service compositions

[9], news content extractions [16] and partial information extractions [17]. However, it is

supposed that end-users are not familiar with the application of Web services. To gather

information from various sources, they tend to browse and search through Web sites they

are normally exposed to. Thus, the model and development process to extract and reuse

information Web sites and Web applications at at the end-user level is not concretely defined.

In the composition of mashup applications, there are many description languages designed

to support the domain-specific tasks. These approaches lack model, language, and optimal

programming paradigms for mobile mashup composition at the end-user level. The classic

BPEL [18] can be used to compose the integration of Web services, logic and data opera-

tions. EMML [19] enables the capability to perform Web clipping and other programmatic

operations such as conditionals and loop statements. The major shortcomings of BPEL and

EMML are their exposure to end-users in Web and mobile-specific area. The languages

tend to focus more on system integrators who possess a deep comprehension of BPMN and

Web service standards. The integration method found in MashArt [20] and CRUISe [14]

can support the service-oriented mashup composition in both presentation layer and logical

operations. However, mashup applications with device-dependent functionalities can only be

created in low-level implementation using mobile native programming languages. In addition,

many multi-phone Web-based application frameworks [21, 22, 23] employ Web programming

languages. Web programmers can implement device-dependent functionalities since these

frameworks promote simpler syntaxes for more rapid development compared to mobile native

languages. These frameworks somewhat facilitate programmers, but do not provide non-

programmers a practical solution for creating mobile mashup applications.

The mashup development environment for end-users can be divided into many aspects

according to the expressivity and the targeted composers. The important elements, that are

absent from these studies consist of: the reuse of Web applications, the coverage of device-

dependent functionalities, and the empirical evaluation of the composition environment with

real end-users. The method of continuous feedback found in DashMash [24] enables composers

to immediately compose and correct the mashup composition. This method focused data

96 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

extraction and visualizations during the composition process. A user-centric experiment has

been conducted to show that novice and expert users perceive the ease of use of the tool in the

same way. The evaluation of ServFace [25] is able to define concrete composition patterns and

problems. This mashup platform performed service-based compositions at the presentation

layer focusing the use of the WYSIWYG paradigm and reductions of UI level. Mehandijev et

al. [26] use visual representations of service components and a template-based process to assist

the end-user mashup composition. The reduced level of user control in this research shows the

significant result in low time consumptions and few mistake actions. Paternò et al. proposed

the MARIAE authoring environment [27] to enable Web service-based composition using a

task model of the interactive application. Various mobile devices can also access the composed

Web application. However, the method to create desktop-based mashup applications cannot

be applied directly to mobile mashup compositions. The clarification of technical limitations

and restrictions, that are found in a mobile-specific mashup composition system, is required.

2.2 Motivation

In the overall perspective, the aforementioned disciplines are not specifically designed to

enable the end-user level of mobile mashup composition. We define the current problems and

state our research motivations as follows.

• Mobile Mashup Composition Language and Model: Many studies in mashups have tar-

geted data, application logic and user interfaces [28] for desktop-based Web applications.

We define MAIDL as a description language in which mobile device-dependent function-

alities (mobile applications) and Web-enabled resources (Web applications and services)

can be integrated. The language is based on an imperative programming paradigm that

composers are required to specify the description of how components receive inputs and

send outputs in order to construct the final output when the executions are done. To

lower the skill requirements, we applied a control-propagated data flow model and a

shared tree execution sequence in the design of the language. The generated mashups

use Mashup Process Scheduling mechanism to reduce the complexity of the execution

sequence and shorten the mashup execution time.

• End-User Web Integration: Mobile mashup composers, in our hypothesis, are end-users

who are able to browse and search through various Web sites for the information they

need. However, the current methods to integrate Web information and mobile applica-

tions are not well-defined. Moreover, the user operation to reuse Web services (SOAP

[29] or RESTful [30]) is not comparable to the operation to reuse normal Web sites.

Therefore, to expose and study Web integration feature among end-users, we developed

an integration tool, and a runtime engine for mobile device based on a tag-highlight

annotation method [31] and used them in our evaluation. Building on our previous

study [32], we further evaluate the method in our study for usage and problem patterns.

• Evaluation of Mobile Specific Development Environment: The end-user selection of inte-

gration components and the composition pattern in mobile mashups might be different

from the Web-specific mashup compositions. To observe and effectively support the

end-user behaviour, we evaluate and report the results of end-user studies. The eval-

uation involves the composers’ preferences in their selection of components, common

composition patterns, time consumption and composition qualities. We also compared

P. Chaisatien and T. Tokuda 97

the results taken from novice composers who do not possess any programming skills

with expert users who are familiar with programming languages.

• Mashup Extensibility: General mobile applications are usually designed for a single pur-

pose and are not available for further integrations with other applications on the same

device or with other devices. To provide more extensibility, we enable the generation

of mashups in two output contexts: Mobile Mashup Application and Tethered Mashup

Application. We term the first context as a mobile application composed from an inte-

gration of components and is used locally on the device. We term the second context as

a Web service or a Web application composed from an integration of components that

can be used locally (e.g., using the device browser to connect to its local host) or be

accessed remotely from tethered (i.e. ad hoc) devices via HTTP connections. A mashup

created as a Tethered Web Service (TeWS) can be consumed by the device itself or by

remote client devices. The contrast point to WSDL [33] when composers use MAIDL

for describing the functionality of TeWS is that: MAIDL uses both mobile-specific and

Web-enabled mashup components, and all procedures to construct the final output re-

sult have to be defined. The mashup developed as a Tethered Web Application (TeWA)

provides the complete remote application that enables platform-independent function-

ality exchange between devices. Moreover, we can derive a mashup application in a

reactive paradigm from the application of TeWS to compose which can overcome the

limitation found in the fundamental data flow composition (as discussed in Section 5.4).

In this research, the final mashup application package files are built for the Android

platform [34] for single-device mashup. Tethered mashup applications (TeWS and TeWA) are

built and deployed on the i-Jetty mobile Web server module [35] of the device that functioned

as a host server. The targeted clients, in multiple-device usage scenarios, are devices that are

capable of HTTP communications.

3 MAIDL Description-based Mashup Composition Method

3.1 Mashup Composition Method Overview

Fig. 1. Overview of MAIDL mashup composition method.

In the process to compose a mashup application using MAIDL description-based mashup

composition method, composers are required to follow the steps as demonstrated in Fig. 1:

(i) In the abstraction phase, composers abstract the outline of their mashup. The abstrac-

tion method we used is that composers conceptualize the final output at first. They

98 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

later lay out the relevant components and specify the components’ data links that are

used in the execution for the final mashup result.

(ii) In the configuration phase, composers create a composition model by selecting, laying

out, and configuring all necessary components they have outlined in the abstraction

phase. Three important configurations are: 1) the communication links that describe

how components send/receive data, 2) the detailed control parameters of mashup com-

ponents, which vary by category, and 3) the description of the final output component

after the execution is done. We record the information of mashup components which

is written by following the notation of MAIDL XML Description File. To lower the

domain of error, composers use MAIDL Designer tool to assist their configuration task.

(iii) The model layout and configurations that are translated into a description file is sent

to Code Gen module. In the generation phase, the module generates source code files

which are then compiled by App Gen module for the final Application Package File.

(iv) In the execution phase, composers deploy the Application Package File on the actual de-

vice and start the execution. The generated application uses Mashup Process Scheduling

mechanism to optimize the execution sequence and to reduce the execution time.

In Section 3.2 we give the category-specific component configurations and detail other

shared features. In Section 3.3, we clarify the control/data flow model and its messaging pat-

tern in our composition method. The systematic implementation of Mobile Mashup Generator

System and a mashup example are described in Section 3.4.

3.2 Mashup Components

MAIDL mashup components can be divided into main 4 categories. According to their cat-

egory, each component employs its unique runtime behavior in foreground or background

processes. The runtime is also limited by its behavior that holds the use of the device’s

display and its inter-application protocol. The components also divided into three handling

stages. Components in the Input Handling Stage can provide data to one or many compo-

nents. The Query Handling Stage contains components that receive, process, and send data.

The Output Handling Stage contains one component that represents the final output delivery

or the display of the mashup execution result. The handling stages are explained with the

data flow model in Section 3.3. We clarify the components’ runtime behavior, their applicable

coverage, their handling stage, and their shared configurations as follows.

3.2.1 Mobile application component

MAIDL’s MA component employs Android’s Intent [36] and Service[37] as its inter-application

protocola. Intent is a message passing protocol which uses asynchronous messages to enable

communication between applications. Intent callers are able to pass their data as parameters

to perform an execution at a target application. The target application may display data, or

perform an execution and return the result to the caller. We observed and provide a summary

of Intent-supported mobile applications in Table 1. The applications are selected according to

their compatibility with our handling stage model. Therefore, they must be able to function

as an input, output or query component. Applications without the information of Intent or

Service specifications are not applicable. Some Intent-supported applications, that do not

aiOS platform use Apple URL Scheme [38] for inter-application communication.

P. Chaisatien and T. Tokuda 99

Table 1. Summary of Intent-supported mobile applications

Source Name Stage Description
Pre-
Installed

Contact list
Browser
E-mail
Map
Market
Music player
Phone dialer
Search
SMS
Street View

Input
Output
Output
Output
Output
Output
Output
Output
Output
Output

Pick data from the contact list of the phone [39].
Browse the Web page of a given URL [40].
Send a text to the receiver’s e-mail address [39].
Open a map application with the given Geo URI specified [40].
Perform search in Android Market for the given keyword [41].
Launch a music player with the given playback file URI [42].
Call to the given phone number [40].
Perform Web search of the given keyword [40].
Send a SMS to the receiver’s phone number [43].
Open Street View application to the given location [40].

Google-
Release

Barcode Scanner
Speech Input
Text to Speech
Radar
Youtube

Input
Input
Output
Output
Output

Scan a barcode [64].
Translate user’s speech into a text [44].
Machine-read the given text [45].
Display a radar like view of the given position [46].
Play a YouTube video from the given URL [47].

Android
Market
and
Third
Party
Sites

Calculator
Calendar
Motion Gesture
Motion to Intent
Location Notifier
Pick Color
Tag to Intent
Translate Intent
Chartdroid
Evernote
Photoshop
Twidroyd

Input
Input
Input
Input
Input
Input
Input
Query
Output
Output
Output
Output

Calculate and send the final result to other application [48].
Pick a date from the phone’s calendar application [49].
Detect a touch screen gesture [50].
Detect a shake or a jump action [51].
Detect an enter/exit action of the registered location range [52].
Pick a color using a color picker dialog [53].
Detect the registered NFC tag when it is tapped [54].
Translate the given text to a text of another language [55].
Produce a chart representation from the given data [56].
Send a text to Evernote application [57].
Open Photoshop photo editor of the given file URI [58].
Send a tweet via Twidroyd application [59].

