
Journal of Web Engineering, Vol. 12, No.1&2 (2013) 159-180

© Rinton Press

SCALABLE RDF GRAPH QUERYING USING CLOUD COMPUTING

REN LI

College of Computer Science, Chongqing University, Chongqing, China

renli@cqu.edu.cn

DAN YANG HAIBO HU JUAN XIE LI FU

School of Software Engineering, Chongqing University, Chongqing, China

{dyang, hbhu, xiejuan, fuli}@cqu.edu.cn

Received June 27, 2012

Revised January 6, 2013

With the explosion of the semantic web technologies, conventional SPARQL processing tools do not scale

well for large amounts of RDF data because they are designed for use on a single-machine context. Several

optimization solutions combined with cloud computing technologies have been proposed to overcome

these drawbacks. However, these approaches only consider the SPARQL Basic Graph Pattern processing,

and their file system-based schema can barely modify large-scale RDF data randomly. This paper presents

a scalable SPARQL Group Graph Pattern (GGP) processing framework for large RDF graphs. We design a

novel storage schema on HBase to store RDF data. Furthermore, a query plan generation algorithm is

proposed to determine jobs based on a greedy selection strategy. Several query algorithms are also

presented to answer SPARQL GGP queries in the MapReduce paradigm. An experiment on a simulation

cloud computing environment shows that our framework is more scalable and efficient than traditional

approaches when storing and retrieving large volumes of RDF data.

Key words: Semantic Web, RDF, SPARQL, Cloud Computing, MapReduce, HBase

Communicated by: M. Gaedke & O. Pastor

1 Introduction

To achieve the Semantic Web vision [1], several standards were recommended by the World Wide

Web Consortium (W3C) to make Web information understandable to humans and machines [2].

Among these standards, the Resource Description Framework (RDF) is the prominent data model for

storing and representing information about the Semantic Web [3]. In addition, the W3C recommends

SPARQL as the standard RDF query language to extract RDF information [4].

Large volumes of RDF data became available with the development of semantic web technologies.

As of September 2011, the number of RDF triples contained in the Link Open Data cloud is over 31

billion [8]. However, most of the existing RDF query tools [9, 10, 11] and optimization solutions [12,

13, 14] have inevitable limitations in performance and scalability when handling large amounts of

RDF data because they are designed to run on a centralized environment where the computations are

160 Scalable RDF Graph Querying using Cloud Computing

performed by a single machine. Therefore, using the distributed approach to implement scalable RDF

data storage and retrieval is especially important and challenging.

Cloud computing technologies receive comprehensive attention from the IT industry and the

academia. As of this writing, MapReduce paradigm [15], which is built on top of the Google File

System [16], is the dominant parallel and distributed programming paradigm in the cloud computing

community because of its high performance and fault-tolerant capability [17]. Apache also implements

MapReduce in the Hadoop open-source framework, which is successfully applied to solve data-

intensive problems in various domains [18, 19].

Researchers in the semantic web community are focused on solving the scalability and

performance problems of traditional semantic web tools by exploiting cloud computing technologies.

For instance, Urbani et al. propose WebPIE [20] as a parallel inference engine to implement scalable

RDFS and OWL [21] reasoning based on the MapReduce paradigm. Mutharaju et al. [22] provide an

efficient algorithm for the classification of OWL 2 EL ontologies in MapReduce. The two works show

that cloud computing technologies can greatly benefit the semantic web area.

Researchers also present a few SPARQL query processing frameworks based on cloud computing

technologies to meet the storage and querying requirements of large volumes of RDF data [23, 24].

Results show that their approaches are more scalable and efficient than conventional tools.

Nevertheless, all of the previous solutions merely involve the SPARQL Basic Graph Pattern (BGP)

processing. Furthermore, the Hadoop distributed file system (HDFS) is used as the RDF storage

repository, which can cause a bottleneck in the random modification of RDF data when SPARQL 1.1

[7] queries are answered. Although some researchers attempted to adopt HBase as the RDF repository,

which can provide the arbitrary read/write of RDF data in real time [25, 26, 27], their proposed

schemas should be improved to find a better trade-off between performance and storage space.

This paper proposes a scalable RDF graph query processing framework based on cloud computing

technologies. By running empirical experiments with standard benchmarks and queries, we

demonstrate that this framework achieves better performance and scalability than leading state-of-the-

art RDF query tools when matched against large amounts of RDF data. This work provides the first

solution for complex SPARQL Group Graph Pattern (GGP) processing using MapReduce and HBase.

The main contributions of this paper are threefold. First, to store RDF data on HBase, we design a

novel schema that can achieve effective trade-off between storage space and query performance.

Second, we present an efficient algorithm based on a greedy selection strategy to determine the query

plan. Third, several MapReduce query algorithms are proposed to answer complex SPARQL GGP

queries that involve the AND, UNION, and OPTIONAL operators as well as some FILTER

restrictions and solution sequence modifiers.

The remainder of this paper is organized as follows. Section 2 presents a brief review of related

works. Section 3 describes the architecture of the entire framework, and then defines the storage

schema and data models that are used in our framework. Section 4 discusses how we determine the

query plan and how we execute query jobs in the MapReduce paradigm. Section 5 presents the

analysis of the experimental results. Finally, Section 6 summarizes the conclusions and the future

works.

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 161

2 Related Works

MapReduce is a framework for the parallel and distributed processing of data in a cluster of

commodity machines [16]. In MapReduce, data are converted into key–value pairs and processed in a

job that consists of a map phase and a reduce phase. A batch of jobs can also be chained to deal with

complex computation tasks. Within one job, the Master node first partitions input data into a number of

independent chunks and passes them to the Map nodes. Afterwards, in the map phase, each Map node

accepts data chunks and then generates a series of intermediate key–value pairs according to a user-

defined map function. Finally, after being notified about the location of intermediate data in the reduce

phase, each Reduce node merges the intermediate data with the same key value and generates a series

of key–value pairs according to a user-defined reduce function.

As an open-source implementation of Google’s Bigtable [28], HBase stores data in tables that can

be described as a multidimensional sorted map. Each data row of an HBase table is composed of a

unique row key and an arbitrary number of columns, where several columns can be grouped as a

column family. A data cell, which is determined by a given row key and a column name, can store

multiple versions of data distinguished by a timestamp. In addition, HBase provides a B+ tree-like

index on row key, and data retrieval can be implemented by giving a row key or the range of keys.

Pérez et al. [5] describe the algebraic formalization for RDF and SPARQL graph patterns in order

to analyze the semantics and complexity of SPARQL queries. They also provide the compositional

semantics for binary operators AND, OPTIONAL, UNION, and FILTER. In this paper, we adopt the

syntax and computational semantics of SPARQL described in their work.

Several RDF query tools are comprehensively utilized in the semantic web community. Jena [9] is

a Java-implemented open source programmatic environment for SPARQL. It includes the ARQ query

engine and provides an efficient access to the RDF data set in memory. Furthermore, for persistent

RDF triple storage, researchers additionally provide the Jena SDB model, which is built on relational

databases. Sesame [10] is a generic architecture for storing and querying large quantities of RDF data,

which supports SPARQL and SeRQL queries. Based on its architecture feature, Sesame can be ported

to a large variety of different repositories such as relational databases, RDF triple stores, and remote

storage services on the Web. RDF-3X [11] is an RISC-style engine for RDF and is considered as the

fastest SPARQL query tool. It uses histograms, summary statistics, and query optimization to enable

high-performance RDF queries. However, the current version of RDF-3X does not support SPARQL

Alternative Graph Pattern processing.

