
Journal of Web Engineering, Vol. 5, No.3 (2006) 216-245
© Rinton Press

AN ENGINEERING PERSPECTIVE ON STRUCTURAL COMPUTING:
DEVELOPING STRUCTURE SERVICES FOR THE WEB

MICHAIL VAITIS

Department of Geography, University of the Aegean

University Hill, GR-811 00 Mytilene, Greece

MANOLIS TZAGARAKIS

Research-Academic Computer Technology Institute

N. Kazantzaki str., University of Patras Campus
 GR-265 00 Patras, Greece

GEORGE GKOTSIS

Department of Computer Engineering and Informatics, University of Patras

GR-265 00 Patras, Greece

(vaitis@aegean.gr, gkotsis@ceid.upatras.gr, tzagara@cti.gr)

Received April 24, 2005
Revised May 18, 2006

The emergence of Component-Based Open Hypermedia Systems aims at releasing hypermedia and web
applications from the monocracy of link as an information structuring primitive. Instead, an open set of
structure servers – each one providing abstractions and semantics relevant to a specific data-organization
domain – are employed by an open set of client applications. Nonetheless, the lack of an engineering
framework guiding the development and deployment process of structure servers has a part in their limited
exploitation. In this paper, we analyze the characteristics of structure servers from an engineering ap-
proach, and we propose a software methodology and a set of potential tools in order to direct their devel-
opment. In addition, we present how this methodology is supported by the Callimachus CB-OHS, empha-
sizing on the tools enabling rapid prototyping of new structure servers.

Key words: Structural computing, service-oriented architecture, hypermedia engineering, rapid
prototyping, design patterns
Communicated by: S. Christodoulou

1. Introduction

During the past decade, many researchers have pointed out certain inadequacies concerning the data
structuring abstractions used in both web and hypermedia applications [2, 16, 22, 31, 45]. This “struc-
ture crisis” mainly originates from the nature and implementation of the notion of link. In the web,
links are limited in functionality since they just denote starting-points for unidirectional jumps. Also,
they are characterized as “second-class” entities, since they are embedded into the content data –
HTML file. In hypermedia systems, although links and anchors are first class entities, they are em-
ployed for incarnating all information structuring situations (such as information association, argumen-
tation support, data classification, etc.). Unfortunately, any closed set of abstractions cannot be guaran-
teed to be useful in a practical sense for all possible data-organization applications [30]. The described

M. Vaitis, M. Tzagarakis, and G. Gkotsis 217

situation raised both convenience and efficiency problems when hypermedia systems are utilized, and
lack of standards and interoperability inadequacies.

A significant amount of research and development efforts aiming to overcome the above issues
has resulted in releasing structure abstractions and semantics from both data and core system function-
ality. Structure has been promoted to a first class entity, being provided to third-party client applica-
tions on demand, through specific software components and communication protocols. The new gen-
eration of Component-Based Open Hypermedia Systems (CB-OHS) has emerged, consisting of an un-
derlying set of infrastructure services that support the development and operation of an open set of
components (called structure servers), providing structure services for specific application domains.
The theoretical and practical aspects of this promotion of structure from implicit relationship among
data-items to a first-class entity constitute the subject of the newly-established field of structural com-
puting [31].

CB-OHS are among the forerunners of a trend for service-oriented computing (SOC); the comput-
ing paradigm that utilizes services as fundamental elements for developing applications [36] and relies
on a layered service-oriented architecture (SOA). A SOA combines the ability to invoke remote ob-
jects and functions (called “services”) with tools for dynamic service discovery, placing emphasis on
interoperability issues [1]. As both hypermedia applications and the class of web applications catego-
rized as informational [14] are content-intensive, the employment of structure services during their
development (following the SOC paradigm) would improve efficiency and convenience. Unfortu-
nately, today’s developers of hypermedia and web applications do not exploit the facilities offered by
CB-OHS [32]. We argue that one of the reasons for this situation is the lack of both an adequate soft-
ware engineering framework for CB-OHS construction and utilization, and the appropriate tools to
support it. This results in ad-hoc development methodologies which produce systems missing certain
essential characteristics. The development of a structure server is a complicated task to be repeated
from scratch whenever a new structure abstraction has to be supported [55]. In this paper, we analyze
structure servers from an engineering point of view, and propose a software methodology involving all
aspects of their life cycle. We anticipate that the research and development work in the field of struc-
tural computing will be strengthened and that we will be able to draw the attention of researchers of
relevant fields to the issue.

The rest of the paper is organized in five more sections. In section 2 we present the field of struc-
tural computing and describe the functionality and internal organization of related systems. In section
3 we propose a software methodology aiming to steer all the development and utilization processes of
CB-OHSs, while in section 4 we concentrate on the appropriate tools for supporting this framework. In
section 5 we describe how this methodology is supported by the Callimachus CB-OHS [46, 48], em-
phasizing on the tools enabling rapid prototyping of new structure servers, while section 6 discusses a
number of other structural computing environments. Finally, section 7 concludes the paper and pre-
sents future research and development directions.

2. Structural Computing

Traditionally, hypermedia systems were developed to offer linking capabilities among data items in
order to produce non-linear information spaces, where the user is able to navigate. Such a system is
conceptually composed of three parts: (i) the storage, managing both data items and links among them,
(ii) the link engine, offering the linking functionality, and (iii) the application, presenting the informa-

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 218

tion space and supporting navigation.1 Early hypermedia systems are monolithic, since all parts are
tightly embedded in a single program (Figure 1a).2

During the last two decades, hypermedia systems have been evolved towards the “opening” of
their functionality and architecture. The Open Hypermedia movement [35] was originated from the
approach to offer linking functionality to any third-party application, properly customized to become
hypertext-aware (Figure 1b). Hyperbase systems were developed to abstract the interface between the
linking mechanism and the storage (Figure 1c), providing transaction management, access control and
other database functionality.

Storage

Application

Link engine

Storage

Application

Link service

Application

Storage

Application

Link service

Application

Storage service Storage

Application

Link service

Application

Storage service

Link serviceBehavior

(a) (b)

(c) (d)

Storage

Application

Link engine

Storage

Application

Link service

Application

Storage

Application

Link service

Application

Storage service Storage

Application

Link service

Application

Storage service

Link serviceBehavior

(a) (b)

(c) (d)
Figure 1: Evolution of Hypermedia Systems

Additionally, new paradigms of information organization patterns have emerged, escaping from
Bush’s association of information to more elaborate activities, such as hyperfiction authoring and read-
ing, information analysis and classification or argumentation support. Primarily, these structuring tasks
were supported by explicit services (behavior), customizing the basic link service of the system (Fig-
ure 1d). The hypertext domain research field has emerged, focusing on the identification of the differ-
ent ways the human mind perceives structure in different problem domains. At the same time, hyper-
media system research is focused on designing and building the computational foundations to support
people working with structure, concentrating especially on openness issues.

It has become apparent that the abstractions provided by systems supporting information naviga-
tion (mainly, node-anchor-link constructs and follow-link behavior) cannot address issues in new do-
mains (e.g., spatial, taxonomic, argumentation support, etc.) in a convenient and efficient way [30].
These domains require structure abstractions markedly different from those used to support naviga-
tional hypermedia, thus manifesting a gap between hypermedia domain and system research.

Let us take an example; Let us consider the information classification (or taxonomic) domain [37,
38]. Taxonomic reasoning deals with the comparison and classification of highly similar pieces of in-

1 Both storage and link engine are integrated into the “storage layer” of the Dexter Hypertext Reference Model [15].
2 Figure 1 is based on a similar figure in [31].

M. Vaitis, M. Tzagarakis, and G. Gkotsis 219

formation (species, artifacts, etc.) into sets of related items. So, the basic activities that need to be sup-
ported are essentially set operations. Three primary components are included in the classification hier-
archy: specimen, taxon and taxonomy. A specimen has arbitrary content and attributes, and represents
an element of the given data. A taxon has no content but rather arbitrary attributes, which form a con-
structed descendant. It can have three sides: supertaxa, subtaxa and specimens. A subtaxa can contain
an arbitrary number of elements, while a supertaxa or a specimen consists of exactly one element. Fi-
nally, a taxonomy contains a hierarchy of specimen and taxa. Although it is possible to implement
such an application domain based on the node, anchor and link entities, and simulate set operations
with link definitions and traversals, the resulting system would be neither convenient for the user nor
efficient executing the operations.

Client application

Infrastructure

Structure Server

Structure services

Infrastructure services

CB-OHS

Client application

Infrastructure

Structure Server

Structure services

Infrastructure services

CB-OHS
Figure 2: CB-OHS architecture

The need to deliver the tailored support required by different application domains has given birth
to CB-OHS (Figure 2). Each structure server supports structure abstractions concerning a well-defined
data organization problem, through the provision of structure services to third-party client applications.
Structure servers are components of the framework of a CB-OHS, acting as clients to infrastructure
services (including generic structure storage, naming, versioning, etc.).

CB-OHSs are the incarnation of a new approach to solving data organization problems, called
structural computing. This new discipline, driven by the philosophy that structure is more important
than data (“primacy of structure over data”), is aiming to shape the theoretical and practical founda-
tions upon which structure (being a “first-class” entity) will eventually become ubiquitous to all com-
puting environments [30]. Structural computing provides general structure-oriented models and ser-
vices that are able to be adapted to domain-specific abstractions, thus narrowing the gap between hy-
permedia domain and system research. The provision of dedicated structure services for each domain
results in a more convenient and efficient utilization of its abstractions, improving in turn the perform-
ance, quality and cost-effectiveness of client applications. This fact is acknowledged as the most im-
portant benefit of CB-OHSs, since contemporary systems struggle with the close coupling of the navi-
gational model to their infrastructure.

