
Journal of Web Engineering, Vol. 11, No.2 (2012) 146-176

© Rinton Press

A NOVEL APPROACH FOR SERVICE PERFORMANCE ANALYSIS AND FORECAST

SID KARGUPTA

University College London

siddhartha.kargupta.10@ucl.ac.uk

SUE BLACK

University College London

S.Black@cs.ucl.ac.uk

Received October 10, 2011

Revised April 2, 2012

This research establishes a predictive model to forecast the impact on service performance for changes to

the underlying activities of the service‟s components. It deduces a relational model between a service‟s

performance, its application component latencies and the request load. The major challenge the IT industry

is currently facing with the cost associated with repeated performance testing to modify live systems has

been addressed. The notion of implicit Operation Impedance gradient (IG) and Operation Potential (V) in

Service Provider-Consumer contracts has been introduced. This work establishes that „IG‟, which impacts

the overall Operation Performance (P), is influenced by the underlying application components‟ activities

in distinct patterns. A high-level runtime abstract model is empirically deduced between „IG‟, „V‟ and „P‟

by applying established mathematical techniques. Model based indicative values of some features are

computed and associated with the actual empirical values of other features against various system

configurations. Appropriate regression types are applied to enable trend extrapolation/interpolation. The

datasets affirmed effectiveness of the model to assess impact of modifications to the underlying

application components on the operation‟s performance without repetitive full scale external

performance/benchmark testing. This also enables fine tuning of application components to retrofit

prescribed Quality of Services. To address real life applications, this paper describes a Matrix based

technique used for the assessment of changes to multiple types of application component activities

simultaneously. The method of calibrating the Matrix aided model has also been discussed briefly.

Key words: SLA – Service Level Agreement, SOA – Service Oriented Architecture, SLM – Service Level

Management, QoS – Quality of Service, ART – Average Response Time

Communicated by: G.-J. Houben & G. Rossi

1 Introduction

Performance experts have a tendency to regurgitate certain performance clichés to each other and to

anyone else who will listen. Here is one such cliché:

“Acme Corporation just lost a $40 million sale because their new application cannot meet service level

targets under heavy load. How much money do they need to lose before they carry out capacity

planning?”

 S. Kargupta and S. Black 147

It is evident from our industrial experience and the corporate reports [3, 4, 5, 6], that a major

challenge the Information Technology (IT) industry is currently facing is the cost associated with

repeated performance testing of live systems after modification. If performance does not conform to

prescribed SLA, a cycle of design, implementation and testing is repeated resulting in significant

financial impact to large organizations with complex systems. Industry scale programmes and projects

are affected adversely from a resource, time and cost perspective.

This research aims to address the above mentioned critical problems faced by the IT industry

today. It explores some generic, application level, bottom-up methods to assess during development

the impact of modifications to the application component level activities on the system‟s performance

and other non-functional features. The research has established an empirical relational model between

a service‟s performance, its application components and the service load [1, 2]. It has been established

that changes to the underlying activities in the application components of a service impact the service

performance. Each of these different types of “atomic” activities impacts the performance in particular

patterns. We have also worked on a matrix based predictive model to forecast the service performance

for simultaneous changes to multiple types of underlying application component activities.

The rest of the paper has been structured under the following sections:

Background – this section explains the background of the problem briefly. It describes the motivation

for this research to be undertaken.

Literature Review – This section describes some relevant research that had already been undertaken.

The past research have been grouped under the following categories: Service Performance Evaluation

and Optimization, Service Performance Management, Service Performance and SLA, Quality of

Service Analysis

Current Gaps – In this section we have highlighted the aspects which have remained unaddressed in

the context of the identified problem at hand and the research that had already been undertaken.

Proposed Methodology and Design – This section describes the empirical approach taken to establish a

formula-aided, pattern-based approach for Service Performance analysis and forecast.

Implementation – In this section the actual Java implementation of the Service Framework developed

to resemble a Service Provider – Service Consumer scenario has been described.

Deducing the high level, abstract runtime model – We describe the iterative experiments performed to

establish empirically a high-level runtime abstract model by applying established mathematical

techniques.

Conclusions and Future Work – This section summarizes the conclusions from our empirical findings

and mentions about the future work that we intend to carry out.

2 Background

Due to ever changing business requirements, the underlying software systems supporting evolving

business requirements need to be modified in tandem [7, 8]. We witness systems and services being

built and modified based on the knowledge, experience and occasionally intuitions of the architects

148 A Novel Approach for Service Performance Analysis and Forecast

and designers. Systems are modified or enhanced without prior knowledge of the impact of such

modifications. The effect of such modification on the different features may remain unclear and the

impact is realized only after implementation. By that time organizations will already have spent a

significant amount of time, effort and money [8, 9, 10]. Any adverse effect that has to be addressed

may involve substantial re-work. From our industrial experience we have also observed that under

these circumstances, at times the engineers have to engage in a trial and error exercise to achieve the

service level requirements. This is a significant challenge that the IT industry is facing today.

A system may be made up of one or more application level components [1, 2]. For example, a

typical Payroll System may comprise the following: data capture component, pay calculation

component, tax calculation sub-component, a National Insurance lookup sub-component, a data access

component to interface with the backend databases and possibly a payslip printing component for

writing the payslips to a file and sending those to a printer. Due to some changes to the business

requirements the Payroll System may be required to be modified and augmented. To address this

requirement, we may need to modify one or more than one of the underlying activities of the

application components mentioned above. Any change to the application level components will

potentially have an impact (positive or negative) on the system‟s performance [1, 2, 3]. Hence, prior

knowledge of the degree of impact on the system‟s performance will facilitate the following:

1. Architect and design the system‟s enhancements properly

2. Reduce development and testing time as there will be prior knowledge of impact on

performance

3. Build application components to conform to the Service Level Agreements

4. Minimise overall development and testing costs

To achieve the above, it is important to understand how modifications to the different types of

application components‟ activities impact the overall system performance under a given load

condition. As one or more than one type of activity of the component(s) may be required to be

modified, the knowledge of both of the following is required:

1. Possible impact of modifying every individual type of underlying activity of the application

components on the overall system performance under a given load condition

2. Possible impact of simultaneously modifying multiple types of underlying activities of the

application components on the overall system performance under a given load condition

In view of this, there is a distinct need for a method, which will facilitate analysis and prediction

of the impact of modifications of the underlying system component‟s activities on system

performance. In order to address this significant requirement of the IT industry, this research focuses

on empirically establishing a formula aided, pattern based approach for Service Performance analysis

and forecast. The research initially establishes a relational model between Service Performance,

Service Impedance Gradient and Service Load. This model is then used to extract the patterns in which

the underlying individual activities of the application components impact the overall service

performance. In real industrial scale systems typical enhancements involve multiple types of

underlying activities of the application components being modified simultaneously. Hence, this

research has also developed a matrix based predictive model to forecast the service performance for

simultaneous changes to multiple types of underlying activities of the application components.

 S. Kargupta and S. Black 149

3 Literature Review

To understand and assess the research already undertaken in the system / service performance, service

performance management and forecast of performance due to component modifications, this research

has performed exhaustive review of the previous work in this space. Apart from the review of work

undertaken towards performance measurement and forecast, the review is broadly organised into four

categories: 1) Service Performance Evaluation and Optimization, 2) Service Performance

Management, 3) Service Performance and SLA and 4) Quality of Service Analysis.

Significant research has been carried out towards measuring and predicting throughput, response

time and congestion using queuing network principles. In particular, ways to model, analyze and plan

for web performance problems have been illustrated in detail [11]. High performance website design

techniques involving redundant hardware, load balancing, web server acceleration and efficient

management of dynamic data have been discussed [12]. Methods are devised for dynamic selection of

services based on user specified preferences and to predict performance of component based services

depending on the underlying technology platforms [13, 14]. In [15, 16], different methods of

generating performance models and prediction have been discussed. An assembler tool and a

methodology to automatically generate performance models for component based systems have been

explored. A performance prediction approach comprising empirical performance result gathering on

Commercial Off The Shelf (COTS) middleware infrastructure, a reasoning framework for

understanding architectural trade-offs and relationships to technology features and predictive

mathematical models to describe application behaviour on the middleware technology has been

investigated. Different model-based software performance prediction approaches have been classified

and evaluated in [17]. Queuing network based methodologies, Architectural Pattern based

methodologies, software performance analysis through Unified Modelling Language (UML)

descriptions and other approaches have been discussed. Further research [18, 19, 20] has explored

methods of component based performance evaluation with top-down approach focusing on inbound

workload, profiling, software containers, UMLs and transactions.

