
Journal of Web Engineering, Vol. 12, No. 1&2 (2013) 131–158
© Rinton Press

AN APPROACH FOR WEB SERVICE DISCOVERABILITY ANTI-PATTERN DETECTION
FOR JOURNAL OF WEB ENGINEERING

JUAN MANUEL RODRIGUEZ MARCO CRASSO ALEJANDRO ZUNINO
ISISTAN, Universidad Nacional del Centro de la Provincia deBuenos Aires, Paraje Arroyo Seco

Tandil, Buenos Aires B7001BBO, Argentina

CONICET
juanmanuel.rodriguez@isistan.unicen.edu.ar marco.crasso@isistan.unicen.edu.ar alejandro.zunino@isistan.unicen.edu.ar

Received February 17, 2012
Revised October 26, 2012

The Service Oriented Computing paradigm and its most popular implementation, namely Web Ser-
vices, are at the crossing of distributed computing and loosely coupled systems. Web Services can
be discovered and reused dynamically using non-proprietarymechanisms, but when Web Services
are poorly described, they become difficult to be discovered, understood, and then reused. This pa-
per presents novel algorithms and heuristics for automatically detecting common pitfalls that should
be avoided when creating Web Services descriptions. To assess the accuracy of the proposed algo-
rithms and heuristics, we compared their results with the results of manually analyzing a data-set of
400 publicly available services. In addition, we analyzed the correlation between the algorithms and
heuristics results and other well-known quality metrics, which were presented by Al-Masri and Mah-
moud. The average detection accuracy was 93.14% , and the false positive and false negative rates of
4.06% and 9.91% , respectively. Additionally, the Al-Masriand Mahmoud’s quality metrics related to
Web Services descriptions had a direct correlation with mostof the automatic detecting results. The
proposed algorithms and heuristics for automatically detecting common pitfalls are powerful tools for
both improving existent Web Services and developing new Web Services that can be easily discovered,
understood and reused.

Keywords: Web Services, Web Services Discoverability Anti-patterns, Web Services Modeling, Anti-
patterns detection.

Communicated by: B. White & O. Díaz

1 Introduction

Creating software that utilizes information and services provided by third-parties is very common.
Software companies tend to focus internal resources on developing core features, while delegating
non-core operations to an external entity [1]. Nowadays, this kind of software usually is developed
under a paradigm, calledService-Oriented Computing(SOC), in which developers look for indepen-
dent loosely coupled third-party software pieces, calledservices[2].

When developing software under the SOC paradigm, there are three main roles: service consumer,
service provider and service discovery system. The serviceprovider offers services which are expected
to be invoked by service consumers. To use a service, a service consumer needs to know that it is
available. Helping service consumers to find the service that they need is the function of the service
discovery system role [3].

Since services need to be interoperable, they are implemented using well-known Internet proto-
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cols [4]. These services are calledWeb Services. Web Services standard defines a registry interface and
a language to describe the services, namely Universal Description, Discovery and Integration (UDDI)a

and Web Services Description Language (WSDL)b, respectively. Basically, an UDDI registry allows
service providers to publish their services and service consumers to look for the services that they
need. Publishing a service in UDDI consists on describing its provider, characterizing its functional-
ity based on standard taxonomies and services’ WSDL documents.

Several studies confirmed that Web Services are not as widespread (i.e., at global scale) as expected
because finding the right service is a hard task. The discovery problem has been an issue of Web
Services from their very beginnings because UDDI registry search capabilities are inappropriate for an
extremely open and heterogeneous setting like the Internet[5]. Therefore, several search approaches,
e.g. those based on the Semantic Web vision [6] or classic Information Retrieval (IR) techniques [7, 8],
have been rapidly proposed to complement UDDI.

Except for the Semantic Web based discovery approaches, which utilize ontologies as additional
specifications for the services, other discovery approaches only rely on information extracted from
the UDDI registries entries, e.g. WSDL documents, associated with the services because them are
supposed to contain information that specifies services’ functionality. WSDL is an XML-based lan-
guage for describing a service intended functionality using an interface with methods and arguments,
in object-oriented terminology, and documentation as textual comments. Concretely, a WSDL doc-
ument has words or terms, placed in the operation signaturesand comments [9], that describe the
service [8]. In consequence, several authors have adapted classic IR techniques [7, 9, 8], such as word
sense disambiguation, stop-words removal, and stemming, for service discovery [8].

Although well-written WSDL documents are essential not onlyto developers, who need WSDL
documents’ information to invoke the service [10], but alsoto IR-based discovery systems, it seems
that service developers tend not to care about the WSDL documents’ quality. Several researchers [7,
11, 12, 13, 14, 15] have pointed out a wide range of recurrent WSDL document problems that nega-
tively impact on both discoverability and usability of services. These efforts originate a research line
for Web Services discoverability concerns.

As far as we known, one of the most exhaustive and complete survey on Web Services discover-
ability concerns is the work presented in [11]. The authors introduced a discoverability anti-patterns
catalog that aims to help developers to improve their WSDL documents [11]. The catalog consists
of eight anti-patterns and each anti-pattern has a name, a problem description, and a soundly refac-
tor procedure. In addition, [11] analyzes how each anti-pattern affects the capability of not only
service discovery systems to find a suitable service, but also humans to understand the service func-
tionality [1]. Broadly, the results empirically confirm that the removal of discoverability anti-patterns
makes services easier to be understood and discovered by potential consumers.

Despite having an anti-pattern catalog is useful, looking for anti-patterns in WSDL documents
might be a time consuming and complex task [11]. Furthermore, developers tend to disregard WSDL
document quality importance, even when they are developingenterprise systems [16]. Therefore, there
is a clear need of automatic support to spot anti-patterns occurrences in WSDL documents, which
allows service providers to improve their service descriptions prior to make them publicly available.
Although some anti-patterns can be detected only by analyzing the structure, or syntax of the WSDL
document, others require a more complex analysis, which caninclude analyzing the semantics of

aUDDI, http://uddi.xml.org/
bWSDL, http://www.w3.org/TR/wsdl
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the WSDL document elements. Therefore, this paper presents algorithms to detect the simplest anti-
patterns and heuristics for more complex anti-patterns. Our proposed heuristics combine techniques
from the Machine Learning and Natural Language Processing areas, namely automatic document
classification [17] and probabilistic context free grammarparsing [18, 19, 20], respectively.

Both the heuristics and algorithms have been implemented asa tool for developers. Given a WSDL
document, the tool outputs a list of anti-pattern occurrences if any could be detected. The detection
effectiveness of the algorithms has been experimentally validated with a 392-WSDL document data-
set [21], which is publicly available. At the same time, the heuristics effectiveness has been tested
using the same data-set, but also the achieved results have been correlated with those showed in [22],
a survey of quality metrics from 2250 publicly available WebServices that includes metrics concerned
with WSDL documents discoverability.

The main contributions of this paper are:

• the definition of algorithms and heuristics for detecting frequent practices that hinder Web Ser-
vices discoverability,

• experiments showing that the proposed algorithms and heuristics enable the detection of anti-
patterns within WSDL documents.

• assessments about the correlation between these anti-patterns and well-known Web Services
quality metrics.

The rest of this paper is organized as follows. In Section 2, we describe how Web Services are
specified using WSDL documents, and methods for automatically assessing the quality of a Web
service in terms of discoverability. Next, in Section 3, theanti-pattern catalog, on which this work
relies, is briefly described. Section 4 presents the proposed approach to detect the anti-patterns in
a WSDL document. Then, Section 5 assesses the effectiveness of the proposed approach. Future
research possibilities are presented in Section 6. Finally, Section 7 concludes the paper.

2 Background

On one hand, our approach works over service descriptions, thereby it is needed to understand how
services are described. At the same time, since our work aimsat helping services owners to improve
service description quality, and service description are software artifacts, it is necessary to appreciate
why traditional software quality metrics are not applicable in this context. Therefore, this section
introduces two main topics: how Web Services are described and traditional software quality metrics.