Other manifestations of structural computing environments are multiple open service systems; that
is, systems supporting arbitrary middleware services that can be divided into infrastructure and appli-
cation services [54]. Structure services are considered as components of the context of SOC, where
service reuse and composition constitute a fundamental activity for application development [8, 36].
Therefore, structural computing focuses on the developer’s side, aiming to provide tools and services

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 220

to assist structure servers and client systems development (belonging to the “B-level” or “C-level” of
work).3

In Figure 3, the conceptual internal architecture of a CB-OHS is presented. The various entities of
both middleware and infrastructure layers are described below, along with the appropriate protocols
and interfaces.

Figure 3: Internal architecture of CB-OHS

Component/Structure server: Instantiates the domain specific abstractions, providing specific
structure services to client applications. They are semi-autonomous components, since they rely on the
infrastructure services for common functionality. They establish a well-defined interface for communi-
cation with client applications.

Domain specifications: Specify the abstractions of the domain in terms of both structure entities
(patterns/constructs) and behavior semantics. The structure entities particularize the primitive structure
entities supported by the infrastructure, while the behavior semantics model the computational aspects
of the domain. These computations can be divided into internal operations used mainly for consistency
reasons (e.g., to affirm conditions and constraints or to interpret abstractions in a specific manner), and
external operations invoked by client applications.

Services: Implement the domain-specific external operations. These services are available to client
applications through the use of a specific interface (API).

Infrastructure: Includes the fundamental functionality that is available to all structure servers. Per-
sistent storage, naming, event notification control and versioning constitute an essential core of com-
mon services. A well-defined protocol is provided for the communication among structure servers and
infrastructure services.

Storage: Provides persistent storage services for structure and domain specifications. The storage
protocol manipulates primitive (domain neutral) structure entities. It is the responsibility of the struc-
ture server to transform (or cast) them to the domain-specific structure entities. Domain specifications

3 According to Douglas Engelbart [11], there are three types of work that can be performed in an organization. The A-level is
the work of the organization itself. The B-level is the work that develops tools to improve the ability of people performing A-level
work, while C-level is the work that develops tools to augment the ability of people performing B-level work.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 221

are managed separately in a repository, in order to support reusability and extensibility of structure
patterns among structure servers.

Client application: It is any third-party program that requests structure functionality from one or
more structure servers. To utilize structure services, clients may be either custom-build applications or
extensions to existing applications. In the latter case, either direct extensions are made or wrapper pro-
grams are separately developed.

The presented internal architecture of CB-OHS implies the necessity of a methodology for declar-
ing domain specifications. Although different methodologies are incorporated by different structural
computing systems, the resulting benefits are underlined:

− Better understanding of the domain. In conventional systems, domain foundations are hard-coded
and informally described.

− The domain specifications could be the framework of a structure server. It may be possible to auto-
matically configure a structure server by setting or modifying structure specifications.

− Exploitation of common structures among different domains, thus enhancing reusability and inter-
operability.

− Narrowing the gap between hypermedia domain and system research, by providing a common
framework to express structural abstractions.

As stated above, the transition from early monolithic hypermedia systems to Open Hypermedia
Systems and recently to CB-OHSs has been driven by the vision to provide open structure-oriented
functionalities to every concerning application, in a convenient and efficient way. During the last five
years, a number of structural computing environments have emerged (e.g., [3, 23, 46, 56]). The layered
architecture of CB-OHSs aims to improve the work of both client application engineers and structure
server developers, enabling them to utilize high-level abstractions offered by the lower layers. None-
theless, the lack of an engineering framework guiding the development process counteracts with most
of the anticipated benefits of structural computing.

3. Structural Engineering

A hypermedia or web application is differentiated from conventional software products in a number of
characteristics, including navigability, provision of search mechanisms, appropriate content organiza-
tion, aesthetic and cognitive aspects. As pointed out in [24], hypermedia applications “uses associative
relationships among information contained within multiple media data for the purpose of facilitating
access to, and manipulation of, the information encapsulated by the data”, while in [10] a Web Hy-
permedia Application is defined as “the structuring of an information space in concepts of nodes
(chunks of information), links (relations among nodes), anchors, access structures and the delivery of
this structure over the Web”. In addition, portal-oriented web applications have emerged, providing a
single point of access to distributed, heterogeneous sources of information and services [51]. The
above applications imply a number of specific activities during their development, such as content
acquisition and structuring, navigational and aesthetics design, and multimedia synchronization. The
fields of Hypermedia Engineering and Web Engineering have emerged, aiming to provide a systematic
(scientific and practical), disciplined, quantifiable approach to the development, operation and mainte-
nance of hypermedia/web applications [14, 24].

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 222

The development process of a hypermedia or web application includes a design phase, during
which issues such as application architecture, content scope, structure, depth, granularity, presentation
metaphor, viewpoints and access mechanisms are considered [24]. A number of design models have
been proposed in the literature to assist this particular phase (e.g., HDM [13], RMM [18] and OOHDM
[43]). What is common in all the aforementioned applications, development processes and design
models is the implied support of the navigational domain that results in the utilization of constructs
such as node, anchor and link. Since structural computing perceives the navigational domain as just an
instance (perhaps the most popular and significant) of an open set of structure services, web applica-
tions have the potential to exemplify customized structural abstractions, according to their needs. Con-
sequently, some modifications should be carried out in their development process.

We introduce structural engineering as the framework referring to a systematic and disciplined
approach to the development, operation and maintenance of structure servers and their usage in the
creation of web applications.4 We argue that the design phase of web applications should follow or
comprise a structure assessment phase. The purpose of this phase is to analyze the structure abstrac-
tions of the application and identify the structure services that have to be used. During the implementa-
tion phase, the developer should locate the appropriate structure servers and exploit their protocols. In
case of an unsuccessful result, there is an opportunity for the establishment of a new hypermedia do-
main.

For the definition of a structural engineering framework, the special characteristics of the structure
service components should be identified and analyzed. This is the purpose of the next subsection.

3.1 Engineering characteristics of structure servers

So far, [5] is the only work that has addressed a number of engineering requirements for structure
servers. We extend that work in order to incorporate recent trends in the field of structural computing,
as well as to harmonize CB-OHSs with the web universe.

Structural completeness: The structure services provided should completely solve the structure-
oriented problems caused by the application domain.

Specifications evolution: The decision for the construction of a new structure server should be
made only when the application needs could not be satisfied by existing services. This requires a deep
study of the application domain, so the specifications might not be changed during the development of
the structure server.

Size: Structure servers are considered small to medium software projects, since they constitute
components in the framework of a CB-OHS.

Distribution and Heterogeneity: Structure servers should operate in the distributed environment of
the web, consisting of different hardware and software platforms.

Reusability and Extensibility: Structure services at a fine granularity level constitute building
blocks that can be extended or reused during the development of other, more complicated ones.

4 In the following pages we concentrate on web applications, because of the establishment of the web as the de facto computa-
tion and communication infrastructure. However, the essence of our work is also applicable to web-unaware hypermedia appli-
cations.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 223

Life time: The duration of a structure server is long, presuming that the decision for its develop-
ment is carefully determined. As the software implementation technologies continually evolve, struc-
ture servers may need to migrate to different platforms from time to time, while providing a constant
interface to third-party applications.

Robustness, Performance, Scalability and Availability: These properties are essential for the
proper web-oriented function of structure servers.

Introspection capabilities: Structure servers should be able to communicate their behavior to other
applications (i.e., their service interfaces and descriptions, location, and access control details).

Interoperability: Structure servers that provide functionality for the same hypermedia domain
should be able to interoperate. An additional requirement is the existence of supporting mechanisms
for the transformation of structure abstractions between different hypermedia domains. In this way,
structures may be shared among structure servers.

Web integration: Structure servers should be employed by web application developers in a con-
venient and cost-effective manner. Thus, their interfaces should conform to well-defined and widely
accepted standards.

3.2 Life cycle of structure servers

Although the size of a structure server is usually small, a disciplined development methodology is
needed, since the demanding characteristics should be met, as presented in the previous subsection.
Based on previous experience in the field of structural computing [46, 48, 49], and the conventional
software process phases of Specifications, Development (i.e. analysis, design, coding, and integration),
Testing, and Evolution/Maintenance [39, 40], we are proposing a life cycle for structure servers (Fig-
ure 4), while in the following paragraphs we are describing each one of its phases.

Scenario description

We incorporate the scenario-based specification for Open Hypermedia Systems [35], providing some
essential modifications. All functionality proposed to be part of a given structure server should be jus-
tified through one or more scenarios of its use; that is, when a proposal that some given structure ab-
straction should be implemented arises, a scenario based on actual or foreseen use should be mapped
out. This policy facilitates discussions among application designers and developers as to better specify
the desired structure functionality and avoid “reinventing the wheel”. The description of a scenario
could include the following paragraphs:

− Goals (name of each goal, plus a description of it),

− Characters (the different kind of users of the services, plus a description for each one),

− Data (some examples of data items that may be associated together with the structure abstractions),

− Requirements for third-party applications (requests),

− Structure configuration (description and constraints among the structure elements),

− Behavior description (operations and propagation of them, synchronization among elements),

− Infrastructure requirements (storage, naming, etc.).