Other related areas explored are Service Performance Evaluation and Optimization, Service

Performance Management, Service Performance and SLA and Quality of Service Analysis. The

sections below briefly discuss the research work that has been undertaken in these areas and the issues

that remain to be addressed in the context of the Problem Statement:

Service Performance Evaluation and Optimization

Much research has been undertaken to devise ways of measuring efficiency and performance of

services. However, in a Service Provider – Consumer scenario, we lack formula-aided techniques to

predict the impact on some of the key features of a system for varying any other feature of the system.

It becomes difficult to assess and forecast the impact on performance from a service consumer‟s

viewpoint due to any change to the service providing system. In [21, 22, 23], some attempts have been

made to study Web Services performance and its relationship with services availability. Web Services

performance is a critical success factor for a service contract between any service provider and

consumer. But research highlights the lack of required functionality in existing frameworks to measure

service execution performance. The current implementations of Web Services performance have been

evaluated and compared with alternative technologies. Present Web Services performance behaviours

have been discussed and a simple performance model that could be used to estimate Web Services

latencies has been developed in [21]. In [22] an Internet Data Centre (IDC) has been used as an

example to illustrate the relationship between performance and availability. It was illustrated that an

150 A Novel Approach for Service Performance Analysis and Forecast

IDC should provision enough capacity and redundant resources to ensure that it could meet its

performance and availability SLAs. It was stated in [23] that the present web service frameworks did

not include the functionality required for web service execution performance measurement from an

organization‟s perspective. As such, a shift to this paradigm of Web Services was at the expense of the

organization‟s performance knowledge. The research introduced an approach to reclaim and improve

this performance related knowledge for the organization. This was achieved by establishing a

framework that enabled the definition of web services from a performance measurement perspective,

together with the logging and analysis of the enactment of web services. This framework utilized web

service concepts, Decision Support System (DSS) principles, and agent technologies, to enable

feedback on the organization‟s performance measures through the analysis of the web services.

[24, 25, 26, 27] elaborates on the role of performance evaluation and the significance of

automated performance tuning in computer engineering. Evaluation and comparison of performance

and recovery time in web services infrastructures based on fault injections have also been discussed in

depth in these papers. In [24], Fortier and Michel present with an overview of performance evaluation

methods, performance metrics and evaluation criteria. They discuss computer data processing

hardware architecture, fundamental concepts and performance measures, general performance

measurement principles and system performance evaluation tool selection. Use and analysis of

computer architectures, database systems performance analysis and analysis of computer networks

components are also discussed. In [25] the theory of “Active Harmony” as a way to automate

performance tuning has been advocated. The authors apply the Active Harmony system to improve the

performance of a cluster based web system. Performance improvement could not easily be achieved by

tuning individual components for such a system. Experimental results showed that there was no single

configuration for the system that could perform well for all kinds of workloads. By tuning the

parameters, Active Harmony helped the system adapt to different workloads and improve the

performance by up to 16%. An approach, based on fault injection, for the evaluation and comparison

of performance and recovery time in web services infrastructures is described in [26]. Fault injection is

used to validate specific fault handling mechanisms and to assess the impact of faults in actual

systems, allowing estimation of measures such as performance in the presence of faults, error detection

coverage and recovery time. To compare the performances of different Java based Web Services

toolkits, in [27] the authors present an open source utility to automate the performance comparison

process. The main purpose of the research is to present a utility named Java Web Services

Performance (JWSPerf) to automate the performance evaluation of Java Web Services and facilitate

the choice of the “ideal” toolkit to implement an application. The utility supports Java Web Services

toolkits – Apache Axis, Java Web Services Developer Pack and Systinet Server for Java.

Service Performance Management

There has been substantial research in [28, 29, 30, 31, 32, 33] to explore techniques of Service level

monitoring. In reality, however, application developers often find it more convenient to monitor and

analyze application level outputs rather than system resource or service level diagnostics. Hence,

exploring generic, application level methods to assess the impact of modification to the activities at the

application component level on other non-functional features is helpful. The notion of a model aided

method to facilitate the above through visual patterns remains unexplored in the undertaken research.

A high level abstract runtime model for the key aspects of a Service Operation such as performance,

load and latency remains to be discussed. Typically, we still have to recourse to

performance/benchmark testing of the whole system for the impact analysis of application component

modifications.

 S. Kargupta and S. Black 151

A scalable service level monitoring methodology to assess user satisfaction without injecting any

measurement traffic is described in [28]. Specifically, web throughput was suggested as a service level

metric and possible ways to measure it was outlined. The authors discuss the advantages of passive

observations of actual user activity. A statistical data analysis method is proposed that analyzes passive

throughput measurements and quantified user satisfaction / dissatisfaction and the confidence that the

provider might have on the collected data, i.e. data reliability.

A meaningful pattern for the web throughput was obtained after satisfying the above requirements

with numerous passive measurements. It was advocated in [29], that an Argumentation theory,

implemented through a set of software agents that reason about Web Services, could improve Web

Services‟ performance through the notion of Web Service Communities. To facilitate and speed up

Web Services discovery, Web Services with similar (or equivalent) functionalities could be grouped

into communities. Although Web services in a community had a common functionality, they might

have distinct non-functional properties. Additionally, a community might describe a desired

functionality without explicitly referring to any concrete (or pre-selected) Web service that would

implement the functionality at runtime. The authors have discussed in details how to enrich software

agents to apply logic based reasoning and argumentation to define the interaction mechanisms for

peers in these communities.

A quantitative performance evaluation of Web Services Security (WSS) overhead was conducted

in [30]. Based on the evaluation, the existing web services performance model was extended by taking

the extra WSS overheads into account. The extended performance model was then validated on

different environments with different message sizes and WSS security policies. In [31] an algorithm is

described that drew on context mobility elements, such as the user‟s travel direction and speed, to form

personal service areas. As Web service performance depends on the underlying databases, a layered

caching scheme for storing environmental data to improve response time was also developed. [32]

analysed the impact of an IT Service Provider‟s process capabilities on the performance of the service

it provides. A framework to improve web services performance based on context-aware

communication has been proposed in [33]. Two key ideas were introduced to represent a client context

- (1) available protocols that the client could handle and (2) operation usage that showed how the client

used Web Service operations.

[34, 35 and 36] emphasize Service Oriented Architecture (SOA), its potential flaws leading to

degradation of performances and the possible ways to address those issues. An overview of the

evolution of Service Oriented Architecture from other technologies such as object oriented

programming and distributed computing is provided in [34]. In [35], the author attempts to establish a

SOA roadmap unveiling possible traps and pointing out the flaws in the SOA approach. The SOA

approach was reviewed critically and the different sections affected within the enterprise were

examined. The key middleware technologies for realization of SOA were analysed in [36]. It presented

a detailed performance analysis with overhead analysis and identification of optimizations of the web

services. The research contributed to the understanding of functional and performance aspects of

distributed middleware technologies for realization of SOA.

Service Performance and SLA

Methods have been explored to improve service performances and to maintain service models

adherence to SLAs. The key focus of [37, 38, 39, 40] has been Service Level Agreement (SLA)

guarantee model. Techniques have been discussed which systems might adopt to conform to SLAs.

Ways to improve the Web Services runtime environment and the architecture to implement an

152 A Novel Approach for Service Performance Analysis and Forecast

effective Web Services performance management system have been explored in detail. In [37], the

authors present a SLA-based Web services performance guarantee model to improve Web services

runtime environment and expatiated on the key techniques of realizing the model. An architecture and

description of a prototype implementation for a performance management system for web services that

supports SLAs have been presented in [38]. The authors designed and implemented reactive control

mechanisms to handle dynamic fluctuations in service demand while keeping SLAs in mind. The roles

of SLA and Service Level Management (SLM) are discussed in [39]. It was suggested that SLM

should be more than just a reporting tool. It should be used to identify and remedy process problems in

service delivery. [40] discusses the different aspects of SLM and how performance benchmarking

creates value by focusing on key performance gaps, creating a consensus to move IT forward and

making better decisions from a larger base of facts.

All of the above research focus on SLA in particular but does not attempt to establish any

relationship between the key aspects of the service contract between a service provider and a service

consumer. These aspects such as performance, load and the underlying service activities have

significant influence on SLA.

