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The composition of Web APIs provides a great opportunity to Web engineers that can
reuse existing software components available on the Web. Finding the best API, fulfill-

ing a set of user requirements, among the many described on the Web is a key step in

order to develop an effective Web application; however, Web engineers have little sup-
port in solving this problem due to poor search mechanisms and to the heterogeneity

of sources and descriptions. Semantic technologies and matching algorithms provide ac-

curate methods to match user requirements against a set of descriptions. Nonetheless,
semantic descriptions of APIs are not available in practice. In this paper, we propose

a method to extract information on Web APIs published in several Web sources and
create semantic descriptions that can be then fused to deliver comprehensive descrip-

tions associated with APIs. During the extraction process, we take into account that

collected information has different levels of accuracy, currency, and trustworthiness to
state a confidence level of the results. The method is based on the evaluation of the

quality of the involved sources, the extracted values, and the overall descriptions. The

resulting semantic descriptions are then matched with expressive user requirements to
address the API selection problem.

Keywords: service matchmaking, semantic matching, quality assessments, Web data
extraction, Web data fusion

1 Introduction

Web APIs have experienced an exponential increase in popularity and usage in the past

few years [1]. These days, they are an important tool for Web developers; however, the

process of discovery of available services and selection of the most appropriate APIs from a

set of similar ones is mostly performed manually by looking for information on large public

repositories that collect API descriptions or on other websites. For example, popular public

repositories of API descriptions like ProgrammableWeba, and Webmashupb, which describe, on

April 2012, respectively more than 5700 and 1700 APIs; other information about these APIs

are available from the website of each provider, but also from thematic webpages dedicated

to group of services such as the Wikipedia page listing and comparing APIs of online music

databasesc.

ahttp://www.programmableweb.com/
bhttp://www.webmashup.com
chttp://en.wikipedia.org/wiki/List_of_online_music_databases
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Descriptions in different sources are often incomplete or inaccurate and do not follow a

standard schema: they are often classified by categories (e.g. ProgrammableWeb and Web-

mashup use respectively 62 and 65 categories, on April 2012), tags and a limited set of

metadata that describe the type, the functionalities and few other qualities of the provision-

ing. The number of functional-equivalent APIs characterized by different properties such

as service availability, rating, and usage licensing, is also rapidly increasing. For example,

ProgrammableWeb offers about 180 geo-localization services that differ in usage limits (e.g.,

requests per day), data licensing (e.g., copyright on maps) or geographic coverage (e.g., only

U.S.); descriptions of many of these services are also available from Webmashup, with different

descriptions (e.g. different categories, different qualities).

In other words, Web developers who want to find the APIs that better match their pref-

erences, have to deal with disperse and heterogeneous sources to collect enough information

to make conscious choices, which yields to costly and inaccurate decisions. In this paper

we present an approach to semantic matchmaking of given user requirements against API

descriptions collected from heterogeneous sources available on the Web. A set of wrappers,

one for each source, allows for the extraction, at run time, of fresh data about target APIs

that are transformed into semantic descriptions; a single, more complete, description of each

target API is then built by fusing the extracted descriptions adopting a quality-aware method.

Once the set of semantic descriptions is available, we exploit an extension of the semantic

matching techniques defined in [2] to provide a final rank of the APIs. The approach has been

implemented into PoliMaR-DD, a software tool that ensures the scalability and significantly

improves the performance of available semantic matchmaking systems by the adoption of a

distributed architecture [2]. A prototype discovery service based on PoliMaR-DD is available

on lined. As a result, the approach proposed in this paper has the advantage of reducing

the human effort to create semantic service descriptions and to consider always up-to-date

descriptions, yet supporting effective and scalable semantic matching methods.

The assessment of data and information quality plays a major role in the approach de-

scribed in this paper. Data and information quality has deserved in the last years considerable

attention in the literature (see [3] and [4] for a comprehensive discussion on data and infor-

mation quality). In our approach, three of the most relevant Web data quality dimensions,

namely accuracy, currency and trustworthiness [5, 4], are considered for the effective fusion

of descriptions extracted from Web sources. Moreover, we consider the overall quality of the

fused policies in the ranking method. The definition of techniques for assessing these three

quality dimensions for sources of Web API descriptions is another novel contribution of the

paper.

The proposed discovery service is novel with respect to discovery engines proposed so far

for several reasons: compared to [6, 7, 8, 9], our matchmaking techniques use semantics for

describing services and user preferences; compared to [10, 11, 12, 13, 14, 12, 15, 16, 17], we do

not assume that semantic service descriptions are already available, instead we build them by

extracting and fusing descriptions from the Web; compared to [18, 19, 20], where automatic

or semi-automatic methods are used to extract static semantic descriptions, we dynamically

fuse descriptions when a request is issued by the user; therefore, our descriptions are always as

up-to-date as the source descriptions are; furthermore, even when static approaches provide

dhttp://jeeg.siti.disco.unimib.it:8080/polimar/discovery.jsp
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search mechanisms over documents crawled from legacy sources [19, 20], we match more

expressive requests against more expressive descriptions, by allowing for constraints on non

functional properties.

The rest of the paper is organized as follows. Section 2 discusses the motivation of this work

and provides the background on semantic property modeling and service selection. Section

3 describes the policy extraction and fusion processes. Section 4 provides details on the

distributed approach to the API matchmaking process. Section 5 discusses the distributed

architecture of PoliMaR-DD that implements the approach. Section 6 provides experimental

results by evaluating the effectiveness of the approach and the performance of the prototype.

Related work is discussed in Section 7. We conclude the paper and outline future works in

Section 8.

2 Motivation and Background

Let’s consider a scenario in a music domain to motivate and illustrate the solution discussed

in the paper. Mary, a music fan, is looking for on-line music services to find and download

albums. She prefers MP3 or WMA files to be able to play the downloaded music on her

devices. Moreover, she wishes to use PayPal as payment method, pay less than 1 Euro for

each song, and use high-rated services.