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 224

Scenario
description

Rapid
Prototyping

Component
Implementation

Integration

Evaluation

Deployment &
Documentation

Structure specification

Syntax Behavior

Structure specification

Syntax Behavior

Maintenance

Figure 4: Life cycle of structure servers

Rapid Prototyping

The output of this phase is a prototype structure server that simulates the intended functionality, while
not being fully operational. In this way, the evaluation of the scenario is possible and the developer of
the application has the opportunity to test the effectiveness and correctness of the desired services.
Accrued ambiguities or misunderstandings are clarified and modifications to the scenario paragraphs
are made. This testing and backtracking cycle eventually leads to a complete and correct scenario
specification.

Syntax specification of structure

In this phase, the structure elements of the domain are specified. The purpose of the structure elements
are to make concrete the desired structure abstractions and distinguish them from the data abstractions
where they usually reside in traditional software applications. In this way, structure is elevated to a
first class entity, enabling users, designers and developers to discuss and reason about it. Moreover,
during this phase, the properties of the structural elements and the relationships with other structural
elements or with data items are determined. In addition, a thorough analysis of already developed
components should be carried out to detect relevant elements that may be reused. Methodologies that
have been used for the syntax specification of structure include UML (in Construct [56] and Themis
[3] structural computing environments), XML (in the Callimachus CB-OHS [46]) or proprietary for-
malizations (like FOHM [28] or EAD [34]).

Behavior specification of structure

Behavior embodies the computational aspects (or semantics) of a domain; that is, how the structure
elements act in order to accomplish the data organization operations of the domain. Computations may
be classified in two categories, depending on the calling entities: (i) Services, which are available to
clients through the server protocol, and (ii) internal operations, which are used by the structure server
internally (e.g., for consistency checking), or when communicating with the infrastructure. In early

M. Vaitis, M. Tzagarakis, and G. Gkotsis 225

structural computing systems, behavior is considered as an “add-on”, developed on top of the structure
elements. To support the software development task, some structural computing environments provide
tools for the design and automated production of the skeleton of the elements’ methods – like Con-
struct [56], or Callimachus (subsection 5.4). Recent research efforts consider structure, behavior and
data in a unified manner, as different views of the same “whole” [23, 33, 49]. For example, in Themis
2.0 [23] the notion of type is introduced, enclosing functions, variables and constraints expressing the
semantics of a domain, while the structure elements are defined in a template. The association of a
type with different templates enables the implementation of polymorphic behaviors, served by differ-
ent structure servers.

Component implementation

Based on the outcomes of the previous phases, the structure server is created during component im-
plementation. Activities that should be carried out are the customization of the primitive (domain neu-
tral) structure objects of the infrastructure, the implementation of the internal operations, the realiza-
tion of the protocol for communication with the client application, the exploitation of the infrastructure
services, and the possible reuse, extension or customization of already existing components. A quite
essential task is the implementation of functions that cast the neutral structure objects stored by the
infrastructure to the specific structure elements concerning the application domain. In [46], two inter-
nal layers are identified in a structure server: The Abstraction Factory Layer (AFL), which is responsi-
ble for instantiating un-typed structural entities to domain specific abstractions, and the Abstraction
Utilization Layer (AUL), in which the domain specific abstractions — once created — may be used by
clients requesting structuring functionality; see also subsection 5.4.

Integration

During the integration phase, the structure server becomes an active component embedded in the
framework of the CB-OHS. Activities to be carried out depend on the concrete implementation-
specific characteristics of the CB-OHS, and may include integration within web servers, binding of
port numbers, arrangement of authoritative and security issues, etc.

Evaluation

The evaluation activities should primarily ensure properties such as functionality, performance, com-
patibility, reliability, and usability.

Deployment and Documentation

The deployment activity turns the structure server in operational mode, so that client applications may
use its services. A certain prerequisite for this activity is a client's ability to discover and locate re-
quired services. The documentation activity includes both the registration of the structure server prop-
erties in the dedicated directory services, and the configuration of its introspection capabilities. The
aforementioned properties denote all characteristics that distinguish one structure server from the
other, including the name of the domain that is served, the protocol used to receive requests and reply,
its availability, etc. Both maintaining these characteristics in a special repository within the infrastruc-
ture, and selecting an appropriate representation mechanism would ease the development of client ap-
plications, since client-side code could be generated automatically. In [20], a Hypermedia Service De-

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 226

scription Language is proposed, and provides a wide range of information (such as host and port num-
bers, interfaces definitions, comments, etc.) that clients can exploit.

Maintenance

As mentioned before, a careful analysis of the provided services will minimize the need for functional-
ity evolution of a structure server. Maintenance is mainly engaged in corrective, adaptive and perfec-
tive tasks, aiming to guarantee that structure services are according to the requirements.

4. Tools and Supporting Services

Tools that facilitate the entire development process of structure servers are still limited. In some cases,
structure servers are either incorporated tightly into the infrastructure or act as completely autonomous
applications. In the following pages we are describing the importance of a number of tools for support-
ing the development and deployment process of structure servers in the context of CB-OHS. We are
distinguishing two categories of tools: Theoretical tools, aiming to support structure-oriented problem
analysis, and development tools, attempting to assist developers who work with a structural computing
environment.

4.1 Theoretical tools

As already mentioned, CB-OHSs are an incarnation of structural computing, which suggests a specific
view to problems dealing with organization of data. Being not only a technological approach but also a
philosophy and school of thought, structural computing requires new ways that will help: (i) examine
its own foundations, and (ii) analyze real-world data organization problems in a proper manner. Theo-
retical tools are needed primarily by analysts and, to a lesser degree, by developers to address two im-
portant research fronts, as analyzed below.

1. Structural completeness of services: Since structural computing (and thus CB-OHSs) asserts that it
provides a framework able to cover any need when people working with structure, processes are
required to examine to what degree structural services cover or solve structural problems. This
coverage determines their structural completeness.

2. Methodologies for structural analysis and decidability: Structure servers support domains in a very
abstract way, meaning that the abstractions provided solve a family of problems. However, real-
life data organization problems are rather concrete. Currently, there are no systematic approaches
to reduce a real-life organizational problem to a hypermedia domain (or more concisely, to for-
mally determine to which hypermedia domain a given organizational problem belongs). For ex-
ample, let us consider that a hierarchical security model supports users and groups, which in turn
may consist of other groups. Is this problem a special application of the taxonomic domain, and
why? Is there a need for the development of new structure services? As structural computing has
yet to answer these questions in a systematic manner, methods for structural problem analysis
need to be established (i.e., methods being able to compare structure abstractions and semantics to
determine their differences) and methods to decide whether a particular organizational problem
belongs to a hypermedia domain or not. An organizational problem is decidable if there is an ef-
fective and systematic procedure (i.e., comprised of finite steps) that solves the problem within the
structural computing framework.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 227

4.2 Development tools

Besides the theoretical tools needed by analysts, actual development tools are needed by developers, so
to fully exploit the infrastructure services of a CB-OHS. In the following paragraphs the main charac-
teristics of a number of tools of this category are presented:

1. Tools for structure syntax specification: The development of structure servers would be substan-
tially facilitated by the establishment of a specification formalism for structure abstractions. Such
formalism should be open to extensions, model-neutral and provide a common ground for coop-
eration. Although initial attempts of such formalisms exist (e.g., [3, 46, 56]), they do not cover all
domain-specific aspects and have not yet been excessively deployed in order for their shortcom-
ings to appear.

2. Tools for structure behavior specification. While tools for structure syntax specification are aim-
ing primarily at syntactical aspects of structure, tools for structure behavior specification are tar-
geting the dynamic and computational aspects (semantics). Based on the structure syntax defini-
tion, tools for behavior specification would allow controlling the life-span of structural abstrac-
tions, their interaction and their reaction to messages. An initial work in this direction is presented
in [49].

3. Tools for structure services discovery. The great amount of potential services provided by CB-
OHSs, raises issues about components’ usage, location, status and availability [21]. While naming
can solve the problem of locating structure servers [47], it can do so only if their names are
known. When names of structure servers are unknown, locating them in contemporary CB-OHSs
is rather impossible. The latter characterizes the situation of developers that get in touch with CB-
OHSs for the first time. In such cases, the existence of supporting services is essential, aiming the
publication of structure server’s properties and deployment details. The effort of attempting to lo-
cate available structure servers without prior knowledge of their existence or their name is referred
to as discovering of structure servers. Discovering services can take the form of browsers that ex-
amine the available structure servers within CB-OHSs and report on their properties. Furthermore,
a special service can be included in the infrastructure of CB-OHSs providing the descriptions of
APIs that allow the integration of discovery mechanisms into third-party applications. Irrespective
of the form these tools may take, special protocols are needed to facilitate discovery. For example,
using web services to represent the provided services (in particular, WSDL) would allow the auto-
matic generation of client-side protocol stubs. Furthermore, this approach would also allow the
runtime binding of protocol classes into clients, as it is the case on the web.

5. Developing Structure Servers using the Callimachus CB-OHS

In this section we outline how the presented software methodology is currently being used in the Cal-
limachus CB-OHS [46] in order to develop support for hypertext domains. First, we give a brief de-
scription of Callimachus, emphasizing the technologies that have been used for its construction. Fol-
lowing this, we focus on the rapid prototyping support for the development of new structure servers.

