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Existing self-healing mechanisms for Web services constantly monitor services and their computational
environment, analyze system state, determine failure occurrences, and execute built-in recovery plans
(MAPE loop). We propose a more pro-active self healing mechanism that uses a multi-layer perceptron
ANN and a health score mechanism to learn about the occurrences of failures or quality of service
degradation in advance, without requiring modifications to the framework of services used by
applications. Highest score is assigned to the system upon start and is degraded during system execution
whenever a service fails to operate or the time-to-leave (TTL) of the client side requests increases.
Application of the proposed mechanism to a set of vehicle tracking Web services decreased the
probability of out of service occurrences by 70% and increased system quality of service by 13%. The
overhead of the mechanism was nearly 3% and negligible, whilst TTL for a request from the client side
decreased by 20%.   

Keywords: Web Services, Predictive Self-Healing, Failure Prevention, Failover, Quality of
Service, High Availability, Health Score
Communicated by: M. Gaedke & P. Fraternali

1 Introduction

Increased tendency towards Web services and the wide range of services offered through them
necessitates the need for reliable services, both with regard to high availability and quality of service.
For this reason, many researchers have tried to keep Web services in healthy state for prolonged
periods using some self-healing mechanisms [1, 2, 3, 4, 5]. They however do this after the occurrences
of faults, which is too late and too costly to detect and recover faulty services. Furthermore, faulty
services remain unavailable until they are completely fixed.
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In this paper, we propose a predictive self-healing mechanism for early detection and treatment of
faulty Web services. The goal is to maintain quality of services and to provide high availability of
services in the presence of faults in Web services.

Another weakness of existing proposed healing mechanisms [1, 2, 3, 4, 5] is that they require
modifications to the framework of Web services that are used by applications; this is to say that each of
these mechanisms is highly dependent on the characteristics of a single framework for Web services.

We have used rather general characteristics of Web services in our proposition for early detection
and fixing of faulty services, quite independent of any special features of any framework for Web
services. This makes our self-healing mechanism to work with any existing or future framework for
Web services. This was achieved through monitoring of the trend of system and Web service
parameters and detecting anomalies based on these trends.

The rest of paper is organized as follows. Section 2 presents some notable related works. Section 3
presents our architecture and Section 4 presents our implementation. Section 5 argues the validity of
the proposed mechanism, and Section 6 concludes the paper.

2 Current Practice and Research

Paul Horn first brought up the idea of autonomous computing in 2001 to address the ever-increasing
complexity of software systems [6]. A true and comprehensive autonomous system, per definition, is
comprised of four characteristics: self-configuring, self-healing, self-optimizing, and self-protecting [7,
8]. Since then, researchers have taken many important aspects of Web services and self-healing issues
into consideration in their researches, [9, 10, 11, 12, 13]. Automated service discovery and
composition [9, 11, 12, 13], and automated validation of the resulting composition has been long
sought [14, 15]. Recent works have focused on the quality of service aspects [16], and targeted to
address the full range of autonomic computing in general [16, 17] and self-healing in particular [18,
19].

The work by Chan et al. [3] is one of the works most related to ours. They have proposed a cycle
for self-healing of Web service composition based on MAPE loop that includes monitoring, analysing,
planning, and plan execution for recovery. Re-planning is required when severity of fault is lowered. It
is not however clear at all who should run these operations at each cycle. One of the disadvantages of
their approach is the lack of prediction of fault or error in the system. Downside of this issue is that
faults may be detected when it is too late to recover quality of service. In addition, the proposed cycle
is limited to Web service compositions and cannot be used for standalone Web services.

Although very few attempts have been made to add self-healing to existing programs, most of
them come into play only after the fault has occurred unlike our work wherein fault prevention is
sought. Fuad and Oudshoorn [20] have tried to transform existing programs into self-healing entities
by injecting their code into an existing application and encapsulating the Java run-time code inside an
extra layer of exception catching. They have tried to fix transient faults by looking at a preset table of
rules.

Many authors [1, 2, 3, 4, 5, 17, 18, 21, 22, and 23] have proposed monitoring and self-healing
mechanisms for self-diagnosis and self-healing that address different types of Web services. They all
share the same conceptual difference with our work, as we predict the occurrence of the fault and try to
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prevent it before happening, while others try to correct the fault after the system has already suffered.
Noui-Mehidi [24] has suggested a predictive algorithm for monitoring the performance and the overall
health of the system and taking corrective actions before Web service experiences faults. His approach
is very similar to our work in the context of predicting the fault, but unlike his work, our work has a
wide application range that can include existing and new Web services and does not require user
intervention.