Today, several services for music download exist on the Web. As of October 2011, the

ProgrammableWeb Web API repository offers more than 120 music services, and many of

them offer the download functionality (e.g., eMusic, Napster, 7digital, Last.fme). Moreover,

descriptions of these services are available on Webmashup and other sources that publish

music service reviews (e.g., cnet and Digital Trendsf). Since the manual analysis of such a

number of services across several sources is difficult and time consuming, Mary would like to

use a discovery tool that matches her preferences and Web APIs descriptions to find the best

service to use. Such a tool should be able to dynamically aggregate data from the available

sources in order to retrieve information, compile current descriptions of services, and return

a list of matching services.

Given the large number of functional-equivalent services, traditional Web service discovery

methods and techniques, which consider almost exclusively the functional properties, need to

be extended with the evaluation of a wider set of non functional properties, such as Quality

of Service, Licensing and Terms of Use. In the literature, several approaches considering

these properties have been proposed (e.g., [11, 7, 9, 14, 16]), anyway some aspects have been

neglected. In particular when dealing with:

• heterogeneous formats of descriptions. Service descriptions are specified as textual

documents like Web pages and PDF files, micro-formats like RSS feeds (e.g., Pro-

grammableWeb), and, more recently, linked data (e.g., iServe [21]);

• dynamic information. Values that change frequently over time (e.g., response time,

availability and user rating) needs to be collected at run-time;

• dispersed information sources. Often, information about a single service is available

ehttp://www.emusic.com, http://www.napster.com, http://www.7digital.com, and http://www.last.fm
fhttp://www.digitaltrends.com/how-to/music-services-compared/ and http://reviews.cnet.com/
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from multiple sources over the Web, such as Web API repositories, blogs, wikis and

provider sites.

ReqPolicy

req.Format: 
exist {MP3, WMA}
relevance: 0.8

Req.PaymentMethod: 
exist {Credit card}
relevance: 0.6

req.Rating:
> 4 stars
relevance: 0.4

req.Price: 
< 1 euro
relevance: 0.8

LastFmPolicy

License: 
all {CreativeCommons}

UserRating:
= 4.8 stars

NapsterPolicy

License: 
all {copyrighted}

FileFormat:
all {MP3,MP4}

?

Price4song:
= 0.99 euro

Mary
(user)

Last.fm
(provider)

Napster
(provider)

req.Tags:
all {music, download}
relevance: 1

Tags:
all {music, download}

Tags:
all {music, download}

Fig. 1. Matching of a service request against two service offers based on PCM

2.1 Policy-based Semantic Modeling of Service Descriptions and Matchmaking

A key aspect when dealing with descriptions available from Web sources is that these de-

scriptions are often collections of labels, which means that both properties and values are

strings of characters without explicit semantics or reference to an ontology. In the past years,

several ontologies (e.g. OWL-S [22] and WSMO [23]) and microformats (e.g. MicroWSMO

[24]) for the semantic annotation of services have been defined. However, none of them have

been widely adopted to become a de-facto standard, and they provide very limited support

for modeling non functional properties. Thus, we have developed the Policy Centered Meta-

model (PCM) that supports the definition of properties collected in policies (like the ones in

Figure 1) associated with APIs [25]. In PCM, both qualitative and quantitative properties can

be expressed, which means that property values can be either symbolic or numeric, and are

defined by expressions. Expressions can include constraint operators (e.g., <, >, =, exist, all)

and units of measure (e.g., euro, metric). PCM supports the definition of API descriptions, as

well as requested policies that represent user preferences on API properties. Each preference

is associated with a relevance value that specifies the importance that the requester gives to

that preference.

Policies, properties, and expressions are defined by ontology elements in order to exploit

high-level modeling and effective semantic matching techniques. PCM has been formalized

both in OWL and WSML-Flight, two of the most popular semantic Web languages used in

the context of Web service modelingg.

PCM was exploited as intermediate format to develop a hybrid matchmaking process

[26], where hybrid indicates the capability of addressing symbolic and numeric values, and

gPCM formalizations are available at: http://www.siti.disco.unimib.it/research/ontologies/
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expressions. The process is composed of four phases: a property matching phase, which

identifies couples of comparable requested and offered properties; a local property evaluation,

that computes a local matching score (LMS) of match between each couple; a global policy

evaluation, which makes use of LMSs to compute a global matching score (GMS) of match for

each offered policy ; and a policy ranking that performs a sorting based on the GMSs.

A clear limitation of the described process is the assumption that a set of semantic de-

scriptions of APIs already exists and is one of the inputs of the discovery process (being a

set of domain ontologies and the requested policy the other two inputs). In this paper, we

make a significant improvement by addressing the automatic creation of API descriptions (i.e.,

policies) starting from properties and values extracted from heterogeneous sources available

on the Web. Moreover, we adapt the matchmaking process to the new scenario, where the

quality of the extracted data has to be considered when the matching scores are computed.

2.2 Overview of the Approach

In order to associate properties and values, available as strings of characters in Web sources,

with explicit semantics, a wrapper for each source has been defined at design time. Wrappers,

first, extract properties and values from documents in various formats retrieved from a given

set of sources, and, second, give an interpretation to such properties and values by computing

mappings to ontology concepts. While the extraction of current values is performed at run-

time, the definition of mappings occurs at design time through the definition of source-to-policy

templates.

Assuming that a single API is described in more sources, more than one extracted policies

are created for each API. These policies need to be fused to provide a single, comprehen-

sive description associated with that API. The fusion process selects the properties and the

respective values from the extracted policies based on the assessment of the quality of the

extracted values. An example of the extraction and fusion process is sketched in Figure 2:

three PCM policies describing LastFm API are extracted from three sources (namely, Web-

Mashup, ProgrammableWeb and Wikipedia) and fused to deliver a single description. Each

fused policy is also associated with an overall quality score, which will be considered in the

matchmaking process.