2.1 Describing Web Services

WSDL is a language that allows developers to describe two mainparts of a service: its functionality,
and how to invoke it. Conceptually, a WSDL document reveals the service interface that is offered to
the outer world. The latter part specifies technological aspects, such as transport protocol and network
address. Discoverers use the functional descriptions to match third-party services against their needs
and, in turn, they take under consideration the technological details for invoking the selected service.

Technically, a WSDL document describes the service functionality as a set ofport-types, which
arrange differentoperationswhose invocation is based onmessageexchange. Messages stand for
the inputs or outputs of the operations, indistinctly. Exceptions are described as ordinary messages
called faults. Besides, the main elements of a WSDL document, such as port-types, operations and
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Element name

- required attribute

- optional attribute?

An element of the language with attributes.

Note: all elements may have <documentation>

as first child

Keys:

Description

- targetNamespace

Port-type

- name

Input

- name?

- message

Output

- name?

- message

Operation

- name

0..*

0..*

0..*

0..*

Fault

- name?

- message
0..*

Fig. 1. WSDL v1.1 Infoset.

their messages, must be named with unique identifiers. Figure 1 depicts the Information set (Infoset)
diagram of the WSDL for service interfaces. We used the WSDL specification version 1.1 through this
paper because it is the most currently used, yet WSDL specification version 2.0 is not different from
version 1.1 in terms of the information that a WSDL document contains about a service interface.

Messages consist ofparts that transport data between services’ consumers and providers, and
vice-versa. Each message part is arranged according to specific data-type definitions. The XML
Schema Definition (XSD)clanguage is employed to express the structure of message parts. XSD offers
constructors for defining simple types (e.g., integer and string), restrictions and both encapsulation
and extension mechanisms to define more complex elements.

For the sake of exemplification, the right side of Figure 2 shows the WSDL grammar, while a real
world example is shown at the left side of the figure. Chosen example contains a port-type with only
one operation. The operation is named GetRate and it is designed for returning the currency conversion
rate between two countries, as it is described by its associated documentation. The GetRate operation
expects a message containing two country codes as input. As the reader can see, the types tag includes
the code needed for representing a complex data-type, called “CountryCodes” which is exchanged in
the input message of the “GetRate” operation. Alternatively, XSD code might be put into a separate
file and imported from the WSDL document or even other WSDL documents afterward.

2.2 Measuring software code quality

Researchers have study software code quality from the very beginnings of software engineering [23,
24]. Usually, the software code quality is expressed through metrics that analyze different aspects of
the same source code artifact. For instance, there are metrics for component coupling, documentation,
or complexity. In addition to defining these metrics, researchers also have proven that these metrics
can be used to predict the amount of failures in a software component [25, 26].

These metrics can be as simple as counting the lines of code. However, most of these metrics [27,
25, 26] requires not only to process a module header, but alsoits associated code in order to measure

c XML Schema Part 0: Primer Second Edition,http://www.w3.org/TR/xmlschema-0/
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<types>

  <xsd:element name="GetRate">

     <xsd:complexType>           

      <xsd:sequence>             

        <xsd:element name="srcCurrency" type="xsd:string"/>

        <xsd:element name="destCurrency" type="xsd:string"/>

      </xsd:sequence>         

    </xsd:complexType>       

  </xsd:element>

</types>

<message name="GetRateSoapIn">     

  <part name="parameters" element="s0:GetRate" />

</message>

<portType name="CurrencywsSoap">

  <operation name="GetRate">

    <documentation>

        This method returns the currency 

        conversion ratio between two countries

    </documentation>

    <input message="s0:GetRateSoapIn">

        <documentation>The codes of two countries</documentation>

    </input>

    <output message="s0:GetRateSoapOut" />

    <fault name="nmtoken" message="s0:GetRateFault"/>

  </operation>

</portType>

WSDL grammar WSDL example

<documentation .... />?

<types>?         

  <documentation .... />?         

  < schema .... />*         

</types>

<message name="nmtoken">*         

  <documentation .... />?         

  <part name="nmtoken" 

        element="qname"? type="qname"?/>*

</message>

<portType name="nmtoken">*

  <documentation .... />?         

  <operation name="nmtoken">*

    <documentation .... />?

    <input name="nmtoken"? message="qname">?

      <documentation .... />?

    </input>

    <output name="nmtoken"? message="qname">?

       <documentation .... />?

    </output>

    <fault name="nmtoken" message="qname">*

      <documentation .... />?

    </fault>         

  </operation>     

</portType>

?: Optional

*: None, one or many

Fig. 2. Web Services Description Language grammar and example.

them. Here, we refer to module as a general term for denoting functions, procedures, methods, and
any block of code exposing a signature. For instance, cyclomatic complexity [23] requires creating
a graph that represents all the possible executions flows of asoftware component. Although these
metrics can be automatically calculated, they are stronglycorrelated with more abstract concepts [28],
such as cohesion, which is the semantic relation between components of the same software artifacts.
Finally, this kind of metrics need the source code to performa calculation. In our study, since we only
have the WSDL documents of services, these metrics are not applicable.

Other researchers have attempted to measure directly more abstract concept, like cohesion or
documentation quality. In [29], they present a tool, calledJavadocMiner, that implements set of
heuristics and algorithms to analyze Javadocs, which are how Java classes interfaces are documented.
This work bases on the fact that by using Javadoc, methods comments are structured in a known
way and explicitly references to methods inputs, return andexceptions are included. In consequence,
JavadocMiner uses this structure to verify whether all the elements are referenced in the comments or
not. In addition, JavadocMiner employs other simple heuristics, such as tokenized nouns and verbs,
counting words per Javadoc, and calculating readability formulas [30], for evaluating the quality of
the present documentation.

Researchers have also applied linguistic metrics, naturallanguage processing techniques, and
heuristic rules to study the quality of identifiers and comments in source code. In [31], the authors
propose to use well-known text metrics to detect anti-pattern in comments, while other authors [32]
only employ simple rules to detect problems with identifiers. In [33] the authors present a detailed
understanding of Java class identifier naming conventions,showing most relevant naming patterns and
grammatical structures; in [34] the authors show an approach to automatically improve the descrip-
tiveness of labels used to name business entities.

Finally, several authors have proposed measuring cohesionusing graphs that represent how differ-
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ent elements of the code artifacts are related [27, 35, 36]. An example of this is the Lack of Cohesion
on Method [27] that is the number of pair methods which share no instance variables. These methods
for measuring cohesion are based on source code, yet they arenot useful when the only available
information is the system interface, which is very common when using Web Services.

To sum up, traditional software quality metrics are, at best, difficult to be adapted for measuring
WSDL document quality. Due to this difficulty, it is necessary to develop new heuristics for automati-
cally assessing the discoverability of Web Services. However, we have adapted or reused, when it was
possible, some of the bases of these metrics in our approach to automatically detect anti-patterns.

3 Related work

Researchers have studied Web Services quality from different angles, such as interoperability, se-
curity and discoverability, or interface quality. Regarding both interoperability and security, the Web
Services Interoperability Organization (WS-I), an organization that establishes best practices for inter-
operability, has released several profilesd. A profile describes how to implement interoperable services
based on the exhaustive analysis of popular enterprise software middlewares, namely .NET and JEE.
In addition, the WS-I provides testing tools, e.g., BP 1.2 and2.0 Interoperability Test Suites, to ensure
that a Web Service implementation satisfies these profiles. Other research works aim to improve Web
Services performance [37] and reliability [38]. Finally, several efforts aim to analyze the quality of
WSDL documents [11, 13, 14]. These works are further described below because they are very near
to the approach presented in this paper.