Alonso et al. [25] have tried to build an accurate model of the system that is suffering from
transient failures. They have compared linear regression and decision tree algorithms and concluded
that M5P decision tree is the best option for modeling the behavior of the system under random
injection of memory leaks.

Naccache et al. [5] have proposed a framework for developing an autonomic self-healing portal
system that relies on the notion of differentiated services.  This framework supports existing Web
services through a lightweight wrapper. It can also be used as a basis for developing new Web
services, but due to the emphasis on Ajax-based systems and the lack of failure prediction, the
applicability of this framework is limited.

Yan et al. [26] have made another attempt in this regard. They have tried to lay grounds for a
monitoring and diagnosis tool for Web services. They have tried to make it possible to detect abnormal
situations, identify the causes of these abnormalities, and to decide on recovery actions. Due to their
abstract way of modelling components, their approach cannot satisfy scalability issues.

There are several ways of implementing self- healing mechanisms. For example, Mostefaoui et al.
[4] have used Aspect Oriented Programming (AOP) for design and development of a self-healing Web
service. As another example, Ben Halima et al. [2] have proposed a self-healing framework for quality
of service management in service-based Web applications. They have implemented their framework on
top of reflective programming libraries. Their framework mainly relies on intercepting and handling
contents of SOAP-level communication messages.

Due to the nature of Web services, faults that occur in Web services are usually repetitive. Pernici
et al. [1] have proposed a methodology and a tool for automatic learning of repair strategies for Web
services so that the best repair strategy can be selected. They show that their autonomous approach can
compare features of a new fault with those of previously detected faults and classify the fault based on
its persistence level. Their approach cannot determine fault origins, which can help to remove or
resolve the conditions that determine faults. We have tried to address this shortcoming and repair the
service structure to prevent the occurrence of faults. In addition, we have introduced and improved a
weighting mechanism for use at run time, as opposed to the weights that Pernici et al. [1] use at design
time for identification of faults, by coupling it with an artificial neural network, after normalizing
values of different parameters obtained from Web service and the working environment.

However, it seems none of the researchers has tried to use Health Score or a similar metric that uses
TTL and Responsiveness of Web service to predict the occurrence of faults in advance. Instead, they
have tried to put forward mechanisms for healing the faults after they occur, which includes downtime
of service, whereas preventive nature of our work eliminates any downtime. We try to predict and
prevent the occurrences of faults beforehand or at least initiate a self-healing process in cases where the
faults cannot be prevented.
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3 Architecture of the Proposed Mechanism

The proposed mechanism is composed of two phases, namely, the knowledge acquisition phase, and
the execution phase. In this work, we have added a new learning phase to the usual self-healing
frameworks, MAPE loop, as compared to execution phase of usual frameworks.  Figure 1 shows the
architecture of our proposed mechanism.

Figure 1: Architecture of our predictive self-healing mechanism

3.1. Knowledge Acquisition Phase

The knowledge acquisition phase is considered as a new addition to current self-healing solutions and
is used to determine the cause of faults in the system, based on important parameters of Web services
themselves and the working environment that hosts Web services. This phase tries to increase the
precision of fault prediction by comparing healthy and unhealthy states of the system. Since events are
logged with their date and time stamps, we will have the chain of events in a timeline, which enables
us to locate scenarios that lead to fault.

In this phase, the effects of Web services on the working environment as well as the effects of the
environment on Web services are gathered and analysed for a given period, e.g., one month. Based on
the context of Web services, the length of this period can be altered.

A Monitoring Tool that imposes little load on the system and does not consume much CPU or
system resources will store values of different parameters in adjustable data logging intervals, in a
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database. Table 1 shows the working environment and Web service parameters that are monitored by
the Monitoring Tool.

Table 1: Web service and working environment parameters
Web Service Parameters

Service Dependant Machine Dependant
Working Environment

Parameters

No. of  active clients CPU usage CPU usage

No. of active TCP/UDP listeners RAM usage total installed RAM

TTL I/O available RAM

network activity No. of active processes

response time high demand process
(CPU, RAM, I/O, Network usage)

I/O

network activity

Time To Leave (TTL) is one the parameters that is critical to the evaluation of quality of service of
Web services; TTL for a Web service request is defined as the time it takes for the Web service to
process a request from its arrival at the Web service to the time it is marked as handled (successfully or
unsuccessfully). We have assumed that we have the means to measure TTL.