3 Quality-driven Policy Extraction and Fusion

Our approach extracts semantic policies from a variety of semi-structured Web sources, and

represents them according to the PCM model in the OWL language. We can process every

source that publishes its data through semi-structured documents, like FEED RSS, XML,

JSON and XHTML documents, thus encompassing actual sources that provide or describe

APIs. The policies extracted from each source are fused together to deliver one policy per

API. In this section, we first describe three main data structures and knowledge elements used

to support the policy extraction and fusion processes; afterwards, we define the algorithms

that describe those processes.

3.1 Source-to-Policy Templates and Data Structures

Our approach uses three main data structures and knowledge elements along the policy extrac-

tion, fusion and matchmaking processes: source-to-policy templates to support the extraction
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pcm:LastFmPolicy

wiki:License
all {dbpedia:cc}
Quality: 0.54

wm:UserRating
= 4.8 stars
Quality: 0.75

pw:Tags
all {dbpedia:music,
      dbpedia:download}
Quality: 0.46

...

WebMashup

Wikipedia

ProgrammableWeb

pw:LastFmPolicy

pw:License 
all {dbpedia:gpl}
Quality: 0.49

pw:UserRating
= 4.7 stars
Quality: 0.64

pw:Tags
all {dbpedia:music,
      dbpedia:download}
Quality: 0.46

 wm:LastFmPolicy

wm:UserRating
= 4.8 stars
Quality: 0.75

wm:Tags
all {dbpedia:music}
Quality: 0.38

wiki:LastFmPolicy

wiki:License
all {dbpedia:cc}
Quality: 0.54

Fig. 2. Example of policy extraction and fusion

of data from Web sources, value profiles to provide a quality-based description of values of

properties, and semantic mappings to state semantic equivalence between properties.

3.1.1 Source-to-Policy Templates

A Source-to-Policy Template (S2P template for short) associated with a source declaratively

specifies the properties that will be included in the extracted policies and, for each property,

the process of extraction of property values. In particular, an XPath query expression is

associated with each property. The wrapper uses this expression to formulate queries over a

semi-structured document to extract the desired data. Currently, S2P templates are manually

written by experts, anyway, due to the limited number of sources to be considered (e.g., API

repositories and blogs) this should not be regarded as a critical limit of the approach. Once

a significant set of templates will be available, it is reasonable to foresee a reuse activity to

address (semi)automatic definition of templates for new sources.

S2P templates are XML documents including the following main elements (details have

been omitted for seek of clarity; datatypes or allowed values for each element are specified

within round brackets):

• apiName(XPath): represents the path (defined by an XPath expression) to extract the

name of the API;

• apiProperty*[propertyID(Uri), propertyValue(XPath), propertyType(String),

propertyDescription(String)]: represents a property that describes a characteristic of an

API. The URI of propertyID unequely identifies the property in the extracted policies by
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means of properties already defined in a Web ontology or defining a new one; the XPath

expression of propertyValue extracts the value of that property; the propertyType states

weather the property is qualitative or quantitative; finally, the propertyDescription is a

free-text label describing the property.

• socialProfileID(Uri): represents the URI that identifies the profile of the source on a

social network (if available).

• lastUpdateDate(XPath): defines the XPath expression that supports the extraction of

the date of the last update of the document from which the API description is extracted.

An example of S2P template for ProgrammableWeb is represented in the following listing.

The elements tagged by apiName and apiProperty are the ones used to build PCM policies.

Additional data such as socialProfileID and lastUpdateDate provide information that will be

used to assess the quality of the extracted policies.

<?xml version="1.0" encoding="UTF -8"?>
<tn s : t emp la t e

xmlns : tns="http://pcm.itis.disco.unimib.it/s2ptemplate"

xmlns :x s i="http://www.w3.org /2001/ XMLSchema -instance">
<tns:apiName>

/ f eed / entry / content / api /name
</ tns:apiName>
<tn s : ap iPrope r ty>

<tns :p roper ty ID>
h t t p : //www. programmmableweb . com/dataFormats

</ tns :proper ty ID>
<tns :p roper tyVa lue>

/ f eed / entry / content / api /dataFormats
</ tns :p roper tyVa lue>
<tns :propertyType>q u a l i t a t i v e</ tns :propertyType>
<t n s : p r o p e r t y D e s c p r i p t i o n>

Data formats
</ t n s : p r o p e r t y D e s c r i p t i o n>

</ tn s : ap iPrope r ty>
. . .

<t n s : s o c i a l P r o f i l e I D>
h t t p : // t w i t t e r . com/programmableweb

</ t n s : s o c i a l P r o f i l e I D>
<tns : la s tUpdateDate>

/ f eed / entry / content / api / dateModi f ied
</ tns :dateTag>

</ tn s : t emp la t e>

3.1.2 Value Profiles

The value profile describes the current value of a property associated with an API and a

set of meta-data about the quality of the extracted value; these meta-data will be used in

the policy fusion process. Value profiles provide a compact representation of the information

represented in PCM policies by means of RDF statements.

Formally, a value profile is defined as a quintuple vp =< p, v, a, c, t >, where p represents

the property URI, v represents the extracted value of the property, and a, c and t represent

respectively the accuracy, the currency and the trustworthiness of the value. Given a value
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profile vp =< p, v, a, c, t > we call p and v respectively the property and the value of the value

profile vp.

Since PCM policy supports multi-value qualitative properties, the actual value v of a

property is represented, in general, by a set. Accuracy, currency and trustworthiness provide

information about the quality of the data extracted from a source, denoting respectively a

measure of how close are the data extracted to the true value, how up-to-date the values are,

and how trustable is the source from which the value has been extracted; a formal definition

of the quality dimensions and of the metrics for their evaluation is given in Section 3.3. An

example of a value profile for the property tags of Last.fm is the following:

< pw:tags, {dbpedia:music, dbpedia:social}, 0.33, 0.64, 0.5 >

3.1.3 Semantic Mappings

Semantic mappings state equivalence relations between couples of properties < p, q > belong-

ing to two or more S2P templates. The mapping relation has the transitive closure property.