Few studies deal with the scalability and performance problems of centralized RDF query tools by

exploiting cloud computing technologies because it is still an emerging research area. Choi et al. [27]

propose a query processing system named SPIDER for RDF data based on HBase and MapReduce.

They provide an overview of the system architecture and describe several RDF graph query

approaches using MapReduce. However, the schema for storing RDF triples in HBase and the detail

query algorithms are not presented and no experimental results are reported.

Myung et al. [23] design a universal and efficient MapReduce algorithm for SPARQL BGP

processing. They adopt a greedy strategy to select the join key of SPARQL BGP queries and apply the

multi-way join method into MapReduce to avoid unnecessary job iterations because running multiple

162 Scalable RDF Graph Querying using Cloud Computing

jobs are computationally expensive in MapReduce. Their approach shows superior performance and

scalability in terms of time and data size compared with conventional RDF query tools.

Husain et al. [24] describe a heuristics-based query processing framework for large RDF graphs.

They design a novel schema to store RDF data in HDFS as flat files and define several models to

represent RDF triples, SPARQL queries, and related terms in their system. A Relaxed-Bestplan

algorithm, which has a worst case that is bounded by the log of the total number of variables, is

proposed to determine the query plan. The experiments demonstrate that their framework is highly

scalable and efficient. However, they only consider the SPARQL BGP processing. The file system-

based storage schema cannot meet the random modification demands of RDF data. This paper extends

their idea of generating query plan to answer SPARQL GGP queries in MapReduce.

Based on the idea of Hexaxtore [29], Sun et al. [26] propose an RDF storage schema on HBase

and present a MapReduce join algorithm for SPARQL BGP processing. They build six HBase tables

for RDF data storage to cover all possible combinations of SPARQL triple patterns. Moreover, a

greedy strategy is adopted to select the join key. However, RDF data must be replicated six times in

their solution, which requires additional storage space and makes data modification difficult.

To compare the performance of cloud computing technologies and traditional relational database

cluster technologies for distributed RDF data management, Franke et al. [25] design an RDF data

storage schema with two HBase tables and propose query algorithms to evaluate SPARQL queries in

MapReduce. Their results show that the HBase solution can deal with a larger RDF data set, and has

superior query performance and scalability compared with the MySQL cluster. However, they only

consider the SPARQL BGP matching.

Several proposed benchmarks are widely used to test the performance and scalability of semantic

web data query tools and reasoners, including the Lehigh University Benchmark (LUBM) [30], the

SP2Bench [31], and the Berlin SPARQL Benchmark (BSBM) [32]. These benchmarks contain

standard test SPARQL queries and data generators to arbitrarily create an RDF data set. In this paper,

we choose SP2Bench as the running example and experimental data set because it is the only

benchmark for complex SPARQL GGP testing.

3 The Proposed Framework

First, we give an overview of the architecture of our proposed framework. We then describe a novel

RDF data storage schema on HBase and define several data models and terms that will be used.

3.1 Architecture of the proposed framework

As in figure 1, our framework is built on the top of the Hadoop cluster and consists of three modules:

Query Plan Generator, Data Adapter, and Query Engine.

The Data Adapter module, which runs in the MapReduce environment, is an interface for

accessing HBase. The Data Adapter takes the N-Triple format-based RDF data and stores these into

HBase tables in parallel before answering SPARQL queries. The Query Engine calls the Data Adapter

to retrieve the RDF data from HBase and then stores the solutions into multiple HDFS files after the

query plan is determined.

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 163

Hadoop Cluster

HDFS

HBase

Query Plan Generator

MapReduce Framework

Data

Adapter

Query Engine

Graph Pattern Processor

Solution Modifier

Query Result Constructor

RDF Data

(N-Triple)

SPARQL

Queries

Figure 1 Architecture of the proposed framework.

The Query Plan Generator is responsible for determining the query plan. The SPARQL queries

submitted by users within this module are parsed and converted into a Graph Pattern Tree (GPT)

model, a Sequence Solution Modifier (SSM) model, and a Query Form (QF) model. The Query Plan

Generator generates a series of MapReduce Query Plan models based on the query plan generation

algorithm, which will be proposed in Section 4.1. The details of the data models will be discussed in

Section 3.3.

The Query Engine Module comprises three sub-modules: Graph Pattern Processor, Solution

Modifier, and Query Result Constructor. The Graph Pattern Processor runs a sequence of MapReduce

jobs to match the graph patterns and generate a set of solutions according to the query plan. The

Solution Modifier creates another ordered sequence solution if there are one or more solution

modifiers in the given SPARQL query. The Query Result Constructor generates the final results

according to the query form.

In addition to the AND, OPTIONAL, and UNION operators and some commonly used FILTER

restrictions like <, >, !=, and so forth, modifiers such as Order, Distinct, and the Select query form can

be handled in our framework.

3.2 Storage Schema

As the building block of an RDF graph, each RDF triple (s, p, o) describes a relationship between two

resources, where s is the subject, p is the predicate, and o is the object. Each component of an RDF

triple can be represented as an IRI, blank node, or literal, where the IRI consists of a prefixed

namespace and a local part. The prefixed namespace, for example, <http://www.w3.org/1999/02/22-

rdf-syntax-ns#>, can also be denoted as rdf: for short.

Finding the trade-off between storage space and querying efficiency is a crucial issue for designing

data schema in database research. Based on the features of HBase and to cover all possible

164 Scalable RDF Graph Querying using Cloud Computing

combinations of SPARQL triple patterns, we build three HBase tables, namely, T_SP_O, T_PO_S, and

T_OS_P, to support the efficient retrieval of RDF data. Furthermore, to reduce the amount of storage

space, table T_Pre_N is used to store the prefixed namespaces of IRIs and the corresponding

abbreviations. Figure 2 shows the storage schema, where S denotes the subject, P denotes the predicate,

and O denotes the object.

RowKey
Column Family

<S, P>

O(1) O(2) ... O(N)

null null ... null

Timestamp

Time T

RowKey
Column Family

<P, O>

S (1) S (2) ... S (N)

null null ... null

Timestamp

Time T

(a) Table T_SP_O (b) Table T_PO_S

RowKey
Column Family

<O, S>

P (1) P (2) ... P (N)

null null ... null

Timestamp

Time T

RowKey
Column Family

Prefixed Namespace

Abbreviation

Data

Timestamp

Time T

(c) Table T_OS_P (d) Table T_Pre_N

Figure 2 Storage schema of the proposed framework.

Table T_SP_O employs the subject–predicate pair as the row key and the corresponding objects as

the column names. All columns belong to one column family and all data cells are left empty. Tables

T_PO_S and T_OS_P have a similar structure as T_SP_O. The predicate–object and object–subject

pair is used as the row key of these two tables. The corresponding subject and predicate values are

stored as the column names. Table T_Pre_N contains one column named Abbreviation, the prefixed

namespace of IRI is stored as the row key, and the matching abbreviation is stored in data cells.

Although our proposed schema requires that RDF data be replicated twice, storage space is not a

critical problem in the cloud computing context. All the possible forms of triple patterns can be

directly and efficiently matched through our schema. In addition, all values stored in these three tables

are the abbreviations of the namespaces rather than the full IRI string, and no space is wasted for the

blank cell in the HBase table. Therefore, our schema can achieve a satisfactory trade-off between space

and performance.