5.1 Callimachus software components and technologies

Callimachus follows a component-based architecture as depicted in Figure 5. Its primary architectural
elements are client applications, structure servers and infrastructure. Client applications can be either

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 228

native or third-party applications, such the MS Office Suite and Emacs, or even web servers and web
applications. Client applications (clients for short) request services from structure servers using a well
defined protocol.5 The on-the-wire messages sent between clients and servers are encoded using XML
and transferred using HTTP tunneling.6 The adoption of this technique has been imposed mainly by
the need to overcome the access restrictions to non WWW services enforced by firewalls. Figure 6
shows a sample message requesting the opening of a node from a navigational structure server in Cal-
limachus. HTTP is used as a transport protocol to tunnel client requests. The Content-Type pa-
rameter specifies the protocol that is being used.

Client Application

API

Structure Server 1

Infrastructure

XML messages

Storage Server

RDBMS

ODBC

API

Naming Server Notification Server Template
Repository Server

Structure Server 2

API

Structure Server N

API

XML messages

Figure 5: The Callimachus architecture

All client-side aspects of the protocol come in the form of a library that implements an API (this
library is an essential software module on the client side). Different structure servers require different
protocols to communicate with client applications, while this communication is stateless. The con-
struction of the client-side API takes place during the development of the structure server.

The Callimachus structure servers have the form of TCP/IP daemons that listen at a specific port
for incoming requests. A new thread is spawned for each request. Internally, a structure server has a
layered architecture, composed of two core layers: the server shell and the domain model (Figure 7).
The server shell layer deals with the aspects of the structure server as an interface to external entities
(clients). The domain model layer deals with the aspects of the structure server as a hypermedia-aware
component; that is, it implements and provides the specific structure abstractions of the hypertext do-
main. All structure abstractions are specializations of a primitive entity called the Abstract Structural
Element (ASE) [46, 48]. This layered architecture facilitates the rapid development of new structure
servers, described in the following paragraphs.

The infrastructure provides those services that are common to all structure servers: storage, nam-
ing, notification, and template repository services. Of particular interest to developers is the template
repository service that maintains a repository for the templates of the structure servers. A template is

5 With the term protocol we refer to the syntax and semantics of the “on-the-wire” messages exchanged between client applica-
tions and structure servers.
6 HTTP tunneling is also known as HTTP encapsulation.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 229

the formal specification of the structure abstractions of the domain that is served by a structure server.
Keeping templates organized in the repository, enables reusability and extensibility of structure ab-
stractions among structure servers (see subsection 5.4).

Figure 6: A message (openNode) sent from a client to a navigational structure server

Structure Server

API

Server Shell

Domain Model

Figure 7: Internal layered architecture of structure servers

The communication between structure servers and the infrastructure follows the same technologi-
cal design as for the interaction between clients and structure servers. Each infrastructure service is
implemented as a TCP/IP daemon that listens to a particular port and requires an exclusive communi-
cation protocol. For each service, an API allows access of external entities to the available functional-
ity. Such a separation of services has been adopted so that structure servers will be able to achieve
fine-grained integration into structure servers. For example, some structure servers may not have the
need for notification services, thus code dealing with notification issues should not be part of them. For
permanent storage, a relational database management system is used, where information is stored by
each one of the infrastructure services. For example, HRDs7 of resources [47] are stored in a dedicated
database schema and managed by the naming service. Infrastructure services communicate with the
RDBMS using ODBC.

7 A Hypermedia Resource Descriptor (HRD) captures information regarding how to access a hypermedia resource.

POST /executeOperation HTTP/1.1
Content-Type: NavProtocol v1.2
Content-Length: 540
User-Agent: Callimachus MS-Office plugin v2.4

<?xml version=”1.0”?>
<!DOCTYPE np.xml>
<NavProt version=1.2>
 <NPMessageHeader>
 <Host>150.140.18.219</ Host >
 <Agent>Callimachus MS-Office plugin v2.1</Agent >
 <SessionID>0x562AAA2222</SessionID>
 <Operarion>OpenNode</Operation>
 <Request Time>2/3/2003 11:08:52</ Request Time>
 </NPMessageHeader>
 <NPMessageBody>
 <NPOpenNodeRequest>
 <Node>
 <NodeName>TestNode</NodeName>
 </Node >
 </NPOpenNodeRequest>
 </NPMessageBody>
</NavProt>

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 230

5.2 Rapid prototyping support

In this subsection, we analyze the rapid prototyping phase of the development of a structure server in
Callimachus, emphasizing on the involved tasks and tools. As mentioned in section 3, the objective of
this phase is to illuminate and verify the scenario describing the application domain. Figure 8 illus-
trates the tasks performed during the prototyping phase.

Server shell
development

Integrator
development

Domain model
development

Structure server
prototype

Server
testing

Figure 8: Rapid prototyping of structure servers in Callimachus

In Callimachus, a throw-away prototyping approach is avoided being used; instead, an evolutionary
prototyping approach has been adopted [25]. This means that the objective is to deliver a working
structure server to end-users, rather than throwing the prototype away, and use the knowledge gained
to develop the server from scratch.8 However, the working server provides only the fulfillment of the
scenario requirements; issues such as enterprise level robustness, performance, scalability and avail-
ability are not addressed.

Design and development is split into tasks, each one dealing with a particular aspect of the struc-
ture server. Three main tasks are carried out, each producing a prototype subsystem. The integration of
developed subsystems results in a working structure server. The specification, design and implementa-
tion of each subsystem do not follow a particular process model, because of their tightly coupled na-
ture and their “small” size as software artifacts. These tasks are described in detail below.

Server shell development: During server shell development, the structure server’s interface is built.
In this task, the emphasis is on the design of the exact procedure the structure services are invoked.
More particularly, all aspects of the structure server when viewed as the receiver of client requests are
addressed. Such aspects include listening to, parsing and validating incoming requests, as well as pre-
paring and passing these requests to the domain model for execution.

Domain model development: During this task, the syntactic and behavioral aspects of the domain-
specific abstractions (including their relationships) are designed and developed. The syntactic and be-
havioral specifications originate from the scenario and are defined in terms of the Callimachus Ab-
stract Structural Element.

Integrator development: The aim of this task is the development of the necessary software mod-
ules that will enable integration of clients with the structure server. These modules come in the form of
a client-side API. Specifically, a wrapper container and a communicator are developed [52] so that
client applications are able to request structure services.

8 Within Callimachus, developers that build new services or tools based on a structure server are considered end-users as well.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 231

The prototyping phase starts with the development of an initial domain model prototype. Conse-
quently, the server shell and the integrator prototypes are developed. After an initial cycle, each proto-
type is refined by constantly iterating through the tasks until an acceptable structure server prototype
has been completed. The prototype structure server is tested by end-users aiming to assess its accor-
dance to the scenario.

A number of tools aid developers during structure server design and creation in order to ensure
rapid prototyping and in particular short iteration cycles between releases. These tools are crucial,
since they attempt to address frequent challenges that hinder developers from delivering working pro-
totypes quickly. These challenges include non-functional and functional aspects of structure servers:

Lack of high level domain abstractions: Callimachus’s primary abstraction (the ASE), although
powerful in expressing structural abstractions, proves difficult to work with, yielding to error prone
structure servers that are difficult to maintain and evolve.

Incremental service (and operation) formalization: During prototyping, the set of the provided
services (and operations that users can request) is initially unknown, with their name, behavior and
parameters slowly emerging, as prototypes become available for testing. By having services emerging
and evolving while development is progressing, the emphasis is on ways to easily integrate new or
modify existing services, without requiring changes in functionally unrelated modules of the structure
server (which cause major concerns to developers). In particular, the goal here is to achieve localiza-
tion of the effects during the development of services.

Coping with concurrency issues: As mentioned earlier, in Callimachus a new thread is spawn for
each incoming request, making a structure server a multi-threaded environment. In such environments,
care needs to be taken, when developing access mechanisms to shared resources, such as structural
elements. This increases the complexity of the design and imposes new concerns on developers. Cur-
rently, such issues are addressed in an ad hoc manner for each structure server, making the utilized
solutions difficult to maintain and evolve.

Designing for multi-protocol support: Structure servers in Callimachus should be able to support
multiple protocols for the same domain in order to allow interoperability, to some extent, with existing
clients. This would allow, for example, a navigational structure server to support its “native” protocol,
and other existing protocols, such as OHP [41]. Towards these directions, developers have to concen-
trate on the construction and integration of new protocols in a “plug-and-play” fashion.

Smooth evolution of protocol implementations: Although the design of multi-protocol support en-
sures easy integration of new protocols developed entirely from scratch, it does not address evolution
of existing protocols. During protocol evolution, new methods might be added to existing protocol
implementations; existing methods might change their signature or might even be associated with dif-
ferent operations at the domain model layer. Such tasks need to be carried out quickly to ensure short
iteration cycles.

Designing advanced features: As exemplified by recent hypermedia applications [7, 44], history,
logging, and undoing/redoing of user actions, along with supporting transactions, are considered im-
portant aspects of hypermedia frameworks. Nevertheless, few systems can actually demonstrate such
qualities.

To ensure rapid prototyping and short iteration cycles among releases of the above subsystems, we
base their development on design patterns and CASE tools, thus providing the foundation for enabling

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 232

extensibility and customization in a systematic way and attaining smooth evolution of structure serv-
ers. In the following paragraphs we describe how design patterns and CASE tools are used so that the
server shell and the domain model subsystems can be developed. For the development of the integrator
subsystem we follow a similar approach as for the server shell, so a detailed description is omitted.