Quality of Service Analysis

Some research has been undertaken in the area of Quality of Service (QoS), of which service

performance is a key factor. [41, 42, 43, 44, 45, 46] focus on extending existing QoS models to

propose enhanced concepts of evaluating QoS from multiple metrics. Techniques have been discussed

to meet the demand for faster and more efficient access to the services to provision QoS. Means of

actively monitoring the QoS of services have also been discussed. In [41], an existing QoS model was

extended by adding new attributes that reflect performance of services and provide the client a

dynamic, on demand service performance prediction. In this way a client might be more capable of

finding the best service based both on his/her preferences and on the service performance estimation.

An extended web service QoS model has also been proposed in [42]. Web service QoS metrics were

evaluated dynamically according to the service context and the overall QoS was evaluated from

multiple metrics according to a configurable fuzzy synthetic evaluation system. A QoS requirement

description model has been defined to express user‟s flexible demands on service‟s performance. An

interactive web service choice-making process has also been provided, which included QoS as a key

factor. Techniques that have been developed to meet the demand for faster and more efficient access to

the Internet to provision QoS have been discussed in [43]. These techniques included caching, pre-

fetching, pushing and replication. The concept of developing an ontology for Quality of Service (QoS),

also known as QoSOnt has been discussed in [44]. Particular focus was given to its application in the

field of service centric systems. QoSOnt was developed to promote consensus on QoS concepts, by

providing a model which was generic enough for reuse across multiple domains. As well as the

structure of the ontology itself, an example application - Service QoS Requirements Matcher (SQRM)

– was also discussed. This application was used to highlight some of the advantages of the ontology

including standardisation and the level of machine understanding of QoS specifications which could be

achieved. To actively monitor the QoS of Web Services at runtime, a Web Service QoS broker system

was designed and developed in [45]. With this information a user could select a Web service best

suited for his/her needs. Availability, performance, and reliability were the metrics used for QoS

monitoring. Another simple but scalable system to verify Quality of Service in a differentiated services

domain was designed and evaluated in [46]. The system used a distributed edge-to-edge monitoring

approach with measurement agents collecting information about delays, losses and throughput –

reporting to a Service Level Agreement Monitor (SLAM). The SLAM detected potential service

 S. Kargupta and S. Black 153

violations, bandwidth theft, denial of service attacks and flagged the need to re-dimension the network

domain or limit its users.

In the QoS related research described above, a “top-down” approach of assessing the quality of

service due to application of external load was adopted. However, there has not been much research to

forecast the possible impact on quality of service due to changes to the system internals. Such a

“bottom-up” approach to systems analysis and forecast of performance remains to be explored.

4 Current Gaps

None of the above research discusses any model aided technique to predict the impact of modifying

the application component level activities of a system/service on system‟s performance. It is very

difficult to assess and forecast the impact on performance from a service consumer‟s viewpoint due to

any change to the service providing system. At times, after modifying the system and observing the

degradation of performance, changes have to be rolled back and re-implemented. The entire change

process has to be followed again. As a consequence, organizations are required to pay astronomically

high recurring Opex bills towards modifying, augmenting and performance testing their systems on a

regular basis. All of these highlight the need for a method, which would facilitate analysis and

prediction of the impact of modifications of the underlying system components on system

performance.

There are gaps existing today for assessing the impact of application layer modifications on the

system/service‟s performance. Currently, there is no derived model between the key aspects of a

Service Provider – Consumer contract, which are performance, load and the underlying service

activities. In the industry, load/performance testing only happens at the end of application development

when adverse results may lead to undoing and redoing a lot of the application development. Every

time systems undergo change, load/performance tests are performed by human resources. This current

approach of repetitive testing is resource, time and cost intensive for any organization. There is also

lack of functionality in existing frameworks [21, 22] to measure service execution performance from

the application layer. As explained in the Literature Review, application developers work at the

application level and not at the system level. Hence, monitoring systems resource utilization does not

help application developers. At times, they may not even have the systems level expertise to monitor

systems resource utilization.

Due to the above, there is little or no way today for application developers to receive rapid

feedback of how changes will alter system performance [8, 9].

5 Proposed Methodology and Design

This research focuses on empirically establishing a formula-aided, pattern-based approach for Service

Performance analysis and forecast. Data collected from the empirical results will be used firstly to

establish a relationship between service performance, service load and the relevant underlying

application component activity delays. This relational model will then be used along with further data

collected from more experiments to plot and derive graph functions of service load and the delays

introduced by different application level activities. These plotted graph functions will facilitate

visualizing the patterns in which the service load and the different application level activity delays

affect the service performance. These graph functions (or graphical patterns) will then be used for

future performance forecasts through extrapolation and interpolation.

154 A Novel Approach for Service Performance Analysis and Forecast

‘P’, ‘IG’, ‘V’ - Definitions and rationale for use:

This research explores a novel approach for Service Performance analysis and forecast. Hence a

Service Operation Performance („P‟) is considered a variable in the proposed model. „P‟ is the measure

of Service Operation‟s performance under a given load. The lower the response time, the higher is „P‟.

Hence, „P‟ is computed as the reciprocal of the Average Response Time (ART) of the Service

Operation.

The service load (i.e. number of requests hitting the service per unit time say second) affects

service performance [9]. Hence, Service Operation Load Potential („V‟) is considered as another

variable in the proposed model. „V‟ has been defined as the differential between the maximum request

load (per second) the Service Operation can cater to maintaining QoS (Service Operation‟s “stress

point”) and the Service Operation‟s contractual request load (per second).

The time taken for all the application level activities cumulatively introduces latency or impedance to a

service‟s performance in some way. Hence an overall Service Operation Impedance gradient („IG‟) is

considered the third attribute of the model. „IG‟ has been defined as the runtime composite gradient of

all the activity delays of the components supporting the Service Operation.

Service Framework Prototype – Design and purpose:

To create a prototype, a Java based Service Framework is designed to fulfil the following purposes:

1) For Service Operations, empirically deduce a high level abstract runtime model for Service

Operation Load Potential „V‟, Service Operation Performance „P‟ and overall Service Operation

Impedance gradient „IG‟. Network latencies (inter-component and Provider-Consumer) contribute to

„IG‟ as well.

2) Decompose the application components supporting the Service Operation into atomic Delay Points

i.e. activity nodes in the application component which introduce some delay to the response.

3) Compute model based indicative values of „IG‟ and extract its distinct variation patterns against

variability of actual component Delay Point impedances and other non-functional features. Use Least

Square Fitting (LSF) [47] and appropriate regression types to derive the “best-fit” functions from the

collected data set. The function graphs would provide the graphical patterns to enable bottom-up and

top-down projections of the non-functional features related to service load and performance.

The research introduces the notion of implicit „IG‟ and „V‟ in Service Provider-Consumer

contracts. This work establishes that „IG‟, which impacts the overall „P‟, is influenced by the

underlying application components‟ activities in distinct patterns. A high-level runtime abstract model

has been empirically deduced between „IG‟, „V‟ and „P‟ by applying established mathematical

techniques. Model based indicative values of some features are computed against variability of the

operation‟s components. Lookup datasets against different system configurations are created to

associate these computed values to the actual empirical values of other features. Established

mathematical techniques applied with appropriate regression types to enable trend

extrapolation/interpolation. The datasets/patterns affirmed effectiveness of the „IG‟ based model as a

means of decoupled, bidirectional i.e. top-down and bottom-up impact assessment of modifications to

the operation‟s underlying application component activities on „P‟ (with „V‟ constant) or „V‟ (with „P‟

constant) without repetitive full scale external performance/benchmark testing. This also enables fine

 S. Kargupta and S. Black 155

tuning of application components to retrofit prescribed QoS. The project has also established a matrix

based predictive model to forecast the service performance for simultaneous changes to multiple types

of the underlying application component activities. Means of model calibration have also been

explored.

Service Operations of a Service Provider are catered by underlying application components laid on

top of system components. The application components are often modified due to changes in business

requirements while the underlying system remains the same. Extending on the fundamentals of some

of the previous work done, this research explores one level of abstraction from system resources to

application components. It verifies a higher level pattern (extracted from plotted graph functions)

based projection of non-functional features like performance, load etc. of a Service Operation for

modifications to the different activities of the supporting application components. The Service

Operation‟s application components are decomposed into atomic activities or Delay Points like in-

memory Data Processing, File I/O, Database Interaction, XML processing etc., which interface with

the system resources (both Queue and Delay). Each of these Delay Points introduces latency to the

service execution and contributes to the overall Service Operation Impedance „IG‟. The project tries to

establish that „IG‟ is a function of the total delay or latency for each type of Delay Point across all the

supporting application components i.e.

