Journal of Web Engineering, Vol. 12, No. 1&2 (2013) 131-158
© Rinton Press

AN APPROACH FOR WEB SERVICE DISCOVERABILITY ANTI-PATTERN DETECTION
FOR JOURNAL OF WEB ENGINEERING

JUAN MANUEL RODRIGUEZ MARCO CRASSO ALEJANDRO ZUNINO
ISISTAN, Universidad Nacional del Centro de la ProvincisBienos Aires, Paraje Arroyo Seco
Tandil, Buenos Aires B7001BBO, Argentina

CONICET
juanmanuel.rodriguez@isistan.unicen.edu.ar marcasodisistan.unicen.edu.ar alejandro.zunino@isistsicen.edu.ar

Received February 17, 2012
Revised October 26, 2012

The Service Oriented Computing paradigm and its most popoipleimentation, namely Web Ser-
vices, are at the crossing of distributed computing and lgaseupled systems. Web Services can
be discovered and reused dynamically using non-proprigteghanisms, but when Web Services
are poorly described, they becomefidult to be discovered, understood, and then reused. This pa-
per presents novel algorithms and heuristics for autométidatecting common pitfalls that should
be avoided when creating Web Services descriptions. Tesadke accuracy of the proposed algo-
rithms and heuristics, we compared their results with theltesfimanually analyzing a data-set of
400 publicly available services. In addition, we analyZeel ¢orrelation between the algorithms and
heuristics results and other well-known quality metricsjchtwere presented by Al-Masri and Mah-
moud. The average detection accuracy was 93.14% , and teepfaditive and false negative rates of
4.06% and 9.91% , respectively. Additionally, the Al-Maand Mahmoud'’s quality metrics related to
Web Services descriptions had a direct correlation with rab#te automatic detecting results. The
proposed algorithms and heuristics for automatically detgctommon pitfalls are powerful tools for
both improving existent Web Services and developing new Véghi&es that can be easily discovered,
understood and reused.

Keywords Web Services, Web Services Discoverability Anti-patseiVeb Services Modeling, Anti-
patterns detection.
Communicated byB. White & O. Diaz

1 Introduction

Creating software that utilizes information and servicesviged by third-parties is very common.
Software companies tend to focus internal resources orlajerg core features, while delegating
non-core operations to an external entity [1]. Nowadayis, kind of software usually is developed
under a paradigm, calleService-Oriented Computin@OC), in which developers look for indepen-
dent loosely coupled third-party software pieces, catleviceq2].

When developing software under the SOC paradigm, there i@e tthain roles: service consumer,
service provider and service discovery system. The sepvimader dfers services which are expected
to be invoked by service consumers. To use a service, a seteitsumer needs to know that it is
available. Helping service consumers to find the servicettiey need is the function of the service
discovery system role [3].

Since services need to be interoperable, they are impletersing well-known Internet proto-

131

132 An Approach for Web Service Discoverability Anti-PatteDetection

cols [4]. These services are caldb ServicesNeb Services standard defines a registry interface and
a language to describe the services, namely Universal Pé&sar, Discovery and Integration (UDDH)
and Web Services Description Language (WSDEppectively. Basically, an UDDI registry allows
service providers to publish their services and servicesaorers to look for the services that they
need. Publishing a service in UDDI consists on describis@iibvider, characterizing its functional-
ity based on standard taxonomies and services’ WSDL docanent

Several studies confirmed that Web Services are not as wihesfi.e., at global scale) as expected
because finding the right service is a hard task. The disgquablem has been an issue of Web
Services from their very beginnings because UDDI registeysh capabilities are inappropriate for an
extremely open and heterogeneous setting like the Intgshetherefore, several search approaches,
e.g. those based on the Semantic Web vision [6] or classicrirdtion Retrieval (IR) techniques [7, 8],
have been rapidly proposed to complement UDDI.

Except for the Semantic Web based discovery approacheshwitilize ontologies as additional
specifications for the services, other discovery appraacindy rely on information extracted from
the UDDI registries entries, e.g. WSDL documents, assatiaith the services because them are
supposed to contain information that specifies servicegtfanality. WSDL is an XML-based lan-
guage for describing a service intended functionality gisin interface with methods and arguments,
in object-oriented terminology, and documentation asuxtomments. Concretely, a WSDL doc-
ument has words or terms, placed in the operation signatméssomments [9], that describe the
service [8]. In consequence, several authors have adapeiccIR techniques [7, 9, 8], such as word
sense disambiguation, stop-words removal, and stemnongefvice discovery [8].

Although well-written WSDL documents are essential not dolglevelopers, who need WSDL
documents’ information to invoke the service [10], but a@isdR-based discovery systems, it seems
that service developers tend not to care about the WSDL douishuality. Several researchers [7,
11, 12, 13, 14, 15] have pointed out a wide range of recurrerDlM&cument problems that nega-
tively impact on both discoverability and usability of siees. Theseféorts originate a research line
for Web Services discoverability concerns.

As far as we known, one of the most exhaustive and completegn Web Services discover-
ability concerns is the work presented in [11]. The authnt®duced a discoverability anti-patterns
catalog that aims to help developers to improve their WSDLudzents [11]. The catalog consists
of eight anti-patterns and each anti-pattern has a namegbdepn description, and a soundly refac-
tor procedure. In addition, [11] analyzes how each antigpatafects the capability of not only
service discovery systems to find a suitable service, botlalsnans to understand the service func-
tionality [1]. Broadly, the results empirically confirm thidne removal of discoverability anti-patterns
makes services easier to be understood and discovereddmytipptonsumers.

Despite having an anti-pattern catalog is useful, lookimganti-patterns in WSDL documents
might be a time consuming and complex task [11]. Furtheriraeeelopers tend to disregard WSDL
document quality importance, even when they are develagmibteyprise systems [16]. Therefore, there
is a clear need of automatic support to spot anti-patternaroences in WSDL documents, which
allows service providers to improve their service deswips prior to make them publicly available.
Although some anti-patterns can be detected only by amajythie structure, or syntax of the WSDL
document, others require a more complex analysis, whichircdnde analyzing the semantics of

2uDDI, http://uddi.xml.org/
bwsDL, http://www.w3.org/TR/wsdl

J.M. Rodriguez, M. Crasso, and A. Zunind33

the WSDL document elements. Therefore, this paper preskyusthms to detect the simplest anti-
patterns and heuristics for more complex anti-patterns. gbaposed heuristics combine techniques
from the Machine Learning and Natural Language Processiegsa namely automatic document
classification [17] and probabilistic context free gramiparsing [18, 19, 20], respectively.

Both the heuristics and algorithms have been implementadas for developers. Given a WSDL
document, the tool outputs a list of anti-pattern occuresri€ any could be detected. The detection
effectiveness of the algorithms has been experimentally atgtiwith a 392-WSDL document data-
set [21], which is publicly available. At the same time, theuhistics &ectiveness has been tested
using the same data-set, but also the achieved results kavecbrrelated with those showed in [22],
a survey of quality metrics from 2250 publicly available Wedrvices that includes metrics concerned
with WSDL documents discoverability.

The main contributions of this paper are:

¢ the definition of algorithms and heuristics for detectirgginent practices that hinder Web Ser-
vices discoverability,

e experiments showing that the proposed algorithms and stesrienable the detection of anti-
patterns within WSDL documents.

e assessments about the correlation between these amtifgagind well-known Web Services
quality metrics.

The rest of this paper is organized as follows. In Section @,d@scribe how Web Services are
specified using WSDL documents, and methods for automatieaessing the quality of a Web
service in terms of discoverability. Next, in Section 3, #rgi-pattern catalog, on which this work
relies, is briefly described. Section 4 presents the prapapproach to detect the anti-patterns in
a WSDL document. Then, Section 5 assesses fileeteveness of the proposed approach. Future
research possibilities are presented in Section 6. Firadigtion 7 concludes the paper.

2 Background

On one hand, our approach works over service descriptibesglby it is needed to understand how
services are described. At the same time, since our work a@irnelping services owners to improve
service description quality, and service description afenare artifacts, it is necessary to appreciate
why traditional software quality metrics are not applieabi this context. Therefore, this section
introduces two main topics: how Web Services are descrihddraditional software quality metrics.

2.1 Describing Web Services

WSDL is a language that allows developers to describe two peits of a service: its functionality,
and how to invoke it. Conceptually, a WSDL document reveadssiirvice interface that idfered to
the outer world. The latter part specifies technologicaéats such as transport protocol and network
address. Discoverers use the functional descriptions tomthird-party services against their needs
and, in turn, they take under consideration the technatbgletails for invoking the selected service.
Technically, a WSDL document describes the service funatipnas a set oport-types which
arrange dierentoperationswhose invocation is based anessagexchange. Messages stand for
the inputs or outputs of the operations, indistinctly. Epta@ns are described as ordinary messages
calledfaults Besides, the main elements of a WSDL document, such asygpms;toperations and

134 An Approach for Web Service Discoverability Anti-PatteDetection

Description
- targetNamespace

Port-type
- name

Operation
.| -name

Input
0..* - name?
- message

Output
04" name?
~ - message

Fault

Keys:]) 0.4 - name?
Element name An element of the language with attributes. - message

- required attribute | Note: all elements may have <documentation>
- optional attribute?| as first child

Fig. 1. WSDL v1.1 Infoset.

their messages, must be named with unique identifiers. &ifjaepicts the Information set (Infoset)
diagram of the WSDL for service interfaces. We used the WSDtifipation version 1.1 through this
paper because it is the most currently used, yet WSDL speificaersion 2.0 is not diierent from
version 1.1 in terms of the information that a WSDL documemitaims about a service interface.

Messages consist gfarts that transport data between services’ consumers and gmsyidnd
vice-versa. Each message part is arranged according tifispata-type definitions. The XML
Schema Definition (XSOanguage is employed to express the structure of messaige 8D dfers
constructors for defining simple types (e.g., integer andg}, restrictions and both encapsulation
and extension mechanisms to define more complex elements.