Custom
Library

GPSLocatorb

Input Box
Databaseb

List Display

Input
Input
Query
Output

Detect the current position’s GPS coordinate.
Display an input dialog.
Query or store the data to the phone’s database.
Display a list of th given data.

receive any data when it executed, are also not applicable. Some mobile device features, such

as accelerometers and real-time GPS, do not support the Intent protocol.Therefore, we also

provide some custom component libraries that are unavailable from external resources.

From our observation, most of the available mobile applications are executed as foreground

processes and require user interactions to finish the execution before the process release the

use of the device’s display. This runtime behavior is suited for a single-device usage scenario.

For multiple-device usage scenario, applications are executed at the Web server module which

runs in background process. It is possible that the multiple-device mashup may be executed

from remote clients and yield an interruption issue to the host device. Thus, the design

process of multiple-device mashups must consider the issue carefully.

3.2.2 Web application component

A WA component is used when composers require an integration and an extraction of data

from Web navigations (e.g., Web search, Web page access). WA components employ JavaScript

injections to DOM [60] document objects. We implemented a Web browser’s extension

calledWXTractor to work as a Web extraction tool in MAIDL. To generate the extraction

parameters for WA components, composers are require to follow the steps shown in Fig. 2.

bUpon the configuration GPSLocator and Database can run in either foreground or background processes

100 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

Fig. 2. Steps to extract control tags for WA components.

(i) Navigate the external Web browser to the desired URL.

(ii) Start the WXTractor tool. The current page becomes highlightable and the WXTractor

pane is displayed in separated window. Composers then highlight the desired element

(HTML tag) of the Web page to extract the configuration parameters.

(iii) Configure 1) properties to extract specific attributes from the element (e.g., text content,

image link, or the raw tag code), and 2) the filtration parameter to remove part of the

data. The configurable properties are limited to the type of highlighted HTML tag.

The simulation of the output is displayed at the bottom of the WXTractor pane.

(iv) Finally, transfer the final configuration parameters to MAIDL Designer. To use data in

publisher’s results, composers can substitute the variable names at the Property Sheet.

When the WXTractor tool is started, JavaScript code is injected into the Web page and

allows mouse-over, and mouse-click interaction for element selections. When composers select

an element of a Web page, the WXTractor pane will show the element’s attributes (e.g.,

node, id, class name). Composers further specify the part of the elements to be extracted,

such as the link URL or the text content of an anchor tag. The Code Gen module uses

these attributes to generate JavaScript code for the mashup execution on the mobile device.

Some Web applications require navigation along multiple pages for result extraction. In

this case, composers are required to generate multiple sets of input extraction parameters.

The WA component contains only one result extraction parameter set which represents the

resulting page of the navigation. In the runtime environment, WA component can run in both

foreground and background processes. For dynamic extraction requiring JavaScript injection

in a browser screen, the component runs in a foreground process and holds the use of the

device’s display. For static data extraction, the component runs in a background process with

the use of HTML parser-based extractions instead of JavaScript injections.

Fig. 3 describes the extraction algorithm used in WA components. In the implementation

of the runtime environment of WA components, we designed the extraction algorithm based

on a node order and the getElementsByTagName method. The method is applied to the

selected tag and its parent tag. This method is used because of the absence of getElements-

ByClassName method in some versions of WebKit-based mobile browsers and WebView API

[61]. Additionally, since the page rendered in desktop and mobile Web browsers are different,

we designed the algorithm to match neighbouring nodes in the node index range of ± 10. The

algorithm also matches id, name and class name attributes when they are available.

P. Chaisatien and T. Tokuda 101

Fig. 3. Extraction algorithm used in Web application component.

The extraction algorithm first uses the tag name of the selected element’s parent tag

as the starting point. All tags with the same name are listed in an array using DOM’s

getElementByTagName method. Listed tags are then matched with other attributes (id,

name, and/or class attribute of the tag) that are defined in the configuration parameters. If

a match is found, the algorithm continues to the second phase by listing all child tags of the

matched parent tag. It matches the child tag name with other attributes for the final element.

The JavaScript code is executed to extract information of the final element if the match is

found, and returns the final result from the component back to the mashup application.

WA components can be used in any handling stage as they can provide an input at the

beginning of the mashup application. In normal cases, WA component functions as a query

component that receives data from a component, performs a Web extraction, and sends the

result back to the mashup application. It also can be used as the output component to display

the final result page after the extraction is finished. The limitation is that a WA component

can only be applied a Web application that has its DOM representation and can be executed

with JavaScript injection. Therefore, Flash-only Web pages are not compatible.

102 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

3.2.3 Web service component

WS components in MAIDL use XPath [62] and JSONPath [63] to query data from REST

Web services via network connections in a background process. We chose to use only RESTful

services because of their simplicity in terms of resource identification (i.e. URI). SOAP

services, on the other hand, would require composers to have specific knowledge in order to

send a request. Composers specify a URI and a query expression to access a part of the whole

data. Composers may integrate Web services they have discovered or use the templates we

have provided. In general, Web service components work in query handling stage of a mashup

such as a transformation from location data to the position’s information.

3.2.4 Arithmetic component

Arithmetic component functions as a mathematical and logical operator that applies to one

or more inputs (operands) received from a publisher component. The operation includes

addition, subtraction, division, multiplication, summation, comparison, and GPS distance

calculation. (given two pairs of GPS coordinates). The program code for this type of com-

ponent is generated as Java threads and runs in a background process. We limited the AR

component to perform basic calculations. For a conditional statement, AR component can use

a ternary operator to assign the value to the variable when the condition is met. Therefore,

composers cannot use the AR component as a conditional statement of a control flow (e.g.

publish data to different components according to the configured condition). The description

of AR components also does not cover loop statements (e.g., for and while).

3.2.5 Shared configuration parameters in MAIDL

There are two common configurations that are shared among all components: data links

and filters. Firstly, all components in input and query handling stages have to define their

publisher and/or subscriber inter-component data links. The mashup generator uses this

information to declare the variable names at the code level. The Mashup Process Schedul-

ing mechanism also decides the mashup execution sequence by optimizing the shared tree

representation of the components and their links. Secondly, composers can configure data

filtration parameters at the result variable configuration of mashup components. The data

filters can be configured to remove, replace or add a set of characters to a text or number

string. The filtration parameter is designed to solve data format conflicts in inter-component

communication and visual representation.

3.3 Data Flow Model

A MAIDL mashup application is designed on the basis of a control-propagated data flow

model (we use flow-based model to represent this terminology). In the abstraction phase,

composers can abstract their mashup by freely laying out the components and specifying

the components’ data flow in a mashup application. The control flow and the execution

sequence of the components are propagated according to the configured data flow. Fig. 4(a)

demonstrates the abstract data model in a shared tree representation. The model represents

mashup components as nested nodes and their inter-component data links in top-down level

order. We divided components in a mashup application into three handling stages. The Input

Handling Stage contains root nodes or a group of Input Components that can provide data to

one or many components. The Query Handling Stage contains components that are nested

P. Chaisatien and T. Tokuda 103

Fig. 4. Abstract data flow model. (a) shared tree model of a mashup application and (b) direction

of data flow of a component with its publishers and subscribers.

as child nodes. It represents a group of Query Components that receive, process, and send

data. The Output Handling Stage contains one component that represents the final Output

Component or display of the mashup execution result. Table 2 summarizes the characteristics

and gives component examples according to its handing stage in a mashup application.

Table 2. Characteristic and component examples divided by handling stage in mashup applications

Stage Characteristic Component example by category
Input Receive an input from user

interactions or from data
sources.

Mobile application: Start a camera, GPS, voice input, etc.
Web service: Make a request with a fixed query string.
Web application: Start user’s or automated Web navigations.

Query Execute a query to related
data sources, perform a cal-
culation.

Mobile application: Run and finish an application for results.
Web service: Prepare a query string and make a request.
Web application: Extract data from the result page.
Arithmetic component: Make a calculation of the data.

Output Display output data, popu-
late an output message.

Mobile application: Start an application (map, browser, etc.).
Web service: Populate and return a JSON or an XML message.
Web application: Populate and return an HTML document.

The data links in the model, shown in Fig. 4(b), represent the configured direction of

data flow from one component to another. We call the component at the head of a link as a

publisher, and the component at the tail of a link as a subscriber. According to the publisher-

subscriber model, one component can be configured to send data to any other components,

and to receive data from the components it subscribed to. Therefore, data flows of mashup

results from publishers are visible only to their subscribers. The Output Component, however,

is not directed to or from any components and is executed last. In the final sequence after

other executions are finished along the configured data flow. Result data propagated from all

components will be visible for use at this component.

The control flow and the execution sequence in MAIDL are based on the device single

display basis: the use of display is paused until the execution is done. In unoptimised execution

sequence, the components are executed one-by-one by its breath-first order. The tree model is

divided into levels in which the topmost level will be executed first. Due to the top-down data

104 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

flow, loop executions can not be defined in MAIDL. Moreover, MAIDL limits the definition

to perform a retrieval of any data or an interruption in the middle of the execution of any

component (e.g., event trigger, interrupt routine call, etc.). Some components such as Web

services and arithmetic components run in background processes and do not hold the use of the

device’s display. To reduce execution time, the Mashup Process Scheduling mechanism merges

and starts execution threads of foreground processes and background processes simultaneously

in the same hierarchical level.

3.4 Mobile Mashup Generator System

In this section we describe how composers use our implemented mashup generator system

called MUGS that is based on MAIDL and its composition model. The tool contains three

separated parts: the MAIDL Designer tool, the Code Gen module, and the App Gen module.

This section explains the MAIDL Designer tool and an example to demonstrate how our

method is used in the composition of mobile mashup application.

3.4.1 MAIDL Designer tool

Fig. 5. MAIDL Designer tool and its related working components.

In the configuration phase, composers use the MAIDL Designer tool to compose their mobile

mashups. It is a Web-based tool that enables composers to correctly choose the output

context, lay out mashup components, and finally create MAIDL description files for the next

generation phase. As demonstrated in Fig. 5, the tool consists of five working components

which are used by these steps:

(i) First, composers select the mashup output context using Context Selector which appears

at the beginning of the composition. The output context can be configured as a mobile

application, a TeWS, or a TeWA.

P. Chaisatien and T. Tokuda 105

(ii) Next, composers select and lay out all mashup components using the Model Pane. A

component model, similar to the abstract model described in Section 3.3, is displayed

in this pane. Composers may use component templates to produce the component

configuration or use a blank template to manually add and configure a component.

(iii) Composers use the Property Sheet to show configuration details of the component and

to complete the configuration of all the required parameters. The components require

two configuration sets: 1) the publisher-subscriber links that describe how components

send/receive data, and 2) the category-specific control parameters of each mashup com-

ponent (as described in Section 3.2). The Model Pane will update its link representation

between components after the configurations are completed.