IG = f(∑LDLPi) [i=1 to n]

where LDLP1 is the latency (or delay) introduced by a particular type of Delay Point of Component1.

This function represents the distinct pattern by which the total latency introduced by the particular

type of Delay Point across all the components 1 to n (∑LDLPi [i=1 to n]) influence „IG‟ and hence „P‟

and „V‟.

Atomicity of Delay Points is very important as Delay Point types determine their nature of system

resource usage, which then manifests as the Delay Point impact pattern. Delay Points should not

overlap. „IG‟ acts as a connector between the Service Operation‟s internal application Delay Points and

external non-functional features. This research focuses on variations to application component Delay

Points instead of inbound workload.

6 Implementation

To assess the impact of change of the underlying application component activities and request load on

the Service Performance, a Service framework is required which will resemble a real life scenario. In

the framework, a Service Consumer will request a Service Provider for a particular type of service.

The framework is required to be configurable to enable spawning of multiple simultaneously requests,

varying the number of requests thus varying the request load and configuring the application level

Delay Points. To achieve this, a prototypical Service framework comprising of a Web Service front

end with other lower level backend services was created. A configurable Web Service client was

developed to serve as the Service Consumer.

As shown in Figure 1 below, the Service Provider – Consumer framework comprising of a multi-

threaded Service Consumer, a consumer facing Service Provider (Web Service), other backend

services and some utility components have been created. For the purpose of the experiments, some

illustrative Delay Points with activities such as Database Interactions, Data Processing, File I/O,

Request Authentication and Request Authorization involving XML parsing etc. have also been created.

156 A Novel Approach for Service Performance Analysis and Forecast

Figure 1: Logical model of the Service Framework

To increase the precision of the model and standardize request resource requirements, partitioning

of the request load is achieved by constraining the model and method to Service Operation level.

Different Service Operations from the same Provider may have different resource requirements.

The Service Consumer framework comprises a multi-threaded Web Service client which

implements a Runnable Interface. The Service Provider framework comprises a Facade Orchestration

Web Service, which orchestrates between the different lower level backend services. The backend

services perform different types of data operations. The Add Service, Subtract Service and Product

Service extend HttpServlet. The RMIServer implements a Difference of Square Interface

(DifffSquareIntf). The SumOfSquare Service runs as a Socket Server while the Division Service has

been implemented as another Web Service. LatencyActivities is the object responsible for performing

all the processing activities to introduce latencies to the response processing. All the services have

dependencies on LatencyActivities, which implements the Latencies interface. For authentication and

authorization of requests through XML data parsing, two objects namely AuthenticationHandler and

AuthorizationHandler are used. These two objects extend the DefaultHandler object.

The Web Service client is driven by an external configuration file. It spawns service requests as

per the configuration file and calls the main Orchestration Web Service. This is a Facade which in turn

 S. Kargupta and S. Black 157

calls the different back end services one after the other. Depending on the type of service, its

processing method is invoked. The service extracts the request data from the input and performs the

following activities:

1. Gets a Singleton instance of the LatencyActivities object – For overall efficiency, the

LatencyActivities class has been designed as a Singleton i.e. only ONE object of the class will be

instantiated per virtual machine. The service gets the singleton object and calls the authentication

and authorization methods on the LatencyActivities object.

2. Performs authentication of the request – The LatencyActivities object has an operation which

performs authentication on incoming requests. It reads an XML configuration file and

authenticates the User Id and Password supplied with the request.

3. Performs authorization of the request - The LatencyActivities object has an operation which

performs authorization on incoming requests. It reads an XML configuration file and authorizes

the request to perform certain activities.

4. Performs database interactions – Upon successful authentication and authorization, the service

interfaces with an Oracle 10g database for some read and write operations.

5. Performs some data processing - The service then calls the data processing methods on the object,

which does some in-memory data processing.

6. Performs File I/O – After data processing, the service does some file read/write on the file system.

7. Performs the relevant service – At the end, the service calls the appropriate method like

addNumbers, subtractNumbers etc. based on the type of service

8. Returns data back to the calling Service – After all the backend services are called and processing

done, the response is sent back to the Orchestration service. Upon receipt of this response, this

service in turn sends the response back to the Web Service Client.

7 Deducing the high level, abstract runtime model for P, IG and V (PIV model)

Using the prototypical service framework described in Section 5 and 6, iterative experiments were

performed to establish empirically a high-level runtime abstract model between „IG‟, „V‟ and „P‟ by

applying established mathematical techniques.

Tests were run by gradually increasing the request load to the Service Operation. Under a

particular load configuration, multiple service requests (the number depending on the load

configuration) were spawned by the client. The Average Response Time (ART) for all the requests

provided an indicative measure of the response time for that particular load condition. Initial

experiments showed that the variation of ARTs was minimal across test runs for the same load

configuration. Hence „5‟ was considered as a reasonably good number for test run iterations under one

given load condition. So, 5 test runs were conducted under a given load condition and the Average

Response Time (ART) during each of the runs was recorded. As the impact of varying load conditions

was being determined, the highest ART was recorded.

158 A Novel Approach for Service Performance Analysis and Forecast

Tests were performed against different increasing load conditions. From the Service Consumer,

service requests were spawned for a fixed duration of time (5 seconds in our experiment). To increase

the number of requests (i.e. increase the request load), the time interval between requests being

generated was reduced in steps of 100 milliseconds initially and then 10 milliseconds. Every step

represented a particular load condition for which 5 test runs were repeated. The data obtained

demonstrated a finite system queue graph [9] and reached saturation level after the 9
th

 load condition.

Details of the experiment steps are shown in the flow charts in Figure 2 and 3 below:

Figure 2: Flow Chart for tests to determine relationship between V and P

 S. Kargupta and S. Black 159

Figure 3: Flow Chart to record the Average Response Time of each run

As shown in Figure 4, the data obtained from the experiments to deduce the high level, abstract

runtime model associating „P‟, „V‟ and „IG‟ demonstrated a typical finite system queue graph [9].

As the request load was gradually increased and the Service Potential gradually decreased to

nearly 45, the abrupt change occurred as the server utilization approached 100% [9]. At this point the

throughput of the server gradually approached its maximum throughput.

Assuming a stress point for the Service Operation, we observed a typical finite queue system curve

for „V‟ versus „P‟. Accepting approximation error, for simplifying the model, Piecewise Linear model

is applied to divide the „V‟ values into 3 ranges (or bands), each with a linear regression (affine form)

160 A Novel Approach for Service Performance Analysis and Forecast

as the best fit for „P‟. Direct proportionality between „P‟ and „V‟ is considered for each of the three

ranges/bands of „V‟ values:

P = IV + c

where I is the constant of proportionality with I and c band specific.

Figure 4: Empirical Data Graph of P for varying V

At a given time T1, for requests to the same Service Operation, the request/process type, system

configuration, resource requirements and contract load condition will be ideally the same. Today,

services are run on multi-core, multi CPU servers. So, for simplicity, we assumed Multi-Processor

Single Class Queuing Network (open or closed) model approximation. With m resources and D service

demand at each resource, the service demand at the single resource queue will be D/m and for the

delay resource will be D(m-1)/m [9]. Under light load, the Residence time (Ri‟) is D (proven) and

under heavier load, it will be dominated by the single resource queue:

Ri‟ = ViWi + Di

where Vi is the average no. of visits, Wi is the average waiting time and Di is the service demand for a

request at queue i [9]. As the requests are to the same Service Operation, applying all the above

constraints, Di and Vi will ideally be same for all requests. As we used the ART of responses in test

runs, the variability of Wi is averaged out. Considering all the above, Ri‟ is assumed consistent for all

requests at queue i. The experiments had co-located components with local calls between them. Also,

only formal Service Contracts are in scope with dedicated, controlled network traffic and not any

random service access over public network. Hence, at runtime, no unpredictable fluctuation of network

bandwidth or latency is assumed. Average resource usage effect of other Service Operations on

requests of the tested Service Operation is assumed. With all the above constraints, we assumed

consistency of overall impedance for processing requests to the same Service Operation at T1 for a „V‟

band and mapped the runtime Operation Impedance to the proportionality constant „IG‟.