In [14], the authors analyzed the comments present in a real-life WSDL document data-set. To an-
alyze those WSDL documents comments, the authors crawl public registries on the Internet. Initially,
the authors gathered 2432 Web Services, but this number decreased to 1544 because some registered
services have a non-valid URL to their WSDL documents. Moreover, the authors discarded duplicated
services and the ones with an invalid WSDL document, i.e., a bad-formed WSDL document. Thus,
the number of gathered services fell to 640. Then, the authors analyzed the lengths of the textual
comments of these services (including the registration information and all the comments present in
the WSDL documents). The paper shows that in the 80% of 640 real-life WSDL documents the av-
erage documentation length for operations is 10 words or less. Furthermore, from this 80%, half of
them have no documentation at all. In addition, 80% of the comments have less than 50 words, while
52% of the comments have less than 20 words. Afterward, the authors averaged the lengths of the
textual comments associated with<operation> elements in the WSDL documents.

In [13], the authors analyze elements names in WSDL documents. The authors detect “naming
tendencies” in the names of WSDL document elements and empirically show that these tendencies
negatively impact the retrieval effectiveness of a syntactic registry. The experiment consisted in an-
alyzing the names of message parts that belong to 596 WSDL documents gathered from Internet
repositories. The name of each message part was compared against the rest of part names, then four
naming tendencies were observed in service message parts. Broadly, these tendencies show that de-
velopers use common phrases within part names. For example,a message part standing for a user’s
name is commonly called “name”, “lname”, “user_name” or “first_name” [13]. Finally, the paper
empirically shows that the retrieval effectiveness of a syntactic registry can be improved by enhancing
its underlying matching approach for dealing with the observed tendencies.

The work presented in [11], in which this paper is heavily based, explicitly pursues recurrent

dBasic Profiles:http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
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Table 1. Web Services discoverability anti-patterns.

Anti-pattern Occurs when Manifest

Whatever types
A special data-type is used for representing any object of

the problem domain.
Evident

Redundant port-types Different port-types offer the same set of operations. Evident

Redundant data models
Many data-types for representing the same objects of the

problem domain coexist in a WSDL document.
Evident

Enclosed data model

The data-type definitions used for exchanging

information are placed in WSDL documents rather than

in separate XSD ones.

Evident

Inappropriate or lacking comments
(1) a WSDL document has no comments, or

(2) comments are inappropriate and not explanatory.

(1) Evident, or (2) Not immediately

apparent

Low cohesive operations in the

same port-type
Port-types have weak semantic cohesion. Not immediately apparent

Ambiguous names
Ambiguous or meaningless names are used for denoting

the main elements of a WSDL document.
Not immediately apparent

Undercover fault information

within standard messages
Output messages are used to notify service errors.

(1) Present in service

implementation, or (2) Not

immediately apparent

problems that attempt against the understandability and discoverability of a service. To do this, the
authors analyzed 392 WSDL documents, which had been gatheredfrom the Internet, and found that
the functionality of many of them would be hard to be understood and that some patterns of WSDL
code were present in them. As a result, the study presents a catalog of bad practices that frequently
occur in this public corpus of WSDL documents. This catalog not only supplies each problem with
a practical solution, but also provides hints about how to detect problem symptoms, thereby it is an
anti-patternscatalog.

Table 1 summarizes anti-patterns presenting their names, when they occur and how they manifest
themselves. An anti-pattern manifestation can be:Evident, Not immediately apparent, andPresent in
service implementation. An anti-pattern isEvidentif it can be detected by only analyzing the structure
or syntax of a WSDL document.Not immediately apparentmeans that detecting the anti-pattern
requires not only a syntactical analysis but also a semanticanalysis of the textual information. Finally,
Present in service implementationanti-patterns might not show themselves in the WSDL document,
thus requiring the execution of the associated service to bedetected. Anti-pattern manifestation is
highly important for this paper because the way an anti-pattern manifests itself drives the approach to
detect the anti-pattern, as will be explained in next Section.

4 An approach to automatically detect WSDL anti-patterns

This section describes an approach to automatically detectthe eight WSDL anti-patterns summarized
in Table 1. Roughly, this approach consists of one independent detection algorithm or heuristic, a.k.a.
detectors, per anti-pattern. Since anti-pattern occurrences are independent from the other anti-patterns
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occurrences [11], each anti-pattern has its independent detector. Therefore, analyzing a WSDL docu-
ment is an incremental process that executes eight different detectors, i.e., one per anti-pattern.

The anti-patterns detectors can be classified using the anti-pattern manifestation taxonomy shown
in the third column of Table 1, because how an anti-pattern manifests itself is strongly related to the
analysis required for detecting it. Evident anti-patternsare structural anti-patterns related to redundant
WSDL elements in a WSDL document or WSDL elements with a particular structure, such as a type
that allows any valid XML (Whatever typesanti-pattern). These anti-patterns can be detected simply
by applying detection rules to the WSDL document structure.

In contrast, Not immediately apparent anti-patterns affect the semantics within the comments and
names in the WSDL document rather than its structure. Basically, Not immediately apparent anti-
patterns detection requires an analysis of the meaning of names and comments in a WSDL document.
As a consequence, our heuristics to detect these anti-patterns are based on several well-known natural
language processing techniques [18, 19, 20, 39, 40].

TheUndercover fault information within standard messagesanti-pattern is classified as both Not
immediately apparent and Present in service implementation meaning that this anti-pattern might have
no footprint in a WSDL document. However, since we aim to detect anti-patterns using WSDL doc-
uments, the presented heuristic for detecting this anti-pattern is only applicable when the anti-pattern
manifests itself in the WSDL document –this is when the anti-pattern is classified as Not immedi-
ately apparent–. Although this can be seen as a limitation ofour approach, the lack of footprint in
a WSDL document is usually a result of another anti-pattern symptom. Hence, solving other anti-
patterns might unveilUndercover fault information within standard messagesanti-pattern footprint,
which is consistent with the idea of analyzing the WSDL documents in an incremental way. For exam-
ple, Ambiguous namesanti-pattern can hideUndercover fault information within standard messages
anti-pattern because names related to output messages are the only footprint of this anti-pattern in
WSDL documents. This means that trying to detect theUndercover fault information within standard
messagesanti-pattern before removing theAmbiguous namesanti-pattern might not be effective, but
if the WSDL document names are representative, the detectiontechnique forUndercover fault infor-
mation within standard messagesanti-pattern would be more effective. In the following sections, the
techniques for detecting anti-patterns are discussed.

4.1 Algorithms for detecting Evident anti-patterns

In this section, we describe the algorithms for detecting Evident anti-patterns in a WSDL document.
Evident anti-patterns are:Lacking comments, Enclosed data model, Redundant port-types, Redun-
dant data models and Whatever types. Their associated detectors rely on rules based on the WSDL
grammar, because Evident anti-patterns manifest themselves in the WSDL document structure.

Since service developers often do not include comments in WSDL documents [14], the first detec-
tor that we present isLacking commentsdetector. Detecting the lack of comments consists in checking
that all operations have associated the<documentation> tag, and if it is present, checking whether its
content is not an empty string, which means that there is somedocumentation.

The second detector is theEnclosed data modeldetector. To detect theEnclosed data model
anti-pattern, it is necessary to know whether the data modelis defined within the WSDL document
or imported from somewhere else. Basically, the algorithm firstly checks whether the<types> tag
is present in a WSDL document. If it is not present, the data model is not defined in the WSDL
document; thereby the anti-pattern is not present. Although when the WSDL document contains the
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<type> tag, there are two cases: the<types> tag is empty, or contains one or more<schema> tags. If
the<types> tag is empty, it again means that the WSDL document does not define data types. Finally,
if the <types> tag has<schema> tags defined, it is necessary to check each<schema> tag. If all
<schema> tags are empty, the anti-pattern is not present, otherwise it is present.

TheRedundant port-typedetector checks that all port-types in the WSDL document are unique.
The detector compares every port-type in the WSDL document against the others. To compare two
port-types, our algorithm checks whether both port-types have the same number of operations and
if they have the same name in both port-types. Since the same operations in different port-types
tend not to share messages, our algorithm skips message similarity checks. This is because, when
this anti-pattern is present, the developers tend to define different messages for the different transport
protocols. Therefore, the input message for an operation ofthe SOAP port-type is not the same as the
input message for the same operation in the HTTP-GET port-type.