5.3 Structure Server Shell development: The S3 framework

As mentioned above, the server shell subsystem addresses the issues of the structure server as the in-
terface to external entities; this means that it acts as the mediator between clients issuing requests and
the domain model layer receiving and executing these requests.

During the development of the server shell of a new structure server, developers always repeat two
inevitable steps: (a) Parsing and validating incoming requests, and (b) preparing and passing the op-
erations specified by the requests to the domain model subsystem for execution, and sending the reply
back to the requests’ origin.

Parsing and validating incoming requests

During this step, developers need to address the structure server’s protocol issues by creating the ap-
propriate protocol handler [17]. After a connection with a client is accepted, all received requests for
structure services need to be parsed in order to be checked for validity and prepared for execution. Va-
lidity checking includes the examination of the conformance of the requesting message to the syntax of
the domain protocol specifications, as well as to the semantics of the domain model functions (i.e., the
indicated operations along with the type of parameters supplied). Preparing a request for execution
refers to the necessary actions dealing with determining the appropriate operation in the domain model
that has to be executed. Since different structure servers require different protocols, this step is per-
formed every time a new structure server is developed.

Preparing and passing operations

Once requests have been parsed and validated, they have to be delegated to the domain model subsys-
tem to be executed. In this way, besides reducing development costs, the server shell software leads to
fewer errors in structure servers and helps fulfill basic requirements. At this point, developers need to
bridge the protocol handler with the domain model. In Callimachus, an essential design requirement
for the domain model is to be decoupled from the server shell. This approach enables the independent
variation of the two subsystems, resulting in a layered architecture in which many challenging tasks
can be easily addressed by the developers, such as attainment of a systematic approach to the evolution
and extension of domain-specific operations (and protocols), development of operations’ logging and
undoing, and support for operations’ transaction management.

In order to reduce the aforementioned repeated development efforts, we identify and factor out
tacit practices by making them explicit in a tool we call the Structure Server Shell (S3) framework. In
this way, beside development efforts reduction, the server shell software is less error prone and fulfills
the laid requirements. The S3 framework is a “semi-finished application that can be specialized to pro-
duce custom applications” [19]. Developers can specialize it and provide the necessary implementa-
tions to fill-in the variable parts, thus rapidly constructing server shell prototypes.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 233

The design of the S3 framework is based on specific design patterns [12] to fulfill the aforemen-
tioned requirements. In the next subsection we briefly comment on the design patterns used by the
framework and report on how they are used by developers.

5.3.1 Design patterns for the S3 framework

The design of the S3 framework makes use of the strategy and prototype design patterns [12] as well as
variations of the active object and command processor design patterns [9]. The former is used as the
foundation to create protocol handlers, while the latter ones are used to passing the operations to the
domain model subsystem.9

ParseRequest()

HTProtocol

HTProtocol->Parse()

ServerContext

Parse()
Clone()

HypertextProtocol

Parse()

NavProtocol

Parse()

OHP

Parse()

Navigational

Figure 9: Use of the strategy design pattern

The use of the strategy design pattern is depicted in Figure 9. Within each structure server, the
ServerContext class deals with all low level aspects of receiving a request from the TCP/IP
socket, as well as parsing the HTTP headers of the tunneled request. The class also maintains a refer-
ence to an instantiation of the HypertextProtocol, an abstract class that is used to parse the re-
ceived request and supports only the public virtual methods Parse and Clone. While the Parse
method encapsulates the suitable algorithm for parsing and preparing incoming requests, the Clone
method returns a copy of the HypertextProtocol instance, used in the context of the prototype
design pattern. All protocols supported by a particular structure server, are derived from the Hyper-
textProtocol class. Every derived class (that constitutes a protocol handler) implements the
method Parse, where the appropriate code for parsing, validating and preparing the request is placed
by the developer. The appropriate protocol is determined and instantiated during runtime based on
HTTP’s Content-Type parameter (see Figure 6). For this task, the prototype design pattern is util-
ized, determining how the appropriate available protocol implementations are declared and instantiated
during runtime (see hypertextProtocolFactory in Figure 10). The hypertext protocol factory
is part of the ServerContext class and is instantiated during initialization of the structure server.
There is exactly one hypertextProtocolFactory for every structure server. Within the S3
framework, adding support for new protocols is fairly trivial, allowing developers to focus only on
parsing and preparing without spending time about how to integrate the new protocol into the structure
server. During design time, developers have to create a class that resembles their protocol implementa-
tion (derived from the HypertextProtocol class) and to provide the implementation for the

9 The bridge pattern could be used as well. However, the strategy pattern has been chosen because of its emphasis on the behav-
ior of individual objects, rather than their interface.

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 234

Parse method. Furthermore, they have to register the new class in the factory’s registerProto-
col method that takes place in the factory’s constructor. During runtime, correct deployment of the
new protocol handler is ensured by the prototype design pattern, since the mechanism of how to de-
termine which class to instantiate is independent of protocol handlers.

Figure 10: Use of the prototype design pattern for the registration and selection of the appropriate protocol at runtime

To address issues related to the task of passing operations to the domain model subsystem for exe-
cution, the S3 framework utilizes a design inspired by the active object and command processor design
patterns (Figure 11). The objective of our approach is to separate request invocation from request exe-
cution [9].

In the design pattern of Figure 11, all client requests (denoting operations on structure abstrac-
tions, such as openNode or traverseLink in case of a navigational structure server) are instanti-
ated as separate objects. There exists one class for each operation available to clients (e.g., open-
Node, createLink, traverseLink, createComposite, etc.), elevating operations to first
class entities, thus allowing them to be stored, scheduled and even undone. Such treatment of opera-
tions also allows the support of transactions. In S3 framework, all available operations are derived from
the DomainOperation class, an abstract class with two methods: Execute and Undo (imple-
mented by the concrete derived classes). The Execute method of each concrete class executes the
operation by calling the appropriate method of the class HMDomain that represents the interface to the
domain model subsystem.10 For example, the openNode class would call the openNode method of
class HMDomain.

The appropriate concrete operation instances are created by the HypertextProtocol class, af-
ter having parsed and validated incoming client requests (e.g., see the Operation tag in Figure 6).
The HypertextProtocol class decides which operation to instantiate in order to be flexible with
respect to which method of HMDomain class to invoke. There might be cases where a matching

10 The HMDomain class can be thought of as an “API” to the domain model subsystem.

class hypertextProtocolFactory {
 private:
 hash_map<const char *, hypertextProtocol*> htProtocolLibrary;
 protected:
 public:
 hypertextProtocolFactory (){

 registerProtocol(“NavProtocol”, new navProtocol());
 registerProtocol(“OHP”, new OHP());
 registerProtocol(“Navigational”, new Navigational());
 }
 ~hypertextProtocolFactory(){};

 //Registers a new protocol handler
 int registerProtocol(char *pName, hypertextProtocol *ht);

 // Searches the library and
 // returns the appropriate protocol handler. Calls the Clone
 // method of protocol handler objects
 hypertextProtocol *getProtocol (char *pName);

} // hypertextProtocolFactory

M. Vaitis, M. Tzagarakis, and G. Gkotsis 235

method might not be available in the HMDomain class, so an equivalent method (or set of methods) in
that class should be invoked. For example, a getNode operation [6] (that would be modeled as a
separate class) has to invoke the available openNode method (i.e., an equivalent method) of the
HMDomain class, when a getNode method is not available. Such choice is conveniently done at the
HypertextProtocol class after parsing and during preparation of the client request.

1..*
opq->insert(op)

operation()
dispatch ()

OperationProcessor

Execute()
Undo()

DomainOperation

openNode createLink traverseLink

HMDomain
<<Execute>>

insert()
remove()

OperationQueue

HypertextProtocol <<create>>

Response

Figure 11: The design pattern for passing operations to the domain model subsystem

The HypertextProtocol class enqueues all operation instances by calling the Operation
method of the OperationProcessor class. There is exactly one OperationProcessor in-
stance for every structure server. Thus, an OperationProcessor constitutes a singleton [12]. The
OperationProcessor class maintains the operation objects in the OperationQueue, and
schedules their execution. The OperationQueue class may arrange the operations by priority and
decide which operation is ready to be executed by calling the operation’s canExecute method. Op-
erations are dequeued and executed concurrently by calling the appropriate methods of the HMDomain
class. Each operation executes in a separate thread of control. The output of each operation is available
through a specific class (see Response class in Figure 11) that is used to sending replies back to cli-
ents.

With respect to operation execution, the S3 framework applies a thread pool model [42]. More par-
ticularly, while a thread per request model is adopted at the connection stage (meaning that for each
request a new handling thread is spawn), only a fixed number of dedicated threads is responsible for
executing the operations. Figure 12 depicts the threading model in the S3 framework. Each thread of
the thread pool polls the operation queue for operations that are ready to be executed. A thread in the
thread pool gets a new operation for execution by calling the queue’s remove method. Thus, every op-
eration has its own thread of control permitting concurrent execution of requests.