7.1 Data Processing Delay Points - Pattern Extraction and Validation

Some illustrative components are created with Database Interactions, Data Processing, File I/O, XML

Processing and other Delay Points. Keeping the rest of the configuration constant („V‟ kept positive),

 S. Kargupta and S. Black 161

the Data Processing Delay Point intensities of the components were incrementally varied. Empirical

data for actual overall „P‟, computed indicative values of overall „IG‟ based on the model:

P = IGV + c

for the relevant „V‟ band, the actual average Data Processing Delay Point impedance (IDP) and the

Data Processing Impedance Factor (IFDP = IG/IDP) were recorded. The following data models „IDP‟

versus „IG‟, „IDP‟ versus „IFDP‟ and „IG‟ versus „P‟ showed distinct trends in variation, which were

consistent but not purely linear. Accepting approximation error, for simplicity, LSF for Linear,

Exponential, Polynomial and Power regression types and Piecewise Linear models were verified. For

„IDP‟(xi) versus „IG‟(yi), pattern line with Polynomial regression of 3
rd

 order was the best fit:

yi = -91766xi
3
 + 2086.3xi

2
 - 19.139xi + 0.1043

For „IG‟(xi) versus „P‟(yi), a linear regression pattern line was the best fit, which confirmed the

piecewise linear model:

yi = 41.652xi + 0.0727

 For „IDP‟(xi) versus „IFDP‟(yi) pattern line with Power regression was the best fit:

yi = f(xi) = Axi
B
 where B = b, A = e

a
, a and b are LSF coefficients

Data

Process

Loop

Total

Service

Requests

Total time for

requests in

milliseconds

Service

Requests per

second

Service

Stress Point

(Requests

per second)

Service

Potential (V)

in Requests

per second

Average

Orchestration

Service

Response

Time (ART) in

seconds

Orchestration

Service

Performance

(P=1/ART) in

seconds-1

Calculated

overall

Service

Impedance

Gradient (IG =

P/V)

Average

actual Data

Processing

latency

(IDP) in

seconds

Impedance

Factor (IFDP

= IG/IDP)

1 150 19672 7.625050834 50 42.37494917 0.255626667 3.911954929 0.092317631 0.000618667 149.220309

3 150 19890 7.54147813 50 42.45852187 0.266953333 3.745973084 0.088226648 0.000934667 94.39370375

5 150 20358 7.368110816 50 42.63188918 0.28688 3.485778026 0.081764569 0.001504 54.36473973

10 150 21108 7.106310404 50 42.8936896 0.39452 2.534725743 0.059093209 0.003318667 17.80631031

15 150 22265 6.737031215 50 43.26296879 0.492813333 2.029165879 0.046903066 0.005601333 8.373553792

20 150 23343 6.425909266 50 43.57409073 0.591713333 1.69000755 0.038784689 0.007706667 5.032615331

25 150 24469 6.130205566 50 43.86979443 0.74885333 1.335374979 0.030439508 0.009857333 3.088006405

Table 1: Empirical Data for varying Data Processing

Tests are performed to validate the extracted patterns. Results affirmed (with some approximation

errors) the distinct underlying patterns of variations in „IG‟ due to changes in application component

Delay Points under a given load. From a projected value of „IFDP‟ corresponding to a given actual

„IDP‟, we could also project „IG‟:

IG = IFDP x IDP + e

162 A Novel Approach for Service Performance Analysis and Forecast

where „e‟ is the error factor. Table 1 and Figures 5, 6 and 7 present the data obtained, the empirical

graphs of „IDP‟ versus „IG‟, „IG‟ versus „P‟ and „IDP‟ versus „IFDP‟. Pattern validation is highlighted.

Figure 5: Empirical Data Graph for IDP vs IG for varying Data Processing

Figure 6: Empirical Data Graph for IG vs P for varying Data Processing

Figure 7: Empirical Data Graph for IDP vs IFDP for varying Data Processing

 S. Kargupta and S. Black 163

7.2 Database Interaction Delay Points - Pattern Extraction and Validation

In the same way as the Data Processing Delay Points mentioned above, the Database Interactions

Delay Point intensities of the components were incrementally varied keeping the rest of the

configuration constant („V‟ kept positive). Empirical data for actual overall „P‟, computed indicative

values of overall „IG‟, the actual average Database Interactions Delay Point impedance (IDB) and the

Database Interactions Impedance Factor (IFDB = IG/IDB) were recorded. The data models „IDB‟ versus

„IG‟, „IDB‟ versus „IFDB‟ and „IG‟ versus „P‟ showed distinct trends in variation. For „IDB‟(xi) versus

„IG‟(yi), pattern line with Polynomial regression of 4
th

 order was the best fit:

yi = 0.1116xi
4
 - 0.4682xi

3
 + 0.7288xi

2
 - 0.5015xi + 0.1323

For „IG‟(xi) versus „P‟(yi), a linear regression pattern line was the best fit, which confirmed the

piecewise linear model:

yi = 41.831xi + 0.001

Table 2 and Figures 8 and 9 present the data obtained, the empirical graphs of „IDB‟ versus „IG‟ and „IG‟

versus „P‟. Pattern validation is highlighted.

DB

Access

Loop

Total

Service

Requests

Total time for

requests in

milliseconds

Service

Requests per

second

Service

Stress Point

(Requests

per second)

Service

Potential (V)

in Requests

per second

Average

Orchestration

Service

Response

Time (ART) in

seconds

Orchestration

Service

Performance

(P=1/ART) in

seconds-1

Calculated

overall

Service

Impedance

Gradient (IG =

P/V)

Average

actual DB

Access

latency

(IDB) in

seconds

Impedance

Factor (IFDB

= IG/IDB)

3 150 18953 7.914314357 50 42.08568564 6.875533333 0.145443263 0.003455884 0.804137333 0.00429763

6 150 19109 7.849704328 50 42.15029567 7.514593333 0.1330744 0.00315714 0.891390667 0.003541814

8 150 19312 7.767191384 50 42.23280862 8.367553333 0.119509247 0.002829773 1.02896 0.002750129

10 150 19375 7.741935484 50 42.25806452 8.927793333 0.112009761 0.002650613 1.106497333 0.002395498

14 150 19312 7.767191384 50 42.23280862 10.55689333 0.094724837 0.002242921 1.194706667 0.001877382

18 150 19453 7.710892921 50 42.28910708 11.39134 0.087785985 0.002075853 1.337642667 0.001551874

Table 2: Empirical Data for varying Database Interactions

Figure 8: Empirical Data Graph for IDB vs IG for varying Database Interactions

164 A Novel Approach for Service Performance Analysis and Forecast

Figure 9: Empirical Data Graph for IG vs P for varying Database Interactions

7.3 File I/O Delay Points - Pattern Extraction and Validation

In the same way as above, the File I/O Delay Point intensities of the components were incrementally

varied keeping the rest of the configuration constant („V‟ kept positive). Empirical data for actual

overall „P‟, computed indicative values of overall „IG‟, the actual average Database Interactions Delay

Point impedance (IFIO) and the Database Interactions Impedance Factor (IFFIO = IG/IFIO) were recorded.

The data models „IFIO‟ versus „IG‟, „IFIO‟ versus „IFFIO‟ and „IG‟ versus „P‟ showed distinct trends in

variation. For „IFIO‟(xi) versus „IG‟(yi), pattern line with Power regression was the best fit:

yi = f(xi) = Axi
B
 where B = b, A = e

a
, a and b are LSF coefficients

For „IG‟(xi) versus „P‟(yi), a linear regression pattern line was the best fit, which confirmed the

piecewise linear model:

yi = 42.162xi + 0.009

File I/O

Loop

Total

Service

Requests

Total time for

requests in

milliseconds

Service

Requests per

second

Service

Stress Point

(Requests

per second)

Service

Potential (V)

in Requests

per second

Average

Orchestration

Service

Response

Time (ART) in

seconds

Orchestration

Service

Performance

(P=1/ART) in

seconds-1

Calculated

overall

Service

Impedance

Gradient (IG =

P/V)

Average

actual File

I/O latency

(IFIO) in

seconds

Impedance

Factor

(IG/IFIO)

1 150 19187 7.817793298 50 42.1822067 0.141966667 7.043907004 0.166987637 0.005017333 33.28215141

3 150 22016 6.813226744 50 43.18677326 0.65048 1.537326282 0.035597155 0.070424 0.505469094

5 150 21314 7.03762785 50 42.96237215 1.5107 0.661944794 0.015407548 0.179541333 0.085816159

10 150 21171 7.085163667 50 42.91483633 3.867106667 0.258591264 0.006025684 0.627218667 0.009606992

15 150 21104 7.107657316 50 42.89234268 5.60749333 0.178332802 0.004157684 0.932293333 0.004459631

20 150 20640 7.26744186 50 42.73255814 7.2279 0.138352772 0.003237643 1.22545333 0.002641996

25 150 20577 7.289692375 50 42.71030763 9.692086667 0.103176956 0.002415739 1.657397333 0.00145755

Table 3: Empirical Data for varying File I/O

 S. Kargupta and S. Black 165

Table 3 and Figures 10 and 11 present the data obtained, the empirical graphs of „IFIO‟ versus „IG‟

and „IG‟ versus „P‟. Pattern validation is highlighted.