Another recurrent problem that also involves repeated codeis the Redundant data modelanti-
pattern. In this case, the detector compares the structure of all the data types to verify that they
are unique. In this comparison, the data type names are ignored because they tend to be different.
Therefore, only the schema structure is taken under consideration.

Finally, theWhatever typeanti-pattern means that one or more of the defined types allowexchang-
ing a generics type [41]. TheWhatever typedetector verifies that there is no primitive type “anyType”
or<any> tag within the schema. The existence of any of these ways for defining generic types means
that the anti-pattern is present.

4.2 Heuristics for detecting not immediately apparent anti-patterns

Other anti-patterns do not manifest themselves in a WSDL document structure, but in the semantics
of its comments and names, thus these anti-patterns are categorized as Not immediately apparent [11].
The anti-patterns in this category areLow cohesive operations in the same port-type, Ambiguous
names, Inappropriate commentsandUndercover fault information within standard messages. Below,
the detector associated with each anti-pattern is explained.

4.2.1 Low cohesive operations in the same port-type detector

Sometimes, two or more operations that are not semanticallyrelated are in the same port-type. This sit-
uation renders theLow cohesive operations in the same port-typeanti-pattern. Therefore, our heuristic
automatically rules out any port-type with only one operation. However, if a port-type has two or more
operations, the detector needs to compare each another to verify that they are semantically related. As
the source code implementing third-party Web Services is not available, one approach to automati-
cally determine whether two or more operations are related consists in classifying them according to
keywords present only in their names and associated comments. Then, operations are considered as
being related when they belong to the same class or domain.

The information available about the operations is mostly their names, comments, message and data
type names; all this is textual information. As a consequence, the problem of classifying the operations
according to their domain can be mapped to the problem of classifying text according to its domain.
Actually, several techniques can be used to classify text [42]. We selected a variation of the Rocchio
classifier [40], called Rocchio TF-IDF. We choose this classifier because a previous research [17]
has empirically proved that Rocchio TF-IDF have a better performance than other classifiers when
classifying WSDL documents.

The first step to classify an operation is to convert it to a vector representation in which each
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dimension stands for a term and its magnitude is the importance of the terms in the operation. Firstly,
the terms extracted from the operations are pre-processed to remove irrelevant terms [43], known as
stop-words, and obtain the stems of the word instead of usingthem as they are in the WSDL document.
Pre-processing the terms helps to reduce the dimension of the problem without introducing significant
information lost, and in turn boosts the accuracy of the Rocchio classifier. In particular, our detector
uses the English version of the Porter stemming algorithm [44]. Finally, the TF-IDF technique is
applied to calculate the weight of each dimension because several works [9, 8] have proved the TF-
IDF technique effectiveness in for Web Services descriptions [9, 8].

The term TF-IDF stands for term frequency–inverse documentfrequency, meaning that the weight
of a term depends not only on the number of times that the term is in a document, but also on the
number of documents of the entire corpus that have the term. Formally: t f id f = t f•id f with:

t fi =
ni
∑

k nk

with ni being the number of occurrences of the considered term, the denominator is the number of
occurrences of all terms, and:

id fi = log
|D|
|d : dti |

where |D| is the total number of documents in the corpus and|d : dti | is the number of documents
where the term (ti) appears.

In the Rocchio classifier, categories are represented as vectors as well. The vector for a category
(−→µ (c)) is calculated as the center of mass of already known vectors of documents in that category (Dc).
In this case, the documents are WSDL documents that experts have classified. Each vector−→υ (d) is
calculated by extracting terms not only from the word of one operation, but also from the whole
WSDL document. Formally, a category center of mass is calculated as follows:

−→µ (c) =
1

Dc

∑

dεDc

−→υ (d)

Having the center of mass of the categories, an operation is considered to belong to the category
that its center of mass is the closest to the operation vector. This similitude is measured using the
cosine similarity. Given two vectors (A, B), their similitude is:

cos(A,B) =
∑

Ai ·Bi
√

∑

A2
i ·

√

∑

B2
i

In this way, we use Rocchio TF-IDF algorithm to classify operations into pre-defined classes,
which represents the operations domains. Our detector verifies whether a port-type contains operations
that belong to different domains, which means that the anti-pattern is present. The main disadvantages
of using Rocchio TF-IDF are that the classifier is only able toclassify operation in known domains,
which requires an expert to classify a train set of operations or WSDL do, and depends on the language.
Algorithm 1 shows how a WSDL document is analyzed to determinewhether it has a low cohesive
operation in any of its port-types.
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Algorithm 1 Low cohesive operations in the same port-type anti-patterndetection heuristic.
1: function hasLowCohesivePortTypes(wsdlDocument,dataset) ⊲ Returns a Boolean
2: classi f ier← TrainRocchio(dataset)
3: portTypes← getPortTypes(wsdlDocument)
4: for all portType∈ portTypesdo
5: operations← getOperations(portType)
6: size← Size(operations)
7: if size> 1 then
8: operation← operations.removeFirst( )
9: ~o← CreateVector(operation)

10: class← classi f ier.Classify(~o)
11: for all operation∈ operationsdo
12: ~o← CreateVector(operation)
13: newClass← classi f ier.Classify(~o)
14: if newClass, classthen
15: return true
16: end if
17: end for
18: end if
19: end for
20: return false
21: end function

4.2.2 Ambiguous names detector

Element names in a WSDL document are important because names not only provide relevant terms for
IR-based registries, but also are essential for service consumers, who want to understand the services.
Although, it is usual that developers select names that are not the best [11, 13]. Problems in naming
are described by theAmbiguous namesanti-pattern.

The first characteristic to analyze in the names is their length because one of the main issues with
names in WSDL documents is that they tend to be too short or too long. If the length of the name is
between 3 and 30 characters, the name is considered to have anadequate length [13]. Otherwise, the
name is considered as bad name that should be changed.

The second issue detected is that many names use several words that are non-explanatory or too
general [11, 13]. Many of those words are repeated across several services and they are among the
most common WSDL document element names [11]. The unrecommended words are:thing, class,
param, arg, obj, some, execute, return, body, foo, http, soap, result, input, output, inandout. A name
that has any of these words probably is too general, meaning that the name is probably an ambiguous
name.

Finally, the grammatical structure of the names must be accord to their purpose. Names for oper-
ations, which are actions applied over the input parameters, should start with a verb that describes the
operation action. Furthermore, an operation name should only have one verb, because an operation
should perform only one action. In contrast, message part names should be nouns or noun phrases,
because message parts are the things over which the operations are applied.

Then, our detector performs this name grammatical analysison the operations’ names and message
parts’ names. This analysis is made using a probabilistic context free grammar parser [18, 19, 20]
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based on parsing rules as traditional context free grammar,but each rule has associated a probability
of occurrences, which is independent form the probability of other rules. Therefore, a single sentence
might have associated several parsing trees and each tree has an associated probability, which is the
product of all parsing rules’ probability. Having the probability of each tree, our heuristic selects the
most likely tree to perform the analysis.

The analysis of the operations’ and message parts’ names is slightly different. When analyzing
an operation name, the heuristic adds the word “it”, which indicates the noun that should be missing
in the operation name, at the name beginning. For instance, if the operation is named “buyCar”, the
sentence analyzed by the parser is “it buy car”. Although thesentence is not grammatically correct, it
is close enough to a correct sentence and the parser will be able to handle it. This is due to the fact of
having probabilistic rules, which allows the parser to handle malformed sentences [18].