A mapping can be written in a semantic rule language (e.g., SWRLh and Jena Rulesi) or

expressed by semantic relations in RDF/OWL (e.g., is-a or sameAs). Mappings are defined,

at design time, manually, by domain experts, or automatically, by ontology matching tools,

such as AgreementMakerj.

A single mapping involves properties of the same kind (e.g., qualitative/qualitative) that

address the same characteristic of a service (as stated by domain experts); but, since values

can be expressed by different units of measure, functions to convert the values expressed in

a unit of measure into values expressed in the other, and vice versa, are associated with the

mapping.

A set of semantic mappings is defined between the property URIs referred in two or

more S2P templates at design time. The mappings are defined by equivalence relations

between couples of properties < p, q > and the transitive closure of the mappings is computed.

We assume that the mappings are established between properties of the same kind (e.g.,

qualitative properties are mapped only to qualitative properties). An example of mapping of

the license property between ProgrammableWeb and Wikipedia can be the following:

< www.programmableweb.com/license, www.wikipedia.org/license >

3.2 The Extraction and Fusion Processes

3.2.1 Policy Extraction

The policy extraction process returns a set of PCM policies by taking a data source s, a set

of target APIs, and a S2P template for s. The set of APIs can be already known or be the

result of a preliminary search phase, which identifies a set of similar APIs that have to be

matched against a set of user requirements (see Section 4 for details). The API set contains

the API names, each one associated with the URIs of Web documents that describe the API.

The algorithm defining the policy extraction process is described in Algorithm 1. In line

1, an empty set of policies related to the source is created. The algorithm identifies the set of

documents to be considered, which are the ones belonging to the source and describing the

hhttp://www.w3.org/Submission/SWRL/
i http://jena.sourceforge.net/inference/
jhttp://agreementmaker.org/
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Algorithm 1 Policy Extraction (source, apiSet, s2pTemplate)

1: extractedPolicies(source)← ∅;
2: for all d ∈ getSourceDocuments(source, apiSet) do
3: for all apiID ∈ getApiID(d) do
4: for all p ∈ getProperties(s2pTemplate) do
5: valueProfile(apiID, p)← the value profiles extracted for the property
6: pcmPolicy(apiID)← sem(valueProfile(apiID, p));
7: end for
8: extractedPolicies(source)← pcmPolicy(apiID);
9: end for

10: end for
11: return extractedPolicies(source).

APIs in the set (apiSet), and scans each document (line 2). The set of APIs described in

the document (e.g. a page in Wikipedia describes more services) are identified by following

the XPath expression specified in the apiName element of the S2P template (line 3). For

each apiProperty specified in the S2P template (line 4), a value profile for that property is

extracted (line 5) and then transformed into semantic statements that are added to the PCM

policy associated with the API by the sem transformation function (line 6). The PCM policy

is then added to the extracted policy set (line 8). Finally, all the extracted policies related to

the considered source is returned (line 11).

The current value in a value profile is extracted using the XPath expression specified in

the S2P template. Moreover, the value of a qualitative property is transformed into semantic

values by extracting a set of ontology instances from the free-text description available in

the original sources. Semantic values can be extracted by applying popular techniques such

as Named Entity Recognition [27]. In this paper, we refer to DBpedia Spotlight [28], which

performs Named Entity Recognition to extract entities from the DBpedia ontology; in this

way we can take advantage of the large DBpedia dataset as a background ontology. To give

an example, the result of DBpedia Spotlight is http://dbpedia.org/resource/Creative_

Commons_licenses for the following input text: “Under Creative Commons license”.

The quality scores included in the value profile are computed by using a set of metrics

that will be described in details in section 3.3.

3.2.2 Policy Fusion

The policy fusion process, described in Algorithm 2, takes a set of target APIs (apiSet),

a set of extracted policies associated with those services (extractedPolicies) and the set of

semantic mappings (mappings) as inputs, and returns a set of fusedPolicies as output. For

every API a (line 1), an empty cluster set of value profiles associated with a is created (line

2). Given an API a, all the value profiles that occur in the extracted policies that describe

a are grouped into clusters (lines 3-11). Every value profile vp of every extracted policy

describing a is considered: if the property of vp is equivalent, according to mappings, to the

property of another value profile of an existing cluster (line 4), then the value profile is added

to the cluster (line 5); else, the value profile is added to a new cluster that is added to the

clusters (lines 7-8). Afterwards, the value profiles belonging to each cluster are fused into a

unique value profile to deliver the fused policy for the referred API (lines 11-14). Finally, the
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fusedPolicies describing the APIs are returned.

Algorithm 2 Policy Fusion (apiSet, extractedPolicies, mappings)

1: for all a in apiSet do
2: clusters← ∅;
3: for all vp ∈ getV alueProfiles(a, extractedPolicies) do
4: if ∃c |c ∈ clusters∧ < property(vp), property(c) >∈ mappings then
5: c← vp;
6: else
7: clusters← newCluster;
8: newCluster ← vp;
9: end if

10: end for
11: for all c ∈ clusters do
12: pcmPolicy(a)← fusion(c);
13: fusedPolicies← pcmPolicy(a);
14: end for
15: end for
16: return fusedPolicies.

3.3 Quality Dimensions and Fusion Principles

The fusion function (line 12 in Algorithm 2) implements a decision process which takes into

account some quality dimensions associated with the extracted data. In particular we consider

accuracy, currency and trustworthiness, which are three of the the most significant dimen-

sions among the several dimensions investigated in the literature on information quality for

information retrieved from the Web [4]. For each dimension we provide a short description

and the chosen metric to assign a numeric value. Moreover, we show how the dimensions are

considered in the decision process.