(iv) During the configuration at Property Sheet, composers can view and select result variable

names of the publisher from Result List, when the components require references to the

data from the components they are subscribed to. To limit the confusion of variable

visibility, these two rules that are applied from the abstract model are used: 1) result

variable names from publishers are visible only to its subscribers, and 2) all result

variables from all components are visible to the output component.

(v) We provide a Web extraction tool called WXTractor for composers to use when they

require the integration of Web application inside their mashup application. During the

composition of a WA component, composers can use the Web browser to navigate to a

Web application and start the WXTractor tool. Composers then select the element of

the actual Web page and simulate/configure the data filtration of the selected informa-

tion. Finally, composers acquire the extraction parameters and apply them to the Web

application component they are currently working on. The details of the WXTractor

tool and its extraction algorithm are described in Section 3.2.2.

After the configuration finished, the composers export the working project as a MAIDL

XML Description File for the generation process.

3.4.2 MAIDL Mashup Example

In this section, we give an example to explain how a mobile mashup application is created

using our composition method. The example Barcode Book Price, as demonstrated in Fig. 6,

is a mobile mashup application functioned as a barcode reader that displays a translated book

price extracted from Amazon’s Web application as its mashup result. It contains all four types

of components available in MAIDL. This mashup consists these following components:

• BarcodeReader: This MA component is an input component that only provides data

to its subscriber. It employs a barcode reader application [64] and is used to scan a

barcode of a product for a barcode number.

• Amazon: This WA component extracts data from Amazon’s Web application [65]. As

a subscriber to BarcodeReader, it receives and uses the barcode number as a search

keyword. After the keyword is submitted and the result page is loaded, the component

extracts an image, a title, and a price of the product for the next execution sequence.

• ExchangeRate: This WS component connects to ExchangeRate’s Web service [66] using

a price from Amazon WA component as its Web service query parameter. The price in

US dollars is then translated into Japanese yen.

106 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

• TotalPrice: This AR component calculates the summation of the translated price from

the ExchangeRate WS component and a fixed product shipment cost.

Fig. 6. MAIDL mobile mashup example Barcode Book Price

The execution sequence follows the order 1© to 4© in the input and query handling stage.

At the output handling stage in 5©, as displayed at the bottom of the model in Fig. 6, we reuse

the mobile device’s Web browser to display the mashup result. The output component is able

to gather any result variable from any component after the execution is finished. The result

consists of the product image and title from the Amazon WA component, and the total price

from the TotalPrice AR component. In the evaluation Section 5, we use these following steps

in the tutorial task to provide the overall comprehension of MAIDL composition method.

(i) First, composers starts the MAIDL Designer tool and choose a mobile mashup applica-

tion at Context Selector.

(ii) Composers respectively add a MA component, WA component, a WS component, and

an AR component to the Mode Pane to match the abstract model provided in Fig. 6.

(iii) Composers bring up the Property Sheet by selecting the first MA component in the

Model Pane and configure the MA component with an Android Intent name to connect

to a barcode reader application. Two additional parameters have to be configured: 1)

use barcode scan mode and 2) define the result parameter name as BarcodeNumber.

(iv) Composers select the next WA component and configure its publisher to the Bar-

codeReader MA component. For the data extraction parameter, composers navigate

to the external Web browser and use the WXTractor tool to generate configuration

parameters from Amazon.com. The extraction parameters are divided into input and

result sets. The input parameter set can be generated at the index page of Amazon.com

P. Chaisatien and T. Tokuda 107

that contains a search box. To use the publisher’s barcode number as a search keyword,

composers bring up the Result List pane to select and substitute the available publisher’s

variable name to the input parameter set. The result parameter set can be generated

at the final result page where the browser shows the search result. Composers simulate

the result by inputing the barcode at the index page and submit the data for the result

page. Composers then retrieve the result parameters from this page and transfer them

to the Property Sheet. In our example, composers are required to extract three result

extraction parameter sets, and specify three components’ result variable names of Pro-

ductTitle, ProductImage, and ProductPrice. To match the data format of the next WS

component, composers are required to configure the filtration parameter of the Product-

Price to remove the leading dollar sign of the extracted data. We describe the details

of the input/result parameter extraction steps in Section 3.2.2.

(v) Composers select the next WS component and configure its publisher to Amazon WA

component. Composers configure the component to connect to the ExchangeRate Web

service by using the extracted price from Amazon WA component, and the currency pair

(i.e. USD and JPY) as its query parameters. As similar to the previous step, composers

use the Result List pane to select and substitute the publisher’s variable name to the

query parameters. Finally, composers configure the result variable name as YenPrice.

(vi) Composers configure the next AR component as a subscriber to ExchangeRate WS

component and calculate the total price using its publisher’s YenPrice variable name

and a fixed shipping cost. Finally, composers configure the result variable as TotalPrice.

(vii) At the final step, composers configure the output component that uses the system’s

Web browser to display data received from all components. The required parameter is

the Intent name to connect to the device’s browser and the HTML code to be displayed.

Composers use Result List to select and substitute the variable name in the code.

4 Mashup Generation and Runtime

4.1 Mashup Generation

Fig. 7. Workflows of Code Gen and App Gen Module in the generation phase.

108 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

Mashup output contexts in MAIDL are divided into two groups according to their runtime

behavior. We called the application created as a mobile application as Active Context which

aimed for single user interaction and have its output component run as foreground (FG)

processes. Passive Context, which includes TeWS and TeWA, are mashups created for multiple

device use via network connections. According to the deployment to the Web server module,

this context’s output components runs as background (BG) processes. Each output contexts

has a different inter-application protocol and interactions with users or client devices. In

Section 4.2, we explain the architecture, how data is exchanged between components, and

how the Mashup Process Scheduling mechanism is used. The overall runtime behavior of two

output contexts is explained later in Section 4.3.

In the generation phase, after composers complete the configuration process and have

their MAIDL XML description file exported. As demonstrated in Fig. 7, the code generation

process begins after a MAIDL XML description file is uploaded to the Code Gen module.

It verifies the XML syntax and sends the XML object to generate source code files. The

generated code is then compiled by App Gen module. The source code and the output

application package file are generated differently according to the configured output context

as described in the followings.

• Mobile Mashup Application (Active Context): Code Gen module first generates all the

working files. The main source code file is programmed to send and receive information

with other components via scheduled multiple threads. All GUI elements including the

final output display are borrowed from the integrated components that are executed

in sequence. The App Gen module compiles the prepared files for the final Android

package file (APK [67]). The module then returns the final package file.

• Tethered Mashup Application (Passive Context): In this context, Code Gen uses i-Jetty

file and folder templates, similar to conventional Java Servlets. The difference from

the mobile mashup application context is that the Servlet code is run in a background

process. The background process cannot directly communicate with foreground process

to start an execution of mobile applications which hold the use of the device display. We

describe the solution to this restriction as the conventional inter-application protocol

is altered via the use of Switcher Mobile Application. It is able to indirectly receive

and send data between background and foreground processes in the tethered mashup

application context. App Gen module then compiles the prepared files for the final Web

application archive file (i-Jetty compatible WAR [68]). The mashup application in this

context is deployed to the i-Jetty application on the device. In an advanced deployment

of multiple TeWSs and TeWAs in the same path, composers can change the content of

deployment descriptor file (web.xml) to enable access to the same context path.

It should be also noted that, during the execution process, all prerequisites applications

required for each mashup component are installed on the device running the created mashup.

4.2 Switcher Mobile Application and Mashup Process Scheduling Mechanism

In Passive Context, the conventional inter-application protocol does not permit background

processes to call and execute foreground processes. In other words, tethered mashup appli-

cations cannot call and retrieve data from mobile applications. Therefore, we altered the

protocol to enable the mashup components in foreground process to communicate with ones

P. Chaisatien and T. Tokuda 109

Fig. 8. Conventional inter-application protocols are shown in (a) to (c) where (d) is not permitted.

A SMA-based inter-application protocol (shown in(e)) enables an indirect communication between
a call from a background process to a foreground process

Table 3. Details of the mashup mechanism in each output context group

Group Context Inter-component messaging protocol Details
Active
(FG)

MA MA: Intent (FG) or Service (BG)
WS: Service (BG)
WA: Intent (FG) or Service (BG)
AR: Native code

The mashup output context transformation
mechanism translates the messaging protocol
from Intent (FG) to Intent (SMA) when these
components are configured and executed.
MA: Mobile applications are executed from a
remote connection via TeWS or TeWA.
WA: JavaScript-based extractions are executed
from a remote connection via TeWS or TeWA

Passive
(BG)

TeWS
and
TeWA

MA: Intent (SMA) or Service (BG)
WS: Service (BG)
WA: Intent (SMA) or Service (BG)
AR: Native code

in background process via an application called Switcher Mobile Application (SMA). Fig. 8

demonstrates the difference between the conventional messaging protocol and the SMA-based

protocol. For AR components, data filtrations, and publisher/subscriber configurations: the

working code is generated as native program code and does not employ the SMA-based pro-

tocol. Table 3 shows the detail of inter-application protocol used in each output context.

In Active Context, the mashup is generated as a mobile application. The inter-application

protocol is based on the Intent and Service protocols of the Android platform. We found no

limitation in the implementation of the runtime environment in this context.

After the output context is decided, mashups will be generated using MAIDL applied the

Mashup Process Scheduling mechanism to optimize the execution sequence and to reduce the

execution time. The optimization algorithm contains two phases. As demonstrated in Fig. 9,

the first one is based on the reduction of shared tree levels that follow these rules:

(i) If there is no background component, the execution sequence follows the breadth-first

order (1© to 5©) as demonstrated in Fig. 9(a).

(ii) If a foreground component is followed by a background component, the child component

110 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

Fig. 9. Tree Level Reduction in the first phase of Mashup Process Scheduling Mechanism.

is executed immediately after the parent component is executed. Therefore, after the

execution sequence Fig. 9(b) is optimized, the background component 4© is executed at

the same time as the foreground component 4©, as shown in Fig. 9(c).

(iii) In Fig. 9(d), if first foreground components in two branches is followed by a background

component, the followed background component 3© of the first branch is executed at the

same time as the foreground component 3© of the second branch, as shown in Fig. 9(e).

(iv) In Fig. 9(f) and (h), if one branch contains a foreground or a background component

and is followed by a background component while the other contains two background

components, the first component 2© in the first branch will be executed at the same time

as the first background process 2© in the other branch. The next background component

in both branches are executed at the same time after the first two components are

executed, as shown in Fig. 9(g) and (i).

In the second phase, as shown in Fig. 10, the optimization algorithm then looks up the

component in the same hierarchical level that has the same publisher or subscriber and tries to

synchronize the execution time of a foreground component with other background components

in the same hierarchical level. We summarized the rule as follows:

(i) If there is no background component in the same hierarchical level, the execution se-

quence follows the breadth-first order as demonstrated in Fig. 10(a) and (f).