Based on the triple structure, there are 2
3
 possible combinations of triple patterns. In table 1, we

present the querying relationship between HBase tables and the different types of triple patterns.

HBase Table Triple Patterns

T_SP_O (s, p, ?o), (s, ?p, ?o), (s, p, o), (?s, ?p, ?o)

T_PO_S (?s, p, o), (?s, p, ?o)

T_OS_P (s, ?p, o), (?s, ?p, o)

Table 1 The querying relationship between HBase tables and triple patterns.

To handle the triple patterns (?s, p, o), (s, ?p, o), and (s, p, ?o), the two known terms can be set as

retrieval conditions to match the row keys of the T_PO_S, T_OS_P, and T_OS_P tables. For the triple

pattern (s, p, o), we need to verify whether the triple exists in the T_SP_O table, whereas the triple

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 165

pattern (?s, ?p, ?o) requires that the entire RDF data set is loaded. The triple patterns (?s, ?p, o), (?s,

p, ?o), and (s, ?p, ?o) can also be handled using the PrefixFilter technique of HBase, which requires a

range of row keys for the T_OS_P, T_PO_S, and T_SP_O tables.

Based on the proposed schema, all possible forms of RDF data from different data sources can be

transformed and stored in HBase tables by utilizing the Data Adapter. In addition, we implement a

transaction mechanism in the Data Adapter which can be considered as an uniform data access layer or

middleware. All possible operations, such as querying, inserting, updating or deleting RDF data from

proposed HBase tables, are encapsulated and integrated in one transaction procedure. Therefore,

although our proposed schema is based on replicating the information in several HBase tables, the data

integration problem which is often derived from using this strategy can be addressed.

3.3 Model Definitions

Before discussing the query plan generation algorithm and MapReduce query algorithms in detail, we

introduce several model definitions in this section. Query 8 in SP2Bench is used as a running example

to illustrate these terms better. We show Query 8 in figure 3 and mark these triple patterns from TP1 to

TP8 according to their order of appearance. In particular, TP3 and TP4 are involved twice in Query 8.

Figure 3 Query 8 in SP2Bench.

As the query pattern part of one SPARQL query can be translated into a relational operator tree [6],

three models are designed in our proposed framework to represent the query pattern, solution sequence

modifier, and query form part of one SPARQL query, respectively.

SELECT DISTINCT ?name

WHERE {

 ?erdoes rdf:type foaf:Person. (TP1)

 ?erdoes foaf:name "Paul Erdoes"^^ xsd:string. (TP2)

 {

 ?document dc:creator ?erdoes. (TP3)

 ?document dc:creator ?author. (TP4)

 ?document2 dc:creator ?author. (TP5)

 ?document2 dc:creator ?author2. (TP6)

 ?author2 foaf:name ?name (TP7)

 FILTER (?author!=?erdoes &&?document2!=?document

 && ?author2!=?erdoes && ?author2!=?author) (R1)

 } UNION{

 ?document dc:creator ?erdoes. (TP3)

 ?document dc:creator ?author. (TP4)

 ?author foaf:name ?name (TP8)

 FILTER (?author!=?erdoes) (R2)

 }

}

166 Scalable RDF Graph Querying using Cloud Computing

Definition 1. Graph Pattern Tree (GPT). A GPT is a tree structure model that represents the query

pattern in the where clause of a given SPARQL query. Each tree node can be the Triple Pattern Node

(TPN), the Tuple Node (TN), or the Operator Node (OPN), which are defined as follows:

 TPN is a triple (s, p, o) that corresponds to one triple pattern in the given SPARQL query.

Each TPN component can be a variable or concrete value.

 TN is a tuple (t1, t2, ..., tn), n≥1, that represents the variables in a matching solution, where ti is

a variable name, 1in. Each TN has an attribute JobN that is used to record the job number

of this TN.

 OPN corresponds to the AND, UNION, or OPTIONAL operators, and it can attach one or

more FILTER constraint objects. We say an OPN is a leaf OPN when all child nodes of this

OPN are TPNs, and we say the depth of the GPT is the maximum depth number of leaf OPNs.

Definition 2. Solution Sequence Modifier (SSM). An SSM=(Modifier, Parameters) corresponds to

the solution sequence modifier part of a SPARQL query. The Modifier can be the operators Distinct,

Order By, Projection, Reduced, Offset, or Limit. The Parameters denote the operational objectives of

the Modifier.

Definition 3. Query Form (QF). A QF is an operator that uses the solutions from pattern matching

to form the result sets or RDF graphs; it can be Select, Construct, Ask, or Describe.

Based on these definitions, each triple pattern contained in Query 8 corresponds to a TPN. An

SSM model can also be defined as (Distinct, ?name). The QF model for Query 8 is Select. Figure 4

shows the GPT model of Query 8, where the TPNs are represented as cycles and OPNs as rectangles.

Therefore, we can denote Query 8 as the tuple [GPT, (Distinct, ?name), Select].

The HBase can be easily accessed eight times to match the RDF terms for these triple patterns.

However, this approach inevitably leads to unnecessary I/O transfers. This approach is time-consuming

because accessing the HBase in multiple MapReduce jobs is computationally expensive. Hence, a

more efficient data retrieval solution is in demand.

Definition 4. Query Pattern (QP). For one GPT model, if there are n TPNs, TPN1=(s1, p1, o1), ...,

TPNn=(sn, pn, on), n≥2, satisfying the subjects, predicates and objects are variables or share common

concrete values of Vs, Vp, and Vo. A QP is a triple (s, p, o) used to denote the common RDF retrieval

information of TPN1, ..., TPNn, where s, p, and o are assigned to Var when the subjects s1, ..., sn,

predicates p1,..., pn and objects o1, ..., on are variables; otherwise, s, p, and o are assigned to Vs, Vp, and

Vo, respectively.

As the subjects and objects of TPN3, TPN4, TPN5, and TPN6 are variables in Query 8, the

predicates share same the concrete value dc:creator. Therefore, a QP model is defined as QP1=(Var,

dc:creator, Var). Likewise, for TPN7 and TPN8, another QP model can be defined as QP2=(Var,

foaf:name, Var). By using QP models, we can set the concrete values as retrieval conditions to match

the RDF triples from HBase. For example, we can use QP1 to retrieve all RDF terms for TPN3, TPN4,

TPN5, and TPN6 in one job, rather than access HBase four times. However, as no QP model can be

defined for TPN1 and TPN2, the RDF data must still be retrieved separately.

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 167

TPN1 TPN2

AND2

AND1

TPN3 TPN4 TPN5 TPN6

Filter R1

AND3

TPN3 TPN4 TPN8

Filter R2

UNION

TPN7

Figure 4 GPT model of Query 8.

Definition 5. Shared Variable (SV). A shared variable is the common variable in two or more

TPNs or TNs belonging to one OPN.

Definition 6. MapReduce Query Plan (MRQP). An MRQP is a tuple (JobID, Opt, SV, Tag, Flt),

where JobID denotes the job sequence number; Opt can be the AND, OPTIONAL, or UNION

operators; Tag is a collection of target TPNs or TNs; SV is the shared variable in Tag; and Flt is the

FILTER constraint attached to Opt.