Operations’ names are expected to have one and only one verb placed at the beginning and after
it a noun or noun phrase, thus if the number of verbs is different from one, theAmbiguous nameanti-
pattern is detected. Figure 3 represents parsing trees for three different operation names with the “it”
pronoun added as explained above. The first name, which is “buyCar”, is correct because it gives the
idea that the operation performs only one action. In contrast, the second name, which is “car”, is a
noun that is incorrect because the name has not semantics of what the operation does. Finally, the
third operation name, which is “createSendTicket”, is alsoincorrect because, despite beginning with
a verb, it has another verb giving the impression that the operation performs two actions.

In the second case, the name of a message part is provided to the parser unmodified because the
parser has to determine whether it is a noun or a noun phrase. Amessage part name parsing tree
should not contain any verb tag because a verb indicates thatthe message part modifies the operation
behavior. Figure 4 depicts the parsing tree of three messagepart names. The first and second names,
which are “name” and “firstName” respectively, have no problem because they represent a thing.
However, the third name, which is “usesCache”, starts with averb and it is probable indicating if
the operation should be executed with the information in thecache or not. This is contrary to the
well-known black-box operation good practice [24] becausethe user must know how the operation is
implemented in order to invoke it.

4.2.3 Inappropriate comments detector

In addition to names, comments are an important WSDL documentpart that provides semantic infor-
mation because they not only supplies Web Services registries with terms, but also helps a potential
service user to understand the service functionality. However, badly commented WSDL documents
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are extremely common [14]. Detecting whether a comment is inappropriate requires understanding
the comment semantics as well as the operation semantics. Toanalyze a comment semantics, it is
necessary to have a language corpus [39] as well as some sensedisambiguation algorithm [45, 46].

To detect inappropriate comments, our heuristic assumes that a WSDL document has all its opera-
tions commented. For analyzing the comments, our heuristicrelies on a corpus that describes English
words and their relationships known as WordNet [39]. Using this corpus, we propose a simplified ver-
sion of two sense disambiguation algorithms [45, 46]. In particular, our algorithm uses the WordNet
hypernym relationship to disambiguate word meaning. A wordhypernym is another word or phrase
with a more wide-ranged concept that includes the concept represented by the first one. For instance,
in WordNet a “car” hypernym is “motor vehicle, automotive vehicle” which also includes, accord-
ing to WordNet, the concepts related to “motorcycle, bike”,“truck, motortrack” or a “golfcart”. The
hypernym relationship can be seen as a tree of word and phrases in which the root node is the most
general concept, e.g., “entity” in the cases of a noun. In these trees, leaves are very specific concepts,
while the root is a generic one.

The sense disambiguation generation tree algorithm is depicted in Algorithm 2; it is based on
combining the trees of different words using a occurrence counter to keep track of how frequent a
concept is. The algorithm creates the resulting tree in an incremental manner, at line 2 starts with a
tree that has only one node (all) that is the common root for all the word tree, and combines that tree to
the tree associated with each term one by one. The tree goal isto have weighted all the concepts that
can be related to the documentation. Since the weight of a node is the sum of its children weight or
the sum of the word occurrences if it is a leaf, the nearer the node is to the root, the higher its weight
is.

The detection heuristic relies on these trees to identify the semantics of the documentation. Ba-
sically, the heuristic generates two trees for the comments: one for the nouns and other for the verbs
and uses them with two purposes. The first purpose is to ensurethat the comments are not too general.
The second one is to compare the documentation semantics with the operation semantics.

To measure the comments specificity, our heuristic verifies whether the noun and verb trees depth
for the comments are higher than an experimentally selectedthreshold. The minimum noun-tree deep
threshold (NDT) is 5, while the minimum verb-tree deep threshold (VDT) is 1. The values of NDT
and VDT were empirically determined using the methods that will be described in Section 5.1.1.
Our heuristic measures the similitude between the noun and verb trees associated to the operation
name and comments. The similitude between two trees is defined as the depth of the longest-most-
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Algorithm 2 Combining tree.
1: function createTree(wordList)
2: treeRoot← createNode(ALL)
3: for word in wordListdo
4: wordTree←WordNetGetHypernymTree(word)
5: combineTree(treeRoot,wordTree)
6: end for
7: return treeRoot
8: end function
9: procedure combineTree(result,newTree)

10: for child in newTree.childrendo
11: if isChildOf(child, result) then
12: getEqualNode(result,child).counter++
13: else
14: newChild← createNode(child)
15: newChild.counter= 1
16: addNewNode(result,newChild)
17: end if
18: nextResult← getEqualNode(result,child)
19: combineTree(nextResult,child)
20: end for
21: end procedure

frequent path shared by both trees divided by the depth of thelongest tree. Algorithm 3 depicts how
the longest-most-frequent path shared by two trees is recursively calculated. Finally, this similitude
degree is compared to an experimentally selected threshold. The selected value for the noun similarity
threshold (NST) and verb similarity threshold (VST) is 10% in both cases. The reasons for selecting
these thresholds will be described in Section 5.1.1.

4.2.4 Undercover fault information within standard messages detector

Finally, theUndercover fault information within standard messagesanti-pattern belongs not only to
this category, but also to the Present in service implementation one. But since the input for the heuristic
is a WSDL document, the heuristic is designed to detect the anti-pattern only if it has a footprint in
the WSDL document, which is most likely when the WSDL document is not affected by other anti-
patterns. Firstly, the detector verifies whether the operation has a<fault>message defined that means
that the errors are handled in the correct manner or not. Consequently, the presence of a<fault>
message is considered enough evidence that the operation presents no symptom of the anti-pattern. If
this not the case, the heuristic looks for keywords that indicate the presence of the anti-pattern in the
operation documentation, output message name and names of the data types referred by the output
message. The set of keywords is:error, errors, fault, faults, fail, fails, exception, exceptions, overflow,
mistake and misplay. If the detector founds some of these words, the WSDL documentis considered
to be affected by theUndercover fault information within standard messagesanti-pattern. Although
this anti-pattern is related to the output semantics, it canbe detected following these simples rules
because the keywords are practically a convention in most ofthe programming languages/platforms,
such as Java, .Net or C++, used to provide an implementation of the target services.
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Algorithm 3 Longest-most-frequent path shared.
1: function longestMostFrequentPath(tree1, tree1)
2: result← 0
3: for child1 in tree1.childrendo
4: if hasTheHighestCounter(child1, tree1.children) then
5: child2← getEqualNode(tree2,child2)
6: if hasTheHighestCounter(child2, tree2.children) then
7: newResult← longestMostFrequentPath(child1,child2)
8: if newResult> result then
9: result← newResult

10: end if
11: end if
12: end if
13: end for
14: return(result)
15: end function

5 Experimental evaluation

In the previous section, we have presented algorithms and heuristics for automatically detecting the
discoverability anti-patterns described in [11]. This section describes three experiments that have
been conducted to evaluate the proposed detection algorithms and heuristics’ effectiveness of this
proposal. The first experiment consisted of analyzing a data-set of real world WSDL documents using
manual and automatic approaches and, in turn, comparing achieved results to assess the precision of
the automatic approach.

Then, the second and third experiments consisted of studying the statistical relationship between
the results of using theInappropriate or lacking commentsanti-pattern detector and the quality metrics
presented in [22]. This is because this anti-pattern not only is one of the most difficult to detect and
the most important for service discovery [1], but also is highly relevant for both service registries and
service consumers [11]. In this sense, the second experiment presents a correlation analysis, whereas
the third experiment further evaluates the effectiveness of the detection heuristic.

5.1 First Experiment: Manual vs. Automatic detection

In order to determine the effectiveness of our detectors, we have employed a 392 WSDL document
data-set, which is available upon request. The WSDL documents in the data-set were collected by
Hess et al. [21] from public Internet repositories, therebythey represent how Web Services are im-
plemented in real life. For the manual detection, expert service developers analyzed the data-set to
identify the anti-patterns in each WSDL document by hand. These results were peer-reviewed to as-
sure their quality. At least three different people reviewed each WSDL document. This analysis is a
revised version of the results presented in [11]. Figure 5 depicts the anti-pattern occurrences frequency
according to our manual analysis.