Figure 10: Empirical Data Graph for IFIO vs IG for varying File I/O

Figure 11: Empirical Data Graph for IG vs P for varying File I/O

 Other types of Delay Points like XML parsing and processing for Request Authentication and

Authorization were also tested in similar ways and empirical results were collected. They all showed

distinct trends of variation of the overall performance „P‟ and Service Operation Impedance Gradient

„IG‟ for variations to the underlying Delay Point Impedances.

7.4 Simultaneous changes to multiple Delay Points

In all of the above experiments, one particular type of Delay Point was varied keeping the rest of the

configuration constant. But real world industrial scale component modifications will be more complex

with multiple Delay Point types modified simultaneously. To address this scenario, multiple Delay

Points (Database Interactions, Data Processing, File I/O and XML Processing) were varied

simultaneously and experiments were run. For each process load configuration of the set of Delay

Points, the aggregate of 5 runs were calculated to smooth out the data and remove any occasional

noise. Experiments were run for 5 different process load configuration settings for the set of Delay

166 A Novel Approach for Service Performance Analysis and Forecast

Points. The overall Service Operation Performance „P‟ and Operation Impedance Gradient „IG‟ were

calculated for every configuration run.

The aggregated results from 5 different process load configurations were as follows:

Orchestration

Service

Performance

(P=1/ART) in

seconds-1

Calculated

overall Service

Impedance

Gradient (IG =

P/V)

Average actual

DB Access

latency (IDB) in

seconds

Average actual

Data

Processing

latency (IDP) in

seconds

Average actual

File I/O latency

(IFIO) in seconds

Average

actual

Authentication

latency (IAN) in

seconds

Average actual

Authorization

latency (IAR) in

seconds

0.096278051 0.002212067 1.14508 0.00104 0.063876667 0.0072 0.00339

0.07665596 0.00176775 1.549756667 0.001193333 0.208513333 0.003893333 0.002436667

0.07082897 0.001620992 0.879663333 0.002133333 1.082626667 0.006343333 0.005226667

0.059141444 0.001352816 1.187556667 0.002346667 1.032653333 0.00823 0.005473333

0.05007248 0.001151423 1.219683333 0.00275 1.375003333 0.003016667 0.003183333

Table 4: Calculated IG and corresponding actual Delay Point latencies

The above dataset represents different combinations of the Delay Point variations and their

corresponding calculated „IG‟. The atomic Delay Points (DB Access, Data Processing, File I/O etc) are

treated as independent variables and the data is presented in the form:

AX = B

where:

 A is the [5x5] matrix containing rows of Delay Point Impedances for Database Interactions

(IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing (IAR and IAN) from different

test runs

 B is the single column [5x1] matrix of the calculated „IG‟ for each row in A

 X is the single column [5x1] Delay Point Impedance Conversion Matrix

The best fit value of X is calculated through matrix transpose and inverse in the following way:

X = (A
T
A)

-1
A

T
B

The Conversion Matrix X is calculated to facilitate projection of „IG‟ for any arbitrary combination

of Delay Point Impedances.

We present below the step by step process by which the Conversion Matrix X is derived and

subsequently how its precision is validated:

 S. Kargupta and S. Black 167

Matrix Conversion Model

 A X B

IDB IDP IFIO IAN IAR Conversion

Matrix
 IG

1.14508 0.00104 0.063876667 0.00722 0.00339 M1 0.002212067

1.549756667 0.001193333 0.208513333 0.003893333 0.002436667 M2 = 0.00176775

0.879663333 0.002133333 1.082626667 0.006343333 0.005226667 M3 0.001620992

1.187556667 0.002346667 1.032653333 0.00823 0.005473333 M4 0.001352816

1.219683333 0.00275 1.375003333 0.003016667 0.003183333 M5 0.001151423

A
T

 =

1.145080000 1.549756667 0.879663333 1.187556667 1.219683333

0.001040000 0.001193333 0.002133333 0.002346667 0.002750000

0.063876667 0.208513333 1.082626667 1.032653333 1.375003333

0.007220000 0.003893333 0.006343333 0.008230000 0.003016667

0.003390000 0.002436667 0.005226667 0.005473333 0.003183333

A
T
A =

7.384679783 0.011057803 4.252038802 0.033334164 0.022638321

0.011057803 0.000020126 0.008829413 0.000053296 0.000039182

4.252038802 0.008829413 4.176645611 0.020787127 0.016412298

0.033334164 0.000053296 0.020787127 0.000184357 0.000121766

0.022638321 0.000039182 0.016412298 0.000121766 0.000084838

(A
T
A)

-1
 =

73.126576858 -137811.610463035 231.170000124 18067.646113427 -26518.592219414

-137811.610463035 262699136.751477000 -441567.622706696 -34841834.398532800

50878569.949531800

231.170000124 -441567.622706696 747.448690658 60115.311849377 -88629.503157987

18067.646113427 -34841834.398532700 60115.311849377 5191460.766442940 -10441.560956830

-26518.592219414 50878569.949531700 -88629.503157986 -7810441.560956830 11945971.37958

A
T
B =

0.009709420

0.000014209

0.005245028

0.000047743

0.000031348

168 A Novel Approach for Service Performance Analysis and Forecast

Impedance Conversion Matrix X = (A
T
A)

-1
A

T
B =

-0.004356602

10.074393338

-0.017590749

-1.320577244

 2.177624419

To cross check the integrity of X (Impedance Conversion Matrix), we back-calculated matrix B‟

(single column Impedance Gradient Matrix) by multiplying A with X and compared it with the

original matrix B. The values matched up till 6 decimal places. There were some differences from the

7
th

 decimal place onwards due to rounding off of all the values during the intermediate steps of the

process.

AX = B’ =

0.002212652

0.001767226

0.001620335

0.001352902

0.001151930

Validation of the Matrix Conversion Model

The Matrix Conversion model had to be validated to assess the precision of the forecast for overall

Service Operation Impedance Gradient (IG) for any given set of Delay Point Impedances.

To achieve this, tests were run on the service framework with the Delay Point process load

configurations for all the Delay Points ((Database Interactions, Data Processing, File I/O and XML

Processing) set to new values, different from all the values previously used to derive the Impedance

Conversion Matrix. Empirical data for actual overall „P‟, computed value of overall „IG‟ based on the

actual overall „P‟ and „V‟ of the PIV model (say IGPIV) and the actual average Delay Point

Impedances for Database Interactions (IDB), Data Processing (IDP), File I/O (IFIO) and XML Processing

(IAR and IAN) were recorded.

The single row Delay Point Impedance matrix comprising of IDB, IDP, IFIO, IAR and IAN was then

multiplied by the previously derived Impedance Conversion Matrix „X‟ to calculate the overall „IG‟

again (say IGMCM), this time based on the Matrix Conversion Model.

The delta between IGMCM and IGPIV was 4.459133225%. As a first iteration, this error percentage

was considered acceptable. Through calibration of the Matrix Conversion Model, we shall be able to

minimise the delta between IGMCM and IGPIV and achieve much higher precision.

Data from the validation test runs are shown below:

 S. Kargupta and S. Black 169

 Previously derived Impedance Conversion Matrix X:

Projected IGMCM and error percentage ((|IGPIV – IGMCM| / IGPIV) * 100):

Figure 12 below shows the regression line for Service Impedance Gradient (IG) versus Service

Performance (P) as obtained from the data in Table 1 above:

y = 43.385x + 0.0003

0

0.02

0.04

0.06

0.08

0.1

0.12

0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022 0.0024

P

IG

Service Impedance Gradient versus Service
Performance

Service Impedance Gradient
versus Service Performance

Linear (Service Impedance
Gradient versus Service
Performance)

Figure 12: Empirical Data Graph of IG vs P

A projected value of the Service Performance (P) under the given load is calculated by

substituting „x‟ in the regression line with IGMCM.