(ii) If there is one foreground component while others are background components in the

same hierarchical level, the foreground component is executed at the same time as other

background components, as demonstrated in Fig. 10(b), (c), (g) and (h).

(iii) If there is more than one foreground component in the same hierarchical level, other

background components are executed at the same time as the first foreground compo-

nent, as demonstrated in Fig. 10(d), (e), (i) and (j).

On a technical level, our runtime environment uses Java Thread synchronization to catch

a signal message that is sent by the component to inform the system when its execution has

finished. We also measure and report the performance of the mechanism in Section 5.1.

P. Chaisatien and T. Tokuda 111

Fig. 10. Process Synchronization in the second phase of Mashup Process Scheduling Mechanism.

4.3 Mashup Runtime

4.3.1 Runtime in active context

The mashup in Active Context is configured as a mobile application when composers intended

to design the mashup application for single-device use. During the mashup execution process,

all interactions with the components are to be done by the user. According to what we

demonstrated in an example in Section 3.4.2, components in this context work separately as

mobile applications that hold the use of the device’s display and release it once the execution

of the component is done. Other components that work in background processes will not be

displayed. Mashups in this context apply conventional Intent and Service messaging protocols

and do not employ the SMA-based one. After the execution of components in input and query

handling stages are finished, the output component gathers all information and uses it as its

execution parameters with the configured Intent name. For example, the mashup can display

the location’s detail on a map application, show the search result in the form of an HTML

document using the device’s browser, or use the result as e-mail content to send to recipients.

4.3.2 Runtime in passive context

The mashup in passive context is configured as a TeWS or a TeWA when composers intend to

broadcast information or send the mashup results via HTTP communications. They allow the

exposure of functionalities from the host device (e.g., location-based and other information

retrieved from device’s sensors) to be used as a data source for mashup executions on the

client devices. In addition, the HTTP communications via TeWS or TeWA mashups enable

platform-independent functionality exchanges which solves the device platform constraints.

112 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

For TeWS, this output context is aimed for further consumptions by other client-server

scripts for functionality exchanges (e.g., using XMLHttpRequest and JavaScript, or parsing

JSON messages in native program code). During the execution process, the client-side scripts

can send an input parameter via GET or POST methods to the TeWS and retrieve the

mashup output in the form of a Web service message. Since the execution is requested via

a remote connection, all components should be configured to run in background processes

(e.g, Web service query, GPS location retrieval from built-in sensor). In contrast to the active

context, the TeWS output context does not require a mobile application to work at the output

stage. Instead, it is necessary to configure how results of the execution are populated as a

Web service output message in JSON format or plain text.

Fig. 11. Meeting Point Cooperative Mashup.

Fig. 11 demonstrates the multi-device cooperative mashup that involves the consumption

of TeWS which requires interaction between two devices. The Meeting Point mashup demon-

strates a restaurant search scenario using two mobile devices’ location-based information.

From number notations in Fig. 11, Meeting Point is operated by the following steps:

(i) The client device starts the client side applicationc which sends the device’s current

location coordinates to the host device.

(ii) The host device uses the received location information and uses its own current location

as inputs for the mashup execution of Meeting Point Registration.

(iii) The result of the mashup execution, containing restaurants’ information, is returned to

the client device. The client application populates the pinned map GUI.

cThe client application is a manually created iOS application which consumes the host’s Web service messages.

P. Chaisatien and T. Tokuda 113

(iv) The user navigates the map application to see information of each place.

(v) The user decides the point of interest and broadcasts it back to the host device.

(vi) The host device receives the broadcasted information. Both the client and host devices

simultaneously switch to their map application which display a navigation to the place.

In this mashup, the application is separated into two mashups. Meeting Point Registra-

tion mashup performs the following actions: gathers the devices’ location-based information,

calculates the middle coordinates, submits the calculated coordinates to perform a query to a

Web service [69] for nearby restaurant information, and sends the relevant results back to the

client device. Meeting Point Confirmation is a mashup created in TeWS output context which

allows the foreground process (map application) on the host device to be called via SMA-

based protocol. The mashup receives the selected POI information, that the client device

intended to broadcast back, and starts the device’s map application to display the point.

The important role of MAIDL in this cooperative mashup is to enable the cross-platform

device connections for cooperative purposes via a TeWS output. The output message can

be consumed by client devices or can be used to create a rich interactive GUI using the

platform’s APIs instead of HTML-based GUIs. In a more complex mashup, more information

from devices can be gathered for information-assisted decisions. The significant constraint of

this type of mashup is that it requires a unique identification (e.g., mobile IP address) that

allows the deployed mashups to be accessed directly from other devices. A proxy architecture

might be required for non-IP communication between multiple devices.

For TeWA, this output context is aimed for a Web-based interactive mashup using HTML

and JavaScript. In contrast to TeWS, a TeWA can be created as a terminal application

without further consumption from client devices. An output message of TeWA is be populated

as a hardcoded HTML document with results of the execution aligned in body or scripting

part of the document. Fig. 12 demonstrates a mashup application designed to allow requests

from client devices to access the location-based information and to perform mashup execution

on the host device. The prepared application Location Mashup is created in TeWA output

context with its execution procedures as the followings:

Fig. 12. Location Functionality Exchange Mashup.

114 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

(i) The client device A and B use their default Web browser to access the Web application

Location Mashup on the host device.

(ii) The host device uses its location-based information to execute the mashup that queries

Web services for weather [70] information and Wikipedia articles of nearby places [71].

(iii) The host device populates the HTML documents using the results from the connected

Web services. The document is then transferred and displayed on the client’s browser.

In this functionality exchange mashup, the application Location Mashup is able to fulfill

the device’s (e.g., iPod Touch and iPad) absence of GPS sensors. It is practical when the

client device can perform an ad-hoc connection to the host device located nearby and borrow

some functionalities. This is advantageous as the variety and pace of mobile hardware updates

sometimes leave devices without certain functionalities. For instance, Wifi-based tablets often

lack a GPS sensor and a high-definition camera. Platform-dependent APIs also made those

sensors inaccessible without native program code. In our composition method, the mashups

created in a TeWA can work as a functionality portal for the client devices via HTTP. It is

considerable to compose a remote application such as a remote Web camera probing system,

or an application that securely exchanges personal information with other devices.

Mashups in passive context can integrate and execute foreground components using a

SMA-based protocol. The Mashup Context Difference Conflict was found when these two

exceptional combinations are integrated: 1) WA components that employ JavaScript-based

extraction, and 2) MA components that run in foreground processes. In these cases, when the

mashup is executed from a remote client device, the device may see no difference in the use

of these components. However, it yields an interruption by holding use of the host device’s

display. For example, a client device connects to the host device and executes a barcode

scanner application. The host device’s interaction is interrupted to finish the requested task.

5 Evaluation

The evaluation of our research is divided into 4 subsections. We report the performance

evaluation of the Mashup Process Scheduling mechanism, when applied to various mashup

execution settings, in Section 5.1. We report and explain the empirical evaluation result

concerning the composer usability and expressivity of MAIDL in Section 5.2. The comparison

of our research to other mashup-related methods is discussed in Section 5.3. Finally, we

summarize the expressive boundary and explain the extensibility of MAIDL in Section 5.4.

5.1 Performance Evaluation of Mashup Process Scheduling Mechanism

To evaluate the Mashup Process Scheduling mechanism, we selected and tested applicable

composition samples given by composers in the freestyle task. The applicable examples are

mashups consisting of parallel WS, AR and background MA components which can be repre-

sented as two shared tree branches model. To reduce the execution time at the input handling

stage, we simplified the mashup examples to receive constant inputs. The simplified models

are used as inputs for the Code Gen/App Gen modules with two configurations as shown in

Fig. 13: (1) with and (2) without the scheduling mechanism applied. The mashup examples

were modified to record timestamps when each component finished its execution.

The mashup examples were divided by their integrated components. Table 4 shows the

average execution time difference of each examples. The execution time is measured from the

P. Chaisatien and T. Tokuda 115

Fig. 13. The Model of Mashup Example used in Performance Evaluation. (a),(c) and (d) applied
the first phase of the Mashup Process Scheduling Mechanism. (b), (d) and (f) applied the second

phase of the mechanism. In (a) and (b), we use Amazon WA component, and database MA

component. In (c) and (d), we use Amazon WA component and ExchangeRate WS component.
In (e) and (f) we use Wikipedia WA component, and AR component that calculate GPS distance.

Table 4. Average Execution Time in Performance Evaluation (sec).

3Gm WLAN1
n WLAN2

o

T a2 -T a1 3.7437 (16.97%) 1.0474 (11.88%) 0.3001 (2.85%)
Tb2

-Tb1
0.1425 (38.60%) 0.1134 (24.48%) 0.0176 (5.73%)

T c2 -T c1 14.9168 (41.57%) 3.2902 (22.89%) 1.8671 (13.92%)
Td2

-Td1
0.2211 (34.85%) 0.1677 (29.83%) 0.1596 (10.46%)

T e2 -T e1 0.0231 (18.30%) 0.0066 (5.23%) 0.0052 (2.75%)
T f2 -T f1 4.4953 (11.28%) 3.0980 (10.09%) 0.3283 (3.27%)
Average(%) 26.93% 17.40% 6.50%

moment the execution starts until all the components received their results. We observed the

average from ten execution times of the mashup application deployed on a Nexus One mobile

device [72] in three network connection environment settings: one 3Gm and two wireless

LAN connections (WLAN1
n and WLAN2

o). From time difference results in Table 4, the

scheduling mechanism shows significant improvement in execution time when it is applied to

mashups using two WA-WS connected components (Fig. 13(c) and (d)) that were executed

in a 3G connection environment. For the same connection speed, we found about a 40%

execution time reduction when MA subscribers in the same hierarchical level are scheduled to

be executed at the same time (Fig. 13(b)). There is less improvement when the mechanism

is applied with AR components since they do not employ any inter-application protocol. The

overall percentage of time differences is decreased when the mechanism is applied to mashup

executions in faster connectivity environments. In summary, the Mashup Process Scheduling

mechanism is able to accelerate the mashup execution speed well when it is applied to the

integration of Web components in slower network connectivity environments.

m7.2 Mbps download/384kbps upload
n 54 Mbps download/upload (IEEE 802.11g) connected to 100 Mbps router
o 300 Mbps download/upload (IEEE 802.11n) connected to 1 Gbps router

116 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

5.2 Composer Usability and Expressivity of MAIDL

We observe four elements in our evaluation with novice and expert composers: Questionnaire

Result, Composition Pattern, Composition Quality, and Composition Time. The main ob-

jective of this evaluation was to observe how composers react to two main questions. The

first was about composers’ expectations (i.e., “What did end-users expect before and after

using MAIDL?”). The second was about the method’s expressivity (i.e., “How well could

MAIDL express end-users’ compositions?”). Composers were asked to use MUGS to com-

plete two composition tasks, tutorial and freestyle task. In the tutorial task, composers used

the MAIDL Designer and followed tutorial steps to build a simplified version of the mashup

example shown in Section 3.4.2. In this modified task, the final output component is simple

text messages rather than a whole HTML document. We explained the objective of the task

and demonstrated the output mashup before composers continued to the freestyle task. In

the freestyle task, composers were asked to create a mashup and apply the configuration they

have learned in the prior task. Composers were able to search for and discover Web services,

Web applications or mobile APIs for their mashup before the composition began. We collected

and observed the common composition patterns from the composers’ mashups. This task also

aimed to observe the expressivity of the description language towards the aforementioned

questions of expressivity, composers’ preferences regarding the composition method.