Selection of adequate data logging interval plays a crucial role in effective data logging. Assuming
that a Web service or the working environment has approached a critical state or confronted a fault, a
long logging interval may result in this event to be unnoticed by the monitoring tool. On the other
hand, short data logging intervals create considerable workload on the system. As a result, the best
practice is to assign a variable data logging interval that varies by the workload imposed on the Web
service or the working environment.

Since recorded parameters are responsible for changes in the states of a Web service from healthy
to unhealthy state or vice versa, all of their effects are taken into account and a weight that denotes
their share in state change is assigned to each parameter.

In this mechanism, we have mapped observed values for each parameter, to a value in the range
between zero and one. For each parameter, the normalizing coefficient is defined as the parameter
value multiplier that maps the parameter 0≤α*β≤1 value to this range, where β is the value of each
parameter and α is defined as the normalizing coefficient.

Instead of looking at Web service health on a two-state scale of healthy or unhealthy services, we
have defined a measure of Health Score (HS) in this mechanism that depends on TTL and
responsiveness of the Web service. HS has an inverse relationship with normalized TTL, meaning that
normalized TTL of 0 results in Health Score of 1 and normalized TTL of 1, and that a non-responsive
Web service results in Health Score of 0. Table 2 shows the relationship between TTL, Web Service
Responsiveness State, and Health Score.



84    Predictive Self-Healing of Web Services Using Health Score

Table 2: Health scores based on TTL and responsiveness state

In order to be able to describe the state of Web service better, we have defined a new definition:
Overall Index (OI). OI is an indicator of the current state of the Web service. Generally, Web services
are described as either healthy or unhealthy. In order to provide a better measure, we assume that the
overall index is not simply limited to healthy or unhealthy states, but it also includes other states such
as somewhat healthy, intermittent and somewhat unhealthy states (Table 3).

Table 3: Overall index and quality of service based on health score
QoS OI HS
Out of Service Unhealthy 0
Low Nearly Unhealthy 0.25
Acceptable Intermittent 0.5
Good Nearly Healthy 0.75
High Healthy 1

Analysis of normalized parameter values derived from the working environment, e.g., CPU usage,
disk read/write, and network traffic, alongside normalized Web service parameters, such as TTL, RAM
usage and CPU usage at different times and in sequential order, together with the analysis of the trend
of Web service health change from healthy to unhealthy states, provide valuable information about the
causes of faults allowing to accordingly assign a reasonable weight to each parameter depending on its
contribution to the fault. This is done by monitoring changes in parameters during the period the Web
service has changed state from responsive to failed service.

This analysis can also be used to estimate the time required for treatment of the failure and to
determine the type of faults’ persistence (permanent, transient, temporary, or intermittent) [1].

In order to facilitate early detection and prediction of faults, we have set a margin on Web service
health score. We consider Web service states below this margin as critical intervals. Doing so provides
the self-healing mechanism with enough time to prevent the occurrence of faults or degradation of
quality of service. With knowledge of the critical interval, Web services will always be in a range of
healthy state. This enables the Web service to work smoothly by avoiding conditions that lead to
critical states.

We will use data that are gathered in the Knowledge Acquisition phase as a basis for calculating
HS, which will be used for decision making during the Execution phase without requiring the Web
service to calculate and return TTL that would exert an additional load on the Web service. In order to
get TTL from sources other than the Web service itself, we need to utilize performance parameters
from the system and find a relationship between them and TTL. Since determination of such a
relationship was not accurate enough through decision trees or rule mining due to the complexity of the
relationships and the weights of different parameters, we trained an artificial neural network to predict
the value of HS based on normalized values of monitored parameters.

TTL Range Responsiveness State HS
1 Non-Responsive 0
1 Responsive 0.25
0.75 – 1 Responsive 0.25
0.5 - 0.75 Responsive 0.5
0.25 - 0.5 Responsive 0.75
0 - 0.25 Responsive 1
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The artificial neural network used in this study was a multi-layer Perceptron composed of 4 layers,
2 hidden layers, and 2 I/O layers. The input layer had 12 processing elements, first and second hidden
layers had 10 and 5 processing elements with hyperbolic tangent, respectively, and the output layer
had 1 processing element.

The output of the Knowledge Acquisition phase was a trained artificial neural network capable of
predicting Health Scores based on normalized values of monitored parameters in the Execution phase.

3.2. Execution Phase

During this phase, we use the same tool that was used for data logging to monitor Web services and
their working environment. As mentioned previously, this tool imposes little overload on the system
and it is suitable for doing quick analysis of current state of a Web service and its working
environment. Data gathered by the monitoring tool are sent to the normalization tool to apply
normalization coefficients to each parameter; normalized values are then sent to the analysis tool, the
artificial neural network that was previously trained during Knowledge Acquisition phase. The
analysis tool consequently calculates the value of HS based on normalized parameters.