In Query 8, variable ?document is the shared variable for TPN3 and TPN4 while variable ?author is

the shared variable for TPN4 and TPN5. On the contrary, the variable ?name existing in TPN7 and TPN8

is not the shared variable because these two TPNs belong to different OPNs. Moreover, suppose the

TPN4 and TPN5 are determined to be handled in the first job, we can define a MRQP model as (1,

AND, ?author, {TPN4,TPN5}, R1). After passing this MRQP model to the Query Engine, the Map

nodes take the RDF data matched to TPN4 and TPN5 as input and generate a series of intermediate

key–value pairs in which the binding of ?author is set as key. The intermediate data with the same key

values are subsequently passed to one Reduce node, and the AND and FILTER operations are

executed in reduce function.

4 MapReduce-based Query Processing

In this section, we first describe how to handle the AND, OPTIONAL, and UNION operators in

MapReduce paradigm and how we determine the query plan. Subsequently, we propose several

algorithmic solutions to answer SPARQL GGP queries in MapReduce.

4.1 Query Plan Generation Algorithm

Two or more shared variables contained in one TPN or TN cannot be a key at the same time because

each MapReduce job processes chunks of data in the key–value pair format. Additionally, a batch of

MapReduce jobs can barely be avoided to answer complex SPARQL GGP queries. The number of jobs

should also be reduced to achieve higher performance because running multiple MapReduce jobs is

168 Scalable RDF Graph Querying using Cloud Computing

computationally expensive. In this section, we propose our query plan generation algorithm, which is

extended from the Relaxed-Bestplan [24].

Based on the syntax and semantics of SPARQL, the UNION operator combines two or more

GGPs so that one of several alternative graph patterns may match; if more than one of the alternatives

match, then all of the possible pattern solutions are found. In MapReduce, one UNION operator can be

handled in one job. For example, to answer the expression {(?a, ?b, ?c)} UNION {(?a, ?b, ?d)}, the

map function takes the RDF data that match two triple patterns and generates a series of solutions for

the tuple (?a, ?b, ?c, ?d). In this case, even the reduce phase is unnecessary.

Similarly, the OPTIONAL operator, which adds optional solutions for one graph pattern, can be

handled in one MapReduce job. For instance, suppose there are two GGPs, P1={(?a, b, ?c)} and

P2={(?a, d, ?d)}. To answer the optional pattern expression P1 OPTIONAL P2, the map function

primarily takes the RDF terms that match either P1 or P2 and generates a series of key–value pairs. For

P1 and P2, the key part of each intermediate data consists of the shared variable ?a and its matching

term. The variables ?c and ?d with their matching values are assigned to the value part of P1 and P2,

respectively. Reduce nodes accept the intermediate data with the same key and generate several

optional solutions for (?a, ?c, ?d) in the reduce phase.

 Husain et al. [24] propose the Relaxed-Bestplan algorithm to determine the query plan for

processing SPARQL BGP in MapReduce. They prove that an exponential number of join cases have to

be faced since more than one job is needed to answer complex SPARQL BGP queries, and gathering

summary statistics for a large number of cases would be very much time and space consuming. In

addition, they observe that several disk I/O and network transfers are expensive operation for running a

job in MapReduce. Therefore, they follow the idea of greedy selection strategy and design the

Relaxed-Bestplan algorithm to find the job plan that has the minimum number of jobs.

The idea of the Relaxed-Bestplan algorithm is followed to handle the AND operator for GGPs

because handling it for multiple GGPs requires the same computational semantics with BGP.

Therefore, for one AND operator that contains N triple patterns or tuples and K shared variables, the

generated query plan contains at most J jobs, where

1. ,

,1or 1

,0

),],log71.1min([

1

0

2 KN

K N

N

KN

J (1)

In addition, the FILTER operators restrict the solutions of a graph pattern match according to a

given expression, and the sequence solution modifiers create another sequence for an unordered

collection of solutions. Based on the key–value pair model of MapReduce, FILTER operators and

sequence solution modifiers for GGPs can be handled in the map phase or reduce phase after the

solutions are generated. Therefore, we can summarize that for handling one OPN, SJ jobs are required,

where

AND. is OPN

or UNION, OPTIONAL is OPN

,

,1

J

SJ (2)

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 169

The OPNs can be easily and sequentially processed. Taking Query 8 as an example, based on

Formula (1), handling the operator AND1 for TPN3, TPN4, TPN5, TPN6, and TPN7 requires three jobs;

AND2 for TPN3, TPN4, and TPN8 needs two jobs; AND3 for TPN1, TPN2, and the results of AND1 can

be answered in one job. The root UNION operator needs one job to obtain the final results. Therefore,

we need to run seven jobs to get the results if we handle these four OPNs sequentially. However, this

querying strategy is clearly inefficient.

As an alternative, a greedy selection strategy can be adopted to perform as many operations as

possible in each job since the AND1, AND2, and AND3 process the triple patterns independently. For

example, in the first three jobs, in addition to processing AND1, we can execute the joining operation

for AND2 simultaneously. Then, the joining operation for AND3 and the final UNION operation can

also be handled. Therefore, the entire query plan needs to perform MapReduce jobs five times. Based

on this greedy selection strategy, we propose a novel query plan generation algorithm for SPARQL

GGP processing as outlined in figure 5.

Input: a GPT model T. Output: a collection of MRQP models QPlan.

1. Initialization QPlan , LDepth of T

2. For a=L to 1

3. N={OPN1, ..., OPNn}All OPNs in a-th level

4. For (i=1 to n)

5. CN={Node1, ..., Nodem}All child nodes of OPNi

6. If OPNi is a leaf OPN, do t1, Else tMax_job_Nums(CN)+1

7. S={sv1,...,svs}All SVs in CN sorted in non-decreasing order of E-count

8. If OPNi is OPTIONAL

9. MRQP(t, OPTIONAL, S, CN, FILTER), QPlan QPlan {MRQP}

10. Else If OPNi is UNION

11. MRQP(t, UNION, null, CN, FILTER), QPlan QPlan { MRQP }

12. Else If OPNi is AND

13. While(CN)

14. For k=1 to s and if Can-Eliminate(CN, svk)

15. TP(CN, svk) All TPNs or TNs in CN containing variable svk

16. MRQP(t, AND, svk, TP (CN, svk), FILTER), QPlanQPlan {MRQP}

17. TempTemp Join_Result (TP(CN, svk)), CNCNTP(CN, svk)

18. End For

19. tt+1, CNCNTemp

20. End While

21. End If

22. Replace OPNi with new TN(CN, t)

23. End For

24. End For

25. Return QPlan

Figure 5 Query plan generation algorithm for SPARQL GGP processing.

170 Scalable RDF Graph Querying using Cloud Computing

The proposed algorithm takes one GPT model and generates a collection of MRQP models as the

query plan. The algorithm starts by initializing an empty collection QPlan and assigning the depth of

GPT to L. All of the OPNs are then evaluated iteratively from the bottom up. For each OPN in one

level, if it is a leaf OPN, the current job number denoted as the parameter t is assigned to 1; otherwise,

t equals 1 + the maximum job number of child nodes belonging to the current OPN. Subsequently, all

child nodes of the current OPN are collected into CN. All the shared variables contained in the CN are

sorted in a non-decreasing order of the E-count [24] and stored in collection S. Afterward, the query

plan is generated according to the operators. As shown in Line 9, if the current OPN is OPTIONAL,

then one MRQP model is built to denote the operations to be executed in a MapReduce job, where t is

the job ID, CN is the target TPNs or TNs, and S is the shared variables in the CN. Similarly, if the OPN

is UNION, one MRQP model is built and inserted into the QPlan, as shown in Line 11. If the OPN is

AND, the Relaxed-Bestplan algorithm is modified to build the MRQP models iteratively. In the while

loop starting from Line 13, if CN is not empty and the shared variable can be completely or partially

eliminated, all corresponding TPNs or TNs in CN are picked up and stored in the collection TP. One

MRQP model is then defined as shown in Line 16. Before iterating the next shared variable, the TPNs

or TNs that have been handled are removed from CN and the intermediate computational results are

stored in Temp. Until all shared variables are evaluated, both t and CN are updated before running the

next iteration. After the query plan for such OPN is determined, as shown in Line 22, we replace this

OPN with a new TN node built with all of the variables in CN. The JobN attribute is assigned to t.