Once we had the results of manually analyzing the data-set, we applied the automatic detectors
on it, and finally compared both manual and automatic results. These results were organized per anti-
pattern, in which if a WSDL document has the anti-pattern it isclassified as “Positive”, otherwise
it is classified as “Negative”. When the manual classificationfor a WSDL document is equal to the
automatic one, it means that the detector has accurately operated for that WSDL document.
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Fig. 5. Anti-pattern frequency.

The achieved results are shown using a confusion matrix per anti-pattern. The rows of the matrix
represent the results of the automatic detector, while the columns of the matrix show manual classifi-
cations results. Using these confusion matrices, we assessed the accuracy, and false positive/negative
rates for each matrix. Table 2 shows the confusion matrices.

The accuracy of each detector was calculated as the number ofclassification matchings over the
total of analyzed WSDL documents. For instance, the accuracyof the detector associated with the
Enclosed data modelanti-pattern was 116+270

116+5+1+270= 98.47%. The heuristic for detectingLow cohesive
operations within the same port-typeanti-pattern achieved the lowest accuracy: 77.55%. Nevertheless,
the averaged accuracy was 93.14%.

The false positive rate is the proportion of WSDL documents that a detector wrongly labels as
having an anti-pattern. At the same time, the false negativerate is the proportion of WSDL documents
that a detector wrongly labels as not having an anti-pattern. A false negative rate equal to 1 would
mean that a detector missed all anti-pattern occurrences. For these rates, the lower the achieved values
the better the detection effectiveness. The averaged false positive rate was 4.064%, and the averaged
false negative rate was 9.911%.

All in all, it can be seen that the accuracy values achieved bythe algorithms-based detectors were
higher than those achieved by heuristics-based detectors,which was expected. However, the accuracy
value for these later was above 77.55%.

5.1.1 Inappropriate or lacking comment detector thresholddetermination

The Inappropriate or lacking comment anti-pattern detector has four parameters that have to be de-
termined before running it. As explained in Section 4.2.3, these parameters are the thresholds for
NDT, VDT, NST and VST. We followed an exploratory approach toselect these thresholds, this is,
we executed theInappropriate or lacking commentsanti-pattern detector using different thresholds
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Table 2. Confusion matrix for the detection of anti-patterns.

Automatic detection results per anti-pattern

Manual detection

results
Statistical indicators

Negative Positive Accuracy
False

Negative

False

Positive

Enclosed data model
Negative 116 6

98.47% 2.17% 0%
Positive 0 270

Redundant port-types
Negative 161 4

98.97% 1.73% 0%
Positive 0 227

Redundant data model
Negative 221 2

98.72% 1.19% 1.34%
Positive 3 166

Whatever types
Negative 339 0

99.23% 0% 0.09%
Positive 3 50

Inappropriate or lacking
comment

Negative 107 20
91.07% 12.29% 7.40%

Positive 15 250

Low cohesive operations in
the same port-type

Negative 272 10
77.55% 23.80% 22.29%

Positive 78 32

Undercover fault information
within standard messages

Negative 351 3
98.21% 8.11% 1.13%

Positive 4 34

Ambiguous names
Negative 7 3

82.90% 30% 0.26%
Positive 1 381
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Fig. 6. Heat maps.

settings on the data-set described above. For each combination of parameters, we ran the detector,
calculated its results, and compared it with the manually achieved results. Finally, the combination
whose results were nearest to the manually obtained ones wasused for the experiment described in
previous section. For the sake of experimental reproducibility, the thresholds that we finally selected
were: NDT=5,VDT=1, NST=0.1 and VST=0.1.

For both the NDT and VDT thresholds, we tested values rangingfrom 0 to 10, including the
extreme values, with steps of 1. In contrast, for NST and VST we tested values from 0 to 1, with
steps of 0.1. Therefore, we tried 14641 (i.e. 11214) different threshold settings and determined which
combination worked better.

In order to better understand the results, we reduced the dimension of the problem by performing
two analyses. First, we separated the 4 variables into 2 setsof 2 variables, namely {NDT, VDT} and
{NST, VST}. Since for each possible instance of {NDT, VDT} or{NST, VST} there are 121 com-
binations of experimental results, we calculated the average accuracy. For instance, to calculate the
average accuracy of fixed {NDT, VDT}, we took all the 121 results from the experiments in which
their {NDT, VDT} is the fixed {NDT, VDT} and, then averaged them. Figure 6, in which the whiter is
the better, presents the accuracy, and the false positive rate of both sets using heat maps. Since many
configurations had no false negatives, no false negative analysis is included in the heat maps.

An interesting fact is that the more accurate, on average, a particular instance of {NDT, VDT}
or {NST, VST} is, the more affected by the other set the accuracy is. Hence, if a particular{NDT,
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VDT} configuration had a low average accuracy, the accuracy of a particular configuration {NDT,
VDT, NST, VST} with that {NDT, VDT} values would be low independently from the {NST, VST}
values. But, if the {NDT, VDT} configuration had a high average accuracy, the accuracy of a particular
configuration {NDT, VDT, NST, VST} with that {NDT, VDT} values would strongly depend from
the {NST, VST} values. The situation is analogous when analyzing the average accuracy of the {NST,
VST} configurations.

From Figure 6a to Figure 6b, it can be seen that when NDT is 5 andVDT is 1, the detector had
a good accuracy and not many false positives. In contrast, Figure 6c and Figure 6d evidence that the
most restrictive values for NST and VST that had the best accuracy and the lowest false positive rate is
0.1 for both. This configuration also had the best performance among the 14641 tested configurations.

5.1.2 Comparison with traditional cohesive metrics for WSDL documents

As summarized in Section 3, there are several cohesion metrics [27, 35, 36] that base on the implemen-
tation source code, but there is a lack of cohesion metrics based on high-level designs. For instance,
Lack of Cohesion Method (LCOM) [27] requires accessing the source code, since it is defined as the
number of pair of methods that do not share instance variables, minus the number of pair of methods
with shared instance variable. Despite of this, our detectors’ heuristic is inspired in a well-known au-
tomatic document classification one. Taking into account that this is an uncommon way of measuring
cohesion, we compared it with an adaptation of the class-level cohesion metric introduced in [36]. The
work presented in [36] builds matrixes, or graphs, for denoting similarity between pairs of methods
and pairs of attribute types in a class. Then, class cohesionis computed as the overall similarity among
the class pairs.

Since WSDL documents contain less information that classes source code, we adapted the idea of
using instance variables and methods relationships. Thus,themethods-methodsgraph, which is built
by counting the number of methods invocations from within other methods, was omitted. Instead,
we adapted this idea by basing on how operations in the same port-type are related to defined XSD
data-types. To do this, we constructed a graph for a port-type using the following steps:

1. Add all operations in the port-type as nodes.

2. Add all messages referenced by the operations in the graphas nodes, and the references as edge.

3. Add all complex data-types referenced by messages in the graph as nodes, and the references
as edges.

4. Add all complex data-types referenced by other data-types in the graph as nodes, and the refer-
ences as edges.

5. Repeat step 4, until no node is added.

Notice that this adaptation does not include primitive data-types, such as strings, integers, base64, and
array of them, in the graph. Then, to detect whether there is lack of cohesion, our heuristic verifies if
the graph is a connected graph, which is similar to how classic cohesion metrics operate. For instance,
Tight Class Cohesion (TCC) measures the relative number of directly connected pairs of methods of a
class, and Loose Class Cohesion (LCC), which measures the relative number of directly or transitively
connected pairs of methods of a class. These two metrics consider two methods to be connected if
they share at least one instance variable or one of the methods invokes the other.
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To evaluate this adaptation, we used the same methodology and data-set described in Section 5.1.
Accordingly, achieved results show that though based on accepted techniques for measuring cohe-
sion, this adapted heuristic missed 40 Low cohesive operations in the same port-type anti-pattern
occurrences and incorrectly detected this anti-pattern in7 WSDL documents, while detected 3 real
occurrences of the anti-pattern. This means that the adaptation had an accuracy of 88.01%, a false
positive rate of 77.78%, and a false negative rate of 10.44%. Compared to our proposed heuristic, this
adaptation has a better accuracy, but the high rate of false positive renders this adaptation ineffective.