During structure server prototyping developers can systematically approach the problem of con-
stant change in the domain operations, in the protocol specifications and in their bridging. New opera-
tions can be added during design time by extending the DomainOperation class and delegating
execution to the appropriate domain specific interface method. Since identification and invocation of
the operation is provided by the framework at run-time, developers can focus only on semantic aspects

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 236

of the operations. In addition, the framework provides the foundation for supporting a number of ad-
vanced (but necessary) capabilities, such as the undo/redo operations, as well as transaction manage-
ment for all structure servers in a uniform manner, thereby reducing maintenance efforts.

Operation Queue Thread poolThread per request

Figure 12: Concurrency models supported in the S3 framework

Currently, the S3 framework is available in the form of C++ classes that should be copied into a
private workspace in order to be specialized.

5.4 Domain model development

While the S3 framework addresses development issues related to the structure server’s interface to ex-
ternal networked entities, the Callimachus Template Editor (CTE) tool focuses on the hypermedia-
aware aspects of it. The objective of the CTE is to support short iteration cycles during prototyping of
the domain model subsystem, by providing an environment that helps the design and implementation
of domain-specific structure abstractions (Figure 13). In particular, CTE allows developers to:

− inspect and browse the template repositories of remote Callimachus instances (left pane of the
screenshot of Figure 13);

− design, create and update the domain-specific abstractions by creating templates and structure types
[46, 48];

− store the templates in a Callimachus instance template repository; and

− generate code that allows the handling of the designed abstractions at runtime. The generated code
forms an essential part of the structure server’s functional core.

Templates consist of structure types and each structure type capture the semantics of a domain
specific abstraction. CTE displays all available templates grouped by the Callimachus instance to
which they belong (Figure 13). Moreover, CTE allows locating templates across Callimachus in-
stances by permitting querying of remote template repositories. Currently, querying is supported
against a number of template attributes, such as template name, creator and comments. An initializa-
tion file holds the host and port information of the available template repository services. CTE allows
the creation of new templates and structure types and for their browsing and update.

Since all structure types are derived and expressed in terms of the Abstract Structural Element,
CTE provides the means to tailor ASE in order to “shape” particular structure abstractions. CTE ad-
dresses syntactical aspects of structure abstractions, leaving out behavioral characteristics; the latter
are handled during the code generation step that follows. For each structure type, the attributes and its
endsets are defined, while endsets can be configured even further. Figure 14 depicts the definition of

M. Vaitis, M. Tzagarakis, and G. Gkotsis 237

the ‘Parts’ endset of the ‘Composite’ structure type. The description of all properties of templates,
structure types, attributes and endsets is out of the scope of this paper and can be found in [46, 48].

Figure 13: User-interface of the Callimachus Template Editor

Abstraction mechanisms are also supported by CTE. In particular, an inheritance mechanism is
provided at the template and structure type level. A template can extend one or more other templates,
while a structure type can extend only one other structure type. In this way, developers have the ability
to build new abstractions based on existing ones, thus permitting reusability and ultimately shortening
the development cycle.

Once a template has been defined, it is stored in the appropriate instance’s template repository in
an XML file (Figure 15). During start-up, structure servers load the templates from the template re-
pository and consider their specifications in order to validate (i.e., allow or prevent) requested opera-
tions. For example, the addition of a link to the Parts endset of a Composite is prohibited, since only
nodes may be members of it (Figure 14).

Apart from validating requested operations, templates are utilized for the runtime support of the
hypertext domain. In particular, the specifications of the templates and their structure types are em-
ployed for the automatic generation of code, handling their runtime aspects. The generated code be-
comes part of the structure server’s core, dealing with the actual domain-specific abstractions (as ex-
emplified with the class HMDomain in Figure 11). In this way the required efforts to address the be-
havioral (computational) aspects of the domain are reduced; the gap between domain-specific and Cal-
limachus-required abstractions is filled in.

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 238

Figure 14: Definition and configuration of an endset (Parts) of a structure type (Composite)

 CTE employs an object-oriented approach to provide the necessary constructs. The code gener-
ated reflects a layered process of delivering domain-specific functionality using the ASE. For each
structure type, two classes are created, each one corresponding to one of the following two layers of
domain-specific abstraction: (1) the factory layer, which is responsible for adapting the ASE to meet
the constraints of the abstraction (syntactic aspects), and (2) the utilization layer, which is responsible
for using the tailored ASE (behavioral aspects). In the generated code, the class of the utilization layer
extends (via inheritance) the class at the factory layer. Figure 16 illustrates the classes generated for
the Composite structure type (Figures 13 and 14). The left pane of Figure 16 shows the class corre-
sponding to the utilization layer (high level abstraction with which developers work), while the right
pane shows the class corresponding to the factory layer (“shaping” of the high level abstraction using
lower level ones).

For both classes, CTE provides the implementation of some of their methods. More specifically,
for the class at the factory layer, CTE provides the implementation of the constructor, where the actual
configuration of the ASE takes place (see constructor compositeASE in Figure 16). For each endset
of the structure type, CTE provides the implementations of methods for adding, updating, removing
and accessing endset members (see addParts and removeParts methods in Figure 16), taking
care of runtime type conversion.11 CTE also provides methods for manipulating attributes that are ei-

11 A specific naming convention is used for these methods: the name of the method consists of the operation name and the name
of the affected endset.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 239

ther application specific (e.g. compositeType in Figure 14) or inherent to the ASE (such as id, creator,
creation date, type name). For the class at the utilization layer, CTE provides the implementation of
methods for calling all endset-related methods of the class at the factory layer. Developers can also add
any new methods required to express more behavioral aspects. It is the class at the utilization layer that
gives developers the illusion of simplicity of working closely to the application domain, by hiding Cal-
limachus related lower-level system concerns.

<template name=”NavigationalC” resolvability=”yes” accessibil-
ity=”yes”>

<uses>

<template>

<id>2</id>

</template>

</uses>

<structure_type id=”21” name=”Composite” sidedness=”1”>

<endset name=”Parts”>

<s-set><member type=”4” min=”0” max=”-1” /> </s-set>

</endset>

</structure_type>

</template>

Figure 15: XML output of CTE for the ‘composite’ structure type

Whenever a template inherits from another template, code is generated for the inherited structure
types. Currently, CTE creates code in C++ that developers may copy into their local workspace and
tailor as needed.

6. Other Structural Computing Environments

In this section, a number of other existing approaches related to the structural computing field are
briefly presented, emphasizing the supported development methodology and their integration with the
web.

The Fundamental Open Hypertext Model (FOHM) [27, 28] offers a single generalized model to
express structure types for hypertext domains. It is constructed from four core object types: Data ob-
jects (wrappers for any piece of data, held outside of the model), Associations (relationships among
data objects or/and other associations), References (pointers to data objects and associations), and
Bindings (connectors used to attach references to an association). Context and behavior objects may be
attached to any part of a FOHM structure. The former are used to define in which context a FOHM
part is visible, while the latter are opaque to the model and are interpreted by the client application.
FOHM constitutes the underlying model for a number of structure servers (Real Time Streaming Pro-
tocol Server, Auld Leaky link server [26, 27]). The services are provided by autonomous applications,
which do not follow the layered CB-OHS architecture. The API for the development of client applica-
tions is fully documented, while no other development tools are provided. The communication with
client applications is realized with proprietary XML messages over HTTP.

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 240

class composite: public compositeASE
{

 private:

 int compositeType;

 protected:

 public:

 composite();

 composite(compositeASE &c);

 ~composite();

 Node *getParts(aseID id){

 nodeASE *na=_getParts(id);

 return(new Node(na));

 };

 int getCompositeType();

 int setCompositeType(int ct);

 int addParts(Node *n);

 int removeParts(Node *n);

 …

}

class compositeASE: public ASE

{

private:

protected:

 nodeASE *_getParts(aseID id);

 int _addParts(nodeASE *a){

 _addEndsetMember(PARTS,a);

 };

 int _removeParts(nodeASE *n);

 int _inParts(nodeASE *n);

public:

 compositeASE(){

 setTypeName(COMPOSITE);

 createEndset(PARTS);

 addInclusive(PARTS, NODE);

 setMinParticipation(PARTS,1);

 setMaxParticipation(PARTS,-1);

 };

 ~compositeASE();

 int load();

 int save();

 aseID getID();

 char *getTypeName();

 char *getCreator();

 …

}

Figure 16: Excerpts from generated classes for a structure type designed in CTE

The Information Unit Hypermedia Model (IUHM) [29] originated from OPALES, a hypermedia
environment for exploring and indexing video archives. IUHM was designed to provide extensibility,
openness, and interoperability. It adopts a single hypermedia model based on the navigational para-
digm, whereas new services can be expressed and integrated. The fundamental construct of the model
is called an Information Unit (IU); every system entity (such as data, metadata, service, user-group,
ontology) is encapsulated as an Information Unit instance. The structure of an IU is divided into its
descriptor and its content. The descriptor holds four links, named type, role, relative and owner, point-
ing to other IUs. The type link points to the structure syntax of an entity, while the role link points to
its semantics (behavior). Relative links express arbitrary directed relationships between a pair of IUs.
The owner link assigns the IU access rights. IUHM follows the layered CB-OHS architecture. The

M. Vaitis, M. Tzagarakis, and G. Gkotsis 241

infrastructure consists of an IU server, managing IU descriptors, and a number of other content man-
agement servers. A functional core at the middleware level provides a generic interface for creating,
searching, accessing and updating IU descriptors and contents. Developers can make use of this func-
tional core and a set of primitive and basic services, in order to compose their specific services (in turn,
defining the properties of a new IU). New services should be registered and are made available dy-
namically.