At a certain time frame of the tasks, composers were asked to fill out 5-point Likert scale

evaluation questionnaires. The questionnaires were divided into 4 setsd as the following:

(i) S-set observes composers’ mobile phone usage, knowledge about mobile and Web tech-

nologies, programming skills, and the concept of mashup compositions.

(ii) C-set observes composers’ expectations to our description language in the level of which

components and in what aspect composers would like to be assisted (and are assisted)

in creating a mashup application.

(iii) R-set observes the expressivity of the description language in the level of how well

composers can understand and apply the method to compose their own mashup.

(iv) P-set observes composers’ preference regarding each component they have used.

The pre-questionnaire set consists of S-set and C1-set. After the first task finished, com-

posers took R1-set before the freestyle task begins. To observe the outcome of the experiment,

the C-set and R-set questionnaires were repeated after the freestyle task finished (this time

recorded as C2 and R2, see footnote). P-set was additionally taken after the aforementioned

composition tasks and questionnaires are finished. We give the evaluation result by compar-

ing answers from pre- and post-questionnaire between two composer groups in Section 5.2.1.

The common mashup composition patterns and study cases are provided in Section 5.2.2.

Timestamp information, which was recorded during the tasks, is interpreted and discussed in

the same section. We report the observation result of composition mistakes in Section 5.2.3.

5.2.1 Questionnaire result

The experiment was conducted with 40 composers which are divided into two groups. The

novice group consists of 20 composers who are familiar with Web and mobile technologies.

The expert group consists of 20 composers who are familiar with Web, mobile technologies

dC-set contains C1 and C2. R-set contains R1 and R2. The pair in each questionnaire set are identical.

P. Chaisatien and T. Tokuda 117

Table 5. S-set Questionnaire Result

Question Item Novice Composers Expert Composers
HTML backgrounds Composers know some

HTML tags such as links
(<a>), and images ()

Composers understands HTML
tags’ attributes and their relation-
ship to DOM and JavaScript

Web service backgrounds None of them understand
(0%)

The majority knows the concept,
how to use and apply (75%)

Daily mobile phone usage hours 2-3 hours 1-2 hours
Top 3 mobile phone function usage 1)Internet, 2)Phone,and

3)E-mail
1)E-mail, 2)Internet, and 3)Phone

Mashup knowledge None of them knows
(0%)

Most of the subjects know
mashups (95%)

Mashup component examples given GPS, camera, voice recog-
nizer, and Web pages

GPS, camera, and Web services

Composers’ confidence in creating a
mashup from the given examples

None of them were confident
(0%)

More than half were confident
(65%)

Programming skills Some know HTML, or Excel Most of them possess intermediate
level of Java, C, or PHP

and are well experienced in one or more programming languages. Novice composers are

expected to compose mashups with basic functions and a simple pattern. Expert composers

are expected to able to use most of the features provided to compose complex mashups. They

might also suggest corrections and propose further development to our system. From results

of S question set, we summarise the characteristics of both composer groups in Table 5.

Results from question items in S-set show that novices know basic HTML and some are able

to use Microsoft Excel expressions. Experts have high skills in Web programming languages

such as HTML, JavaScript DOM or PHP. For mashup compositions, experts possess more

skills to use Web services, create mashups and most of them possess intermediate level of one

or more programming languages. Novices, however, possess low to no mashup composition-

related skills. Interestingly, when asked to give a mobile mashup example, both composer

groups similarly chose the same set of mashup components for their example composition.

The results from the next three question sets are compared based on: three items with

highest/lowest ratings in both pre-/post-questionnaires, statistical differences between both

groups, and statistical differences between pre-/post-questionnaires. C-set questionnaire con-

sists of 12 question items concerning the composer’s expectations of our mashup method. In

Table 6, we compare the results from C1-set (which was taken before the tutorial task) and

C2-set (which was taken after the freestyle task). The results from C-set indicated that:

• Before the tasks were taken, the expert and novice group shared high expectations

about the generation of source code/application files, and automatic process scheduling

mechanism in our method. In particular, the novice group expected that MAIDL could

help them integrate Web services into their mashups. The expert group expected that

MAIDL could assist them in creating mobile mashups. Both groups shared low expecta-

tions that MAIDL may not assist them in the planing procedure of mashup data flows,

applying mathematical functions, and applying data filtrations.

• From Fig. 14(a), the overall ANOVA results indicated that after the tasks finished: the

expectation rating is increased in the novice group, but was lowered in the expert group.

It can be interpreted that novices do not expect or have more requirements. Experts,

118 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

Table 6. C-set Questionnaire Result

Question Item Novicee

(x̄± σ)
Experte

(x̄± σ)
Tf

NC1 -
EC1

1) Select and reuse parts of Web pages/Web applications 4.10±1.12
3.60±1.05

3.20±1.40
3.80±1.24

0.031

2) Connect to Web services and query the result messages 4.25±0.85
3.80±1.11

3.30±1.63
3.80±1.24

0.028

3) Select integrating mobile phone features and connect them to
mashups

4.05±0.83
3.45±1.28

3.80±1.20
4.00±1.26

4) Plan data flows of the mashup application 3.55±1.36
3.25±1.12

3.05±1.28
3.50±1.00

5) Apply mathematical function and logical operation with the data 3.95±1.05
3.50±1.10

2.65±1.18
3.00±1.34

0.001

6) Filter the data (e.g., cut some unimportant texts/characters) 3.95±1.05
3.60±1.19

3.10±1.55
3.15±1.35

7) Automatically synchronize running processes for better performance 4.20±0.95
4.10±0.72

4.00±0.79
3.85±0.75

8) Automatically generate source code files 4.20±1.15
4.10±0.79

3.55±1.15
3.95±0.89

9) Compile source code and generate an application package file 4.30±1.08
4.05±0.83

3.85±1.31
3.85±1.14

10) Create the final mashup as a mobile application (to use on a device) 4.05±1.23
4.10±0.85

3.90±1.17
4.15±0.99

11) Create the final mashup as a Web service or Web application
(for collaborative applications/functionality exchanges to other devices)

4.10±1.12
3.90±0.85

3.75±1.07
4.20±1.11

12) Reuse existent information or functionality without creating new
ones (parts of Web pages, Web service messages, mobile applications)

4.05±1.05
3.65±0.88

3.75±1.12
3.60±1.14

however, expected that MAIDL should perform better in the items explained below.

• After the tasks were performed, both groups differed in their expectations. Novice

composers developed the following requirements: more automatic optimizations, an un-

derstandable source code file generation, and fewer steps to create and deploy the final

mobile mashups. Expert composers would like MAIDL to provide more mobile-specific

components and fewer steps to construct the mashup output. Both composer groups do

not expect or require further assistance in the planning procedure of mashup data flows

or the application of mathematical functions in MAIDL. Novice composers show low ex-

pectations about the integration of mobile-specific components while expert composers

believe that MAIDL includes enough data filtrations to apply to their mashup.

• From T-test results of the C1-set, we found overall statistical differences of both groups’

expectations. When compared to the expert group, the novice group has higher ex-

pectations about the reuses of Web services/Web applications and the layout planning

procedure of data flows. There was no statistical difference found in C2-set.

R-set questionnaire consists of 14 question items concerning the composer’s expressivity

using our method. In Table 7, we compare the results of R1-set, which was taken after the

tutorial task, and R2-set, which was taken after the freestyle task. The results indicated that:

eData is shown in average(x̄)±standard deviation(σ) format. The upper value is C1, the lower is C2 result.
fWe omitted the T-value that is larger than 0.05, therefore, the data in this column shows only the T-value
calculated from novice(N)/expert(E) result pairs of the pre-questionnaire. There was no significant difference
between any pre/post result pairs or novice/expert result pairs of the post-questionnaire.

P. Chaisatien and T. Tokuda 119

Fig. 14. The Analysis of Variance Result of (a)C-set Questionnaire and (b)R-set Questionnaire.

• In R1-set, both groups indicated their high expressivity to plan a workflow of a mashup

and to apply data filtration parameters. In particular, novices believed that MAIDL

could help them integrate Web services to their mashup. Experts indicated that the

WXTractor tool could help reduce the amount of work and steps to get extraction param-

eters from Web applications. Both groups shared low ratings about the use of MAIDL

without reference documents, their comprehension of publisher/subscriber patterns and

their comprehension of the AR component’s configuration.

• In Fig. 14(b), the overall ANOVA results indicated that both groups’ expressivity ratings

were increased but the novice group gave lower ratings than the expert group. We

interpreted that both groups believed that the use of MAIDL can help them express

their compositions, albeit at different levels. Experts can use almost all the features

while novices may have difficulties in the inter-component and data-related features.

• After the tasks were taken, both groups shared the same opinion that they could plan a

workflow of mashups and reuse Web applications. The novice group could understand

the configurations of AR components while the expert group shown that they could use

Result List to import the inter-component variables. Both groups still do not agree to use

MAIDL without reference documents. The novice group found difficulties in the use of

Result List and data filtrations. The expert group found difficulties in the configuration

of MA components to use some specific features. They also indicate confusion in the

process to get the extraction parameter sets for page navigations of WA components.

• T-test results of R1 set indicate that the expert group gave higher expressivity ratings

than the novice group in data-related items consisting the use of WXTractor tool and

data filtrations. T-test results of the R2 set further indicate that the expert group

could integrate Web services/applications in MAIDL and import variables using Re-

sult List. We found the statistical difference between pre/post data sets in the novice

group concerning: planning a mashup work flow, understanding publishers/subscribers,

configuring Web applications in their mashup, and configuring the output component.

Both groups shared the same statistical difference found in understanding publish-

ers/subscribers. The results can be interpret that MAIDL provides a moderate ex-

pressivity level for novices in planning their mashups. Experts have a higher level of

expressivity that they can apply more features to their mashups.

120 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

Table 7. R-set Questionnaire Result

Question Item Noviceg

(x̄± σ)
Expertg

(x̄± σ)
Th

NR1 -NR2/
ER1 -ER2

Th

NR1 -ER1/
NR2 -ER2

Th

AllR1 -
AllR2

1) Plan a workflow of a mashup us-
ing MAIDL.