8 Conclusions and Future Work

In this paper we have addressed the critical need of a method to facilitate analysis and prediction of the

impact on performance due to system modifications. At a high level, the research contribution can be

categorized into four broad areas:

170 A Novel Approach for Service Performance Analysis and Forecast

a. Relational Model for Service Performance, Impedance and Load (PIV Model) - Empirically

establish an innovative relational model associating the three key non-functional aspects of

any system or service operation. These are Service Operation Performance „P‟, Service

Operation Load Potential „V‟ (related to service load) and Service Operation Impedance

Gradient „IG‟(related to all the activities performed by the service‟s application components

internally).

b. Service Performance Predictive Model for single Delay Point modification - Aided by the

deduced relational model, empirically establish that service performance varies in particular

patterns depending on the type of activities being performed internally by the service. The

possible impact of modifying every individual application component Delay Point on the

overall system performance under a given load condition is assessed.

c. Service Performance Predictive Model for multiple Delay Points modification - Using a

combination of the deduced relational model and the individual component‟s impact patterns,

empirically develop a matrix based predictive model to forecast the service performance for

simultaneous changes to multiple underlying application component Delay Points.

d. Overall contribution to the Quality of Software as a Service – The ability to predict (with

acceptable error factor) the impact on Service Performance due to changes to the underlying

application component Delay Points will facilitate improving the overall quality of the

service. The contribution may be categorized in the following areas:

i. Quality Improvement – The predictive models will facilitate upfront detection of the

impact of the changes to the various application component Delay Points. Through

skeletal system testing, the developers themselves will be able to analyse the effect

of their changes to the Delay Points on the outward performance of the service. If

there is any quality degradation from performance perspective, this will enable

improving it through measures like code refactoring and optimization.

ii. Software Quality Assurance – Upfront analysis and forecast of the service‟s

performance due to the modifications to the application component Delay Points

will feed into the quality assurance process early in its lifecycle. As the developers

themselves will be able to forecast the variation in performance due to their

alterations, they‟ll be able to address any issue upfront without the need to go

through overheads like source code control, code reviews, change management,

configuration management, testing and release management. To a great extent the

need to undo and redo component changes only after performance/load testing at

the end will no longer be there. This will ensure timely assurance of the service‟s

performance in addition to reducing the overall costs of software development.

iii. Verification and Validation – Early detection of impact of changes will help to

verify whether the performance of the modified service will conform to any

prescribed SLA or QoS requirements at an early stage while the development

process is still on. This will ensure corrective measures (if warranted) to be adopted

in a timely manner avoiding wastage of resource time and cost.

 S. Kargupta and S. Black 171

iv. Defect Characterization – Performance (in terms of response time) is a quality

carrying property of a service. Ability to analyse and forecast performance

anomalies will help in characterization of the defects and early remedial actions

may be taken.

v. Software Quality Management (SQM) Techniques – The predictive models may

prove to be very effective SQM techniques. Early detection of performance

anomalies and remedial measures during the development lifecycle will ensure that

the required level of performance quality is achieved in the software product. It will

also ensure conformance to Software Quality Plan (SQP).

vi. Software Quality Measurement – The predictive models should help in measuring

software efficiency by facilitating identification and prediction of potential

operational performance bottlenecks and future scalability problems. Corrective

measures may be taken following best coding practices.

Summary of the Empirical deductions

In the first step of the research, we deduced the relational runtime model between Service Performance

(related to response time), Service Potential (related to request load) and Service Impedance gradient

related to the latencies due to application components‟ Delay Points‟ activities. Based on this model,

the subsequent phases of the research are undertaken.

The next phase of the research focussed on establishing the hypothesis that every individual

application component Delay Point of the service impacts the overall system performance in particular

patterns under a given load condition. The service framework is used to create some illustrative

application components with Database Interactions, Data Processing, File I/O, XML Processing and

other types of Delay Points. Iterative tests were run by varying each type of Delay Point at a time and

keeping the rest of the system configuration constant including the request load. Experiments

demonstrated different types of Delay Points impacted the overall service performance in distinct

patterns. These patterns can be used to extrapolate or interpolate potential impacts on service

performance for future modifications to application component activities.

During enhancements, the production systems in the industry typically involve multiple types of

Delay Points being modified simultaneously. The research has addressed the impact on overall Service

Operation Impedance Gradient (which ties to overall Operation Performance) due to simultaneous

changes to underlying application components Delay Points. A matrix based predictive model has been

developed to forecast the service performance for simultaneous changes to multiple types of

underlying application component activities. Using the Matrix Conversion Model, the research has

been able to predict the overall Operation Impedance Gradient „IG‟ for changes to the underlying

application components‟ Delay Points simultaneously. When compared to the „IG‟ computed from the

actual measured Service Operation Performance and Potential, the error factor is found to be

4.459133225%. Given the fact this is only the first iteration of the predictive model without any

calibration, the error factor is considered to be within acceptable limits. A projected value of Service

Performance (P) under the given load is calculated by using the predicted „IG‟.

The new formula-aided pattern based technique and the matrix conversion model will allow upfront

impact analysis of application component Delay Point changes by the developers themselves without

172 A Novel Approach for Service Performance Analysis and Forecast

the need of additional testing/system admin resources or much external tool overhead. The graphical

pattern based technique will enable forecast of possible impact on the overall system performance

under a given load condition due to modifications to individual application components. The matrix

based model will enable forecast of possible impact on the overall system performance under a given

load condition due to modifications to multiple application components Delay Points simultaneously.

This should help address the typical resourcing issues faced during service component enhancements

and potentially provide time, resource and significant cost savings to the IT industry.

Matrix Conversion Model Calibration

Further work needs to be done towards calibrating the Matrix Conversion Model. During establishing

the model and deriving the single column Impedance Conversion Matrix, the Delay Point process load

configuration of the components was varied in uniform steps. This yielded forecasts with about 4.4%

error approximately. In real life, the process load variations across the components may not be

uniform. Hence we need to calibrate the model through other process load configurations.

Randomizing the Delay Point load distribution will provide greater coverage of the Delay Point

Impedances. This should facilitate increase in forecast precision, reduce percentage error and make the

model more robust.

References

1. Sid Kargupta and Sue Black, Service Operation Impedance and its role in projecting some key

features in Service Contracts, ICWE 2009, 9th International Conference on Web Engineering, San

Sebastian, Spain, June 22nd – 26th, 2009

2. Sid Kargupta and Sue Black, Visualizing the Underlying Trends of Component Latencies affecting

Service Operation Performance, ACTEA 2009, IEEE International Conference on Advances in

Computational Tools for Engineering Applications, Lebanon, July 15th – 17th, 2009

3. Optimized Performance Testing (OPT) at Sonata Software, http://www.sonata-software.com

/export/sites/Sonata/sonata_en/innovation/resources/brochures/pdfs/Optimized_Performance_Testing_

at_Sonata_Software.pdf [last accessed 22/02/2012]

4. CAA-KPMG Report on BAA Operating Expenditure, http://www.caa.co.uk/docs/5/ergdocs/

ccstanstedh.pdf [last accessed 26/07/2010]

5. B2B Cost Cutting and Cost Saving Portal, CostKiller.net, http://costkiller.net/costs-savings/costs-

cutting-The-Migration-to-VoIP.htm [last accessed 22/02/2012]

6. White Paper on Portal Migration Strategy, http://www.chapter26.com/services/Portal Migration

Strategy - White Paper v1 1.pdf, [last accessed 22/02/2012]

7. Change Impact Analysis, http://www.changelogic.com/GettingStarted/ImpactAnalysis?v=13ot, [last

accessed 30/03/2012]

8. Mitigating the Business Impact of Software Changes with Coverity5, http://

www.coverity.com/library/pdf/Coverity5Brochure.pdf [last accessed 22/02/2012]

 S. Kargupta and S. Black 173

9. Change Management: Evaluating CM Tools to Implement a Successful ERP Application CM

Strategy, http://www.oracleappsblog.com/index.php [last accessed 22/02/2012]

10. Natalie L. Petouhoff, Tamra Chandler and Beth Montag-Schultz, Graziadio School of Business

and Management, Pepperdine University, Graziadio Business Report - The Business Impact of Change

Management, http://gbr.pepperdine.edu/063/change.html [last accessed 22/02/2012]

11. Daniel A. Menasce, Virgilio A. F. Almeida: Capacity Planning for Web Services. Metrics, Models

and Methods. Prentice Hall PTR, Upper Saddle River, NJ 07458, 2002

12. Arun Iyengar, Jim Challenger, Daniel Dias and Paul Dantzig: High Performance Web Site Design

Techniques. Web Design, IEEE Internet Computing, March-April, 2000

13. D. Ardagna and B. Pernici, Adaptive Service Composition in Flexible Processes, IEEE

Transactions on Software Engineering, Vol. 33, No.6, June, 2007

14. Yan Liu, Alan Fekete and Ian Gorton, Design-Level Performance Prediction of Component-Based

Applications, IEEE Transactions on Software Engineering, Vol.31, No.11, 2005

15. Xiuping Wu, David McMullan and Murray Woodside, Component Based Performance Prediction,

Proceedings of the 6
th

 ICSE Workshop on Component-Based Software Engineering: Automated

Reasoning and Prediction, 2003

16. Shiping Chen, Ian Gorton, Anna Liu and Yan Liu, Performance Prediction of COTS Component-

based Enterprise Applications, Journal of Systems and Software, Vol 74, Issue 1, 2005, Pages 35-43.

17. Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi and Marta Simeoni, Model-Based

Performance Prediction in Software Development: A Survey, IEEE Transactions on Software

Engineering, Vol.30, No.5, 2004

18. Connie U. Smith and Lloyd G. Williams, Performance Engineering Evaluation of Object-Oriented

Systems with SPE.ED, Computer Performance Evaluation: Modelling Techniques and Tools,

No.1245, Springer-Verlag, Berlin, 1997

19. Christopher Stewart and Kai Shen, Performance Modeling and System Management for Multi-

component Online Services, Proceedings of the 2
nd

 Symposium on Networked Systems Design and

Implementation, May2-4, Boston, MA, USA, 2005

20. K.S. Jasmine and R. Vasantha, Design Based Performance Prediction of Component Based

Software Products, Proceedings of the World Academy of Science, Engineering and Technology, Vol

24, ISSN 1307-6884, October, 2007

21. Shiping Chen, Bo Yan, Zic J., Ren Liu and Nq A., Evaluation and Modeling of Web Services

Performance, IEEE International Conference on Web Services (ICWS‟06) 0-7695-2669-1/06, Sept.

2006

22. Menasce D.A., Performance and Availability of Internet Data Centers, Internet Computing, IEEE.

George Mason University, Fairfax, VA, USA, May-June 2004, Pages 94 - 96.

174 A Novel Approach for Service Performance Analysis and Forecast

23. Carolyn McGregor and Josef Schiefer, A Framework for Analyzing and Measuring Business

Performance with Web Services, Proceedings of the IEEE International Conference on E-Commerce

(CEC‟03) 0-7695-1969-5/03, 2003

24. Paul Fortier, Howard Michel, Computer Systems Performance Evaluation and Prediction, ISBN 1-

55558-260-5, Digital Press, 2003

25. I-Hsin Chung and Jeffrey K. Hollingsworth, Automated Cluster-Based Web Service Performance

Tuning, Proceedings of the 13
th

 Conference on High Performance Distributed Computing, 2004, Pages

36 – 43.

26. Marco Vieira and Nuno Laranjeiro, Comparing Web Services Performance and Recovery in the

Presence of Faults, Proceedings of the IEEE International Conference on Web Services (ICWS 2007),

0-7695-2924-0/07.

27. Ana C. C. Machado and Carlos A. G. Ferraz, JWSPerf: A Performance Benchmarking Utility with

Support to Multiple Web Services Implementations, Proceedings of the Advanced International

Conference on Telecommunications and International Conference on Internet and Web Applications

and Services (AICT/ICIW 2006), 0-7695-2522-9/06.

28. Manjari Asawa, Measuring and Analysing Service Levels: A Scalable Passive Approach,

Proceedings of the 1998 Sixth International Workshop on Quality of Service, 1998. (IWQoS 98),

Pages 3 – 12.

29. Jamal Bentahar, Zakaria Maamar, Djamal Benslimane and Philippe Thiran, An Argumentation

Framework for Communities of Web Services, IEEE Computer Society, 1541-1672/07, 2007, Pages

75 - 83.

30. Shiping Chen, John Zic, Kezhe Tang, David Levy, Performance Evaluation and Modeling of Web

Services Security, IEEE International Conference on Web Services (ICWS 2007), 0-7695-2924-0/07.

31. Ariel Pashtan, Andrea Heusser and Peter Scheuermann, Personal Service Areas for Mobile Web

Applications, IEEE Internet Computing, November-December 2004, Pages 34 - 39.

32. Matthew Swinarski, Rajiv Kishore, H. Raghav Rao, Impact of IT Service Provider Process

Capabilities on Service Provider Performance: An Empirical Study, Proceedings of the 39
th

 Hawaii

International Conference on System Sciences – 2006

33. Ikuo Matsumura, Toru Ishida, Yohei Murakami and Yoshiyuki Fujishiro, Situated Web Service:

Context-Aware Approach to High-Speed Web Service Communication, Proceedings of the IEEE

International Conference on Web Services (ICWS‟06), 0-7695-2669-1/06.

34. Sriram Anand, Srinivas Padmanabhuni, Jai Ganesh, Perspectives on Service Oriented Architecture,

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC‟05), 0-7695-

2408-7/05

 S. Kargupta and S. Black 175

35. Philipp Liegl, The strategic impact of service oriented architectures, Proceedings of the 14
th

Annual IEEE International Conference and Workshops on the Engineering of Computer-Based

Systems (ECBS‟07), 0-7695-2772-8/07.

36. Matjaz B. Juric, Marjan Hericko, Tatjana Welzer, Ivan Rozman, Ana Sasa and Marjan Krisper,

Web Services and Java Middleware Functional and Performance Analysis for SOA, Proceedings of the

2007 Inaugural IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST

2007), Pages 217 – 222.

37. Chuanchang Liu, Zhongwei Li, Junliang Chen, Xiao Lin, Dongtang Ma, A Service Level

Agreement-based Web Services Performance, Proceedings of the 16
th

 International Conference on

Computer Communications and Networks, 2007, ICCCN 2007, Pages 1279 - 1284

38. Giovanni Pacifici, Mike Spreitzer, Asser N. Tantawi and Alaa Youssef, Performance Management

for Cluster-Based Web Services, IEEE Journal On Selected Areas In Communications, Vol. 23, No.

12, Dec 2005, Pages 2333 – 2343.

39. Jean-Pierre Garbani with Robert Zimmerman and Stephan Wenninger, Best Practices For Service-

Level Management, 2004 Forrester Research, Inc, TechRepublic White Paper,

http://whitepapers.techrepublic.com [last accessed 22/02/2012]

40. End-End Software (Asia Pacific) Pte Ltd, info@end-endsoftware.com, 10, Jalan Besar, 10-03 Sim

Lim Tower, Singapore 208787, Service Level Agreements, TechRepublic White Paper,

http://whitepapers.techrepublic.com, January 2002 [last accessed 22/02/2012]

41. Zhengdong Gao and Gengfeng Wu, Combining QoS-based service selection with performance

prediction, e-Business Engineering, 2005, ICEBE 2005, IEEE International Conference, School of

Comput. Eng. & Sci., Shanghai Univ., China, 18-21 Oct., 2005, Pages 611- 614.

42. Mou Yu-jie, Cao Jian, Zhang Shen-sheng, Zhang Jian-hong, Interactive Web Service Choice-

Making on Extended QoS Model, Proceedings of the 2005 The Fifth International Conference on

Computer and Information Technology (CIT‟05), 0-7695-2432-X/05.

43. Marco Conti, Mohan Kumar, Sajal K. Das and Behrooz A. Shirazi, Quality of Service Issues in

Internet Web Services, Proceedings of the IEEE Transactions on Computers, Vol. 51, No. 6, June

2002, Pages 593 - 594

44. Glen Dobson, Russell Lock, Ian Sommerville, QoSOnt: a QoS Ontology for Service-Centric

Systems, Proceedings of the 2005 31
st
 EUROMICRO Conference on Software Engineering and

Advanced Applications (EUROMICRO-SEAA‟05)

45. Gwyduk Yeom, Dugki Min, Design and Implementation of Web Services QoS Broker,

Proceedings of the IEEE International Conference on Next Generation Web Services Practices

(NWeSP‟05), 2005, 0-7695-2452-4/05.

46. Ahsan Habib, Sonia Fahmy, Srinivas R. Avasarala, Venkatesh Prabhakar, Bharat Bhargava, On

Detecting Service Violations and Bandwidth Theft in QoS Network Domains, TechRepublic White

Paper, http://whitepapers.techrepublic.com, 5
th

 November 2002 [last accessed 22/02/2012]

176 A Novel Approach for Service Performance Analysis and Forecast

47. Least Squares Method, http://en.wikiversity.org/wiki/Least-Squares_Method, Last modified on

29
th

 June 2010 [last accessed 22/02/2012]