For the sake of exemplification, the right side of Figure 2rshthe WSDL grammar, while a real
world example is shown at the left side of the figure. Chosemgpte contains a port-type with only
one operation. The operation is named GetRate and it isrsigr returning the currency conversion
rate between two countries, as it is described by its assabthocumentation. The GetRate operation
expects a message containing two country codes as inpubeAsader can see, the types tag includes
the code needed for representing a complex data-typedc@isuntryCodes” which is exchanged in
the input message of the “GetRate” operation. Alternatj€5D code might be put into a separate
file and imported from the WSDL document or even other WSDL daiafterward.

2.2 Measuring software code quality

Researchers have study software code quality from the \eginhings of software engineering [23,
24]. Usually, the software code quality is expressed thinougtrics that analyze fierent aspects of
the same source code artifact. For instance, there arecs&ricomponent coupling, documentation,
or complexity. In addition to defining these metrics, reskars also have proven that these metrics
can be used to predict the amount of failures in a softwargrom@nt [25, 26].

These metrics can be as simple as counting the lines of canleer, most of these metrics [27,
25, 26] requires not only to process a module header, buitalassociated code in order to measure

¢XML Schema Part 0: Primer Second Editidn,tp://www.w3.org/TR/xmlschema-0/

J.M. Rodriguez, M. Crasso, and A. Zunind35

WSDL grammar WSDL example

— <types>

i 2
<documentation />7 — <xsd:element name="GetRate">

<types>? .
<documentation />? <:::d0;rgﬂ§:ggf e>
</<tys:eh:>ma s \ <xsd:element name="srcCurrency" type="xsd:string"/>

o <xsd:element name="destCurrency" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
— </types>
<message name="GetRateSoapIn">
<part name="parameters" element="s0:GetRate" />
</message>
— <portType name="CurrencywsSoap">
<operation name="GetRate">

<message name="nmtoken">*
<documentation />?
<part name="nmtoken"
element="qname"? type="qname"?/>*
</message> —
<portType name="nmtoken">*
<documentation />?
<operation name="nmtoken">*
<documentation />?
<input name="nmtoken"? message="qname">?

) <documentation>
<documentation />? N
<finput> This method returns the currency
" " " " conversion ratio between two countries
<output name="nmtoken"? message="qname">? .
) </documentation>
<dooumentation />? <input message="s0:GetRateSoapIn">
</output> P 9 . p

<documentation>The codes of two countries</documentation>
<f/input>
<output message="s0:GetRateSoapOut" />
<fault name="nmtoken" message="s0:GetRateFault"/>
— </operation>
L—</portType>

<fault name="nmtoken" message="gname">*
<documentation ... />?
<[fault>
</operation>
</portType>

?: Optional
*: None, one or many

Fig. 2. Web Services Description Language grammar and example.

them. Here, we refer to module as a general term for denotingtions, procedures, methods, and
any block of code exposing a signature. For instance, cyafiencomplexity [23] requires creating
a graph that represents all the possible executions flowssoftavare component. Although these
metrics can be automatically calculated, they are stroogilselated with more abstract concepts [28],
such as cohesion, which is the semantic relation betweepaoents of the same software artifacts.
Finally, this kind of metrics need the source code to perfarcalculation. In our study, since we only
have the WSDL documents of services, these metrics are nlicapp.

Other researchers have attempted to measure directly rbsteaet concept, like cohesion or
documentation quality. In [29], they present a tool, calleddadocMiner, that implements set of
heuristics and algorithms to analyze Javadocs, which axeJawa classes interfaces are documented.
This work bases on the fact that by using Javadoc, methodsneoits are structured in a known
way and explicitly references to methods inputs, returnedptions are included. In consequence,
JavadocMiner uses this structure to verify whether all teenents are referenced in the comments or
not. In addition, JavadocMiner employs other simple hé¢igessuch as tokenized nouns and verbs,
counting words per Javadoc, and calculating readabilitsnédas [30], for evaluating the quality of
the present documentation.

Researchers have also applied linguistic metrics, natarguage processing techniques, and
heuristic rules to study the quality of identifiers and comtasén source code. In [31], the authors
propose to use well-known text metrics to detect anti-patte comments, while other authors [32]
only employ simple rules to detect problems with identifielrs [33] the authors present a detailed
understanding of Java class identifier naming conventgimsying most relevant naming patterns and
grammatical structures; in [34] the authors show an appréa@utomatically improve the descrip-
tiveness of labels used to name business entities.

Finally, several authors have proposed measuring cohasiag graphs that represent howfeli-

136 An Approach for Web Service Discoverability Anti-PatteDetection

ent elements of the code artifacts are related [27, 35, 36xample of this is the Lack of Cohesion
on Method [27] that is the number of pair methods which sharmstance variables. These methods
for measuring cohesion are based on source code, yet theyoareseful when the only available
information is the system interface, which is very commorewhsing Web Services.

To sum up, traditional software quality metrics are, at péigicult to be adapted for measuring
WSDL document quality. Due to thisfiiculty, it is necessary to develop new heuristics for autémat
cally assessing the discoverability of Web Services. Haneve have adapted or reused, when it was
possible, some of the bases of these metrics in our approaaiiamatically detect anti-patterns.

3 Related work

Researchers have studied Web Services quality frdfierdint angles, such as interoperability, se-
curity and discoverability, or interface quality. Regagliboth interoperability and security, the Web
Services Interoperability Organization (WS-1), an orgatin that establishes best practices for inter-
operability, has released several profllagrofile describes how to implement interoperable sesvice
based on the exhaustive analysis of popular enterprisea@ftmiddlewares, namely .NET and JEE.
In addition, the WS-I provides testing tools, e.g., BP 1.2 21dnteroperability Test Suites, to ensure
that a Web Service implementation satisfies these profildser@esearch works aim to improve Web
Services performance [37] and reliability [38]. Finallgveral ¢forts aim to analyze the quality of
WSDL documents [11, 13, 14]. These works are further destiiimbow because they are very near
to the approach presented in this paper.

In [14], the authors analyzed the comments present in difeA¥SDL document data-set. To an-
alyze those WSDL documents comments, the authors crawlguggistries on the Internet. Initially,
the authors gathered 2432 Web Services, but this numbesaiemt to 1544 because some registered
services have a non-valid URL to their WSDL documents. Moegedhe authors discarded duplicated
services and the ones with an invalid WSDL document, i.e.,dafbamed WSDL document. Thus,
the number of gathered services fell to 640. Then, the asithnalyzed the lengths of the textual
comments of these services (including the registratioormétion and all the comments present in
the WSDL documents). The paper shows that in the 80% of 64difeaVSDL documents the av-
erage documentation length for operations is 10 words ar IEarthermore, from this 80%, half of
them have no documentation at all. In addition, 80% of theroemts have less than 50 words, while
52% of the comments have less than 20 words. Afterward, tteeiaveraged the lengths of the
textual comments associated witbperation- elements in the WSDL documents.

In [13], the authors analyze elements names in WSDL documdifits authors detect “naming
tendencies” in the names of WSDL document elements and eralbyrishow that these tendencies
negatively impact the retrievaliectiveness of a syntactic registry. The experiment cagbist an-
alyzing the names of message parts that belong to 596 WSDLnueras gathered from Internet
repositories. The name of each message part was compaiedtdba rest of part names, then four
naming tendencies were observed in service message paoadif3 these tendencies show that de-
velopers use common phrases within part names. For exampiessage part standing for a user’s
name is commonly called “name”, “Iname”, “user_name” orsfimame” [13]. Finally, the paper
empirically shows that the retrievaffectiveness of a syntactic registry can be improved by enhgnc
its underlying matching approach for dealing with the otieditendencies.

The work presented in [11], in which this paper is heavilyduhsexplicitly pursues recurrent

dBasic Profileshttp://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

J.M. Rodriguez, M. Crasso, and A. Zunind37

Table 1. Web Services discoverability anti-patterns.

Anti-pattern Occurs when Manifest

A special data-type is used for representing any object of .
Whatever types) Evident
the problem domain.

Redundant port-types Berent port-typesfoer the same set of operations. Evident

Many data-types for representing the same objects of the .
Redundant data models . o Evident
problem domain coexist in a WSDL document.

The data-type definitions used for exchanging
Enclosed data model information are placed in WSDL documents rather than Evident
in separate XSD ones.

. . (1) a WSDL document has no comments, or (1) Evident, or (2) Not immediately
Inappropriate or lacking comments . .
(2) comments are inappropriate and not explanatory. apparent
Low cohesive operations in the . . _ .
Port-types have weak semantic cohesion. Not immediately apparent

same port-type

. Ambiguous or meaningless names are used for denoting . .
Ambiguous names . Not immediately apparent
the main elements of a WSDL document.

. . (1) Present in service
Undercover fault information) . . .
o Output messages are used to notify service errors. implementation, or (2) Not
within standard messages . .
immediately apparent

problems that attempt against the understandability ascbderability of a service. To do this, the
authors analyzed 392 WSDL documents, which had been gatfreradhe Internet, and found that
the functionality of many of them would be hard to be undeydtand that some patterns of WSDL
code were present in them. As a result, the study presentslagaf bad practices that frequently
occur in this public corpus of WSDL documents. This catalogardy supplies each problem with
a practical solution, but also provides hints about how tecteproblem symptoms, thereby it is an
anti-patternscatalog.