3.3.1 Accuracy

Accuracy of a value v is defined as the closeness of the value v to a reference value v∗, con-

sidered as the correct representation of the phenomenon that v aims to represent [3]. In our

approach the accuracy is associated with value profiles. Since values of quantitative proper-

ties are extracted from the original sources without additional processing, value profiles are

assumed to be accurate for these properties. Instead, values of qualitative properties undergo

a process that transforms data represented in free text into ontology instances exploiting DB-

pedia Spotlight. The metric to compute accuracy is therefore based on the similarity score

that DBpedia Spotlight associates with every extracted entity. Let sm(w) be the similarity

score associated with an entity extracted from the word w by DBpedia Spotlight; sm(w)

is computed making use of the frequency of w in the text (fw) and the Inverse Candidate

Frequency (ICF ) of w according to the following function (details on the similarity measure

can be found in [28]):

sm(w) = fw · ICF (w),

Based on this similarity score, the accuracy avp of a value profile vp is computed by the

following formula:
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avp =

{
1 if the property of vp is quantitative

1
|EW |

∑
w∈EW sm(w) if the property of vp is qualitative

where EW is the set of words from which entities have been extracted.

3.3.2 Currency

Currency refers to the promptness of an API description published in the Web source to

reflect a change of the values of a property occurred in the real world. Since changes are

typically performed at description level, the currency is assessed at that level of granularity,

and afterwards inherited by the value profiles extracted from the descriptions. Let d be a

source document and vp a value profile extracted from d; the currency for vp is defined by

the following formula

cvp = cd = 1− e−t
2

,

where t is a time difference computed by the difference of days between the current date and

the publication date in the source document d. Despite the proposed formula assigns a low

currency value to old documents that could contain correct information, the proposed metrics

is suitable in this domain because APIs change frequently and the documents describing them

should be up to date. Often, say, one-year-old descriptions are assumed to be out of date.

The XPath specified in the lastUpdateDate field of S2P templates supports the retrieval of

the publication date related to a document, and therefore to the computed PCM policy of an

API.

3.3.3 Trustworthiness

Trustworthiness of information in the Web is hardly evaluated on atomic data, since their

origin and provenance is frequently unknown; as a consequence, trustworthiness of data is

indirectly evaluated from trustworthiness of sources. Since most of the sources have public

profiles (source profile in the following) on social networks (e.g. ProgrammableWeb has a

public page on Facebook and a Twitter profile) can be followed by several users; we propose

to evaluate the trustworthiness of a source s by analyzing the activity of social-network users

with public pages associated with s. Examples of activities that can be considered are placing

a “like” to a post of a source profile on Facebook, and “retwitting” a twit of a source profile

on Twitter. Specific social wrappers are required to actually extract information on activities

related to specific sources from the social networks specified by the socialProfileIDs defined

in the S2P templates.

The activity rate ar of a source s on a social network sn is defined by the number of the

followers of sn that have been active in a recent time window t, divided by the total number

of followers of s in sn. Therefore, the activity rate ar(s, sn) is computed as follows:

ar(s, sn) =
|activeFollowers(s, sn, t)|
|followers(s, sn)|

The trustworthiness of a source can be defined by aggregating the active rates on several

social networks. Given a set SN of social networks, the trustworthiness ts of a source s is

defined as follows:
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ts = 1− e−[
∑

sn∈SN ar(s,sn)]
2

Observe that we sum the active rates, since the trustworthiness of a source increases as

the source is actively followed on more social networks; anyway, we use a gaussian function

to normalize the trustworthiness in the range [0,1] to be used in the value profile. Therefore,

in a value profile vp extracted from a source s, the trustworthiness score tvp is assigned the

trustworthiness ts:

tvp = ts

3.3.4 The aggregated quality measure

The aggregated quality measure qvp associated with a value profile vp is defined as the fol-

lowing weighted sum:

qvp = waavp + wccvp + wttvp, where wa + wc + wt = 1 and wa > wc > wt .

The inequality constraints on the weights reflect the different granularity levels (value, doc-

ument and source) at which the quality dimensions are assessed. The idea is that the more

fine grained the method to measure a quality is, the higher the contribution of the quality to

the aggregated measure should be; in other words, the aggregated quality of a value profile

vp depends more strongly on its accuracy than on its currency and trustworthiness, which

are qualities originally associated with the document and the source respectively from which

the value profile has been extracted. Experimental results will confirm that this hypothesis

improves the effectiveness of the fusion method. The weights wa, wc and wt are established

by experts of Web API domains (e.g., music service or social network API).

The aggregated quality measure provides a criterion to select the more reliable value profile

among the ones that belong to a same cluster. Given a cluster c of value profiles, the fusion(c)

function of Algorithm 2 selects the value profile with higher aggregated quality.

4 Semantic Policy Matchmaking

The proposed matchmaking process has the task of producing a list of ranked APIs according

to their matching score with a given user request (namely, requested policy). For seek of clarity,

we describe the matchmaking process as an algorithm that takes as inputs: a requested policy,

a set of fusedPolicies, and a set of mappings.

Properties can be either functional or non-functional. The former are typically represented

by vectors of category names and tag labels, the latter consist of qualitative and quantita-

tive expressions; functional properties and non functional properties defined by qualitative

expressions are represented by qualitative properties in PCM policies; non functional prop-

erties defined by quantitative expressions are represented by quantitative properties in PCM

policies.

The matchmaking process is defined by Algorithm 3 and consists of four main phases:

property matching (lines 1-3), local property evaluation (lines 4-8), global policy evaluation

(lines 9-13), and ranking (line 14). The algorithm extends the one described in [26] by

considering also the assessment of the quality of the extracted data when comparing the

policies.
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Algorithm 3 Matchmaking (requestedPolicy, fusedPolicies, mappings)

1: for all p ∈ requestedPolicy do
2: matchingProperties← propertyMatching(fusedPolicies,mappings);
3: end for
4: for all < reqp, offp >∈ matchingProperties do
5: LMSreqp,offp ← localPropertyEvaluation(reqp, offp);
6: Qreqp,offp ← quality(offp);
7: propertyProfileoffp ←< LMSreqp,offp, Qreqp,offp >;
8: end for
9: for all fp ∈ fusedPolicies do

10: propertyProfiles(r)← all the propertyProfileoffp such that offp ∈ r;
11: GMSfp ← globalPolicyEvaluation(propertyProfiles(r));
12: globalScores←< fp,GSfp >;
13: end for
14: rankedApiList← policyRanking(globalScores);
15: return rankedApiList.