The Themis structural computing environment [3, 4] consists of a framework interface, a generic
structure server, and two extension subsystems, for the definition of structure templates and structure
transformations, respectively. The primary structure abstraction is the Element abstract class, associ-
ated with an open set of attribute-value pairs. The value of an attribute may be another element in-
stance. Element instances belong to either of two subclasses, Atom and Collection, where the second
subclass aims to group together other elements. These simple conceptual constructs can be combined
to support a variety of domain-specific structures, both tree-based and non-hierarchical. Application
developers can extend the generic structure server by defining templates (using the template subsys-
tem) for the needed domain-specific structures. The template subsystem provides also instantiation
operations for structures, which can be manipulated through the framework interface. The transforma-
tions subsystem provides supporting operations that automatically transform structure instances from
one template to another. This functionality is delivered through custom-developed plug-ins that are
loaded on demand into the transformation subsystem. Themis utilization in real application develop-
ment projects (e.g., the InfiniTe Information Integration Environment [4]) has resulted in reducing the
amount of code required, along with raising the level of abstraction such that it is easier to be under-
stood and maintained.

The Construct structural computing environment [55, 56] is designed to support the development
and host of an open set of structure and infrastructure services. The development process consists of
using a UML tool to specify the classes (in terms of both state and behavior) that make up a new ser-
vice. The derived diagram is automatically transformed to an IDL specification, which in turn deliv-
ered to the Construct Service Compiler (CSC). CSC produces a set of files, including an XML DTD, a
skeleton service, and a set of common service behaviors. The skeleton service consists of a set of
classes specifying a set of methods having their bodies (semantic parts) empty. The developer has to
fill the missing code and load the service to the Construct environment. Generated services are avail-
able not only to third-party clients, but also to the development environment itself. The current set of
services includes navigational, metadata, taxonomic, spatial, cooperation, and data mining services,
while some of them are also provided on the web [53].

All the above structural computing environments have been designed and developed with respect
to the basic notion of structural computing, i.e. the primacy of structure over data. For the representa-
tion and manipulation of structure, each of them provides a single abstract entity and a set of opera-
tions and procedures for its customization to the specific structure syntax and semantics of the applica-
tion domain. Structure server developers utilize a proprietary API provided by the infrastructure in
order to accomplish their tasks, while application developers ought to be familiar with the different
protocols and interfaces each structure server provides.

As is evident, a significant amount of work has been invested for the construction and provision of
infrastructures to realize the structural computing vision. Issues like process models, development
methodologies, integrated development environments, CASE tools, standard service protocols, web

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 242

integration, are only partially examined. Although there are still some open questions about the foun-
dation of structural computing, we believe that the maturity of the aforementioned engineering aspects
will broaden structure services utilization and acceptance.

7. Conclusions – Future Work

In this paper we have attempted to approach some software engineering issues on the newly-emerged
field of structural computing. Despite the advantages in terms of convenience and efficiency that are
attained by the isolation of the structure-aware aspects (and their encapsulation in structure services)
from the data-aware ones in data-organization applications, structural computing is not widely ac-
cepted by the software development community. We believe that the lack of an engineering framework
directing the design and implementation of structure servers, along with the immaturity of the tools
supporting the “primacy of structure over data” philosophy of structural computing, make the utiliza-
tion of CB-OHSs cumbersome; developers hesitate to incorporate structure services into their daily
tasks.

Based on well established software engineering practices and on the experience gained from pre-
vious research work, we propose a software methodology for CB-OHSs, aiming to emphasize on their
critical characteristics, rather than exploiting specific technologies. Towards the establishment of
proper development tools for structure servers, we have identified the areas in which such tools are
mostly needed, including both the theoretical and the practical aspects of structural computing. With
regard to the theoretical aspects, new tools to analyze structure problems and evaluate structure ab-
stractions are required, based on the notions of structural completeness and decidability. Regarding the
practical aspects, integrated developments environments are needed; these environments should ma-
nipulate domain-specific structure syntax and behavior as well as new methods in locating and binding
structure services with client applications. We have described how our proposed methodology is sup-
ported by the Callimachus CB-OHS, emphasizing the tools that enable rapid prototyping of new struc-
ture servers. In addition, a number of other contemporary structural computing environments are
briefly presented, emphasizing the supported development methodology.

Our future research plans mainly focus on two parallel aspects: on extending the set of tools of
Callimachus in order to further assist the development of structure servers; and on establishing meth-
odologies and tools to facilitate the convenient integration of structure services into web applications.

The Callimachus development framework does not support the specification of the behavioral se-
mantics of a domain; instead the developer should fill–in the body of the methods created by the CTE
in order to make the desired behavior happen. Behavior modeling is a significant research issue in the
field of structural computing in general. Instead of perceiving behavior as something orthogonal to
structure, in [49] we have made some initial attempts to perceive structure as a function transforming
input states to output states, according to the semantics of the given domain. An initial stimulus in-
vokes a series of transformations by propagation through the structure elements, until the achievement
of the final state. These preliminary efforts should be further extended in order to formalize an algebra
or language able to describe both the syntactic and the behavioral aspects of structure as a whole.
Based on such formalization, CTE could generate code dealing with behavioral aspects of the domain,
thus reducing development efforts.

Finally, some initial systematic attempts have been made for integrating structure services into
web applications. In [21] a step-by-step methodology is presented for the provision of structure ser-

M. Vaitis, M. Tzagarakis, and G. Gkotsis 243

vices on the web, based on the web services technology [50]. An experiment has successfully been
carried out, making available the Babylon taxonomic structure server through the SOAP protocol.
However, a great amount of effort from the developer is required (especially for generating the appro-
priate code on the web application side) to integrate existing structure services into web applications;
while at the same time there is no support for structure service’s evolution. During structure server
evolution, web applications (being clients of structure servers) need to evolve as well. This makes web
applications ad-hoc, error-prone and difficult to maintain. Currently, we are concentrating on a proto-
typing methodology for the integration of structure services into web applications, and on the support
of their seamless evolution through an appropriate set of tools.

References
1. Agrawal, R., Bayardo, R. Jr., Gruhl, D., Papadimitriou, S., Vinci: A Service-Oriented Architecture for Rapid

Development of Web Applications, in Proceedings of the 10th Int’l Conference on World Wide Web (WWW
’01, Hong Kong, Hong Kong), 2001, pp. 355–365.

2. Anderson, K. M., Integrating Open Hypermedia Systems with the World Wide Web, in Proceedings of the 8th
ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’97, Southampton, UK), 1997, pp. 157–166.

3. Anderson, K. M., Sherba, S. A., Lepthien, W. V., Structural Templates and Transformations: The Themis
Structural Computing Environment, Journal of Network and Computer Applications, 26(1), January 2003, pp.
47–71.

4. Anderson, K. M., Sherba, S. A., Lepthien, W. V., Structure and Behavior Awareness in Themis, in Proceedings
of the 14th ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’03, Nottingham, UK), 2003, pp.
138–147.

5. Anderson, K. M., Software Engineering Requirements for Structural Computing, in Proceedings of the 1st Int’l
Workshop on Structural Computing (SC1, Darmstadt, Germany), Technical Report AUE-CS-99-04, Aalborg
University Esbjerg, Computer Science Department, Denmark, 1999, pp. 22–26.

6. Anderson, K. M., Taylor, R. N., Whitehead, E. J. Jr., A Critique of the Open Hypermedia Protocol, Journal of
Digital Information (JoDI), 1(2), 1997.

7. Atzenbeck, C., Nürnberg, P. J., Constraints in Spatial Structures, in Proceedings of the 16th ACM Int’l Confer-
ence on Hypertext and Hypermedia (Hypertext ’05, Salzburg, Austria), 2005, pp. 63–65.

8. Beringer, D., Melloul, L., Wiederhold, G., A Reuse and Composition Protocol for Services, in Proceedings of
Symposium on Software Reusability (SSR’99, Los Angeles, California, USA), 1999, pp. 54–61.

9. Buschmann, F., Meunir, R., Rohnert, H., Sommerland, P., Stal, M., Pattern Oriented Software Architectures: A
System of Patterns, John Wiley & Sons, 1996.

10. Christodoulou, S., Zafiris, P., Papatheodorou, T. S., Web Engineering: The Developers' View and a Practitio-
ner's Approach, Web Engineering, Software Engineering and Web Application Development, Springer-Verlag
LNCS 2016, 2001, pp.170–187.

11. Engelbart, D., Keynote talk, 4th Int’l Workshop on Open Hypermedia Systems (OHS4, Pittsburgh, PA, USA),
1998.

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison Wesley, 1995.

13. Garzotto, F., Paolini, P., Schwabe, D., HDM – A Model-Based Approach to Hypertext Application Design,
ACM Transactions on Information Systems, 11(1), 1993, pp. 1–26.

14. Ginige, A., Murugesan, S., Web Engineering: An Introduction, IEEE MultiMedia, 8(1), Jan.–Mar. 2001, pp.
14–18.

15. Halasz, F. G., Schwartz, M., The Dexter Hypertext Reference Model, in Proceedings of the NIST Hypertext
Standardization Workshop (Gaithersburg, MD, USA), 1990, pp. 95–133.

16. Halasz, F., “Seven Issues” Revisited, Keynote talk, 3rd ACM Int’l Conference on Hypertext (Hypertext ’91,
San Antonio, Texas, USA), 1991.