Finally, after all OPNs in every level are handled, the query plan QPlan is returned from the algorithm.

According to the MRQP models generated by our proposed algorithm, the querying procedure

starts from each leaf OPN and terminates at the root OPN. Hence, taking each leaf OPN as a starting

point, one corresponding path to the root exists. If two paths P1 and P2 intersect at one OPN O, and O

needs SJ jobs, then PJ1 and PJ2 jobs are required for P1 and P2, respectively. The computation for O

needs to wait until P1 and P2 complete the query tasks. Hence, the total number of jobs for handling O

is SJ + maximum job number of P1 and P2.

Formally, giving one GPT model that contains n leaf OPNs, n paths P1,..., Pn exist. Each path takes

one leaf OPN as the starting point and one root OPN as the end point. Our proposed algorithm

generates SumJ jobs to answer this GPT:

),...,max(1 nPJPJSumJ , (3)

where PJi is the total job number for path Pi, 1 i n. Moreover, if the depth of GPT is L and the leaf

OPN of one path P is located in the D-th level of GPT, D L, then this path will take PJ jobs:

1

Dj

jSJPJ , (4)

where SJ is the number of jobs for one OPN in the path defined as Formula (2).

Taking Query 8 as an example, two leaf OPNs exist: AND1 and AND2. Thus, two paths, P1 =

<AND1, AND3, UNION> and P2 = <AND2, UNION> can be handled at the same time. In addition,

AND1 needs three jobs, AND2 requires two jobs, and AND3 and the root UNION operator take one job,

respectively. Thus, PJ1=5 and PJ2=3. The proposed algorithm requires five jobs to answer Query 8 as

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 171

SumJ=max(5, 3). Compared with the sequence querying approach that requires seven jobs, our query

plan generation algorithm achieves better performance with fewer jobs.

In our proposed algorithm, the outer for loop in Line 2 runs at most L times, the for loop in Line 4

runs at most N times, where L is the depth of the input GPT model and N is the maximum number of

OPNs for all levels. The while loop in Line 13 runs at most J times and the inner for loop runs at most

K times, where J is the maximum number of jobs for AND operators and K is the maximum number of

shared variables of OPNs. Therefore, the overall complexity of our query plan generation algorithm is

O(LNK(J + logK)).

4.2. MapReduce Query Algorithms

After the query plan is determined, a batch of MapReduce jobs is executed in the Query Engine

module. In the first job, the Data Adapter matches all TPNs over RDF triples in the HBase and stores

the solutions in HDFS files. The RDF data retrieval procedure is outlined in figure 6.

1. Build a collection of QP models Q for TPNs, Q={QP1, ..., QPn}, n≥0.

2. Build a collection T to store remainder TPNs in GPT, T={TPN1,..., TPNs}, s≥0.

3. Initial one multi-table supported MapReduce job.

4. Assign the query parameters for the job based on Q and T.

5. Execute the job to retrieve RDF data from HBase.

6. Store the matching solutions in HDFS files QP1, ..., QPn, TPN1,..., TPNs.

Figure 6 RDF data retrieval algorithm.

For example, as indicated in Section 3.3, two QP models QP1 and QP2 can be built for Query 8,

whereas TPN1 and TPN2 must be handled separately. Therefore, the Data Adapter sets the querying

parameters with the bounded terms in Q={QP1, QP2} and T={TPN1, TPN2}, and runs one job to

retrieve all matching RDF terms from the HBase. Finally, all corresponding solutions are stored into

four HDFS files, namely, QP1, QP2, TPN1, and TPN2. The Query Engine then executes the Central

Control algorithm in the Master node to schedule the querying jobs and monitor the execution, as

shown in figure 7.

Input: a collection of MRQP models QPlan.

1. Initialization J1, InputFiles , SumJtotal job numbers of QPlan

2. While (J SumJ)

3. For each MRQP in QPlan whose JobID equals J

4. InputFiles InputFiles {MRQP.Tag}, CurrentOPN CurrentOPN {MRQP}

5. EndForeach

6. Job.Location InputFiles, DictributedCache CurrentOPN

7. If J equals SumJ, do Distributed Cache { SSM, QF }

8. Execute Job and do InputFiles , JJ+1

9. End While

Figure 7 Central Control algorithm.

172 Scalable RDF Graph Querying using Cloud Computing

The Central Control algorithm takes a collection of MRQP models QPlan and iteratively executes

a batch of MapReduce jobs until no MRQP model is left. First, two parameters J and InputFiles are

initialized to represent the current job number and target RDF files, respectively. Subsequently, in the

while loop, several MapReduce jobs are initialized and executed according to their sequence numbers.

Starting from Line 3, for each MRQP model with a JobID=current job number J, the RDF files stored

in HDFS are selected as the data source for the map function, and the query tasks in the corresponding

MRQP models are collected into the collection CurrentOPN. The data source locations of the current

job are then assigned to the InputFiles while the CurrentOPN is stored into the Distributed Cache

object. In particular, if the current job is the last one, the SSM and QF models are stored into the

Distributed Cache object. Finally, the job is executed and parameters InputFiles and J are updated.

After the query tasks are assigned, the map function executes the algorithm depicted in figure 8 to

generate intermediate key–value pairs or to execute the UNION operation. At the beginning, the

corresponding RDF solutions in the HDFS files and a collection of MRQP models in the Distributed

Cache are transferred to the Map nodes. For each solution that matches a TPN or TN in one MRQP

model M, if the OPT attribute of M is UNION, a new solution S is constructed with all of the variables

in M and the corresponding RDF term values; otherwise, the key–value pair is constructed. As shown

in Line 7, the key part is assigned to the shared variable and its matching value, and the value part is

assigned to the remaining variables and their matching values in the solution. Finally, the key–value

pairs are emitted to the Reduce nodes.

Input: a collection of RDF solutions. Output: key–value pairs

1. OPTsCurrentOPTs in Distributed Cache

2. If the solution accepted is matched to the TPN or TN in OPTs

3. If M.OPT equals UNION

4. Construct a new solution S that consists of all the variable names in M.

5. Sthe corresponding RDF terms in solution

6. Output S to one HDFS file

7. Else key(M.var, RDF term of M.var in solution), valuesolution

8. Emit(key, value)

Figure 8 Query algorithm in Map function.

In the reduce phase, all intermediate key–value pair data with the same key values are transferred

to one reduce node. Several operations are then executed as depicted in figure 9.

First, each reduce node obtains a list of MRQP model for the current job from the Distributed

Cache and stores them in the Opt. The n collections U1,..., Un are then initialized, where n is the

number of MRQP models. For each intermediate key–value pair received, one collection Ui is used to

store the corresponding value part. Subsequently, we use the computational semantics of the AND and

OPTIONAL operators defined by [5] to iteratively compute U1,..., Un according to the Opt and Filter

attribute in the MRQP. Finally, SSM and QP are executed for UR, if required, and the computational

results are output to the HDFS.