The property matching activity identifies the properties (offp) in the offered policies that

match with the ones (reqp) in the requested Policy by using the available mappings. The

result is a set of couples < reqp, offp > that are evaluated to compute, for each couple, a

Local Matching Score (LMS). The LMS measures, by a value in range [0, 1], how the offered

property satisfies the requested one. Mathematical methods are used to match quantitative

properties, and logical and set-based methods are used to match qualitative properties; we

refer to [26] for the details about these methods.

In order to consider that policies can be automatically extracted and fused from different

Web sources, the proposed algorithm takes into account the effectiveness of the extraction

and fusion processes (see Section 3). We therefore associate every LMS with a quality value

Q defined by the overall quality associated with each property in the fused policy; we call

property profiles every such couple that have the form < LMS, qvp >.

Then, a Global Matching Score (GMS) for each API is computed by exploiting the property

profiles. The GMS is calculated using the following formula:

GMSP =
1

|PP |
∑

p∈PP

wLMS · rp · LMSp + wq · qp

where wLMS + wq = 1, PP is the property profile set associated with the policy P and rp is

the relevance of the property profile p for the user. The weights wLMS and wq are established

by domain experts. Finally, GMSs are used to delivery a ranked list of offered Web APIs

(rankedApiList).

5 The Architecture of the Distributed Matchmaking Service

The solution discussed in the previous sections has been implemented by a service-oriented

framework called Distributed and Dynamic Policy Matchmaking and Ranking (PoliMaR-DD),

which is composed of three kinds of main components, as illustrated in Figure 3: a service

matching orchestrator (SMO), service matching endpoints (SMEs), and wrappers, besides

data sources available on the Web and a ranking component that provides the final list of

Web APIs according to their scores.
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Fig. 3. The distributed matchmaking service architecture

SMOs are the access points through which users can issue property requests (requested

policy in PCM terminology), and get the ranked list of selected services. The task of SMO

components is to orchestrate the matchmaking process. SMOs rely on wrappers to extract the

policies associated with candidate services by applying algorithm 1. Wrappers are software

components specialized for the type of data retrieved from the considered sources, for example,

semantic data (e.g., Linked Data from iServe), structured data (e.g., TopTenReviews Web

APIs) and textual documents (e.g., Napster terms of use).

Once a set of policies referring to an API has been extracted from the sources, SMOs

rely on SMEs to perform fusion and matchmaking, according to the algorithms 2 and 3. The

fused policies allow the evaluation of the Local Matching Score LMS of single properties

and the Global Matching Score GMS of policies with respect to the given user request. After

computing the global scores, the ranking component is invoked to define the list to be returned

to the user.

The service-oriented architecture in Figure 3 has been conceived to address two main

issues: to cope with the distributed and unstructured architecture of the Web, which provides

for a huge amount of heterogeneous dispersed data; and to make semantic techniques effective

by increasing performance with parallelism. The wrappers are the answer to the first issue:

by means of mappings, URIs and run-time extraction, the wrappers can provide updated

profiles of available APIs. Moreover, the PoliMaR-DD components exchange data in RDF

format to represent the output data as lightweight ontologies according to the Linked Data

principles (that are compliant to REST interaction protocol) which facilitate the retrieval of

additional information related to the selected Web APIs.

The second issue is addressed by SMEs, which can be instantiated in several processes to
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support parallel execution of fusion and matchmaking. Since such tasks may require the use of

reasoners to deal with qualitative values, the possibility of concurrent execution dramatically

improves the performance. Several tests conducted in the past have demonstrated the high

execution-time cost of semantic matchmaking when a number of descriptions are involved [26].

With the proposed architecture, the load can be balanced among a dynamic set of SMEs, each

of which has to evaluate smaller sets of descriptions.

6 Experimental results

In this section, the evaluation tests on the PoliMaR-DD prototype aim to show: (i) the

effectiveness of policy fusion approach making use of real data extracted from the Web and

(ii) a performance evaluation of the prototype that implements the distributed architecture

proposed in Section 5.

For these evaluation tests, we selected four properties that are addressed by at least two

sources: tags, that support the identification of the Web API functionality, interaction protocol

(e.g., GET, POST), data formats (e.g, XML, JSON) and licensing (e.g., Creative Commons).

Table 1. Web API properties described in the considered sources

Web source Tags Int. protocol Data formats Licensing

ProgrammableWeb
√ √ √ √

Webmashups
√ √ √

-
Wikipedia - - -

√

Moreover, we selected a data set composed of descriptions of 100 Web APIs published in at

least two sources. The APIs come from five differents domains: music services (e.g., Last.fm

and Napster), mapping services (e.g., Google Maps and Bing Maps), Internet services (e.g.,

Amazon EC2 ), social network APIs (e.g., Twitter, Facebook and LinkedIn) and enterprise

APIs (e.g., CRM, ERP and HR applications).

In this case study, we used different parameters to measure the components of the quality

of the extracted information. Accuracy depends on the technique adopted for the value

identification. For this case study, we exploit DBpedia Spotlight to perform the extraction

from textual descriptions and its similarity measure to compute the accuracy as introduced

in Section 4. Instead, the publication date necessary to compute the Currency is extracted

from specific fields offered by the source documents. Finally, Trustworthiness is measured

by exploiting the followers activities of the three Web sources on Twitter and Facebook. All

sources have a Twitter profile, but only ProgrammableWeb and Wikipedia have a Facebook

public page. The activity rate is measured in the following way: on Twitter, by counting the

number of followers that retweet to a source public profile; instead, on Facebook, by counting

the number of users that like the public page and like posts of the source. The counting

exploits the Twitterkand Facebook lWeb APIs to collect data of the last three days of activity.