This high false positive rate is probably cause by the fact that WSDL documents have less in-
formation about the functionality of its related software than the source code. On the other hand,
preliminary results in [47] show that classical software metrics can be used to prevent bad practices in
WSDL documents when they are generated using the Code-First methodology. This is because with
Code-First the WSDL document of a service is derived from its implementation source code, thus
classic cohesion metrics can be calculated from it.

5.2 Second Experiment: Al-Masri and Mahmoud’s quality metrics and the anti-

patterns’ detectors

In [22], Al-Masri and Mahmoud surveyed quality metrics froma real world data-set of Web Services,
known as QWS [48], which is publicly availablee. We have calculated the Pearson’s correlation be-
tween anti-pattern occurrences and the quality metrics. Pearson’s correlation was used because we
expected to find a direct relationship between Al-Masri and Mahmoud’s quality metrics and the anti-
patterns. For the correlation analysis, we employed only a subset of this data-set, which consists
of 365 Web Services that exist on both [21] and [48] data-sets. The reason to do this was that we have
their associated WSDL documents, their quality metrics, andthe manual peer-reviewed analysis of
anti-patterns occurrences.

The results showed that some of the Al-Masri and Mahmoud’s quality metrics have a significant
correlation with the anti-patterns, but others have not. However, when we analyzed these results, the
metrics that have no correlation are: response time, availability, throughput, successability, reliability,
latency, WsRF and class. Since these are technical metrics unrelated to WSDL document quality, it
is reasonable that they have no correlation with the anti-patterns, which reflect a WSDL document
quality. In contrast, the metrics that have a correlation with the anti-patterns are related to WSDL
document quality [22]; these metrics are:

• Compliance: The degree to which a WSDL document grammatically conforms to the WSDL
specification.

• Best Practices: The degree to which a Web service complies with WS-I profile guidelines.

• Documentation: The amount of textual documentation in description tags including service,
ports, and operations.

In Figure 7, we present the correlation between anti-pattern occurrences and these three quality metrics
in the QWS data-set. A correlation value higher than zero means that when one variable rises, the
other variable value tends also to rise, while a correlationvalue lower than zero means that when one
variable rises, the other variable value tends to decrease.A correlation value near zero means that the
values of the variables are independent, i.e., anti-pattern occurrences and Al-Masri and Mahmoud’s

eThe QWS data-set:http://www.uoguelph.ca/~qmahmoud/qws/index.html
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Fig. 7. Correlation between Anti-patterns and the Al-Masriand Mahmoud’s quality metrics.

quality metrics are not related. Finally, it is important tonotice that correlation values are neither too
high nor too low because we are correlating a discrete two-value variable (anti-pattern occurrences)
and it cannot have a linear relation to a continuous value.

When using Al-Masri and Mahmoud’s quality metrics, low values stand for low quality, and high
values stand for high quality. On the other hand, the anti-patterns’ variable is zero for not affected
WSDL documents and one for affected ones. Therefore, when the correlation between an Al-Masri
and Mahmoud’s quality metric and an anti-pattern occurrences is negative, it means that having high
value in this metric, a WSDL document is unlikely to be affected by the anti-pattern. And when this
quality is low, it is very likely that the WSDL document suffers from the anti-pattern. In contrast, a
positive correlation means that if a WSDL document has a high value in this metric, it is likely that this
WSDL document suffers from the anti-pattern. When the value of the metric is low,the anti-pattern
presence is unlikely.

In order to validate the results presented in Figure 7, we calculated the p-value for these correla-
tions. Table 3 presents the p-values for each correlation between an anti-pattern and a metric. The
p-value is the possibility that the correlation between twovalues is zero. This table confirms the find-
ing presented in Figure 7 because the absolute value of the correlation between two values is always
less than 0.09 when their p-value is higher than 0.05. In contrast, if the p-value is less than 0.05, the
absolute value of correlation between the values is always higher than 0.1. Furthermore, the absolute
value of correlation is higher than 0.15 when the p-value is lower than 0.01. Although these are low
correlation values, they are clearly separated, and the correlation is higher when the p-value is lower.

According to our results, when the Compliance metric is highin a WSDL document, this document
tends not to be affected by most of the anti-patterns. The exceptions to this are theEnclosed data-
modelanti-pattern, for which correlation is near zero, and theInappropriate or lacking comments
anti-pattern that is a highly correlated anti-pattern. Thefirst exception is sound because both options,
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Table 3. Pearson Correlation p-value

Anti-Pattern Compliance Best Practices Documentation

Enclosed data model ≈ 0.80 < 0.01 < 0.01

Redundant port-types < 0.01 < 0.01 < 0.01

Redundant data models < 0.05 < 0.01 < 0.01

Whatever types < 0.01 < 0.01 ≈ 0.50

Undercover fault information within

standard messages

< 0.01 ≈ 0.72 < 0.01

Low cohesive operations in the same

port-type

≈ 0.94 < 0.01 ≈ 0.89

Ambiguous names ≈ 0.39 ≈ 0.31 ≈ 0.11

Inappropriate or lacking comments < 0.01 ≈ 0.82 < 0.01

having enclosed data-model or importing them from an XSD file, are WSDL compliant. On the
other hand, the problems with documentation might stem fromthat when a WSDL document has
comment, it is likely that its developer has manually modified it or that the developer has built the
WSDL document from scratch, being both error-prone tasks.

Similarly to the Compliance metric, the Best Practices metric has a negative correlation with most
of the anti-patterns. The only exceptions areWhatever types, Ambiguous namesand Inappropriate
or lacking commentsanti-patterns. These correlations are near zero, i.e., this metric and these anti-
pattern occurrences are unrelated. This is probably because the Best Practices metric is related to WS-I
guidelines that aim to improve the technical interoperability, but not the usability of a Web Service;
and these anti-patterns are precisely connected to WSDL document readability and understandability,
but a WSDL document with symptoms of these anti-patterns can be as good or as bad as a WSDL
document without symptoms of these anti-patterns from the WS-I profile point of view.

Finally, the Documentation metric, which represents the percentage of elements in a WSDL doc-
ument that contain comments, is only correlated negativelyto theInappropriate or lacking comments
anti-pattern. This is expected because if a developer introduces comments in a WSDL document, they
are intended to be read. The other anti-patterns are either not correlated or have a positive correla-
tion. The positive correlation might result from errors that developers made when they edited WSDL
documents. This is consistent with the observation made on the correlations of Compliance and Best
Practices metrics.

All in all, while other anti-pattern occurrences tend to decrease or are not affected when Com-
pliance and Best Practices metrics value arises,Inappropriate or lacking commentsanti-pattern oc-
currences tend to increase. In addition,Inappropriate or lacking commentsanti-pattern occurrences
are less frequent when the Documentation metric value is high, while the other anti-patterns have the
opposite behavior. We consider these findings of great interest because comments have been proved
to be essential for both service registries, and service consumers [11], thereby we present a deeper
analysis the correlation betweenInappropriate or lacking commentsanti-pattern and Al-Masri and
Mahmoud’s quality metrics in the next section.
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Table 4. Statistical information.