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 173

Input: a collection of key–value pairs with the same key. Output: matching solutions.

1. Opt CurrentOPTs in Distributed Cache

2. SSM Sequence Solution Modifier models in Distributed Cache

3. QP Query Form models in Distributed Cache

4. For each MRQP model M in Opt

5. Initial collections U1,..., Un, where n is the TPN or TN numbers of the MRQP model

6. For each key–value pair P that corresponds to M, do Ui P.value, 1in

7. Execute M.Opt for U1,..., Un and store the computational results in UR

8. Execute M.Filter for UR if required.

9. Execute SSM for UR if SSM

10. Output solutions UR to HDFS according to QP if QP

Figure 9 Query algorithm in Reduce function.

5 Experiments

5.1. Experiment Setup

The experiment is performed based on the synthetic data set SP2Bench, which is widely used to test

the performance and scalability of the semantic web tools. Different from LUBM and BSBM, which

contain simple SPARQL BGP test queries, SP2Bench provides 16 standard queries to evaluate

complex graph patterns.

Six queries are chosen from SP2Bench: Queries 2, 3a, 4, 6, 8, and 9. The others are ignored

because Queries 1, 5a, 5b, 10, and 11 are simple SPARQL BGP queries which do not contain UNION

or OPTIONAL operator. Queries 3b and 3c have same structure and variables with Query 3a, only the

conditions of Filter restriction part are different. Moreover, since current version of our framework

does not support key words bound and ASK, we do not choose Queries 7, 12a, 12b and 12c.

To simulate the cloud environment, we use an Ethernet connected 9-node Hadoop cluster for our

framework. Each node has the following configuration: Pentium IV 3.00 GHz CPU, 1.5 GB main

memory, and 80 GB disk space. We run Jena, Sesame, and RDF-3X on a powerful single machine

with Intel i5 2.50 GHz dual core processor, 8 GB main memory, and 4 TB disk space.

We use Hadoop-0.20.2 and Hbase-0.20.6 for our framework and compare it with the Jena-2.6.4 In-

memory and SDB models, Sesame 2.6.3 main-memory model, and RDF-3X 0.3.7. MySQL version 5.0

database management system is used for the Jena SDB model.

5.1. Evaluation

For evaluation purposes, we create SP2Bench data sets with 4, 8, 12, 15, 20, and 30 million RDF

triples to compare our proposed framework with that of Jena In-memory, SDB, Sesame, and RDF-3X.

To evaluate the scalability of our framework, four SP2Bench data sets with 10, 20, 30, and 40 million

RDF triples are generated. In this section, we first present the performance comparison and then

describe the scalability testing results. In the following subsections, “Cloud” is used to denote our

framework.

174 Scalable RDF Graph Querying using Cloud Computing

At first, we use SP2Bench Queries 2, 3a, 4, 6, 8, and 9 to compare our framework with those of

Jena In-memory and SDB. These queries have simple and complex structures. They include AND,

UNION, and OPTIONAL operators, as well as some FILTER and selectivity restrictions. The

comparison results are shown in tables 2 and 3, in which the response time is in seconds.

8 Million Triples 12 Million Triples 15 Million Triples 30 Million Triples

In-Mem Cloud In-Mem Cloud In-Mem Cloud In-Mem Cloud

Query 2 174.75 252.96 286.23 394.53 Failed 458.08 Failed 820.71

Query 3a 95.85 51.50 140.26 83.58 204.17 116.78 Failed 260.78

Query 4 Failed 370.43 Failed 478.40 Failed 579.98 Failed 887.69

Query 6 Failed 375.47 Failed 517.89 Failed 582.79 Failed 1154.99

Query 8 78.75 547.77 136.83 949,52 194.44 1245.74 Failed 2365.54

Query 9 82.36 285.37 139.96 402.95 199.02 502.32 Failed 916.42

Table 2 Comparison between Jena In-memory and our framework.

4 Million Triples 8 Million Triples 12 Million Triples 15 Million Triples

SDB Cloud SDB Cloud SDB Cloud SDB Cloud

Query 2 192.57 179.05 4090.97 252.96 Failed 394.53 Failed 458.08

Query 3a 172.93 44.54 1287.33 51.50 Failed 83.58 Failed 116.78

Query 4 Failed 243.88 Failed 370.43 Failed 478.40 Failed 579.98

Query 6 Failed 257.26 Failed 375.47 Failed 517.89 Failed 582.79

Query 8 Failed 376.54 Failed 547.77 Failed 949,52 Failed 1245.74

Query 9 223.78 171.80 1881.46 285.37 Failed 402.95 Failed 502.32

Table 3 Comparison between Jena SDB and our framework.

Query 2 includes 10 triple patterns. The first nine patterns execute the AND operation before

running the OPTIONAL operator for the last pattern. Two bound terms exist in the first triple pattern

and all triple patterns share one variable ?inproc. Hence, Query 2 is highly selective, resulting in a

small set size. For this query, Jena In-memory is faster than our framework when the data set size is 8

and 12 million triples, but it fails to answer the query when we input 15 and 30 million triples. For all

four data set sizes, our framework outperforms Jena SDB. In particular, SDB fails to answer the query

when we input 12 and 15 million triples.

Query 3a is a simple query that selects all articles with the property swrc:pages. It involves only

one AND operator for two triple patterns and one FILTER restriction. All the components of the

second triple pattern are variables, and thus this query is only lowly selective and produces large

results. For all data set sizes, our framework outperforms Jena In-memory and SDB. When the data set

size increases, Jena In-memory and SDB fails to answer this query.

Query 4 requires returning all the distinct pairs of article author names for authors who published

in the same journal. This result set is the largest. For all four data set sizes, our framework beats both

Jena In-memory and SDB.

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 175

Query 6 is more complex than Query 4 and the returned result set is large. Jena In-memory and

SDB fail to answer this query for all data set sizes, but our framework generates the output in a

reasonable amount of time.

Query 8 is a composite query because it includes the AND, UNION, and Filter operators for

multiple GGPs. Jena In-memory beats our framework for 8, 12, and 15 million RDF triples. However,

when the size of the input RDF data set increases to 30 million triples, Jena In-memory shows an out-

of-memory exception. Jena SDB cannot answer this query for all input data.

Query 9 returns the incoming and out-coming properties of persons, and the size of the result data

set is small because of the Distinct restriction. Jena In-memory beats our framework for this query

when the data set size is 8, 12, and 15 million triples, but it fails to answer the query when we input 30

million triples. For all four data set sizes, our framework outperforms Jena SDB.

Jena In-memory achieves better performance than our framework for queries with high selectivity

and bound objects when processing small RDF data sets. However, because of the memory limitation,

Jena In-memory cannot finish the query tasks when the data set size increases. For queries with

unbound objects, low selectivity, and large result sets, our framework outperforms Jena In-memory.

Our framework also achieves better performance and scalability than Jena SDB because the latter

cannot execute queries with large input data set sizes and result sets.

The current version of RDF-3X does not support OPTIONAL querying. Thus, we choose Queries

3a, 4, 8, and 9, and create four SP2Bench data sets at 4, 8, 12, and 15 million triples, to compare with

our framework. Before answering SPARQL queries, RDF-3X requires the target RDF data set to be

loaded into the memory. Thus, the response time of RDF-3X in our experiment consists of the initial

data load time and the query time. Figure 10 shows the experimental results, where the X-axis

represents the data set sizes and the Y-axis denotes the response time in seconds.