An Engineering Perspective on Structural Computing: Developing Structure Services for the Web 244

17. Hu, J., Schmidt, D. C., JAWS: A Framework for High-performance Web Servers, in Fayad, M., Johnson, R.
(eds.), Domain-Specific Application Frameworks: Frameworks Experience by Industry, John Wiley & Sons,
1999.

18. Isakowitz, T., Stohr, E. A., Balasubramanian, P., RMM: A Methodology for Structured Hypermedia Design,
Communications of the ACM, 38(8), 1995, pp. 34–44.

19. Johnson, R., Frameworks=Patterns + Components, Communications of the ACM, 40(10), 1997.
20. Karousos, N., Pandis, I., Developer Support in Open Hypermedia Systems: Towards a Hypermedia Service

Discovery Mechanism, in Proceedings of the 2nd Int’l Metainformatics Symposium (MIS’03, Graz, Austria),
Springer-Verlag LNCS 2994, 2004, pp. 89–99.

21. Karousos, N., Pandis, I., Reich, S., Tzagarakis, M., Offering Open Hypermedia Services to the WWW: A Step-
by-Step Approach for Developers, in Proceedings of 12th Int’l Conference on World Wide Web (WWW ’03,
Budapest, Hungary), 2003, pp. 482–489.

22. Ladd, B. C., Capps, M. V., Stotts, P. D., The World Wide Web: What Cost Simplicity?, in Proceedings of the
8th ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’97, Southampton, UK), 1997, pp. 210–
211.

23. Lepthien, W. V., Anderson, K. M., Unifying Structure, Behavior, and Data with Themis Types and Templates,
in Proceedings of the 15th ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’04, Santa Cruz,
California, USA), 2004, pp. 256–265.

24. Lowe, D., Hall, W., Hypermedia and the Web: An Engineering Approach, Wiley, 1999.
25. McConnell, S., Rapid Development, Microsoft Press, 1996.
26. Michaelides, D. T., Millard, D. E., Weal, M. J., DeRoure D., Auld Leaky: A Contextual Open Hypermedia

Link Server, in Proceedings of the 7th Workshop on Open Hypermedia Systems (OHS7, Aarhus, Denmark,
2001), Springer-Verlag LNCS 2266, 2002, pp. 59–70.

27. Millard, D. E., Discussions at the data border: from generalised hypertext to structural computing, Journal of
Network and Computer Applications, 26(1), January 2003, pp. 95–114.

28. Millard, D. E., Moreau, L., Davis, H. C., Reich, S., FOHM: A Fundamental Open Hypertext Model for Inves-
tigating Interoperability between Hypertext Domains, in Proceedings of 11th ACM Int’l Conference on Hyper-
text and Hypermedia (Hypertext ’00, San Antonio, Texas, USA), 2000, pp. 93–102.

29. Nanard, M., Nanard, J., King, P., IUHM: a hypermedia-based model for integrating open services, data and
metadata, in Proceedings of the 14th ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’03,
Nottingham, UK), 2003, pp. 128–137.

30. Nürnberg, P. J., Leggett, J. J., A Vision for Open Hypermedia Systems, Journal of Digital Information (JoDI),
1(2), 1997.

31. Nürnberg, P. J., Leggett, J. J., Schneider, E. R., As We Should Have Thought, in Proceedings of the 8th ACM
Int’l Conference on Hypertext and Hypermedia (Hypertext ’97, Southampton, UK), 1997, pp. 96–101.

32. Nürnberg, P. J., Schraefel, M. C., Relationships among Structural Computing and Other Fields, Journal of
Network and Computer Applications, 26(1), January 2003, pp. 11–26.

33. Nürnberg, P. J., Wiil, U. K., Hicks, D. L., A Grand Unified Theory for Structural Computing, in Proceedings
of the 2nd Int’l Metainformatics Symposium (MIS ’03, Graz, Austria, September 2003), Springer-Verlag LNCS
2994, 2004, pp. 1–16.

34. Nürnberg, P. J., Wiil, U. K., Hicks, D. L., Rethinking Structural Computing Infrastructures, in Proceedings of
the 15th ACM Int’l Conference of Hypertext and Hypermedia (Hypertext ’04, Santa Cruz, California, USA),
2004, pp. 239–246.

35. Open Hypermedia Systems Working Group (OHSWG), http://www.csdl.tamu.edu/ohs/,
http://www.cs.aue.auc.dk/ohswg/

36. Papazoglou, M. P., Georgakopoulos, D. (eds.), Service-Οriented Computing, Communications of the ACM,
46(10), 2003.

37. Parunak, H. Van Dyke, Don't link me in: Set based hypermedia for taxonomic reasoning, in Proceedings of the
3rd ACM Int’l Conference on Hypertext (Hypertext ’91, San Antonio, Texas, USA), 1991, pp. 233–242.

M. Vaitis, M. Tzagarakis, and G. Gkotsis 245

38. Parunak, H. Van Dyke, Hypercubes Grow on Trees (and Other Observations from the Land of Hypersets), in
Proceedings of the 5th ACM Int’l Conference on Hypertext (Hypertext ’93), 1993, pp. 73–81.

39. Pfleeger, S. L., Software Engineering: Theory and Practice, Prentice Hall, 2001.
40. Pressman, R. S., Software Engineering – A Practitioner's Approach, McGraw-Hill, Fourth Edition, 1997.
41. Reich, S., Wiil, U. K., Nürnberg, P. J., Davis, H. C., Gronbaek, K., Anderson, K. M., Millard, D. E., Haake, J.

M., Addressing interoperability in open hypermedia: The design of the open hypermedia protocol, The New
Review of Hypermedia and Multimedia, 5, 2000, pp. 207–248.

42. Schmidt, D. C., Vinoski, S., Comparing alternative programming techniques for multi-threaded CORBA serv-
ers: Thread pool, SIGS C++ Report Magazine, 1996.

43. Schwabe, D., Rossi, G., Barbosa, S. D. J., Systematic Hypermedia Application Design with OOHDM, in Pro-
ceedings of 7th ACM Int’l Conference on Hypertext (Hypertext ’96, Bethesda, Maryland, USA), 1996, pp.
116–128.

44. Shipman, F., Hsieh, H., Airhart, R., Maloor, P., Moore, J. M., The Visual Knowledge Builder: A Second Gen-
eration Spatial Hypertext, in Proceedings of the 12th ACM Int’l Conference on Hypertext and Hypermedia,
(Hypertext ’01, Århus, Denmark) 2001, pp. 113–122.

45. Shum, S. B., The missing link: hypermedia usability research and the Web, ACM SIGCHI Bulletin, 28(4),
1996, pp. 68–75.

46. Tzagarakis, M., Avramidis, D., Kyriakopoulou, M., Schraefel, M., Vaitis, M., Christodoulakis, D., Structuring
Primitives in the Callimachus Component-Based Open Hypermedia System, Journal of Network and Computer
Applications, 26(1), January 2003, pp. 139–162.

47. Tzagarakis, M., Karousos, N., Christodoulakis, D., Reich, S., Naming as a fundamental concept of open hy-
permedia systems, in Proceedings of 11th ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’00,
San Antonio, Texas, USA), 2000, pp.103–112.

48. Vaitis, M., Papadopoulos, A., Tzagarakis, M., Christodoulakis, D., Towards Structure Specification for Open
Hypermedia Systems, in Proceedings of the 2nd Int’l Workshop on Structural Computing, Springer-Verlag
LNCS 1903, 2000, pp. 160–169.

49. Vaitis, M., Tzagarakis, M., Grivas, K., Chrysochoos, E., Some Notes on Behaviour in Structural Computing,
in Proceedings of the 2nd Int’l Metainformatics Symposium (MIS ’03, Graz, Austria, September 2003),
Springer-Verlag LNCS 2994, 2004, pp. 143–149.

50. Web Services Architecture Domain, http://www.w3.org/2002/ws .
51. Wege, C., Portal Server Technology, IEEE Internet Computing, 6(3), 2002, pp. 73–77.
52. Whitehead, E. J. Jr., An Architectural Model for Application Integration in Open Hypermedia Environments,

in Proceedings of 8th ACM Int’l Conference on Hypertext and Hypermedia (Hypertext ’97, Southampton, UK),
1997, pp. 1–12.

53. Wiil, U. K., Hicks, D. L., Providing Structural Computing Services on the World Wide Web, in Proceedings of
the 3rd Int’l Workshop on Structural Computing (SC3, Aarhus, Denmark, August 2001), Springer Verlag
LNCS 2266, 2002, pp. 160–171.

54. Wiil, U. K., Multiple Open Services in a Structural Computing Environment, in Proceedings of the 1st Int’l
Workshop on Structural Computing (SC1, Darmstadt, Germany), Technical Report AUE-CS-99-04, Aalborg
University Esbjerg, Computer Science Department, Denmark, 1999, pp. 34–39.

55. Wiil, U. K., Nürnberg, P. J., Hicks, D. L., Reich, S., A Development Environment for Building Component-
Based Open Hypermedia Systems, in Proceedings of 11th ACM Int’l Conference on Hypertext and Hypermedia
(Hypertext ’00, San Antonio, Texas, USA), 2000, pp. 266–267.

56. Wiil, U. K., Using the Construct Development Environment to Generate a File-Based Hypermedia Storage
Service, in Proceedings of the 2nd Int’l Workshop on Structural Computing (SC2, San Antonio, Texas, USA),
Springer Verlag LNCS 1903, 2000, pp. 147–159.