Table 1 summarizes anti-patterns presenting their nantes they occur and how they manifest
themselves. An anti-pattern manifestation cantbadent Not immediately apparenandPresent in
service implementatiorAn anti-pattern i€videntif it can be detected by only analyzing the structure
or syntax of a WSDL documentNot immediately apparenheans that detecting the anti-pattern
requires not only a syntactical analysis but also a semanttysis of the textual information. Finally,
Present in service implementatiamti-patterns might not show themselves in the WSDL document
thus requiring the execution of the associated service tdelbected. Anti-pattern manifestation is
highly important for this paper because the way an antiepatinanifests itself drives the approach to
detect the anti-pattern, as will be explained in next Sectio

4 An approach to automatically detect WSDL anti-patterns

This section describes an approach to automatically déteaight WSDL anti-patterns summarized
in Table 1. Roughly, this approach consists of one indepaindietection algorithm or heuristic, a.k.a.
detectorsper anti-pattern. Since anti-pattern occurrences aepieadent from the other anti-patterns

138 An Approach for Web Service Discoverability Anti-PatteDetection

occurrences [11], each anti-pattern has its independéacide. Therefore, analyzing a WSDL docu-
ment is an incremental process that executes eidjierdint detectors, i.e., one per anti-pattern.

The anti-patterns detectors can be classified using thepatigrn manifestation taxonomy shown
in the third column of Table 1, because how an anti-patternifests itself is strongly related to the
analysis required for detecting it. Evident anti-pattearesstructural anti-patterns related to redundant
WSDL elements in a WSDL document or WSDL elements with a pa#icstructure, such as a type
that allows any valid XML (Whatever typeanti-pattern). These anti-patterns can be detected simply
by applying detection rules to the WSDL document structure.

In contrast, Not immediately apparent anti-patterfisa the semantics within the comments and
names in the WSDL document rather than its structure. Bagidddt immediately apparent anti-
patterns detection requires an analysis of the meaningméaand comments in a WSDL document.
As a consequence, our heuristics to detect these antiHpatee based on several well-known natural
language processing techniques [18, 19, 20, 39, 40].

The Undercover fault information within standard messagasi-pattern is classified as both Not
immediately apparent and Present in service implementati@aning that this anti-pattern might have
no footprint in a WSDL document. However, since we aim to dedeti-patterns using WSDL doc-
uments, the presented heuristic for detecting this artepais only applicable when the anti-pattern
manifests itself in the WSDL document —this is when the aattgyn is classified as Not immedi-
ately apparent—. Although this can be seen as a limitatioouofapproach, the lack of footprint in
a WSDL document is usually a result of another anti-pattempggm. Hence, solving other anti-
patterns might unveilUndercover fault information within standard messagesi-pattern footprint,
which is consistent with the idea of analyzing the WSDL docataé an incremental way. For exam-
ple, Ambiguous nameanti-pattern can hidelndercover fault information within standard messages
anti-pattern because names related to output messagdseamaly footprint of this anti-pattern in
WSDL documents. This means that trying to detectheercover fault information within standard
messageanti-pattern before removing thembiguous nameanti-pattern might not befiective, but
if the WSDL document names are representative, the deteetabmique folundercover fault infor-
mation within standard messagasti-pattern would be mordfective. In the following sections, the
techniques for detecting anti-patterns are discussed.

4.1 Algorithms for detecting Fvident anti-patterns

In this section, we describe the algorithms for detectingl&nt anti-patterns in a WSDL document.
Evident anti-patterns are:acking comments, Enclosed data model, Redundant pattyRedun-
dant data models and Whatever typ8$eir associated detectors rely on rules based on the WSDL
grammar, because Evident anti-patterns manifest thessaithe WSDL document structure.

Since service developers often do not include comments in M&iduments [14], the first detec-
tor that we present isacking commentdetector. Detecting the lack of comments consists in cnecki
that all operations have associated #umcumentation tag, and if it is present, checking whether its
content is not an empty string, which means that there is stlmoementation.

The second detector is thHenclosed data modaletector. To detect thEnclosed data model
anti-pattern, it is necessary to know whether the data misd#dfined within the WSDL document
or imported from somewhere else. Basically, the algoritinstlfi checks whether thetypes- tag
is present in a WSDL document. If it is not present, the dataeh@dnot defined in the WSDL
document; thereby the anti-pattern is not present. Althougen the WSDL document contains the

J.M. Rodriguez, M. Crasso, and A. Zunind39

<type> tag, there are two cases: thg/pes- tag is empty, or contains one or metschema tags. If
the<types- tag is empty, it again means that the WSDL document does noiedgdita types. Finally,
if the <types> tag has<schema tags defined, it is necessary to check easbhema tag. If all
<schema tags are empty, the anti-pattern is not present, otherwis@resent.

The Redundant port-typdetector checks that all port-types in the WSDL document argue.
The detector compares every port-type in the WSDL documeaihagthe others. To compare two
port-types, our algorithm checks whether both port-typ@getthe same number of operations and
if they have the same name in both port-types. Since the sgmetions in dierent port-types
tend not to share messages, our algorithm skips messadargiymnihecks. This is because, when
this anti-pattern is present, the developers tend to defifierent messages for thefiidirent transport
protocols. Therefore, the input message for an operatioimeoBOAP port-type is not the same as the
input message for the same operation in the HTTP-GET pp#:ty

Another recurrent problem that also involves repeated é®dbe Redundant data modeinti-
pattern. In this case, the detector compares the strucfua#l the data types to verify that they
are unigue. In this comparison, the data type names areadrimecause they tend to befdrent.
Therefore, only the schema structure is taken under cordide.

Finally, theWhatever typanti-pattern means that one or more of the defined types akoWwang-
ing a generics type [41]. Th&hatever typeetector verifies that there is no primitive type “anyType”
or <any> tag within the schema. The existence of any of these wayssfiimidg generic types means
that the anti-pattern is present.

4.2 Heuristics for detecting not immediately apparent anti-patterns

Other anti-patterns do not manifest themselves in a WSDL mead structure, but in the semantics
of its comments and names, thus these anti-patterns agodatd as Not immediately apparent [11].
The anti-patterns in this category drew cohesive operations in the same port-typenbiguous
namesInappropriate commentsndUndercover fault information within standard messadgaslow,
the detector associated with each anti-pattern is explaine

4.2.1 Low cohesive operations in the same port-type datecto

Sometimes, two or more operations that are not semantieddlied are in the same port-type. This sit-
uation renders thieow cohesive operations in the same port-tgpé-pattern. Therefore, our heuristic
automatically rules out any port-type with only one openatiHowever, if a port-type has two or more
operations, the detector needs to compare each anothaifiothiat they are semantically related. As
the source code implementing third-party Web Services isadailable, one approach to automati-
cally determine whether two or more operations are relabegists in classifying them according to
keywords present only in their names and associated corsm&hen, operations are considered as
being related when they belong to the same class or domain.

The information available about the operations is mostyrthames, comments, message and data
type names; all this is textual information. As a conseqaetie problem of classifying the operations
according to their domain can be mapped to the problem o$ifjasg text according to its domain.
Actually, several techniques can be used to classify te}t [We selected a variation of the Rocchio
classifier [40], called Rocchio TF-IDF. We choose this dléssbecause a previous research [17]
has empirically proved that Rocchio TF-IDF have a bettefquarance than other classifiers when
classifying WSDL documents.

The first step to classify an operation is to convert it to atmecepresentation in which each

140 An Approach for Web Service Discoverability Anti-PatteDetection

dimension stands for a term and its magnitude is the impoetahthe terms in the operation. Firstly,
the terms extracted from the operations are pre-processeuirove irrelevant terms [43], known as
stop-words, and obtain the stems of the word instead of ukamg as they are in the WSDL document.
Pre-processing the terms helps to reduce the dimensioe pftiblem without introducing significant
information lost, and in turn boosts the accuracy of the Raxclassifier. In particular, our detector
uses the English version of the Porter stemming algorith#). [€Finally, the TF-IDF technique is
applied to calculate the weight of each dimension becausaaevorks [9, 8] have proved the TF-
IDF technique fectiveness in for Web Services descriptions [9, 8.

The term TF-IDF stands for term frequency—inverse docurteqtiency, meaning that the weight
of a term depends not only on the number of times that the terim & document, but also on the
number of documents of the entire corpus that have the teonrmddly: tfid f = tfeid f with:

N
2k Nk

with n; being the number of occurrences of the considered term,ehemdinator is the number of
occurrences of all terms, and:

tfi =

|D|
|d: df|

idf; = log

where|D| is the total number of documents in the corpus &hddt| is the number of documents
where the termt() appears.

In the Rocchio classifier, categories are represented asrgexs well. The vector for a category
(7 (c)) is calculated as the center of mass of already known veofatocuments in that categom).
In this case, the documents are WSDL documents that expamschassified. Each vectar(d) is
calculated by extracting terms not only from the word of operation, but also from the whole
WSDL document. Formally, a category center of mass is catedlas follows:

Q=5 Y 70

¢ deDe¢

Having the center of mass of the categories, an operatioonisidered to belong to the category
that its center of mass is the closest to the operation vedtois similitude is measured using the
cosine similarity. Given two vectorg\(B), their similitude is:

2 A - B

In this way, we use Rocchio TF-IDF algorithm to classify @i@ms into pre-defined classes,
which represents the operations domains. Our detectdiesanwhether a port-type contains operations
that belong to dterent domains, which means that the anti-pattern is pre$betmain disadvantages
of using Rocchio TF-IDF are that the classifier is only ablel&ssify operation in known domains,
which requires an expert to classify a train set of operat@™WSDL do, and depends on the language.
Algorithm 1 shows how a WSDL document is analyzed to determihether it has a low cohesive
operation in any of its port-types.

CogA,B) =

J.M. Rodriguez, M. Crasso, and A. Zunind41

Algorithm 1 Low cohesive operations in the same port-type anti-pattetaction heuristic.