For Query 3a, as shown in figure 10(a), our framework beats RDF-3X for all four data set sizes.

Query 4 produces a large result set. Thus, RDF-3X takes a long time to generate the final output. Our

implementation takes less time. When the data set contains 4 million triples, RDF-3X takes 3751.9

seconds to get the result, whereas our framework takes only 243.88 seconds. When the RDF data set

size increases to 12 and 15 million triples, RDF-3X runs for more than five and eight hours,

respectively, at which point the process is discontinued. Our framework takes only 478.4 and 597.98

seconds for the same amount of triples, respectively. For Queries 8 and 9, RDF-3X is faster because

both queries are highly selective and have small result sets.

The experimental results show that RDF-3X achieves better performance for queries with high

selectivity. However, our framework is much faster than RDF-3X for queries with low selectivity and

large result sets.

The third experiment compares our framework with the Sesame main-memory and database

models. We create SP2Bench data sets at 8, 12, 15, and 30 million triples, and Queries 2, 3a, 4, 6, 8,

and 9 for the test. However, because of the complex storage schema, the Sesame database model takes

more than 12 hours to store 8 million triples into MySQL. Therefore, we discontinue the running

comparison with the Sesame database model, and summarize that it is not suitable for storing and

querying large amounts of RDF data. Table 4 shows the comparison between Sesame main-memory

and our framework.

176 Scalable RDF Graph Querying using Cloud Computing

44.54 61.5 83.58
116.78

87.95

172.37

292.22
318.16

0
50

100
150
200
250
300
350

4M 8M 12M 15M

Cloud RDF-3X

243.88 370.43 478.4 597.98

3751.9

8466.44

0

2000

4000

6000

8000

10000

4M 8M 12M 15M

Cloud RDF-3X

(a) Response time for SP2Bech Query 3a (b) Response time for SP2Bech Query 4

376.54
547.77

949.52

1245.75

66.11 141.16
252.31 272.66

0

300

600

900

1200

1500

4M 8M 12M 15M

Cloud RDF-3X

171.8

285.37

402.95

502.32

63.42
133.26

243.91 262.17

0

100

200

300

400

500

600

4M 8M 12M 15M

Cloud RDF-3X

(c) Response time for SP2Bech Query 8 (d) Response time for SP2Bech Query 9

Figure 10 Comparison between RDF-3X and our framework.

For Queries 2, 8, and 9, the Sesame main-memory is faster than our framework for small input

data set because these queries are highly selective and have small result sets. For Query 3a, Sesame

takes 145.28, 236.80, and 313.43 seconds to generate the results for the first three data sets, whereas

our framework outperforms it with 51.50, 83.58, and 116.78 seconds, respectively. Furthermore, as the

size of result sets increase, Sesame main-memory can barely finish executing Queries 4 and 6 all four

data set sizes. By contrast, our framework answers Queries 4 and 6 in a reasonable amount of time.

Similar to the situation using Jena In-memory, when the number of RDF triples increases to 30 million,

Sesame main-memory fails to answer all queries due to memory limitation.

Based on the results, the Sesame main-memory works well for queries with high selectivity and

small result sets when the size of the input data set is small, but does not scale well when the size

increases. For queries with low selectivity and large result sets, our framework performs better than the

Sesame main-memory model.

Scalability tests are also performed for the experiments. First, we repeat the same six queries for

10 million triples by increasing the number of nodes from two to eight to evaluate the scalability of our

framework. As shown in figure 11, the time to answer these queries decreases, as expected, when the

number of nodes increases. For example, Query 6 takes 824.36 seconds with two nodes, 648.57

seconds with four nodes, 511.93 seconds with six nodes, and 418.61 seconds with eight nodes. Hence,

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 177

increasing the number of computing nodes in the Hadoop cluster can improve the performance of our

framework.

8 Million Triples 12 Million Triples 15 Million Triples 30 Million Triples

Sesame Cloud Sesame Cloud Sesame Cloud Sesame Cloud

Query 2 143.99 252.96 240.79 394.53 294.97 458.08 Failed 82071

Query 3a 145.28 51.50 236.80 83.58 313.43 116.78 Failed 260.78

Query 4 Failed 370.43 Failed 478.40 Failed 579.98 Failed 887.69

Query 6 Failed 375.47 Failed 517.89 Failed 582.79 Failed 1154.99

Query 8 144.95 547.77 235.03 949,52 285.78 1245.74 Failed 2365.54

Query 9 143.81 285.37 229.26 402.9 283.91 502.32 Failed 916.42

Table 4 Comparison results between Sesame main-memory and our framework.

331.59400.99
501.41

601.46

70.58
86.58

160.18
267.85

418.61

511.93

648.57

824.36

0

200

400

600

800

2 Nodes 4 Nodes 6 Nodes 8 Nodes

Q9 Q3a Q6

1683.48

1279.74

790.4

953.27

423.56
478.45

716.66

974.48

346.48
428.68

590.19
786.68

0

400

800

1200

1600

2 Nodes 4 Nodes 6 Nodes 8 Nodes

Q8 Q4 Q2

(a) Response time for Queries 9, 3a, and 6 (b) Response time for Queries 8, 4, and 2

Figure 11 Experimental results for increasing the number of computing nodes.

331.59

660.59
768.97

631.17 653.49
820.71 887.69

1154.99

916.42

1200.36

1407.83
1557.98

1306.53

418.61423.56
346.48

0

400

800

1200

1600

Query2 Query4 Query6 Query9

10 Million Triples 20 Million Triples 30 Million Triples 40 Million Triples

Figure 12 Experimental results for increasing the number of RDF triples.

Finally, we use Queries 2, 4, 6, and 9 for 10, 20, 30, and 40 million triples to test the scalability of

our framework. The experimental results are shown in figure 12, where the response time is in seconds.

As the size of the data increases, the time to answer the queries increases sublinearly. For example,

178 Scalable RDF Graph Querying using Cloud Computing

Query 2 takes 346.88 seconds for 10 million triples and 1200.36 seconds for 40 million triples.

Therefore, the data size increases four times and the time to answer increases only 3.46 times. The

same conclusion is observed for Queries 4, 6, and 9.

Overall, based on the reported experimental results, our proposed framework is more efficient and

scalable than the conventional RDF query tools when processing large amounts of RDF triples.

6 Conclusions and Future Works

In this paper, we propose a scalable SPARQL GGP querying framework for large amount of RDF data

by exploiting the cloud computing technologies. A novel RDF data storage schema is designed on the

HBase based on the syntax and semantics of RDF and SPARQL. To decrease the number of

MapReduce jobs, a greedy-strategy-based algorithm is proposed to determine the query plan. Several

MapReduce query algorithms are also described. Through comparisons with comprehensively used

RDF query tools, our proposed framework performs better with queries that have low selectivity and

large result sizes when processing large-scale RDF data. Additionally, our framework is more scalable

than the conventional RDF query tools.