6.1 Effectiveness of the Policy Fusion

In order to measure the effectiveness of the policy fusion, we have measured the hit rate h

based on the number of correct fusions. The evaluation of the fusion is based on the property

kAvailable at: https://dev.twitter.com/docs/api
l Available at: http://developers.facebook.com/docs/
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characteristics. For the property tags, we considered a fusion correct when the selected value

is the most appropriate to understand the API functionality. Instead, for the other three

properties, the fusion is successful if the selected value is the most similar to the information

published on the Web by the API provider after manual analysis. We run three tests with

different configurations of the weights used to compute the aggregate quality measure. The

experiments have the goal to analyze the correlation between the weights associated with the

individual qualities and the effectiveness of the fusion process (measured by the hit rate).

Table 2. Effectiveness of the fusion process measured by hit rate

wa wc wt Tags Int. Prot. Data For. Licensing Global

# fusions - - - 92 86 74 6 258

Test A 0.33 0.33 0.33 84.8% 96.5% 95.9% 33.3% 90.7%
Test B 0.5 0.25 0.25 92.4% 97.6% 97.3% 66.6% 95%
Test C 0.6 0.3 0.1 94.6% 100% 98.6% 83.3% 97.3%

The overall results of the experiments are shown in Table 2, where wa, wc and wt represent

respectively the accuracy, currency and trustworthiness weight. These results confirm the

hypothesis that the fusion is more effective if the constraint wa > wc > wt is enforced. The

licensing property is the one that is most affected by a violation of the constraint because

the fusion is performed between Wikipedia, which presents high trustworthiness (0.85) and

low accuracy, and ProgrammableWeb, which presents medium trustworthiness (0.5) and good

accuracy. Therefore, the high trustworthiness of Wikipedia has negative impact on the fusion

accuracy.

Table 3 presents an example of the impact of different weight configurations (Tests A,

B and C defined in Table 2)) on the fusion of two licensing values extracted from Pro-

grammableWeb and Wikipedia. The fusion process, which selects the value with highest

aggregate quality (highlighted in boldface in the table), selects the wrong value under the

configurations A and B (GPL as liquefied petroleum gas is not a license term); when accuracy

is highly weighted, the correct value is selected. The accuracy of the value extracted from

ProgrammableWeb is higher than the accuracy of the value extracted from Wikipedia because

the source value is a longer text, which makes DBpedia Spotlight perform better.

Table 3. Quality assessment of the license values extracted for FreeDB Web API

Source ProgrammableWeb Wikipedia

Source value
“Under GNU general public

license”
“GPL”

Extracted semantic
value

GPL (license) GPL (liquefied petroleum gas)

Accuracy 0.25 0.1

Currency 0.52 0.57
Thrustworthiness 0.5 0.85

Aggregate (Test A) 0.423 0.506

Aggregate (Test B) 0.38 0.405
Aggregate (Test C) 0.356 0.316
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6.2 Performance Evaluation

In this subsection, we show that the transmission overheads introduced by the distributed

protocols and the dynamic compilation of service descriptions are largely compensated by

faster semantic matchmaking.

The PoliMaR-DD prototype used for the tests was implemented in Java SE 6 and exploit-

ing Jenam(version 2.6.4) for the management of the semantic data. The software was deployed

on a Intel Core2 T5500 CPU @ 1.66GHz with 2 GB of RAM, that hosted a SMO, and eight

Intel Xeon X5550 quad-core CPUs @ 2.67GHz with 2 GB of RAM, that hosted twenty SMEs.

Each node is equipped with 64-bit Linux operating system (kernel version 2.6.24) with 100

Mbps network connection.

We performed two different tests. Test A to measure the execution time to perform the

selection of 500 offered policies fused from ProgrammableWeb, Webmashup and Wikipedia

repositories. The requested policy used for this test defines constraints on the four properties

of the case study. We chose to extract properties with symbolic values to stress the evaluation

of performance with intensive reasoning activities for both matchmaking and local property

evaluation, and therefore to highlight potential performance improvements introduced by the

distributed architecture.
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Fig. 4. Test A: Execution time for 500 policies

The results computed for ten measurements using the same requested policy are shown

in Figure 4. The time measurements have been obtained by varying the number of involved

SMEs. Test A highlights that the execution time behaves like a hyperbola arm. The results

show that there is a relevant performance improvement already with few SMEs, resulting an

mhttp://jena.sourceforge.net/
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abatement approximately of a 8.6 factor with 4 SMEs, and no relevant improvement with

more than 10 SMEs.

Making use of the threshold identified by Test A, we performed Test B with the aim of

analyzing the execution time of the most relevant process phases with 10 SMEs, with different

number of offered policies.
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Fig. 5. Test B: Execution time for 10 SMEs

The results of Test B, reported in Figure 5, show that the most time consuming phase is

the semantization. This measure depends on the response time of DBpedia Spotlight. In this

experiment, we used the name identity recognition tool through its public Web APIs. How-

ever, it is reasonable to assume that the time consumed by the semantization phase could be

reduced by installing the tool on a local machine. The second and the third more consuming

phases are the property matching and the local property evaluation, because of intensive rea-

soning. The exponential increment of time consumption for reasoning intensive activities is a

well-known problem reported in the literature [29]. In this experiment, the transmission time

between components is negligible even if it can vary because of the dependency on several

network parameters (e.g., the response time of the Web data source and the network traffic).

The measured transmission time between the orchestrator and the 10 matching endpoints is

very low (approximately 10 milliseconds) with respect to the other measures, also because

all nodes are in the same local network. Finally, notice that the policy fusion, global policy

evaluation and policy ranking activities do not appear in the charts since their execution time

is negligible.
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7 Related Work

Several approaches to service matchmaking have been proposed. To the best of our knowledge

this is the first approach to matchmaking of service descriptions that holds all the following

features: (i) the descriptions are semantic and semantic matching techniques are used; (ii) the

descriptions (and the user requests) include non functional properties; (iii) the descriptions

are dynamically extracted from available, not semantic, Web sources.