1: function nasLowComnesivePortTypes(WsdIDocumentiatase} > Returns a Boolean

2: classifier«— TrainRoccuio(datase}

3 portTypes— gerPortTypeEs(wsdIDocument

4 for all portTypec portTypeso

5 operations— GerOperatiONs(POrtTypéo
6: size«— Size(operation$
7
8
9

if size>1then
operation— operationsReMoveEFIRST()
G < CreareVEcTOR(Operatior)

10: class« classifierCrassiry(G)

11: for all operatione operationsdo

12: G < CreareVEector(Operation

13: newClass— classifierCrassiry(0)
14: if newClass classthen

15: return true

16: end if

17: end for

18: end if

19: end for
20: return false
21: end function

4.2.2 Ambiguous names detector

Element names in a WSDL document are important because nan@siy provide relevant terms for
IR-based registries, but also are essential for serviceuwrnars, who want to understand the services.
Although, it is usual that developers select names thatairéhe best [11, 13]. Problems in naming
are described by th@mbiguous nameanti-pattern.

The first characteristic to analyze in the names is theirttehgcause one of the main issues with
names in WSDL documents is that they tend to be too short ootog. lIf the length of the name is
between 3 and 30 characters, the name is considered to hadegnate length [13]. Otherwise, the
name is considered as bad name that should be changed.

The second issue detected is that many names use several tiatére non-explanatory or too
general [11, 13]. Many of those words are repeated acrogsadeservices and they are among the
most common WSDL document element names [11]. The unreconedenords arething, class,
param, arg, obj, some, execute, return, body, foo, httpp sesult, input, output, imandout. A name
that has any of these words probably is too general, meahatdgtte name is probably an ambiguous
name.

Finally, the grammatical structure of the names must berddootheir purpose. Names for oper-
ations, which are actions applied over the input parametbmild start with a verb that describes the
operation action. Furthermore, an operation name shoujdr@ve one verb, because an operation
should perform only one action. In contrast, message panesahould be nouns or noun phrases,
because message parts are the things over which the operatmapplied.

Then, our detector performs this name grammatical anabysiise operations’ names and message
parts’ names. This analysis is made using a probabilistitest free grammar parser [18, 19, 20]

142 An Approach for Web Service Discoverability Anti-PatteDetection

based on parsing rules as traditional context free gramoagach rule has associated a probability
of occurrences, which is independent form the probabilitytber rules. Therefore, a single sentence
might have associated several parsing trees and each semtessociated probability, which is the
product of all parsing rules’ probability. Having the praiddy of each tree, our heuristic selects the
most likely tree to perform the analysis.

The analysis of the operations’ and message parts’ naméigh$lysdifferent. When analyzing
an operation name, the heuristic adds the word “it”, whidahdates the noun that should be missing
in the operation name, at the name beginning. For instahttes bperation is named “buyCar”, the
sentence analyzed by the parser is “it buy car”. Althougtstir@ence is not grammatically correct, it
is close enough to a correct sentence and the parser willleéabandle it. This is due to the fact of
having probabilistic rules, which allows the parser to Hamdalformed sentences [18].

Operations’ names are expected to have one and only one leaddpat the beginning and after
it a noun or noun phrase, thus if the number of verbsfiedént from one, thémbiguous namanti-
pattern is detected. Figure 3 represents parsing treebrie tliferent operation names with the “it”
pronoun added as explained above. The first name, which y&Céad, is correct because it gives the
idea that the operation performs only one action. In cohtthe second name, which is “car”, is a
noun that is incorrect because the name has not semantickatftiie operation does. Finally, the
third operation name, which is “createSendTicket”, is afmwmrrect because, despite beginning with
a verb, it has another verb giving the impression that theadjos performs two actions.

In the second case, the name of a message part is provideel pautber unmodified because the
parser has to determine whether it is a noun or a noun phrasaeessage part name parsing tree
should not contain any verb tag because a verb indicatefighatessage part modifies the operation
behavior. Figure 4 depicts the parsing tree of three megsag@mames. The first and second names,
which are “name” and “firstName” respectively, have no peoblbecause they represent a thing.
However, the third name, which is “usesCache”, starts witled and it is probable indicating if
the operation should be executed with the information ind&ehe or not. This is contrary to the
well-known black-box operation good practice [24] becahseuser must know how the operation is
implemented in order to invoke it.

4.2.3 Inappropriate comments detector

In addition to names, comments are an important WSDL docupetthat provides semantic infor-
mation because they not only supplies Web Services reggsivith terms, but also helps a potential
service user to understand the service functionality. Hewebadly commented WSDL documents

ROOT
ROOT \
| S
/\
S
Q RO‘OT NP /VP\
/\ ‘
N‘P vP FRAG | prp VBP vP Key:
A /\ ‘ /\ Direct question excluding word or word-phase (SQ)
PRP VB NP NP NP | ceate VB Np | Nounphrase e
| ‘ ‘ | | I ‘ gerb phrlase (VP) re)
‘ersonal pronoun
it buy NN PRP NN send NN Noun phrase (NP)
‘ ‘ | Noun (NN)
car it car ticket | Fragment (FRAG)
Simple ive clause (S)
buyCar car createSendTicket Verb non 3rd ps.sing. (VBP)

Fig. 3. Parsing tree of operation names.

J.M. Rodriguez, M. Crasso, and A. Zunind43

ROOT
\
ROOT ROOT S
| | P
NP NP VP NP
\ N \ \
VBZ NN Key:
NN JJ NN Noun phrase (NP)
‘ ‘ ‘ ‘ ‘ Noun (NN)
_ Adjetive (JJ)
name first name uses cache Simple declarative clause (S)
- Verb phrase (VP)
name firstName usesCache Verb 3rd ps. sing. (VBZ)

Fig. 4. Parsing tree of message part names.

are extremely common [14]. Detecting whether a commentappnopriate requires understanding
the comment semantics as well as the operation semanticandlgze a comment semantics, it is
necessary to have a language corpus [39] as well as somedisas#iguation algorithm [45, 46].

To detect inappropriate comments, our heuristic assuna¢a ¥/ SDL document has all its opera-
tions commented. For analyzing the comments, our heuriies on a corpus that describes English
words and their relationships known as WordNet [39]. Ushig torpus, we propose a simplified ver-
sion of two sense disambiguation algorithms [45, 46]. Irtipalar, our algorithm uses the WordNet
hypernym relationship to disambiguate word meaning. A worpernym is another word or phrase
with a more wide-ranged concept that includes the concgpésented by the first one. For instance,
in WordNet a “car” hypernym is “motor vehicle, automotivehiele” which also includes, accord-
ing to WordNet, the concepts related to “motorcycle, bik&'lyck, motortrack” or a “golfcart”. The
hypernym relationship can be seen as a tree of word and ghiraséhich the root node is the most
general concept, e.g., “entity” in the cases of a noun. Isdligzes, leaves are very specific concepts,
while the root is a generic one.

The sense disambiguation generation tree algorithm isctigpin Algorithm 2; it is based on
combining the trees of ffierent words using a occurrence counter to keep track of hequént a
concept is. The algorithm creates the resulting tree in aremental manner, at line 2 starts with a
tree that has only one node (all) that is the common root fahealword tree, and combines that tree to
the tree associated with each term one by one. The tree gmeh#se weighted all the concepts that
can be related to the documentation. Since the weight of a isthe sum of its children weight or
the sum of the word occurrences if it is a leaf, the nearer titkeris to the root, the higher its weight
is.

The detection heuristic relies on these trees to identidysgamantics of the documentation. Ba-
sically, the heuristic generates two trees for the commemts for the nouns and other for the verbs
and uses them with two purposes. The first purpose is to etigirthe comments are not too general.
The second one is to compare the documentation semantitsh@ibperation semantics.

To measure the comments specificity, our heuristic verifiestiaer the noun and verb trees depth
for the comments are higher than an experimentally selébtedhold. The minimum noun-tree deep
threshold (NDT) is 5, while the minimum verb-tree deep thodd (VDT) is 1. The values of NDT
and VDT were empirically determined using the methods thilitbe described in Section 5.1.1.
Our heuristic measures the similitude between the noun and tvees associated to the operation
name and comments. The similitude between two trees is defin¢he depth of the longest-most-

144 An Approach for Web Service Discoverability Anti-PatteDetection

Algorithm 2 Combining tree.
1: function creare TRee(wordList)
2: treeRoot— creareNope(ALL)
3 for word in wordListdo
4 wordT ree— WorpNeTGETHyYPERNYM TREE(WOTrd)
5: comBINETREE(treeRootwordT reg
6: end for
7
8
9

return treeRoot
: end function
: procedure comBINETREE(result newTreg
10: for child in newT reechildrendo

11 if 1sCuiLpOF(child,resulf) then

12: GeTEquaLNobg(result,child)counter+ +
13: else

14: newC hild« creareNobg(child)

15: newChildcounter= 1

16: AappNewNobg(result newChild

17: end if

18: nextResult cerEquaLNopg(result,child)
19: comBINE TREE(NextResulchild)

20: end for
21: end procedure

frequent path shared by both trees divided by the depth dbtigest tree. Algorithm 3 depicts how
the longest-most-frequent path shared by two trees issaely calculated. Finally, this similitude
degree is compared to an experimentally selected threshb&lselected value for the noun similarity
threshold (NST) and verb similarity threshold (VST) is 108bbth cases. The reasons for selecting
these thresholds will be described in Section 5.1.1.

4.2.4 Undercover fault information within standard messsadetector

Finally, theUndercover fault information within standard messages-pattern belongs not only to
this category, but also to the Present in service implertientane. But since the input for the heuristic
is a WSDL document, the heuristic is designed to detect thigpattern only if it has a footprint in
the WSDL document, which is most likely when the WSDL documeniat dfected by other anti-
patterns. Firstly, the detector verifies whether the opmrdtas a<fault> message defined that means
that the errors are handled in the correct manner or not. €petly, the presence of<dault>
message is considered enough evidence that the operatisenps no symptom of the anti-pattern. If
this not the case, the heuristic looks for keywords thatdaidi the presence of the anti-pattern in the
operation documentation, output message name and namles déta types referred by the output
message. The set of keywordsésror, errors, fault, faults, fail, fails, exception, exgtens, overflow,
mistake and misplayif the detector founds some of these words, the WSDL docuieemnsidered
to be dfected by thdJndercover fault information within standard messages-pattern. Although
this anti-pattern is related to the output semantics, itlmamletected following these simples rules
because the keywords are practically a convention in mateoprogramming languaggsatforms,
such as Java, .Net oG, used to provide an implementation of the target services.