Once HS is determined, a tool for analysing HS and predicting the probability failure and the
possible time of failure occurrence is required. There are several ways for doing this task, one of which
is the curve fitting, e.g., five-point curve fitting wherein the five most recent Web service scores
alongside its log times are fitted to a connecting curve and the time of intersection (i.e., tHSc) with
critical Health Score limit (i.e., HSC) that system administrators set is calculated. If tHSc is less than the
permissible value set by system administrators, Web service is considered at risk and self-healing
strategies are sought. Figure 2 shows an example of the five most current Web service scores fitted on
a curve.

Figure 2: Example of five-point HS curve fitting

If the intersection of the fitted curve and HSC is close, detailed evaluation of Web service and
parameters of the working environment is undertaken. This helps determining which parameter
changes are more likely to push the system to a critical state. This is achieved through comparison of
correlations between all normalized parameters and HS.  If the predicted time of intersection with
critical HS line is higher than the maximum range that is set by the system administrators, it can be
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concluded that self-healing has been successful and it can be stopped in order to lower operational load
on the system, and continue with normal monitoring of the Web service and its working environment.

Figure 3 shows the execution flow of our proposed mechanism.

Figure 3: Flowchart of decision making based on HS and time (t)

In our proposed mechanism, we have used a database, known as Rules Database, for storing rules
that determine necessary actions for critical states, along with their attributes, including name, usage
conditions (appropriate range of usage), and execution priority.

Comparing the state of a Web service and the parameters of its working environment to usage
conditions of rules, the Plan Generator tool selects one or more rules from the Rules Database and
generates a suitable plan in the form of an XML file. As an example, let us assume that the critical
health score, HSC, is set to 0.5 and tmax is 300 seconds. Based on the input parameters, predicted health
scores from artificial neural network show a continuous decrease. For example, the health score of the
system will get down to 0.25 that is the value set for the critical health score in the next 120 seconds,
and it will get down to 0 in 200 seconds that is less than value set for tmax. This would trigger the Plan
Generation routine to come into action. The Plan Generator will analyze the current state of the system
from several different aspects such as responsiveness of Web service, RAM usage by the Web service,
available RAM, network I/O and other system and Web service specific parameters listed in Table 4. If
the criterion for each rule from Table 4 is met, the rule will be sorted based on its priority and will be
added to the plan. Once a plan is generated and submitted for execution, it will not be modified and
any addition to current remediation is achieved through generation of a new plan. This means that
more than one plan may be executed in parallel. The execution priority of the generated plan in
comparison with other possible plans that are already under execution is set and the plan is sent to the
Plan Execution tool.

The Plan Execution tool takes over the execution of generated plans based on their priority. This
allows faster execution of the most important plan in critical states. It also allows cancelling low
importance active plans when the Web service health is recovered or when the execution of low
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importance plans impose more load on the working environment than expected resulting in
degradation of HS.

Table 4 shows a sample rule set used in this study. More detailed explanation about the tasks to be
executed is provided in Table 4. There is not a direct link between artificial neural network and the
rules; rather artificial neural network measures the health score of the system based on performance
measures. If the forecast of health score shows a possible failure in near future, suitable plans are
generated and executed accordingly.

Table 4: Sample rule set
Rule
Name

Execution
Priority Usage Conditions Description Task to be Executed

Rule1 3 available virtual memory < 40% total low on virtual memory increase virtual memory
Rule2 2 available RAM < 40% total low on available RAM free up RAM

Rule3 3 available HDD < 30% total low on available HDD delete unneeded files

Rule4 4 RAM usage by Web service  > 40% of
total RAM

high percentage  usage
of RAM by Web
service

run garbage collection

Rule5 3 CPU usage by Web service > 70% for
over 2 minutes

high percentage  usage
of CPU by Web
service in a prolonged
period

check if service is
responsive in a period of
2 minutes. If responsive,
take no action

Rule6 1 Web service is not responsive Web service is not
responsive restart Web service

Rule7 2 CPU usage > 90% for over 2 minutes

high percentage  usage
of CPU while Web
service has low
percentage usage of
CPU

locate CPU consuming
service and restart it if not
critical, otherwise wait 2
more minutes. If
repeated, restart machine

4 Implementation

In order to implement our proposed mechanism, a software package containing the aforementioned
tools has been developed that carries out data gathering, data storage, interpretation and analysis,
prediction of degradation of the quality of service of a Web service, prediction of faults, planning, and
execution of the proposed plan. The software package has been successfully running on a system
hosting a commercial Web service for over 18 months. Figure 4 shows a screen capture of the software
package that had been developed for this purpose.