Statistical value/Metric Compliance Best Practices Documentation WsRF Class

Average Value 83.709 80.671 47.292 66.649 2.781

Standard deviation 8.773 6.695 36.309 11.506 0.980

Correlation -0.262 -0.007 0.375 0.207 -0.188

Average with the anti-pattern 85.270 80.705 38.052 65.032 2.907

Average without the anti-pattern 80.315 80.596 67.394 70.166 2.508

5.3 Third Experiment: Further analysis of Inappropriate or lacking commentsanti-
pattern detection and Al-Masri and Mahmoud’s quality metrics

We have performed a deeper analysis of theInappropriate or lacking commentsanti-pattern and the
Al-Masri and Mahmoud’s quality metrics. Aside from comments importance, the Al-Masri and Mah-
moud’s quality metrics correlation with theInappropriate or lacking commentsanti-pattern is almost
the opposite of the correlation with other anti-patterns. Therefore, the goal of this section is to make
a detailed analysis of the correlation between theInappropriate or lacking commentsanti-pattern in a
WSDL document and the quality values assigned in Al-Masri andMahmoud work [22]. This analysis
was not limited to the Pearson’s product-moment correlation coefficient like in the previous section.
We have also used several statistical indicators to study the relationship between this anti-pattern de-
tector output and the quality metrics. In addition to analyzing new indicators, we also added the
following quality metrics to the analysis:

• WsRF: Web Service Relevancy Function is a rank for Web ServiceQuality [48].

• Class: a level representing service offering qualities. This metric accepts a discrete value from 1
to 4, but in this case, a lower value stands for better quality.

Table 4 presents the statistical data obtained when the WSDL documents were analyzed. The most
related value is the Documentation metric, whose correlation is 0.37, and this is reflected in its average
value when the anti-pattern is present or not. The other attribute that presents a positive correlation
is WsRF, although it is less than the Documentation metric. However, it is important to notice that,
by definition, the WsRF value depends on the values of the othermetrics. Therefore, its correlation
might be a result of the Documentation metric correlation. The Compliance metric is also related to
the presence of this anti-pattern, but in a negative manner.This means that the more compliant the
WSDL document is, the more likely theInappropriate or lacking commentsanti-pattern occurrence is.
To confirm that this correlation is not due to a characteristic of our detector, the correlation between the
Compliance metric and the Documentation metric was calculated. It was−0.28, which confirms that
Compliance is in detriment of Documentation and vice versa,supporting our hypothesis. Finally, as
a lower value means good quality, the negative correlation represents exactly the same as the positive
correlation for the WsRF metric.

Based on these correlations, we also analyzed whether it is possible to predict this anti-pattern oc-
currences based on these attributes’ values. This analysiswas performed using decision trees trained
using Class, Documentation, Best practices and Complianceattributes as inputs and the anti-pattern
detector result as output. The selected algorithm to generate this tree was Multiclass alternating deci-
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0,0

       1-Documentation < 27: -2.089,2.089   

       1-Documentation >= 27: -0.021,0.021

              2-Best Practices < 79.5: -0.387,0.387

                     3-Best Practices < 65.5: 1.156,-1.156

                            7-Best Practices < 60: -2,2

                            7-Best Practices >= 60: 0.611,-0.611

                     3-Best Practices >= 65.5: -0.185,0.185

              2-Best Practices >= 79.5: 0.205,-0.205

                     4-Best Practices < 87.5: 0.108,-0.108

                     4-Best Practices >= 87.5: -0.837,0.837

                     5-Documentation < 50: 0.323,-0.323

                            8-Compliance < 94.5: 0.138,-0.138

                            8-Compliance >= 94.5: -1.006,1.006

                     5-Documentation >= 50: -0.229,0.229

                            6-Documentation < 88.5: -0.705,0.705

                            6-Documentation >= 88.5: 0.266,-0.266

Fig. 8. Decision tree.

sion trees [49] because it was the most accurate decision tree among several techniques, provided by
Weka [50], for this problem.

Figure 8 depicts the resulting decision tree. To use this tree with an instance, it is necessary an
auxiliary vector initialized as the root node, i.e., (0,0).Then, the algorithm follows the tree to add
the values in all the nodes that the current instance fits to the auxiliary vector. If the first number is
the greater, the tree predicts that the anti-pattern is not present, otherwise the prediction is that the
anti-pattern is present.

The tree predicts that if the Documentation metric value is less than 27% the anti-pattern will be
detected independently of the other metrics. This makes senses because a low value in this metric
represents that the WSDL document has little comments. In contrast, the Best practice metric behaves
in a not homogeneous way because if it is in some ranges it suggests that the anti-pattern will not be
detected, but when the attribute takes extreme values, the decision tree suggests that the anti-pattern
will be detected. A final observation, when the Documentation metric value is between 27% and 50%,
and the Best Practice is more than 79.5% (condition that meets 17% of the data-set instances), then a
high Compliance value (more than 94.5%) suggests that the anti-pattern will be detected.

6 Future Research Possibilities

Automatically detecting anti-patterns in WSDL documents isthe previous step to assist developers in
refactoring their WSDL documents using software tools. We believe that this kind of tools will make
the anti-pattern catalog even more valuable because they will ensure that the refactoring guidelines
will be properly applied. Therefore, an open research question is how to automatize WSDL document
refactorings.

The anti-pattern refactorings presented in [11] assume that service developers are actually involved
in the WSDL document construction, i.e. they employ thecontract-firstapproach. However, there is
another way of create WSDL documents calledcode-first, which means that developers first write a
service implementation and then generates the corresponding service contract by automatically ex-
tracting and deriving the interface from the implemented code. This means that WSDL documents
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are not directly created by humans, but are automatically derived from programming languages via
language-dependent tools. As a result, the generated WSDL documents are not verified by service
developers. Therefore, another research question comprises analyzing whether these techniques could
work along with code-first WSDL document generation tools, informing potential errors in the code
from which WSDL documents are derived.

Similar to the first open question, it has been shown in [47] that performing common Fowler et
al.’s refactorings in the code implementing code-first Web Services, may prevent WSDL documents
of having anti-patterns occurrences.

Since many of the presented heuristics are language dependent, we will evaluate their performance
in other languages and incorporating further sources of data, such as Web pages pointing to services
descriptions. Since Web pages are the typical manner of describing RESTful services, we will also
research on potential issues discoverability issues in RESTful service descriptions and how to detect
them. In addition, we are evaluating other techniques, e.g.clustering, to detectLow cohesive oper-
ations within the same port-typeanti-pattern without the necessity of having a previously classified
data-set. Finally, another extension is to combine the detectors with service registries to automati-
cally mitigate the anti-pattern effects by, for instance, eliminating repeated port-types or not indexing
redundant information.

7 Conclusions

In previous works [11, 13] the implications of the use of poorly written WSDL documents against
discovery and human discoverers’ understandability have been empirically proven. Broadly, previous
works highlight the importance of offering self-explanatory WSDL documents, mostly because dis-
coverable and understandable services potentially mean more applications that re-use them [51]. For
paid Web Services, this means more incomes. This paper presents novel algorithms and heuristics for
detecting recurrent discoverability problems in WSDL documents. These algorithms and heuristics
have been implemented and in turn employed for detecting such problems in a corpus of real-world
Web Services, which had been peer reviewed by humans. The results reported in this paper show that
the averaged accuracy of the proposed detectors was 93.14%, and the false positive and false negative
rates of 4.064% and 9.911%, respectively. It is worth noting that these results are data set specific and
may vary with another data set, mostly for the heuristics accuracy, though the size of the employed
corpus is to some extent representative.

Two additional experiments were conducted to further test the precision of one proposed heuris-
tic. This heuristic deals with detecting the anti-pattern that has the strongest impact on discovery, as
reported by [11], namelyInappropriate or lacking comments. These experiments correlated heuristic
results with Al-Masri and Mahmoud’s study about Web Services quality shown in [22]. Accordingly,
the statistical correlation analysis provides more empirical evidence about the precision of the associ-
ated heuristic.

To conclude, evaluation results empirically confirm that the proposed detectors can minimize the
impact of the commonest bad practices by helping developersto identify potential problems in their
services before they are made available. All in all, in orderto materialize the vision of a global
market of interoperable and discoverable Web Services moreeffort should be placed on answering the
research question related to preventing anti-patterns on code-first WSDL documents and automatically
refactoring contract-first ones.
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