J.M. Rodriguez, M. Crasso, and A. Zunind45

Algorithm 3 Longest-most-frequent path shared.
1: function LongestMostFrREQUENTPATH(tre€el, treel)
2: result— 0
3 for childl in treel.childrendo
4 if nasTueHiIGHESTCounTER(Child1,treel.children) then
5 child2 « GerEquarLNobg(tree2,child2)
6: if HasTueEH1GHESTCOUNTER(Child2, tree2.children) then
7.
8
9

newResult— LongestTMostFrREQUENTPATH(ChIil L, Cchild2)
if newResult resultthen
: result<— newResult
10: end if

11: end if
12: end if

13: end for
14: RETURN(resulf
15: end function

5 Experimental evaluation

In the previous section, we have presented algorithms andshies for automatically detecting the
discoverability anti-patterns described in [11]. Thistg®t describes three experiments that have
been conducted to evaluate the proposed detection algaritind heuristics’ feectiveness of this
proposal. The first experiment consisted of analyzing a-getaf real world WSDL documents using
manual and automatic approaches and, in turn, comparirigv@chresults to assess the precision of
the automatic approach.

Then, the second and third experiments consisted of stgdimstatistical relationship between
the results of using thimappropriate or lacking commenéshti-pattern detector and the quality metrics
presented in [22]. This is because this anti-pattern not snbne of the most dicult to detect and
the most important for service discovery [1], but also idhygelevant for both service registries and
service consumers [11]. In this sense, the second experipnesents a correlation analysis, whereas
the third experiment further evaluates th#eetiveness of the detection heuristic.

5.1 First Experiment: Manual vs. Automatic detection

In order to determine thefiectiveness of our detectors, we have employed a 392 WSDL darmum
data-set, which is available upon request. The WSDL docwrianthe data-set were collected by
Hess et al. [21] from public Internet repositories, therdigy represent how Web Services are im-
plemented in real life. For the manual detection, expenrtiserdevelopers analyzed the data-set to
identify the anti-patterns in each WSDL document by hand.s€éhesults were peer-reviewed to as-
sure their quality. At least threeftirent people reviewed each WSDL document. This analysis is a
revised version of the results presented in [11]. Figuredaiethe anti-pattern occurrences frequency
according to our manual analysis.

Once we had the results of manually analyzing the data-sefpplied the automatic detectors
on it, and finally compared both manual and automatic restiiese results were organized per anti-
pattern, in which if a WSDL document has the anti-pattern itléssified as “Positive”, otherwise
it is classified as “Negative”. When the manual classificafmma WSDL document is equal to the
automatic one, it means that the detector has accuratetatepefor that WSDL document.

146 An Approach for Web Service Discoverability Anti-PatteDetection

300 - -

250 - -

200 - -

150 - -

Anti-pattern absolute frecuencies

50 - -

Ambiguous Inappropriate Enclosed Redundant Redundant ~ Whatever Low cohesive Undercover
names or data model port-types data models types operations fault
lacking of the same information
comments port-type within

standard messages

Fig. 5. Anti-pattern frequency.

The achieved results are shown using a confusion matrixrgepattern. The rows of the matrix
represent the results of the automatic detector, while dhemns of the matrix show manual classifi-
cations results. Using these confusion matrices, we asséiss accuracy, and false posifivegative
rates for each matrix. Table 2 shows the confusion matrices.

The accuracy of each detector was calculated as the numlstssification matchings over the
total of analyzed WSDL documents. For instance, the accushtlye detector associated with the
Enclosed data modehti-pattern was;£:e519-- = 98.47%. The heuristic for detectirigow cohesive
operations within the same port-typati-pattern achieved the lowest accuracy58%. Nevertheless,
the averaged accuracy was B8%.

The false positive rate is the proportion of WSDL documentd thdetector wrongly labels as
having an anti-pattern. At the same time, the false negedieeis the proportion of WSDL documents
that a detector wrongly labels as not having an anti-pattérfalse negative rate equal to 1 would
mean that a detector missed all anti-pattern occurrenceshé&se rates, the lower the achieved values
the better the detectiorffectiveness. The averaged false positive rate w@436, and the averaged
false negative rate was®.1%.

All'in all, it can be seen that the accuracy values achievetthbylgorithms-based detectors were
higher than those achieved by heuristics-based deteuthish was expected. However, the accuracy
value for these later was above.35%.

5.1.1 Inappropriate or lacking comment detector threstd#termination

The Inappropriate or lacking comment anti-pattern deteleés four parameters that have to be de-
termined before running it. As explained in Section 4.2t&se parameters are the thresholds for
NDT, VDT, NST and VST. We followed an exploratory approactsédect these thresholds, this is,
we executed thénappropriate or lacking commentmnti-pattern detector usingftiérent thresholds

J.M. Rodriguez, M. Crasso, and A. Zunind47

Table 2. Confusion matrix for the detection of anti-patterns

Manual detection o
.) . Statistical indicators
Automatic detection results per anti-pattern results

. . False False
Negative Positive Accuracy . »
Negative Positive

Negative 116 6
Enclosed data model 98.47% 2.17% 0%
Positive 0 270
Negative 161 4
Redundant port-types 98.97% 1.73% 0%
Positive 0 227
Negative 221 2
Redundant data model 9 98.72% 1.19% 1.34%
Positive 3 166
Negative 339 0
Whatever types 99.23% 0% 0.09%
Positive 3 50
i i Negative 107 20
Inapproptrlate or lacking ¢! 91.07% 12.29% 7.40%
commen Positive 15 250
i i i Negative 272 10
tI_how coheswet (:peratlons in g 77.55% 23.80% 22.29%
€ same port-type Positive 78 32
i i Negative 351 3
U_r:rc:_erctt)ve(ri faglt information {¢] 08.21% 8.11% 1.13%
within standard messages Positive 4 34
. Negative 7 3
Ambiguous names 82.90% 30% 0.26%

Positive 1 381

148 An Approach for Web Service Discoverability Anti-PatteDetection

10 0.735 10 0.3
9 0.73 9 0.295
8 8)
. 0.725 © 7 029 O
© o
_ 8 072 % L, 6 =2
o 5 g 2 5 10285 @
z 0715 3 4 @
[$]
1028 ©
8 o7t < 3 o
2 2
1 0.705 1 1 0.275
0 0.7 0 L 027
01 23 4586 7 8 910 01 23 45186 7 8 910
VDT VDT
(a) {NDT,VDT} accuracy (b) {NDT,VDT} false positive
— 0.84 0.32
4 0.82 0.3
408 028 o
o 8
1078 ® 026 o
[> [=
] 1076 8§ @ 1 024 @
z g z &?
074 8 4022 @
< i
0.72 102 W
0.7 4 0.18
0.68 — 0.16
0 0.10.20.30.4050.60.70.80.9 1 0 0.10.20.30.40.50.60.70.80.9 1
VST VST
(c) {NST,VST} accuracy (d) {NST,VST} false positive

Fig. 6. Heat maps.

settings on the data-set described above. For each comobirzdtparameters, we ran the detector,
calculated its results, and compared it with the manualhiea®d results. Finally, the combination
whose results were nearest to the manually obtained onesiseaisfor the experiment described in
previous section. For the sake of experimental reprodiitgilthe thresholds that we finally selected
were: NDT=5,vDT=1, NST=0.1 and VSEO0.1.

For both the NDT and VDT thresholds, we tested values ranffimm 0 to 10, including the
extreme values, with steps of 1. In contrast, for NST and V&Ttested values from 0 to 1, with
steps of 0.1. Therefore, we tried 14641 (i.e. 192fifferent threshold settings and determined which
combination worked better.

In order to better understand the results, we reduced therdiion of the problem by performing
two analyses. First, we separated the 4 variables into 26@tsariables, namely {NDT, VDT} and
{NST, VST}. Since for each possible instance of {NDT, VDT} §NST, VST} there are 121 com-
binations of experimental results, we calculated the aeercuracy. For instance, to calculate the
average accuracy of fixed {NDT, VDT}, we took all the 121 ra@sutom the experiments in which
their {NDT, VDT} is the fixed {NDT, VDT} and, then averaged the Figure 6, in which the whiter is
the better, presents the accuracy, and the false posite®f#oth sets using heat maps. Since many
configurations had no false negatives, no false negatigsis#s included in the heat maps.

An interesting fact is that the more accurate, on averageyricplar instance of {NDT, VDT}
or {NST, VST} is, the more fected by the other set the accuracy is. Hence, if a parti¢MaiT,

J.M. Rodriguez, M. Crasso, and A. Zunind49

VDT} configuration had a low average accuracy, the accurdcy particular configuration {NDT,
VDT, NST, VST} with that {NDT, VDT} values would be low indepelently from the {NST, VST}
values. But, if the {NDT, VDT} configuration had a high aveesgccuracy, the accuracy of a particular
configuration {NDT, VDT, NST, VST} with that {NDT, VDT} valus would strongly depend from
the {NST, VST} values. The situation is analogous when arialy the average accuracy of the {NST,
VST} configurations.

From Figure 6a to Figure 6b, it can be seen that when NDT is 5v@t is 1, the detector had
a good accuracy and not many false positives. In contragtir€i6c and Figure 6d evidence that the
most restrictive values for NST and VST that had the bestracguand the lowest false positive rate is
0.1 for both. This configuration also had the best perforraamong the 14641 tested configurations.