3.50±0.69
3.95±0.60

3.65±0.88
4.10±0.72

0.03/ φ 0.01

2) Create a mashup from MAIDL
without reference documents.

2.60±0.88
2.50±0.95

2.55±1.10
2.75±1.25

3) Apply the configuration of MA
component to your mashups.

3.30±0.73
3.35±0.88

3.50±0.83
3.60±1.10

4) Understand the publisher and the
subscriber messaging pattern.

2.80±0.70
3.60±0.50

2.95±1.19
3.90±0.64

<0.01/<0.01 <0.01

5) Apply the configuration of WA
component to your mashups.

3.15±0.93
3.65±0.49

3.65±0.88
4.15±0.67

0.04/ φ φ / 0.01 0.01

6) Use WXTractor to extract param-
eters for your mashups.

3.15±1.14
3.40±0.60

3.95±1.23
3.75±0.97

0.04/ φ

7) Apply the input/result extraction
parameter sets of WA components.

3.15±1.04
3.25±0.72

3.25±0.97
3.55±0.89

8) Apply the JavaScript-based navi-
gation/extraction parameters.

2.80±1.01
3.40±0.75

3.50±1.05
3.75±0.72

0.04/ φ 0.04/ φ 0.04

9) Apply the Result List to import
parameters from publishers.

3.25±0.85
2.95±1.00

3.25±0.91
4.10±0.64

φ /<0.01 φ /<0.01

10) Apply filtration parameters to
the data.

3.35±1.04
3.10±0.85

4.15±0.99
3.65±0.75

0.02/ 0.04

11) Apply the configuration of WS
component to your mashup.

3.35±0.88
3.40±0.88

3.50±1.15
4.00±0.65

φ / 0.02

12) Apply the configuration of AR
component to your mashup.

3.00±1.08
3.50±0.89

3.05±0.94
4.00±0.86

φ /< 0.01 < 0.01

13) Understand the relation of oper-
ations/results in AR component.

2.50±0.89
3.80±0.77

2.75±1.02
3.90±0.79

<0.01/<0.01 < 0.01

14) Understand how to configure the
output component.

2.85±0.67
3.55±0.83

3.65±0.81
4.00±0.79

0.01/ φ < 0.01

In the final questionnaire, P-set, we observed the composers’ ratings of each particular

feature in our mashup method. We compare the results between the two groups and found

no statistical difference in any items except that the novice composers gave lower ratings

for advanced execution features (such as loops and data type) than the expert composers.

Table 8 shows the average ratings for 20 question items answered by two composer groups.

We discussed the five question items with lowest and highest rating found in both groups.

• Both groups gave high ratings about the ability of MAIDL Designer to assist their

compositions and the comprehensible method to reuse Web applications. Composers

prefer that the mashup give them immediate feedback when it is being created. They

indicated that integration components should be simplified to templates. The expert

group agreed that our method and its ability to perform the integration of Web services

was applicable.

• Both groups gave low preferences towards further applications of MAIDL. MAIDL fails

to covers a sufficient integration component domain, including queries of multiple items

from one data source. They disagreed that the reuse of Web services were more prefer-

able than Web applications. The novice group narrowly disagreed with the statement

that WXTractor is comprehensible.

gData is shown in average(x̄)±standard deviation(σ) format. The upper part is R1, the lower is R2 result.
hThe symbol φ represents the T-value that is larger than 0.05. φ/φ representations are omitted from the table.

P. Chaisatien and T. Tokuda 121

Table 8. P-set Questionnaire Result

Question Item Noviceh

(x̄± σ)
Experti

(x̄± σ)
Tj

N-E
1) MAIDL Designer can assist compositions of mashup applications. 4.10±0.72 4.50±0.51
2) Model Pane and Property Sheet were applicable. 3.85±0.67 4.00±0.65
3) The configuration of WS and WA output was comprehensible. 3.60±0.60 3.95±0.60
4) The configuration of MA output/component was comprehensible. 3.65±0.75 3.65±0.81
5) The configuration of WS component was comprehensible. 3.75±0.64 4.05±0.60
6) The configuration of AR Component was comprehensible. 3.55±0.60 3.90±0.64
7) The configuration of WA component was comprehensible. 3.75±0.55 4.05±0.69
8) The WXTractor tool was comprehensible. 3.30±0.98 3.75±1.02
9) The configuration of data filters was conprehensible. 3.50±0.69 3.85±0.93
10) The Result List feature was comprehensible. 3.75±0.91 3.70±0.98
11) Prepared component libraries covered all your requirements. 3.20±0.62 2.90±0.91
12) type, datatype and execution parameters were comprehensible. 3.00±0.79 3.60±0.82 0.024
13) It was more preferable to have component templates. 3.80±0.77 4.05±0.89
14) It was more preferable to create your own MA components. 3.50±0.95 3.30±1.08
15) The method to reuse WAs are more preferable than WSs. 3.20±1.06 2.80±0.70
16) Composers are able to crate a mashup using MAIDL Designer. 3.65±0.67 4.05±0.60
17) It was more preferable to be able to immediately test the mashups. 3.95±0.76 4.15±0.67
18) There were some limitations in MAIDL Designer. 3.70±0.66 3.85±0.93
19) Any mashups are effectively composable using MAIDL Designer. 3.10±0.97 3.00±1.03
20) Mashup composition subjective ratings. 76% 77%

• Composers have given additional comments about our method. They requested more

user-friendly GUI elements such as filter simulations, dialog composers and mobile GUI

editors. Interactive elements such as real-time mobile device simulators, data flow simu-

lators and video tutorials might deliver a better comprehension during the compositions.

5.2.2 Composition patterns and composition time

We observed the patterns in the mashups composed by the subjects in the freestyle task. Ta-

ble 9 shows the common composition patterns found. We divided the patterns by their com-

binations of components in different handling stages (I=Input, Q=Query, and O=Output).

The result gives an overview perspective that mobile mashups are commonly composed in

IQO or IQQO patterns. These patterns are generally a linear flow that receives an input,

uses the input data to perform a query with one or two executions and generates an output of

the mashup. We found that 80% of novice composers use these patterns. Expert composers

tend to have variety in composition patterns and they are able to compose compose complex

mashups with more than six components integrated.

In order of most frequent use, Table 10 shows the top four types of components that are

used in compositions, divided by their handling stage. The frequently used inputs are geo-

location, text, camera and speech. Query components employ WA/WS components as the

mashup data sources. The main difference found is that novice composers tend to use more

WA components while expert composers use more WS components as their query component.

The most common output components were list displays and WS or WA outputs. AR compo-

nents are less used by novices. The most common mashup in this study is a GPS component

i Data is shown in average(x̄)±standard deviation(σ) format.
jThe data in this column shows only the T-value calculated from novice/expert result pairs of the P-set. We
omitted the T-value that is larger than 0.05 from the table.

122 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

Table 9. Composition Pattern

Composition Patternk Total Novice Expert
IQO 18 11 7
IQQO 8 5 3
IO 4 1 3
IQQQO 3 1 2
2IQO 1 1 0
2IO 1 1 0
I2QO 1 0 1
2IQO 1 0 1
I2Q2QO 1 0 1
I3Q2QO 1 0 1
IQQ2Q2QO 1 0 1

Table 10. Frequently Used Components divided by Handling Stage

Stage Type Number found
Input MA:GPSLocator 16

MA:Input Box 7
MA:Barcode Scanner 5
MA:Speech Input 4

Query WA Component
WS Component
AR Component
MA:Database

26
24
4
1

Output MA:List Display 14
WS or WA Output 10
MA:Map 9
MA:Browser 5

connected with one or two Web services (restaurant, hotel, address, nearby places, train sta-

tions) that displays the query output as a map application. Composers also use the same

pattern to compose a price checker, a word translator/voiceover, and simple Web search. In

more complex patterns, there was a mashup of a barcode scanner to check prices from multi-

ple sources, a multiple language translator, and a mashup with calculations of GPS distance.

During the freestyle task, we measured the time composers use MAIDL Designer tool to

configure their mashup. The amount of time does not include the abstraction phase where

composers plan their mashup or confirm the availability of data sources by browsing Web

pages. The summary of average total composition time and average per-component composi-

tion time during the task are shown in Table 11. We found no statistical difference in overall

composition time between two groups (p=0.39). Composers used on average 6-7 minutes to

configure a single component. We perform a closer observation with the compositions that

shared the exact same pattern and component combination. We found no statistical differ-

ence in composition time of MA-WS-MA pattern (p=0.50). Composition time is decreased

in the case of simple mashups. A longer composition time is required in the case where the

libraries employ explicit configurations. However, we observed that composers tend to get

familiar when they repeat the use of a component in the mashup that performs a query to

k Pattern can be represented in regular expression [2− 9] ∗ I([2− 9] ∗Q) ∗O where a number in front of I or Q
represent the number of components that runs in parallel (we use nine components maximum as an example
). Repeated characters (such as QQ or 2Q3Q) represent sequential executions in hierarchical orders

P. Chaisatien and T. Tokuda 123

Table 11. Average Composition Time in Freestyle Task (minutes)

Novicel Expertl

Overall 23.00±9.64 22.00±9.72
MA-WS-MA 22.80±5.68 22.60±5.24
Per-component 6.82±3.47 6.56±3.26

different resources with the same pattern (e.g., international Amazon Web pages, multiple

language Google translation). We conclude that MAIDL provides instructional scaffolding,

so composition time is lowered and the skill gap between novices and experts is narrowed.

Combining these results with the questionnaire results, it can be considered that composers

are guided when a top-down model (i.e. flow-based model) was used. Therefore, they could

clearly identify the start points of their compositions and progress further in steps. Further

development of our mashup system could exploit the patterns found in our evaluation.

5.2.3 Composition quality

Table 12. Problematic Mistake Pattern found in Novice and Expert Composer Groups

Novice Expert
MA 1) Use wrong Intent name.

2) Miss some important parameters.
1) Unable to use some specific feature of a mo-
bile application (e.g., map pin captions).

WA 1) Select wrong elements of the Web page.
2) Generate and use wrong extraction parameter
sets (input/result sets).
3) Select the extraction parameters.

1) Configure multiple input extraction param-
eter sets for multi-page navigations.

WS 1) Map publisher’s variables as query parameters.
2) Query of single and multiple data from the Web
service output (JSON and XML).

1) Query of multiple data from the Web service
output (JSON and XML).

AR 1) Number of operands are not matched with the
selected function.
2) Input and output mapping in ternary opera-
tions was not correct.

Others Data filters: data format is not compatible with
the next component’s requirement.