Seekda! is a discovery engine that performs semantic matching of Web API descriptions

[18]. It uses a keyword-based semantic search method, and allows for filtering over few

non functional properties (e.g. service availability, rating). This is the approach that is

more similar to the one proposed in this paper. However, the descriptions are crawled from

the Web and not dynamically extracted and fused. Moreover, semantics is used only for

annotating functional aspects of the services. Therefore Seekda! does not consider the problem

of extracting semantic values (i.e. instances from an ontology) from descriptions of non

functional properties, and provides less expressive matching functionalities.

Two other approaches that provide discovery functionalities on descriptions available from

Web sources have also been proposed [19, 20]. However, these approaches do not aim to extract

semantic descriptions and support only keyword-based search. Moreover, the descriptions are

crawled and not dynamically extracted and fused from multiple sources.

Most of Web APIs are RESTful services. Two RESTful semantic service matchmakers

based on hREST/MicroWSMO model are proposed in [12] and [17]. The first work exploits

similarity techniques only on service functionalities, the latter one performs the matchmak-

ing through Linked Open Data covering functional characteristics, while search over non-

functional characteristics is poorly supported. A matchmaking approach for RESTful and

SOAP-based services is proposed in [13], but only functional properties are addressed. Fi-

nally iSEM [10] is an effective and efficient discovery engine for SA-WSDL and OWL-S service

descriptions; however only functional aspects of services are considered in descriptions rep-

resented with this language. Moreover, these approaches assume the availability of semantic

descriptions and do not extract them from available Web sources.

Service matchmaking approaches for SOAP-based services that cover also non-functional

properties are presented in [11, 7, 9, 14, 16]. A hybrid architecture for service selection based

on description logic (DL) reasoners and constraint programming techniques is proposed in [11].

An approach for the service selection based on the normalization of QoS values is described in

[7]. A NFP-based service selection approach that modifies the Logic Scoring Preference (LSP)

method with Ordered Weighted Averaging (OWA) operators is proposed in [9]. A framework

for service selection that combines declarative logic-based matching rules with optimization

methods is described in [14]. Finally, a QoS-based discovery tool is proposed in [16]. Even

though the tool exploits WSMO, it performs only syntactical matchmaking based on an

algebraic discovery model, without reasoning activities. All the above mentioned approaches

that cover non functional properties assume the availability of rich semantic descriptions and

do not extract them from available Web sources; the manual creation of such rich descriptions

is costly and not scalable at Web scale.

The evaluation of quality dimensions to support integration of data from different sources

is mainly addressed in the database research field. Several proposals exist in the area of

virtual data integration architectures for quality-driven query processing, which return an
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answer to a global query, by explicitly taking into account the quality of data provided by

local sources. All approaches consider several quality metadata associated with sources and

the user query, that support the query processing activity. A comparative description and

analysis of proposals appears in [3].

In the area of Web services, the evaluation of the quality of service descriptions is only

marginally covered by few approaches in the literature [15, 30]. An approach to achieve the

completeness of semantic Web service descriptions by generating OWL-S files, that provide a

more complex representation of profile, grounding and partial process model, is proposed in

[15]. A language and tool for Web service composition that considers their availability and

quality of service description is described in [30].

Coming to specific quality dimensions evaluation, the expressiveness of the QoS description

model is mentioned in several papers, such as [6], as a relevant aspect to be considered along

Web service discovery.

The usage of quality dimensions to guide the data source selection process is addressed

in [31]. The proposed approach is based on data source reputation that measures the trust-

worthiness and importance of a data source. Reputation is considered as a multi-dimensional

quality attribute defined extending fundamental data quality dimensions (i.e. accuracy, com-

pleteness, and time) defined in [4] with additional dimensions (i.e. interpretability, authority,

and dependability) that should be considered when assessing reputation, especially for semi-

structured and non structured sources of information.

Several papers deal with the trustworthiness of Web data and Web sources. A data

provenance model which estimates the level of trustworthiness of both data and data providers

by assigning trust scores to them is defined in [32]. Based on the trust scores, users can make

more informed decisions on whether to use the data or not.

The issues of trustworthiness and accuracy are investigated in [33] within the more general

concept of credibility, in the domain of social networks managing volunteered geographic

information. Credibility is seen as composed of two primary dimensions: trustworthiness and

expertise. Trustworthiness is a receiver judgment based primarily on subjective factors, while

expertise can also be subjectively perceived but includes relatively objective characteristics

of the source, that correspond to source credentials and information accuracy.

Finally, the skills that Internet users need to assess the credibility of online information

are analyzed in [5]. Credibility is investigated in its relationship with (i) accuracy, namely

the degree to which a Web site is free from errors, (ii) objectivity, that involves identifying

the purpose of the site and whether the information provided is fact or opinion, (iii) currency,

whether the information is up to date, and (iv) coverage, that refers to the comprehensiveness

or depth of the information provided on the site.

8 Conclusions

In this paper we have proposed an approach for a quality-driven and distributed selection

of heterogeneous Web API descriptions. This selection is enabled by: (i) the extraction

and fusion of property values from heterogeneous Web data sources; (ii) the mapping of the

extracted property values in PCM-compliant descriptions and (iii) a distributed architecture

implemented through the PoliMaR-DD prototype, in order to increase performances of the

advanced semantic techniques adopted for the matchmaking of Web API descriptions.
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Experimental results have shown the effectiveness of our approach using different Web

data sources and a relevant performance improvement by distributing the selection process.

Therefore, the overhead introduced by the property extraction and fusion from Web data

sources and the wrapping in PCM-compliant descriptions is negligible.

The next steps of the research will focus on more in-depth experimentation of Web data

extraction focusing on the management of the potential conflicts between data provided by

different sources. Finally, we will focus on improving techniques for the automatic building

of source-to-policy templates by exploiting fusion of schemas adopted by heterogeneous Web

sources.
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