5.1.2 Comparison with traditional cohesive metrics for W.Sidcuments

As summarized in Section 3, there are several cohesionan§2i, 35, 36] that base on the implemen-
tation source code, but there is a lack of cohesion metrissan high-level designs. For instance,
Lack of Cohesion Method (LCOM) [27] requires accessing thése code, since it is defined as the
number of pair of methods that do not share instance vasabiaus the number of pair of methods
with shared instance variable. Despite of this, our detsth®uristic is inspired in a well-known au-
tomatic document classification one. Taking into accouatt tiis is an uncommon way of measuring
cohesion, we compared it with an adaptation of the class-tmhesion metric introduced in [36]. The
work presented in [36] builds matrixes, or graphs, for demgpsimilarity between pairs of methods
and pairs of attribute types in a class. Then, class cohesgmmputed as the overall similarity among
the class pairs.

Since WSDL documents contain less information that class@xe code, we adapted the idea of
using instance variables and methods relationships. Thesjethods-methodgraph, which is built
by counting the number of methods invocations from withinestmethods, was omitted. Instead,
we adapted this idea by basing on how operations in the santype are related to defined XSD
data-types. To do this, we constructed a graph for a pog-tiging the following steps:

1. Add all operations in the port-type as nodes.
2. Add all messages referenced by the operations in the gsapbdes, and the references as edge.

3. Add all complex data-types referenced by messages inrttph@s nodes, and the references
as edges.

4. Add all complex data-types referenced by other datastypéhe graph as nodes, and the refer-
ences as edges.

5. Repeat step 4, until no node is added.

Notice that this adaptation does not include primitive egfees, such as strings, integers, base64, and
array of them, in the graph. Then, to detect whether theracis éf cohesion, our heuristic verifies if
the graph is a connected graph, which is similar to how aassiesion metrics operate. For instance,
Tight Class Cohesion (TCC) measures the relative numbdrextty connected pairs of methods of a
class, and Loose Class Cohesion (LCC), which measuresl#teesumber of directly or transitively
connected pairs of methods of a class. These two metricsdeortsvo methods to be connected if
they share at least one instance variable or one of the metheokes the other.

150 An Approach for Web Service Discoverability Anti-PatteDetection

To evaluate this adaptation, we used the same methodolabgtaia-set described in Section 5.1.
Accordingly, achieved results show that though based orpied techniques for measuring cohe-
sion, this adapted heuristic missed 40 Low cohesive operstin the same port-type anti-pattern
occurrences and incorrectly detected this anti-pattefh WiISDL documents, while detected 3 real
occurrences of the anti-pattern. This means that the aitaptead an accuracy of 88.%, a false
positive rate of 7778%, and a false negative rate of44%. Compared to our proposed heuristic, this
adaptation has a better accuracy, but the high rate of falsidye renders this adaptation fiective.

This high false positive rate is probably cause by the faat WSDL documents have less in-
formation about the functionality of its related softwaharn the source code. On the other hand,
preliminary results in [47] show that classical softwarenigs can be used to prevent bad practices in
WSDL documents when they are generated using the Code-Fatbibaiology. This is because with
Code-First the WSDL document of a service is derived fromritplementation source code, thus
classic cohesion metrics can be calculated from it.

5.2 Second Experiment: Al-Masri and Mahmoud’s quality metrics and the anti-
patterns’ detectors

In [22], Al-Masri and Mahmoud surveyed quality metrics frameal world data-set of Web Services,
known as QWS [48], which is publicly availal5l&Ve have calculated the Pearson’s correlation be-
tween anti-pattern occurrences and the quality metricardee’s correlation was used because we
expected to find a direct relationship between Al-Masri arahMoud’s quality metrics and the anti-
patterns. For the correlation analysis, we employed onlylset of this data-set, which consists
of 365 Web Services that exist on both [21] and [48] data-Séts reason to do this was that we have
their associated WSDL documents, their quality metrics, thedmanual peer-reviewed analysis of
anti-patterns occurrences.

The results showed that some of the Al-Masri and Mahmouddityumetrics have a significant
correlation with the anti-patterns, but others have notweler, when we analyzed these results, the
metrics that have no correlation are: response time, ditiathroughput, successability, reliability,
latency, WsSRF and class. Since these are technical metnietated to WSDL document quality, it
is reasonable that they have no correlation with the aritepas, which reflect a WSDL document
quality. In contrast, the metrics that have a correlatiothwlie anti-patterns are related to WSDL
document quality [22]; these metrics are:

e Compliance: The degree to which a WSDL document grammaticalhforms to the WSDL
specification.

e Best Practices: The degree to which a Web service compliasWis-1 profile guidelines.

e Documentation: The amount of textual documentation in ietson tags including service,
ports, and operations.

In Figure 7, we present the correlation between anti-patiecurrences and these three quality metrics
in the QWS data-set. A correlation value higher than zero méaat when one variable rises, the
other variable value tends also to rise, while a correlatadne lower than zero means that when one
variable rises, the other variable value tends to decréaserrelation value near zero means that the
values of the variables are independent, i.e., anti-patiecurrences and Al-Masri and Mahmoud’s

€The QWS data-sehttp://www.uoguelph.ca/~gmahmoud/qws/index.html

J.M. Rodriguez, M. Crasso, and A. Zunind51

0.4
0.3

02
0.1 |

o
T
oy
*«,Oz‘xﬁ

-01

Correlation

SIS,

-0.2

s
%

-0.3

S
S5

v

0.4 F

8
S

Q2%

-0.5

s
1

-0.6 L L L
Compliance Best Documentation
Practices

Enclosed data model kxXxXx1
Redundant port-types d

Redundant data models

Undercover fault information within standard messages ¢
Whatever types i~

Low cohesive operations in the same port-type
Ambiguous names *

Inappropriate or lacking comments ===

Fig. 7. Correlation between Anti-patterns and the Al-Masril Mahmoud'’s quality metrics.

quality metrics are not related. Finally, it is importanttatice that correlation values are neither too
high nor too low because we are correlating a discrete tvigevzariable (anti-pattern occurrences)
and it cannot have a linear relation to a continuous value.

When using Al-Masri and Mahmoud’s quality metrics, low vagtand for low quality, and high
values stand for high quality. On the other hand, the artepas’ variable is zero for notfected
WSDL documents and one foffacted ones. Therefore, when the correlation between anaSrivi
and Mahmoud’s quality metric and an anti-pattern occusns negative, it means that having high
value in this metric, a WSDL document is unlikely to kiéeated by the anti-pattern. And when this
quality is low, it is very likely that the WSDL documentf$ers from the anti-pattern. In contrast, a
positive correlation means that if a WSDL document has a hidinevin this metric, itis likely that this
WSDL document sfiiers from the anti-pattern. When the value of the metric is tbw,anti-pattern
presence is unlikely.

In order to validate the results presented in Figure 7, weutaled the p-value for these correla-
tions. Table 3 presents the p-values for each correlatibmdms an anti-pattern and a metric. The
p-value is the possibility that the correlation between tatues is zero. This table confirms the find-
ing presented in Figure 7 because the absolute value of thelation between two values is always
less than 0.09 when their p-value is higher than 0.05. Inresttif the p-value is less than 0.05, the
absolute value of correlation between the values is alwagfseh than 0.1. Furthermore, the absolute
value of correlation is higher than 0.15 when the p-valuevgelr than 0.01. Although these are low
correlation values, they are clearly separated, and theelation is higher when the p-value is lower.

According to our results, when the Compliance metric is mghWSDL document, this document
tends not to beféected by most of the anti-patterns. The exceptions to tlEgteEnclosed data-
modelanti-pattern, for which correlation is near zero, and ltn@ppropriate or lacking comments
anti-pattern that is a highly correlated anti-pattern. Titst exception is sound because both options,

152 An Approach for Web Service Discoverability Anti-PatteDetection

Table 3. Pearson Correlation p-value

Anti-Pattern Compliance Best Practices Documentation
Enclosed data model ~0.80 <0.01 <0.01
Redundant port-types <0.01 <0.01 <0.01
Redundant data models <0.05 <0.01 <001
Whatever types <0.01 <0.01 ~ 0.50
Undercover fault information within <0.01 ~0.72 <001

standard messages

Low cohesive operations in the same ~0.94 <0.01 ~0.89
port-type

Ambiguous names ~0.39 ~0.31 ~0.11

Inappropriate or lacking comments <0.01 ~0.82 <0.01

having enclosed data-model or importing them from an XSO file WSDL compliant. On the
other hand, the problems with documentation might stem ftioat when a WSDL document has
comment, it is likely that its developer has manually modifieor that the developer has built the
WSDL document from scratch, being both error-prone tasks.

Similarly to the Compliance metric, the Best Practices ioéias a negative correlation with most
of the anti-patterns. The only exceptions &vbatever typesAmbiguous nameand Inappropriate
or lacking commentanti-patterns. These correlations are near zero, i.s. ntleiric and these anti-
pattern occurrences are unrelated. This is probably bedha8est Practices metric is related to WS-I
guidelines that aim to improve the technical interopergbibut not the usability of a Web Service;
and these anti-patterns are precisely connected to WSDLnuratireadability and understandability,
but a WSDL document with symptoms of these anti-patterns eaasbgood or as bad as a WSDL
document without symptoms of these anti-patterns from thel \M8file point of view.

Finally, the Documentation metric, which represents theg@atage of elements in a WSDL doc-
ument that contain comments, is only correlated negatieetiielnappropriate or lacking comments
anti-pattern. This is expected because if a developerdottes comments in a WSDL document, they
are intended to be read. The other anti-patterns are eitiieranrelated or have a positive correla-
tion. The positive correlation might result from errorstttavelopers made when they edited WSDL
documents. This is consistent with the observation madéewedrrelations of Compliance and Best
Practices metrics.