We will integrate all existing FILTER restriction operators, query forms, and the novel SPARQL

1.1 operators into our proposed framework in our future work. In addition, because the RDF data has

to be distributed to the computing nodes via networks, our solution dose not perform well for the small

size of RDF triples. In the future, we will also continue optimizing the performance of our framework

in two aspects. First, we will parallelize the map and reduce function of MapReduce paradigm to

improve the performance of each computing node. Second, we plan to integrate data compression

technologies into MapReduce to reduce the network transfers and provide an efficient and scalable

cloud service for future RDF data management.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91118005, 61103114),

the Natural Science Foundation of Chongqing City in China (2011BA2022), and the Fundamental

Research Funds for the Central Universities in China (CDJXS11181162).

We also wish to thank the reviewers for their valuable comments and suggestions.

References
1. Berners-Lee, T., Hendler, J. and Lassila, O., The Semantic Web: A new form of Web content that

is meaningful to computers will unleash a revolution of new possibilities. Scientific American,

2001.

2. Mishra, R.B. and Kumar, S., Semantic Web Reasoners and Languages. Artificial Intelligence

Review, vol. 35, no. 4, pp. 339–368, 2011.
3. W3C, Resource Description Framework (RDF): concepts and abstract syntax, 2004, http://www.

w3.org/TR/rdf-concepts/.

4. W3C, SPARQL query language for RDF, 2008, http://www.w3.org/TR/rdf-sparql-query/.

5. Pérez, J., Arenas, M. and Gutierrez, C., Semantics and Complexity of SPARQL. In Proceedings of

the 5th International Semantic Web Conference, pp. 30–43, 2006.

6. Cyganiak, R., A relational algebra for SPARQL, HP-Labs Technical Report, HPL-2005-170.

http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html.

R. Li, D. Yang, H.-B. Hu, J. Xie, and L. Fu 179

7. W3C, SPARQL 1.1 Query Language, 2012, http://www.w3.org/TR/sparql11-query/

8. Bizer, C., Jentzsch, A. and Cyganiak, R., State of the LOD Cloud, http://www4. wiwiss.fuberlin.

de/lodcloud/state/

9. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A. and Wilkinson, K., Jena:

Implementing the Semantic Web Recommendations, In Proceedings of the 13th International

World Wide Web Conference, 2004, pp. 806–815.
10. Broekstra, J. and Kampman, A., Sesame: A Generic Architecture for Storing and Querying RDF

and RDF Schema, In Proceedings of the 1st International Semantic Web Conference, 2002.

11. Neumann, T. and Weikum, G., The RDF-3X Engine for Scalable Management of RDF Data,

VLDB Journal, vol. 19, pp. 91–113, 2010.

12. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C. and Reynolds, D., SPARQL Basic Graph

Pattern Optimization using Selectivity Estimation, In Proc. 17th International Conference on

World Wide Web 2008, WWW ’08, pp. 595–604, 2008.

13. Vidal, M. E., Ruckhaus, E., Lampo, T., Martinez, A., Sierra, J. and Polleres, A., Efficiently

Joining Group Patterns in SPARQL Queries, Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), The

Semantic Web: Research and Applications –7th Extended Semantic Web Conference, ESWC

2010, Proceedings, pp. 228–242, 2010.
14. Groppe, J. and Groppe, S., Parallelizing Join Computations of SPARQL Queries for Large

Semantic Web Databases, In Proceedings of the 26th Annual ACM Symposium on Applied

Computing, pp. 1681–1686, 2011.

15. Dean, J. and Ghemawat, S., MapReduce: Simplified Data Processing on Large Clusters,

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

16. Ghemawat, S., Gobioff, H., Leung, S-T., The Google File System, In Proc. 19th ACM Symposium

on Operating Systems Principles, pp. 29–43, 2003.

17. Mika, P. and Tummarello, G., Web Semantics in the Clouds, IEEE Intelligent Systems, vol. 23, no.

5, pp. 82–87, 2008.

18. Alham, N. K., Li, M.Z, Liu. Y and Hammoud, S., A MapReduce-based Distributed SVM

Algorithm for automatic image annotation, Computers & Mathematics with Applications, vol. 62,

no. 7, pp. 2801–2811, 2011.
19. Xue, W., Shi, J. W. and Yang, B., X-RIME: Cloud-Based Large Scale Social Network Analysis,

In Proceedings of 2010 IEEE International Conference on Services Computing, pp. 506–513, 2010.

20. Urbani, J., Kotoulas, S., Maassen, J., Harmelen, F.V. and Bal, H., WebPIE: A Web-scale Parallel

Inference Engine using MapReduce, Journal of Web Semantics, vol. 10, pp. 59–75, 2012.

21. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Scheider, P. and Sattler, U., OWL 2: The

Next Step for OWL, Journal of Web Semantics, vol. 6, no. 4, pp. 309–322, 2008.

22. Mutharaju, R., Maier, F. and Hitzler, P., A MapReduce Algorithm for EL+, In Proceedings of the

23rd International Workshop on Description Logics, pp. 464–474, 2010.

23. Myung, J., Yeon, J. and Lee, S., SPARQL Basic Graph Pattern Processing with Iterative

MapReduce, In Proceedings of 2010 Workshop on Massive Data Analytics on the Cloud, MDAC

2010, in Association with the 19th Annual World Wide Web Conference, WWW 2010, 2010.

24. Husain, M. F., McGlothlin, J., Masud, M. M., Khan, L. R. and Thuraisingham, B., Heuristics-
based Query Processing for Large RDF Graphs using Cloud Computing, IEEE Transactions on

Knowledge and Data Engineering, vol. 23, no. 9, pp. 1312–1327, 2011.

25. Franke, C., Morin, S., Chebotko, A., Abraham, J. and Brazier, P., Distributed Semantic Web Data

Management in HBase and MySQL Cluster, In Proceedings of 2011 IEEE 4th International

Conference on Cloud Computing, pp. 105–112, 2011.

180 Scalable RDF Graph Querying using Cloud Computing

26. Sun, J. and Jin, Q., Scalable RDF Store based on HBase and MapReduce, In Proceedings of the

3rd International Conference on Advanced Computer Theory and Engineering, vol. 1, pp. V1633–

V1636, 2010.

27. Choi, H., Son, J., Cho, Y., Sung, M. K. and Chung, Y. D., SPIDER: A System for Scalable,

Parallel / Distributed Evaluation of large-scale RDF Data, In Proceedings of International

Conference on Information and Knowledge Management, pp. 2087–2088, 2009.
28. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D. A., Burrows, M., Chandra, T., Fikes,

A. and Gruber, R. E., Bigtable: A Distributed Storage System for Structured Data, ACM

Transactions on Computer Systems, vol. 26, no. 2, 2008.

29. Weiss, C., Karras, P. and Bernstein, A., Hexastore: Sextuple Indexing for Semantic Web Data

Management, In Proceedings of VLDB Endowment, vol.1, no.1, pp. 1008–1019, 2008.

30. Guo, Y., Pan, Z. and Heflin, J., LUBM: A benchmark for OWL knowledge base systems, Journal

of Web Semantics, vol. 3, no. 2–3, pp. 158–182, 2005.

31. Schmidt, M., Hornung, T., Lausen, G. and Pinkel, C., SP2Bech: A SPARQL performance

benchmark, In Proceedings of the 25th IEEE International Conference on Data Engineering, pp.

222–233, 2009.

32. Bizer, C. and Schultz, A., The Berlin SPARQL benchmark, International Journal on Semantic

Web and Information Systems, vol. 5, no. 2, pp. 1–24, 2009.

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSung%2C+Min+Kyoung%7d§ion1=AU&database=49157&yearselect=yearrange&sort=yr