Multiple value data: cannot use the right in-
dex of a list/array

The composition quality (i.e. correctness percentage) is measured by the correct config-

urations divided by all configurations. We found 78% correctness in the mashup created by

novice composers while expert composers potentially have higher correctness at 87%. There

was no statistical difference between correctness percentage in two groups. In Table 12, we re-

port details of mistakes. The two groups had different patterns of mistakes. Critical mistakes

found among novice composers surrounded the use of correct component parameters. The

WA components were used mostly amongst novices but they sometimes selected the wrong

extraction elements and configured the parameter sets for the wrong Web page. The other

interesting aspect was that mashups composed by novices used only one input and one out-

put. In contrast, expert composers frequently made mistakes when trying to manipulate data

from multiple sources. Both groups made mistakes when trying to integrate Web services into

their mashups. In Section 6.1, we provide detailed suggestions for further improvement from

composers’ opinions and lessons learned from our evaluation.

l Data is shown in average(x̄)±standard deviation(σ) format.

124 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

5.3 Comparison to Other Mashup-Related Methods

Table 13. Comparison to Other Mashup Approaches

MAIDL MARIA
[73]

YahooPipes
[13]

AppInventor
[74]

PhoneGap
[21]

Data Flow Formalism Flow-based Event-based Flow-based Programming Programming
Composition Method Pub/Sub

components
GUI/Services
migrations

Data pipe
connections

Program
blocks

Source code

Inputp MA,WS,WA WS, WA WSpre WSpre,MApre " (Coding)
Output MA,WS,WA WA WA MA MA
Deployment Mobile

device/server
Proxy server Proxy server Mobile

device
Mobile
device

Simulation Separated Separated Built-in Built-in Built-in
Composition Levelp

GUI
Logic
Data

a
(Borrowed)

©
©

©
©
©

©
©
©

©
©
©

©
©
©

Web Integration Toolp WXTractor Mashup
Editor[31]

" " "

Extraction Algorithmp 2-Level 1-Level " " "
Data Filterp © " ©

a
(Coding)

a
(Coding)

Programming Skill
Requirement

"
Not required

a
Partially

required
"
Not required

"
Not required

©
Required

Target Users Novice Intermediate Novice Novice Expert
Reusablep © © © " © (Code)
Process Scheduling
Mechanismp

© " " " "

Many mashup methods and development systems have been introduced to fulfil end users’

requirements to compose their mashups. The method in this research can deliver fast-paced

development and lower the skill gap between novice and expert groups. Table 13 shows

a comparison of our approach with other approaches that enable end-user development of

mobile mashup applications and are otherwise similar to ours. We also added PhoneGap [21]

for the comparison between mashup methods and a programming framework.

When compared to other methods, our approach can deliver the reuses and creations of

mobile applications, Web services and Web applications. In general, other device-independent

approaches require a proxy server architecture and they are only capable of the integration

of Web services and/or Web applications. They also tend to limit the use of components as

pre-defined sets Web services while composers can freely apply more sets in our approach.

In contrast to our flow-based approach, an XML language MARIA can apply the integration

of WS and WA components with customizable GUI and event trigger mechanism. The ma-

jor drawback of our method is that the custom GUI cannot be newly created, but instead

borrowed from the integrated components. The other disadvantage is that simulations of the

mashups are separated from the generation process. Simulations have to be conducted after

everything is prepared, so composers cannot see immediate feedback and errors. Moreover,

the mechanism to shorten mashup execution time is not found in other approaches.

In an end-user aspect, we provide the WXTractor tool for composers to integrate Web

information to their mobile mashups. The extraction algorithm in our approach is specifically

pSubscription pre denotes pre-defined components. ©=available,
a

=partially available, and "=not available

P. Chaisatien and T. Tokuda 125

designed for mobile devices which might parse the Web pages differently from what is found in

the proxy server approaches. Due to the capability of creating mashups as TeWS and TeWA,

the mashups are extensible and consumable by other clients in different device platforms. In

other approaches the mashup is created as an application and cannot be reused. Finally, our

flow-based method requires less programming skill compared to the others (or even none).

5.4 Expressivity and Extensibility of MAIDL

5.4.1 Expressive Boundary

Fig. 15. Expressive boundary of MAIDL compared to other Web mashup methods.

Fig. 15 demonstrates the expressivity coverage of MAIDL and conventional Web mashup

methods compared to programming languages. MAIDL covers the composition of mobile

applications and device’s sensors as an extension to a conventional Web mashup. The com-

positions of tethered mashup applications including the process scheduling mechanism are

presented in MAIDL. The limitation of MAIDL is that it does not cover the use of continuous

data streams or an event-trigger mechanism in composition of mashups with high interac-

tivity. For instance, a mashup of a map displaying person’s running route online cannot

be composed using MAIDL due to the incompatibility of continuous data stream usage in

flow-based composition. The programming language provides highest expressivity while it

provides low composition usability when compared to other mashup methods. MAIDL also

has a limitation that GUI elements cannot be newly created but are borrowed from integrated

components instead. Composers sometimes need to customize the interactive elements and

dialog controls of the mashup. We limited this customization because when exposing these

customizable features to composers, the learning curve may be raised too high for beginners.

5.4.2 Extensibility of MAIDL

MAIDL has its extensibility to cover the composition of GUI, event-trigger mechanism and

continuous data stream. In an alteration to the fundamental MAIDL, we considered an

event-based composition method. The main difference from flow-based composition’s ab-

stract model, as described in Section 3.3, is that the Input-Query-Output handling stages

and propagated control flow are absent. This is because all the components periodically up-

date their data which leads to event-trigger operation to the other components. Therefore, the

components are virtually integrated inside the output display as demonstrated in Fig. 16(b).

There are several pre-composition steps which composers are required to carry out:

126 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

Fig. 16. The comparison between flow-based and event-based mashups. (a) In flow-based mashups,

the execution order follows the top-down shared three models of data and control flow. The output

is generated and displayed in the last order. (b) In event-based mashups, the contained components
communicate with each other in back-ground processes by handling the input/output events. The

output display is updated in real-time executions of the integrated components.

(i) MA and WS components are prepared as TeWSs using MAIDL.

(ii) The TeWS converted components have to be installed on the device before the mashup

execution begins. These TeWSs are accessed via the device’s loop back IP address (e.g.,

http://127.0.0.1/gps) and the configured path of each TeWS.

Composers are then able to integrate the TeWS inside an HTML document using conven-

tional AJAX technique. This enables the rapid development of Web programming language

and the extension to cover the access to mobile device functionalities. However, in an event-

based composition method, the process scheduling and the propagated control flow have to

be implemented manually by composers. Therefore the method requires the knowledge of

HTML and JavaScript which are usually not understood by novice composers. In addition,

to avoid Mashup Context Difference Conflict, uses of active components are not recommended

for event-based mashup. However, composers are able to use these components by first con-

verting them to TeWSs that run as background processes.

6 Discussion

We discuss problems and limitations found in our research and next we purpose solutions for

further improvement of the composition method as the followings:

6.1 Composer Evaluation

The use of MAIDL for mobile mashups might be optimal for simple composition patterns,

as we found no significant difference in composition time between two composer groups as

stated in Section 5.2.2. In the composer evaluation, the questionnaire results told us that the

composers in two groups could perceive and use different features available in our method.

Further investigation from comments about integrations of Web services in MAIDL found

differences between the two composer groups in the term of structured data model compre-

hension. Most of the novice composers gave up the integration of Web services and use Web

P. Chaisatien and T. Tokuda 127

applications instead. They stated that they are not familiar with Web services and they could

not see the concrete output when the query operation is performed. Expert composers tend

to use external tools which can help them correctly visualise XML and JSON data formats.

In interviews about how to improve the mashup composition, composers from both groups

indicated that a predefined set of Web services, filter simulation and some example descrip-

tion would help them realise the importance of this integration component. Moreover, an

interactive data model and real-time visualised work flow might gave better understanding of

the description language and give better composition quality.

6.2 Mashup Components and Implementation Issues

Mashup applications in general are combinations of working components. Therefore, they

rely on the availability of the integrable components. It can be considered that Web-enabled

data resources and downloadable mobile applications are created for reuse purposes. How-

ever, it is possible that some legal issues can occur when those components are reused or

republished. Therefore, mashups with those components should be created for personal use

only. Most mobile applications, on the other hand, do not support the messaging protocol for

integration with other components. Moreover, complex algorithms (such as an image pattern

recognition) are obviously not composable using mashup composition methods. To overcome

these availability issues, such components can be created as external Web services which allow

devices to send data for executions. The development of Scripting Component, which allows

the integration of some coding to the components, is also considerable.

Data reliability may also be a major concern in a mashup development. A well-defined

extraction algorithm might not be able to point to precise information pieces from Web-enable

resources due to their rapid updates. The extraction method should be robust and sustain-

able to changes made over time [75]. The other important issue in mobile mashup is mobile

platform constraints. Some closed platforms (e.g., Apple’s iOS and NTT docomo’s i-appli[76])

do not allow inter-application communications. Mashups in these platforms have to be inte-

grated in low-level programming code. Therefore, the contributions of creators in the form

of packaged applications cannot be reused due to this platform constraint. The development

of tethered mobile applications that are able to communicate via HTTP connections might

pave the way for the possibility of more development of integrated approaches in mashups.

In regard to security, the application of WA components in MAIDL to invoke cross-domain

connections and navigations of secured Web sites are possible. Moreover, the use of MA com-

ponents in mashup compositions also raised some security issues such as the publications of

personal information. Therefore, a security assessment should be conducted for each compo-

nent in a mashup and reported to the user before the mashup is installed and used.

6.3 Mashup Context Difference Conflict

A mashup created in passive context is suggested to use only background components. It is

quite non-typical when a host device is interrupted and requested to do an interactive task

(such as taking a photo) during the middle of other usages. In MAIDL, the usage of fore-

ground components in passive context is allowed via the use of SMA-based protocol. However,

these features might have to be controlled. When a host device is requested to perform an

interrupting task, a permission request dialog is recommened for smoother operations.

128 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

7 Conclusion

This research proposed a description-based composition method using Mobile Application

Interface Description Language. This method allows a control-propagated data flow compo-

sitions for reuses and creation of mobile applications, Web services and Web applications. In

technical aspect, the generated mashups took shorter execution time in a 3G network connec-

tion setting when the mashup execution applied the Mashup Process Scheduling mechanism.

In usability aspect, the composer evaluation results indicated that the flow-based composi-

tion method could moderately assist novices while experts could effectively adapt their own

libraries to their mashup. The result also showed no composition time difference between

two composer groups. However, the composition patterns found in the novice group have

less complexity than in the expert group. We are able to indicate the composition patterns,

commonly used components, and composition mistakes of both groups from our experiment.

For tethered mashup applications, our method could deliver the composition of a tethered

Web service and a tethered Web application. This non-typical context can solve the platform-

dependent constraint of inter-application communications and allows the composition of co-

operative and functionality exchange mashups. Regarding expressivity, it is considerable that

the synchronous and flow-based manner of our approach might suppress the complexity of the

composition model. The future work for our research includes the composition of interactive

and scripting elements. It is also preferable to promote the event-based approach for mashups

of continuous data streams.