All in all, while other anti-pattern occurrences tend to &se or are notfiected when Com-
pliance and Best Practices metrics value aris@sppropriate or lacking commentmnti-pattern oc-
currences tend to increase. In additibmgppropriate or lacking commentmnti-pattern occurrences
are less frequent when the Documentation metric value Is, file the other anti-patterns have the
opposite behavior. We consider these findings of greatastdrecause comments have been proved
to be essential for both service registries, and servicswoers [11], thereby we present a deeper
analysis the correlation betweémappropriate or lacking commentnti-pattern and Al-Masri and
Mahmoud’s quality metrics in the next section.

J.M. Rodriguez, M. Crasso, and A. Zunind53

Table 4. Statistical information.

Statistical valugMetric Compliance Best Practices Documentation WsRF Class
Average Value 83.709 80.671 47.292 66.649 2.781
Standard deviation 8.773 6.695 36.309 11.506 0.980
Correlation -0.262 -0.007 0.375 0.207 -0.188

Average with the anti-pattern 85.270 80.705 38.052 65.032 2.907

Average without the anti-pattern 80.315 80.596 67.394 70.166 2.508

5.3 Third Experiment: Further analysis of Inappropriate or lacking commenisnti-
pattern detection and Al-Masri and Mahmoud’s quality metrics

We have performed a deeper analysis of ltregpropriate or lacking commentmnti-pattern and the
Al-Masri and Mahmoud'’s quality metrics. Aside from comn®mhportance, the Al-Masri and Mah-
moud’s quality metrics correlation with theappropriate or lacking commentsti-pattern is almost
the opposite of the correlation with other anti-patternsergfore, the goal of this section is to make
a detailed analysis of the correlation betweenlti@propriate or lacking commengti-pattern in a
WSDL document and the quality values assigned in Al-Masriatimoud work [22]. This analysis
was not limited to the Pearson’s product-moment corratatiodficient like in the previous section.
We have also used several statistical indicators to stuelyetationship between this anti-pattern de-
tector output and the quality metrics. In addition to analgznew indicators, we also added the
following quality metrics to the analysis:

e WsRF: Web Service Relevancy Function is a rank for Web Se@icality [48].

e Class: alevel representing servidéeoing qualities. This metric accepts a discrete value from 1
to 4, but in this case, a lower value stands for better quality

Table 4 presents the statistical data obtained when the W&dundents were analyzed. The most
related value is the Documentation metric, whose cormasi Q37, and this is reflected in its average
value when the anti-pattern is present or not. The othabaté that presents a positive correlation
is WsRF, although it is less than the Documentation metricwéder, it is important to notice that,
by definition, the WsRF value depends on the values of the otle¢rics. Therefore, its correlation
might be a result of the Documentation metric correlatiohe Tompliance metric is also related to
the presence of this anti-pattern, but in a negative marifigis means that the more compliant the
WSDL document is, the more likely tHeappropriate or lacking commenéghti-pattern occurrence is.
To confirm that this correlation is not due to a characteristiour detector, the correlation between the
Compliance metric and the Documentation metric was caledldt was—0.28, which confirms that
Compliance is in detriment of Documentation and vice vess@porting our hypothesis. Finally, as
a lower value means good quality, the negative correlatpnasents exactly the same as the positive
correlation for the WsRF metric.

Based on these correlations, we also analyzed whetherasisle to predict this anti-pattern oc-
currences based on these attributes’ values. This analgsiperformed using decision trees trained
using Class, Documentation, Best practices and Compliatidbutes as inputs and the anti-pattern
detector result as output. The selected algorithm to gémére tree was Multiclass alternating deci-

154 An Approach for Web Service Discoverability Anti-PatteDetection

0,0
I:1-Documentation < 27:-2.089,2.089
1-Documentation >= 27: -0.021,0.021

2-Best Practices < 79.5: -0.387,0.387

| 3-Best Practices < 65.5: 1.156,-1.156
7-Best Practices < 60: -2,2
7-Best Practices >= 60: 0.611,-0.611

L 3-Best Practices >= 65.5: -0.185,0.185

2-Best Practices >= 79.5: 0.205,-0.205

| 4-Best Practices < 87.5: 0.108,-0.108

| 4-Best Practices >= 87.5: -0.837,0.837

| 5-Documentation < 50: 0.323,-0.323
8-Compliance < 94.5: 0.138,-0.138
8-Compliance >= 94.5: -1.006,1.006

L 5-Documentation >= 50: -0.229,0.229
6-Documentation < 88.5: -0.705,0.705
6-Documentation >= 88.5: 0.266,-0.266

Fig. 8. Decision tree.

sion trees [49] because it was the most accurate decisieratm@ng several techniques, provided by
Weka [50], for this problem.

Figure 8 depicts the resulting decision tree. To use thiswith an instance, it is necessary an
auxiliary vector initialized as the root node, i.e., (0,dhen, the algorithm follows the tree to add
the values in all the nodes that the current instance fitsdatkxiliary vector. If the first number is
the greater, the tree predicts that the anti-pattern is resgmt, otherwise the prediction is that the
anti-pattern is present.

The tree predicts that if the Documentation metric valuess lthan 27% the anti-pattern will be
detected independently of the other metrics. This makesesebecause a low value in this metric
represents that the WSDL document has little comments. Itrasinthe Best practice metric behaves
in a not homogeneous way because if it is in some ranges iestgthat the anti-pattern will not be
detected, but when the attribute takes extreme values etisidn tree suggests that the anti-pattern
will be detected. A final observation, when the Documenteatietric value is between 27% and 50%,
and the Best Practice is more than5 (condition that meets 17% of the data-set instances),ahe
high Compliance value (more than.8%b) suggests that the anti-pattern will be detected.

6 Future Research Possibilities

Automatically detecting anti-patterns in WSDL documenthéeprevious step to assist developers in
refactoring their WSDL documents using software tools. Weebe that this kind of tools will make
the anti-pattern catalog even more valuable because tHegngure that the refactoring guidelines
will be properly applied. Therefore, an open research dquest how to automatize WSDL document
refactorings.

The anti-pattern refactorings presented in [11] assuntesérgice developers are actually involved
in the WSDL document construction, i.e. they employ tbatract-firstapproach. However, there is
another way of create WSDL documents calbedle-first which means that developers first write a
service implementation and then generates the corresppséirvice contract by automatically ex-
tracting and deriving the interface from the implementedecoThis means that WSDL documents

J.M. Rodriguez, M. Crasso, and A. Zunind55

are not directly created by humans, but are automaticalliyett from programming languages via
language-dependent tools. As a result, the generated WSBlintgnts are not verified by service
developers. Therefore, another research question coss@islyzing whether these techniques could
work along with code-first WSDL document generation toolfriming potential errors in the code
from which WSDL documents are derived.

Similar to the first open question, it has been shown in [4&} trerforming common Fowler et
al.’s refactorings in the code implementing code-first Webviges, may prevent WSDL documents
of having anti-patterns occurrences.

Since many of the presented heuristics are language depengewill evaluate their performance
in other languages and incorporating further sources @, datch as Web pages pointing to services
descriptions. Since Web pages are the typical manner ofidegr RESTful services, we will also
research on potential issues discoverability issues inTREService descriptions and how to detect
them. In addition, we are evaluating other techniques, @igstering, to detedtow cohesive oper-
ations within the same port-typmti-pattern without the necessity of having a previoushssified
data-set. Finally, another extension is to combine thectiate with service registries to automati-
cally mitigate the anti-patterrfiects by, for instance, eliminating repeated port-typesobindexing
redundant information.

7 Conclusions

In previous works [11, 13] the implications of the use of gpavritten WSDL documents against
discovery and human discoverers’ understandability haes empirically proven. Broadly, previous
works highlight the importance offiering self-explanatory WSDL documents, mostly because dis-
coverable and understandable services potentially meae applications that re-use them [51]. For
paid Web Services, this means more incomes. This papempsasavel algorithms and heuristics for
detecting recurrent discoverability problems in WSDL doeunts. These algorithms and heuristics
have been implemented and in turn employed for detectinly ptmblems in a corpus of real-world
Web Services, which had been peer reviewed by humans. Thksresported in this paper show that
the averaged accuracy of the proposed detectors wag%3 and the false positive and false negative
rates of 4064% and 911%, respectively. It is worth noting that these resulkésdata set specific and
may vary with another data set, mostly for the heuristicuigazy, though the size of the employed
corpus is to some extent representative.

Two additional experiments were conducted to further testprecision of one proposed heuris-
tic. This heuristic deals with detecting the anti-pattdratthas the strongest impact on discovery, as
reported by [11], namelinappropriate or lacking comment3hese experiments correlated heuristic
results with Al-Masri and Mahmoud’s study about Web Sersigeality shown in [22]. Accordingly,
the statistical correlation analysis provides more erogirgvidence about the precision of the associ-
ated heuristic.

To conclude, evaluation results empirically confirm tha&t pmoposed detectors can minimize the
impact of the commonest bad practices by helping develdpddentify potential problems in their
services before they are made available. All in all, in oribematerialize the vision of a global
market of interoperable and discoverable Web Services eftoe should be placed on answering the
research question related to preventing anti-patternsde-tirst WSDL documents and automatically
refactoring contract-first ones.

156 An Approach for Web Service Discoverability Anti-PatteDetection

Acknowledgments

We acknowledge the financial support provided by ANPCyTugtogrants PAE-PICT 2007-02311.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Paul Grefen, Heiko Ludwig, Asit Dan, and Samuil Angelov. An asialpf Web Services support for dynamic
business process outsourcirigformation and Software Technolgg$8(11):1115 — 1134, 2006.

Yi Wei and M.B. Blake. Service-oriented computing and cloud caimgu Challenges and opportunities.
IEEE Internet Computingl4(6):72 —75, nov.-dec. 2010.