To achieve reliable results in real, we ran the software for one month in training mode with more
than 40,000 samples of selected parameters including healthy and faulty states. Most of the samples
were collected during peak operation time of the Web service, where Web service had more than 3000
requests per minute, which were handled parallel to each other. The large sampling pool played a
crucial role in lowering errors during the assignment of weights to different parameters and the
calculation of Health Score. The sampling period was set to 2 seconds during the Knowledge
Acquisition phase, and it was set to 5 seconds for the Execution Phase, allowing the system to work
smoothly and without much excessive workload. The mean square error, which is the average of the
square of the difference between the observed health score and the artificial neural network output,
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was 0.000690 for the training dataset that shows a very well trained artificial neural network. Figure 5
shows the cross check between the artificial neural network outputs and health scores stored in the
database.

Figure 4: Web service monitor screen capture

Figure 5: Mean square error of NN training and cross validation

As it is shown in Figure 6, since the outputs from the artificial neural network contain little errors
and the predicted health scores match the observed values, the artificial neural network is reliable for
the calculation of HS, instead of imposing any load on the system for such calculations. This means
that during the Run mode, selection of rules and generation of plans will be based on the health score
predicted by the artificial neural network.
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Figure 6: NN output of HS vs. actual HS

5 Discussion

5.1. Evaluation Factors

Since the most important factors relating to the self-healing of Web services are quality of service
assurance and high availability of Web services, we consider four factors for qualities for the purpose
of comparison:

Unavailability percentage of a Web service, which is equal to

where N is the number of non-responsive states and NT is the total number of recorded states.

Average response time, which is equal to

     

where n is the total number of TTLs.

High quality percentage, which is equal to is

where N is the number of states such that HSC<HS≤1 and NT is the total number of recorded states.

Low quality percentage, which is equal to 

where N is the number of states such that 0.25≤HS≤HSC and NT is the total number of recorded states.
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5.2. Evaluation

Table 3 shows the comparison between the evaluation factors before running our proposed self-healing
mechanism on the target Web service and the hosting machine, with those factors of Web service and
hosting machine after running the proposed self-healing mechanism on the system.

As it is shown in Table 5, under our proposed mechanism, unavailability was reduced by about
70%, average TTL was reduced to 35.2 ms from 43.82 ms (i.e., 20% improvement), high quality of
service states was increased by 13 percent, and low quality service occurrence was reduced by 13
percent. Table 6 shows the low overload imposed by our self-healing mechanism on the system.

Table 5: Evaluation factors compared
UnAvail % TTL_Ave (ms) H.QoS % L.QoS % Situation

0.01 43.82 83 16.99 Without self-healing mechanism
0.003 35.2 96 3.997 Our self-healing mechanism applied

Table 6:  Overload imposed to system by the self-healing mechanism
CPU Usage RAM Usage HDD Usage
0.5 to 3 % 20 Mega Bytes 50 Mega Bytes

6 Conclusion

In this paper, we presented a new mechanism for self-healing of Web services that could be used as a
baseline for the development of new self-healing Web services, as well as self-healing of existing Web
services.  The proposed mechanism included an added learning phase as compared to the usual self-
healing frameworks (MAPE loop).

The concept of Time-To-Leave (TTL) and Health Score (HS) based on TTL and response time
was introduced, with system healthiness being expanded from functional/not functional to the broader
range of healthy, nearly healthy, intermittent, nearly unhealthy, and unhealthy.

The proposed mechanism was capable of predicting the occurrences of failures using knowledge
acquired from Web services and the Web server. Considerable improvements in terms of quality of
service assurance and high availability were achieved after application of this mechanism to a
commercial Web service under heavy workload. Test results showed that the probability of out of
service occurrence decreased by 70% and that the quality of service increased by 13%. The excess
workload imposed on the system by our proposed predictive self-healing mechanism was about 3%,
whilst the average Time-To-Leave for a request from the client side was decreased by 20%. Due to the
preventive nature of this mechanism, delayed responses were not the case after implementation of this
mechanism on Web service any more.

Artificial neural network was employed for data analysis. Similar methods, such as data mining,
fuzzy logic, and automata, can be studied and used for data analysis as well. Also the prediction tool
can be modified to employ a faster or more reliable algorithm for prediction tool, instead of curve
fitting. Since our study was conducted on self-healing of Web services, the interaction of Web services
can also be added to our studies reported in this paper.
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