References

1. International Telecommunication Union (2010), Key Global Telecom Indicators for the World
Telecommunication Service Sector. http://www.itu.int/ITU-D/ict/statistics/at_glance/

KeyTelecom.html.
2. Apple iOS App Store http://www.apple.com/iphone/from-the-app-store/.
3. Android Market https://market.android.com/.
4. M. Gaedke, M. Beigl, H. Gellersen and C. Segor (1998), Web Content Delivery to Heterogeneous

Mobile Platforms, LNCS, Vol.1552, , pp.1429-1437, Springer-Verlag (Berlin, Heidelberg).
5. Y. Chen, X. Xie, W. Ma, H. Zhang (2005), Adapting Web Pages for Small-Screen Devices, IEEE

Internet Computing, Vol. 9, pp. 50-56, IEEE Computer Society (Los Alamitos, CA, USA).
6. B. MacKay, C. Watters and J. Duffy (2004), Web Page Transformation When Switching Devices,

LNCS, Vol. 3160, pp.228-239, Springer-Verlag (Berlin, Heidelberg).
7. N. Bila, T. Ronda, I. Mohomed, K. N. Truong and E. de Lara (2007), PageTailor: reusable end-

user customization for the mobile web, In Proceedings of the 5th international conference on Mobile
systems, applications and services, pp. 16-29, ACM (New York, NY, USA).

8. Y. Kao and T. Kao and C. Tsai and S. Yuan (2009), A personal Web page tailoring toolkit
for mobile devices, Computer Standards & Interfaces, Vol. 31, 2, pp.437-453, Elsevier Science
Publishers B. V. (Amsterdam, The Netherlands, The Netherlands).

9. X. Liu, Y. Hui, W. Sun and H. Liang (2007), Towards Service Composition Based on Mashup,
IEEE Congress on Services, pp. 332-339, IEEE Computer Society (Los Alamitos, CA, USA).

10. D. Benslimane, S. Dustdar and A. Sheth (2008), Services Mashups: The New Generation of Web
Applications, IEEE Internet Computing, Vol. 12, pp.13-15, IEEE Computer Society (Los Alamitos,
CA, USA).

11. S. Pietschmann, J. Waltsgott and K. Meißner (2010), A Thin-Server Runtime Platform for Com-
posite Web Applications, In Proceedings of the 2010 Fifth International Conference on Internet and

P. Chaisatien and T. Tokuda 129

Web Applications and Services, pp. 390-395, IEEE Computer Society (Washington, DC, USA).
12. T. Laakko and T. Hiltunen (2005), Adapting Web Content to Mobile User Agents, IEEE Internet

Computing, Vol. 9, pp.46-53, IEEE Computer Society (Los Alamitos, CA, USA).
13. Yahoo Pipes. http://pipes.yahoo.com/pipes/.
14. S. Pietschmann, M. Voigt, A. Rümpel and K. Meißner (2009), CRUISe: Composition of Rich User

Interface Services, LNCS, Vol. 5648, pp.473-476, Springer-Verlag (Berlin, Heidelberg).
15. J. Guo, H. Han and T. Tokuda (2010), Towards Flexible Mashup of Web Applications Based

on Information Extraction and Transfer, LNCS, Vol. 6488, pp.602-615, Springer-Verlag (Berlin,
Heidelberg).

16. H. Han and T. Tokuda (2009), An Automatic Web News Article Contents Extraction System
Based on RSS Feeds, J. of Web Engineering, Vol. 8, No. 3, pp. 268-284, Rinton Press.

17. J. Guo, H. Han and T. Tokuda (2010), A New Partial Information Extraction Method for Per-
sonal Mashup Construction, In Proceeding of the 2010 conference on Information Modelling and
Knowledge Bases XXI, pp. 155-168, IOS Press (Amsterdam, The Netherlands, The Netherlands).

18. Web Services Business Process Execution Language Version 2.0. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html.

19. Open Mashup Alliance Enterprise Markup Language Documentation. http://www.openmashup.
org/omadocs/v1.0/index.html.

20. S. Pietschmann, T. Nestler and F. Daniel (2010), Application Composition at the Presentation
Layer: Alternatives and Open Issues, In Proceedings of the 12th International Conference on In-
formation Integration and Web-based Applications & Services, pp. 461-468, ACM (New York, NY,
USA).

21. PhoneGap. http://www.phonegap.com/.
22. Rhodes. http://rhomobile.com/.
23. Appceletor Titanium. http://www.appcelerator.com/.
24. C. Cappiello, F. Daniel, M. Matera, M. Picozzi and M. Weiss (2011), Enabling End User Devel-

opment through Mashups: Requirements, Abstractions and Innovation Toolkits, In Proceedings of
the Third international conference on End-user development, pp. 9-24, Springer-Verlag (Berlin,
Heidelberg).

25. T. Nestler, A. Namoun and A. Schill (2011), End-user Development of Service-based Interactive
Web Applications at the Presentation Layer, In Proceedings of the 3rd ACM SIGCHI symposium
on Engineering interactive computing systems, pp. 197-206, ACM (New York, NY, USA).

26. N. Mehandjiev, F. Lecue, U. Wajid and A. Namoun (2010), Assisted Service Composition for End
Users, In Proceedings of the 2010 Eighth IEEE European Conference on Web Services, pp.131-138,
IEEE Computer Society (Washington, DC, USA).

27. F. Paternò, C. Santoro and L.D. Spano (2011), Engineering the authoring of usable service front
ends, J. Syst. Softw., Vol. 84, No. 10, pp. 1806-1822,Elsevier Science Inc. (New York, NY, USA).

28. J. Yu, B. Benatallah, F. Casati and F. Daniel (2008), Understanding Mashup Development, IEEE
Internet Computing, Vol. 12, pp. 44-52, IEEE Computer Society (Los Alamitos, CA, USA).

29. SOAP Specifications http://www.w3.org/TR/soap/

30. RESTful Web Services https://www.ibm.com/developerworks/webservices/library/

ws-restful/

31. G. Ghiani, F. Paternò, Fabio and L. Spano (2011), Creating Mashups by Direct Manipulation of
Existing Web Applications, LNCS, Vol. 6654, pp.42-52, Springer-Verlag (Berlin, Heidelberg).

32. P. Chaisatien, K. Prutsachainimmit and T. Tokuda (2011), Mobile Mashup Generator System for
Cooperative Applications, LNCS, Vol. 6757, pp. 182-197, Springer-Verlag (Berlin, Heidelberg).

33. Web Services Description Language http://www.w3.org/TR/wsdl

34. Android Developers http://developer.android.com/sdk/index.html

35. I-Jetty: Web server for the Android mobile platform http://code.google.com/p/i-jetty/

36. Android Intents and Intent Filters, http://developer.android.com/guide/topics/

fundamentals/services.html

37. Android Services http://developer.android.com/guide/topics/fundamentals/services.html

130 A Description-Based Composition Method for Mobile and Tethered Mashup Applications

38. Apple URL Scheme Reference http://developer.apple.com/library/ios/#featuredarticles/

iPhoneURLScheme_Reference/Introduction/Introduction.html

39. Intent http://developer.android.com/reference/android/content/Intent.html

40. Intents List: Invoking Google Applications on Android Devices http://developer.android.com/
guide/appendix/g-app-intents.html

41. Publishing on Android Market, Android Developers http://developer.android.com/guide/

publishing/publishing.html

42. MediaStore http://developer.android.com/reference/android/provider/MediaStore.html

43. Send SMS via Intent http://www.androidsnippets.com/send-sms-via-intent

44. Speech Input http://developer.android.com/resources/articles/speech-input.html

45. Using Text-to-Speech http://developer.android.com/resources/articles/tts.html

46. Paranomio, Radar http://android-developers.blogspot.com/2008/09/panoramio.html

47. Resources for Mobile Development with YouTube http://code.google.com/apis/youtube/

articles/youtube_mobileresources.html

48. RpnCalc, A full-function scientific calculator for Android phone http://www.efalk.org/RpnCalc/
49. Calendar Picker https://market.android.com/details?id=org.openintents.calendarpicker

50. Motion Gesture https://market.android.com/details?id=RabiSoft.MotionGestureAd

51. Motion to Intent https://market.android.com/details?id=RabiSoft.MotionToIntentAd

52. Location Notifier https://market.android.com/details?id=RabiSoft.LocationNotifier

53. Color Picker https://market.android.com/details?id=org.openintents.colorpicker

54. Tag to Intent https://market.android.com/details?id=RabiSoft.TagToIntent

55. Translate Intent http://android.kupriyanov.com/apps/translate-intent

56. chartdroid http://code.google.com/p/chartdroid/

57. Developing on Android, Evernote http://www.evernote.com/about/developer/android.php

58. Adobe Photoshop Express for Android - For Developers http://mobile.photoshop.com/android/
developers.html

59. Twidroyd, Plugins http://twidroyd.com/plugins/

60. Document Object Model (DOM) http://www.w3.org/DOM/

61. WebView http://developer.android.com/reference/android/webkit/WebView.html

62. XML Path Language (XPath) http://www.w3.org/TR/xpath/

63. JSONPath - XPath for JSON http://goessner.net/articles/JsonPath/

64. ScanningViaIntent http://code.google.com/p/zxing/wiki/ScanningViaIntent

65. Amazon.com http://www.amazon.com/

66. Exchange Rate API http://www.exchangerate-api.com/
67. Android Developers: Building and Running http://developer.android.com/guide/developing/

building/index.html

68. i-Jetty: Creating Downloadable Web Applications http://code.google.com/p/i-jetty/wiki/

DownloadableWebapps

69. Gourmet Navigator API. http://api.gnavi.co.jp/api/manual.htm
70. Weather Stations with most recent Weather Observation. http://www.geonames.org/export/

JSON-webservices.html#weatherJSON

71. Find nearby Wikipedia Entries. http://www.geonames.org/export/wikipedia-webservice.

html#findNearbyWikipedia

72. Nexus One Phone Gallery http://www.google.com/phone/detail/nexus-one

73. F. Paternò, C. Santoro and L.D. Spano (2009), Maria: A universal, declarative, multiple abstraction
level language for service-oriented applications in ubiquitous environments, ACM Trans. Comput.-
Hum. Interact., Vol. 16, 4, pp. 19:1-19:30, ACM (New York, NY, USA).

74. Google App Inventor for Android. http://appinventor.googlelabs.com/
75. S. Lingam and S. Elbaum (2007), Supporting End-Users in the Creation of Dependable Web Clips,

In Proceedings of the 16th international conference on World Wide Web, pp.953-962, ACM (New
York, NY, USA).

76. Docomo i-appli http://www.nttdocomo.co.jp/english/service/imode/make/content/iappli/