Chun-Lung Huang, Chi-Chun Lo, Kuo-Ming Chao, and Muhammaunés. Reaching consensus: A moder-
ated fuzzy Web Services discovery methtmformation and Software Technolagy8(6):410 — 423, 2006.

. Mohsen Sharifi, Somayeh Bakhtiari Ramezani, and Amin Amirlatifidietiee self-healing of web services

using health scorelournal Web Engineerind1(1):79-92, 2012.

. Marco Crasso, Alejandro Zunino, and Marcelo Campo. A surveppfoaches to Web Service discovery in

Service-Oriented Architecturedournal of Database Manageme22:103-134, 2011.

. David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massinmamlcci, Katia Sycara, Debo-

rah L. Mcguinness, Evren Sirin, and Naveen Srinivasan. Bringingaséics to Web Services with owl-s.
World Wide Wep10(3):243-277, 2007.

. Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and hang. Similarity search for Web Ser-

vices. In Mario A. Nascimento, M. Tamer Ozsu, Donald KossmanngBen Miller, José A. Blakeley, and
K. Bernhard Schiefer, editorée)Proceedings of the Thirtieth International Conference on Very ¢ >a
Basespages 372-383, Toronto, Canada, August 31 - September 300gan Kaufmann.

. Marco Crasso, Alejandro Zunino, and Marcelo Campo. Combinirgygoy-example and query expansion

for simplifying Web Service discoverynformation Systems Frontiers press, 2009.

. Eleni Stroulia and Yigiao Wang. Structural and semantic matching fesasng Web Service similarity.

International Journal of Cooperative Information Systed(4):407—438, June 2005.

Cristian Mateos, Alejandro Zunino, and Marcelo Campo. Extendinglagofor supporting Web Services.
Computer Languages, SysteéaStructures33(1):11 — 31, 2007.

Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, aactéb Campo. Improving web service
descriptions for fective service discovenicience of Computer Programmirgh(11):1001 — 1021, 2010.
Jack Beaton, Sae Young Jeong, Yingyu Xidirdg Jack, and Brad A. Myers. Usability challenges for en-
terprise service-oriented architecture APIs. IBEE Symposium on Visual Languages and Human-Centric
Computing (VIHCC), pages 193-196, Sept. 2008.

M. Brian Blake and Michael F. Nowlan. Taming Web Services fromviiid. IEEE Internet Computing
12(5):62—69, 2008.

Jianchun Fan and Subbarao Kambhampati. A snapshot of puliSétgices SIGMOD Record34(1):24—
32, 2005.

J. Pasley. Avoid XML schema wildcards for Web Service interfa@&sE Internet Computingl0(3):72—79,
May-June 2006.

Cristian Mateos, Marco Crasso, Juan M. Rodriguez, Alejandrinduand Marcelo Campo. Measuring the
impact of the approach to migration in the quality of Web Service interfaeeterprise Information Systems
in press(0):1-28, 2012.

Marco Crasso, Alejandro Zunino, and Marcelo Campo. AWSC: gpr@ach to Web Service classification
based on machine learning techniguRsvista Iberoamericana de Inteligencia Artifigial (12):25-36, 2008.
Hinrich Schitze Christopher D. Manningoundations of Statistical Natural Language ProcessinglT
Press, 1999.

Dan Klein and Christopher D. Manning. Accurate unlexicalized pgrdimProceedings of the 41st Annual
Meeting on Association for Computational Linguistics (ACL,G8)ges 423-430, 2003.

Christopher D. Manning Dan Klein. Accurate unlexicalized parsing?rbceedings of the 41st Meeting of
the Association for Computational Linguisti@D03.

Andreas Hel3, Eddie Johnston, and Nicholas Kushmerick. AS3Atdol for semi-automatically annotat-
ing semantic Web Services. In Sheila A.Mcllraith, Dimitris Plexousakis, Fnathk van Harmelen, editors,

22.

23.
24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

45.

J.M. Rodriguez, M. Crasso, and A. Zunind57

International Semantic Web Conferengelume 3298 oLecture Notes in Computer Science (LNJ&)ges
320-334, Hiroshima, Japan, November 7-11 2004. Springer.

Eyhab Al-Masri and Qusay H. Mahmoud. WSB: A broker-centiacrfework for quality-driven web service
discovery.Software: Practice and Experiencé0:917-941, September 2010.

T.J. McCabe. A complexity measut&EE Transactions on Software Engineeri2g308-320, 1976.

Edward Yourdon and Larry L. Constantin8tructured Design: Fundamentals of a Discipline of Computer
Program and Systems DesigRrentice-Hall, Inc., Upper Saddle River, NJ, USA, 1979.

Karim O. Elish and Mahmoud O. Elish. Predicting defect-prone soétwedules using support vector ma-
chines.Journal of Systems and Softwa8d (5):649 — 660, 2008. Software Process and Product Measatem
S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Bencéhgeldssification models for software de-
fect prediction: A proposed framework and novel findingsoftware Engineering, IEEE Transactions, on
34(4):485 -496, july-aug. 2008.

V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-oriethigesign metrics as quality indicators.
Software Engineering, IEEE Transactions @2(10):751 —761, oct 1996.

Cara Stein, Glenn Cox, and Letha Etzkorn. Exploring the relationgtipelen cohesion and complexity.
Journal of Computer Scieng#(2):137 —144, 2005.

Ninus Khamis, Ren® Witte, and Juergen Rilling. Automatic quality assessment of source codments:
The javadocminer. In Christina Hopfe, Yacine Rezgui, Elisabeth@tilis, Alun Preece, and Haijiang Li,
editors,Natural Language Processing and Information Systerakime 6177 oLecture Notes in Computer
Sciencepages 68—79. Springer Berlitdeidelberg, 2010.

Rudolph Flesch. A new readability yardstickournal of Applied Psycholog$2(3):221-233, 1948.

V. Arnaoudova. Improving source code quality through the defitilinguistic antipatterns. liReverse
Engineering (WCRE), 2010 17th Working Conferencepaiges 285 —288, oct. 2010.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Expbpthe influence of identifier names
on code quality: An empirical studySoftware Maintenance and Reengineering, European Conference on
0:156-165, 2010.

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Miningjalass naming conventions. In
Proceedings of the 2011 27th IEEE International Conference on S&tMaintenancelCSM '11, pages
93-102, Washington, DC, USA, 2011. IEEE Computer Society.

Henrik Leopold, Sergey Smirnov, and Jan Mendling. On the refagtof activity labels in business process
models.Information System&87(5):443 — 459, 2012.

Heung Seok Chae, Yong Rae Kwon, and Doo Hwan Bae. A cohesasure for object-oriented classes.
Software: Practice and Experiencg0(12):1405-1431, 2000.

Jehad Al Dallal and Lionel C. Briand. An object-oriented high-leletign-based class cohesion metric.
Information and Software Technolqdh2(12):1346 — 1361, 2010.

T. Suzumura, T. Takase, and M. Tatsubori. Optimizing web sergegormance by dierential deserializa-
tion. In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE Intemah@mnference orpages 185 —
192 vol.1, july 2005.

Abdelkarim Erradi and Piyush Maheshwari. A broker-basedagmb for improving web services reliability.
Web Services, IEEE International Conference @355-362, 2005.

Christiane FellbaumiNordNet: An Electronic Lexical DatabasBradford Books, 1998.

Christopher D. Manning, Prabhakar Raghavan, and Hinricht&ehiintroduction to Information Retrieval
Cambridge University Press, 1 edition, July 2008.

Eric E. Allen and Robert Cartwright. Safe instantiation in generic j8aence of Computer Programming
59(1-2):26 — 37, 2006. Special Issue on Principles and Practicasgfdmming in Java (PPPJ 2004).
Fabrizio Sebastiani. Machine learning in automated text categorizatiéiM Comput. Sury.34(1):1-47,
2002.

J. Sanger R. FeldmaiThe Text Mining Handbook: Advanced Approaches in Analyzing Ustsired Data
Cambridge University Press, 2006.

M. F. Porter. An algorithm for sfix stripping. Program: electronic library and information systend:130—
137, 1980.

Nicola Stokes.Aplications of lexical cohesion analysis in the topic detection and trackingadonPhD

158 An Approach for Web Service Discoverability Anti-PatteDetection

46.

47.

48.

49.

50.

51.

thesis, University College Dublin, 2004.

Sanda Harabagiu and Dan Moldovasatural language processing and knowledge representatibapter
Enriching the WordNet taxonomy with contextual knowledge acquierenh fiext, pages 301-334. MIT
Press, 2000.

José Luis Ordiales Coscia, Cristian Mateos, Marco Crasso, anahéiej@unino. Avoiding WSDL Bad Prac-
tices in Code-First Web Services. Rioceedings of the 12th Argentine Symposium on Software Engineering
(ASSE2011) - 40th JAll(pages 1-12, 2011.

Eyhab Al-Masri; Qusay H. Mahmoud. Qos-based discovery amkimg of Web Services. IRroceedings of
the 16th International Conference on Computer Communications and Net(¢GCCN’07) pages 529-534,
2007.

Gedfrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, sliadk Hall. Multiclass alternating
decision trees. In Tapio Elomaa, Heikki Mannila, and Hannu Toivoaditors,Machine Learning: ECML
2002 volume 2430 ofLecture Notes in Computer Sciengages 105-122. Springer BerlirHeidelberg,
2002.

Mark Hall, Eibe Frank, Gefrey Holmes, Bernhard Pfahringer, Peter Reutemann, and lan H. Wittke
weka data mining software: an upda8GKDD Explor. News].11:10-18, November 2009.

J.L. Pastrana, E. Pimentel, and M. Katrib. Qos-enabled anddagitige connectors for Web Services com-
position and coordinationrComputer Languages, Systeéas$tructures37(1):2 — 23, 2011.

